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ABSTRACT
We present a micro-architectural side-channel attack that
runs entirely in the browser. In contrast to previous work in
this genre, our attack does not require the attacker to install
software on the victim’s machine; to facilitate the attack,
the victim needs only to browse to an untrusted webpage
that contains attacker-controlled content. This makes our
attack model highly scalable, and extremely relevant and
practical to today’s Web, as most desktop browsers currently
used to access the Internet are affected by such side channel
threats. Our attack, which is an extension to the last-level
cache attacks of Liu et al. [14], allows a remote adversary
to recover information belonging to other processes, users,
and even virtual machines running on the same physical host
with the victim web browser.

We describe the fundamentals behind our attack, and
evaluate its performance characteristics. In addition, we
show how it can be used to compromise user privacy in a
common setting, letting an attacker spy after a victim that
uses private browsing. Defending against this side channel
is possible, but the required countermeasures can exact an
impractical cost on benign uses of the browser.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—in-
formation flow controls; K.6 [Management of Comput-
ing and Information Systems]: Miscellaneous—security

General Terms
Languages, Measurement, Security

Keywords
side-channel attacks; cache-timing attacks; JavaScript-based
cache attacks; covert channel; user tracking
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1. INTRODUCTION
Side-channel analysis is a powerful cryptanalytic technique.

It allows attackers to extract information hidden inside a
device, by analyzing the physical signals (e.g., power, heat)
that the device emits as it performs a secure computation [15].
Allegedly used by the intelligence community as early as
in WWII, and first discussed in an academic context by
Kocher in 1996 [13], side-channel analysis has been shown
to be effective in a plethora of real-world systems, ranging
from car immobilizers to high-security cryptographic copro-
cessors [6,20]. A particular kind of side-channel attacks that
are relevant to personal computers are cache attacks, which
exploit the use of cache memory as a shared resource be-
tween different processes to disclose information [9, 19].

Even though the effectiveness of side-channel attacks is
established without question, their application to practical
settings is debatable, with the main limiting factor being the
attack model they assume; excluding network-based timing
attacks [4], most side-channel attacks require an attacker in
“close proximity”to the victim. Cache attacks, in particular,
assume that the attacker is capable of executing binary code
on the victim’s machine. While this assumption holds true
for IaaS environments, like Amazon’s cloud platform, where
multiple parties may share a common physical machine, it
is less relevant in other settings.

In this paper, we challenge this limiting assumption by
presenting a successful cache attack that assumes a far more
relaxed and practical attacker model. Specifically, in our
model, the victim merely has to access a website owned by
the attacker. Despite this minimal model, we show how the
attacker can launch an attack in a practical time frame and
extract meaningful information from the victim’s machine.
Keeping in tune with this computing setting, we choose not
to focus on cryptographic key recovery, but rather on track-
ing user behaviour. The attacks described herein are highly
practical: (a.) practical in the assumptions and limitations
they cast upon the attacker, (b.) practical in the time they
take to run, and (c.) practical in terms of the benefit they
deliver to the attacker.

For our attack we assume that the victim is using a com-
puter powered by a late-model Intel processor. In addition,
we assume that the victim is accessing the web through a
browser with comprehensive HTML5 support. As we show
in Section 6.1, this covers the vast majority of personal com-
puters connected to the Internet. The victim is coerced to
view a webpage containing an attacker-controlled element,
like an advertisement, while the attack code itself, which we
describe in more detail in Section 3, executes a JavaScript-



based cache attack, which lets the attacker track accesses
to the victim’s last-level cache over time. Since this single
cache is shared by all CPU cores, this access information can
provide the attacker with a detailed knowledge regarding the
user and system under attack.

Crafting a last-level cache attack that can be launched
over the web using JavaScript is quite challenging; JavaScript
code cannot load shared libraries or execute native code.
More importantly, it is forced to make timing measurements
using scripting language function calls instead of high-fidelity
timing instructions. Despite these challenges, we success-
fully extended cache attacks to the web environment:

• We present a novel method for creating a non-canonical
eviction set for the last-level cache. In contrast to the
recent work by Liu et al. [14], our method does not
require system support for large pages, and therefore,
it can immediately be applied to a wider variety of
systems. More importantly, we show that our method
runs in a practical time frame.

• We demonstrate a last-level cache attack using Java-
Script code only. We evaluate its performance using a
covert channel method, both among different processes
running on the same machine and between a VM client
and its host. The nominal capacity of the JavaScript-
based channel is in the order of hundreds of Kbit/s,
comparable to that of native code approaches [14].

• We show how cache-based attacks can be used to track
the behaviour of users. Specifically, we present a simple
classifier-based attack that lets a malicious webpage
spy on the user’s browsing activity, detecting the use
of common websites with an accuracy of over 80%.
Remarkably, it is even possible to spy on the private
browsing session of a completely different browser.

2. BACKGROUND AND RELATED WORK

2.1 Memory Hierarchy of Intel CPUs
Modern computer systems incorporate high-speed CPUs

and a large amount of lower-speed RAM. To bridge the per-
formance gap between these two components, they make
use of cache memory : a type of memory that is smaller but
faster than RAM (in terms of access time). Cache memory
contains a subset of the RAM’s contents recently accessed by
the CPU, and is typically arranged in a cache hierarchy—
series of progressively larger and slower memory elements
are placed in various levels between the CPU and RAM.

Figure 1 shows the cache hierarchy of Intel Haswell CPUs,
incorporating a small, fast level 1 (L1) cache, a slightly larger
level 2 (L2) cache, and finally, a larger level 3 (L3) cache,
which in turn is connected to RAM. Whenever the CPU
wishes to access physical memory, the respective address is
first searched for in the cache hierarchy, saving the lengthy
round-trip to RAM. If the CPU requires an element that is
not currently in the cache, an event known as a cache miss,
one of the elements currently residing in the cache is evicted
to make room for this new element. The decision of which
element to evict in the event of a cache miss is made by
a heuristic algorithm that has changed between processor
generations (see Section 6.2).
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Figure 1: Cache memory hierarchy of Intel CPUs
(based on Ivy Bridge Core i5-3470).

Intel’s cache micro-architecture is inclusive: all elements
in the L1 cache exist in the L2 and L3 caches. Conversely,
if a memory element is evicted from the L3 cache, it is also
immediately evicted from the L2 and L1 cache. It should
be noted that the AMD cache micro-architecture is exclu-
sive, and thus, the attacks described in this paper are not
immediately applicable to that platform.

In this work, we focus on the L3 cache, commonly referred
to as the last-level cache (LLC). The LLC is shared among
all cores, threads, processes, and even virtual machines run-
ning on a certain CPU chip, regardless of protection rings
or other isolation mechanisms. On Intel CPUs, the LLC is
divided into several slices: each core of the CPU is directly
connected to one of these cache slices, but can also access
all other slices by using a ring bus interconnection.

Due to the relatively large size of the LLC, it is not effi-
cient to search its entire contents whenever the CPU accesses
the RAM. Instead, the LLC is further divided into cache
sets, each covering a fixed subset of the physical memory
space. Each of these cache sets contains several cache lines.
For example, the Intel Core i7-4960HQ processor, belonging
to the Haswell family, includes 8192 (213) cache sets, each
of which is 12-way associative. This means that every cache
set can hold 12 lines of 64 (26) bytes each, giving a total
cache size of 8192x12x64=6MB. When the CPU needs to
check whether a given physical address is present in the L3
cache, it calculates which cache set is responsible for this
address, and then only checks the cache lines correspond-
ing to this set. As a consequence, a cache miss event for
a physical address will result in the eviction of only one of
the relatively small amount of lines sharing its cache set, a
fact we make great use of in our attack. The method by
which 64-bit physical addresses are mapped into 12-bit or
13-bit cache set indices is undocumented and varies among
processor generations, as we discuss in Section 6.2.



In the case of Sandy Bridge, this mapping was reverse-
engineered by Hund et al. [10], where they showed that of
the 64 physical address bits, bits 5 to 0 are ignored, bits 16
to 6 are taken directly as the lower 11 bits of the set index,
and bits 63 to 17 are hashed to form the slice index, a 2-bit
(in the case of quad-core) or 1-bit (in the case of dual-core)
value assigning each cache set to a particular LLC slice.

In addition to the above, modern computers typically sup-
port virtual memory, restricting user processes from having
direct access to the system’s RAM. Instead, these processes
are allocated virtual memory pages. The first time a page
is accessed by an executing process, the Operating System
(OS) dynamically associates the page with a page frame in
RAM. The Memory Management Unit (MMU) is in charge
of mapping the virtual memory accesses made by different
processes to accesses in physical memory. The size of pages
and page frames in most Intel processors is typically set
to 4KB1, and both pages and page frames are page-aligned
(i.e., the starting address of each page is a multiple of the
page size). This means that the lower 12 bits of any virtual
address and its corresponding physical address are generally
identical, another fact we use in our attack.

2.2 Cache Attacks
The cache attack is a well-known representative of the gen-

eral class of micro-architectural side-channel attacks, which
are defined by Aciiçmez [1] as attacks that “exploit deeper
processor ingredients below the trust architecture bound-
ary” to recover secrets from various secure systems. Cache
attacks make use of the fact that—regardless of higher-level
security mechanisms, like protection rings, virtual memory,
hypervisors, and sandboxing—secure and insecure processes
can interact through their shared use of the cache. This
allows an attacker to craft a “spy” program that can make
inferences about the internal state of a secure process. First
identified by Hu [9], several results have shown how the cache
side-channel can be used to recover AES keys [3, 19], RSA
keys [21], or even allow one virtual machine to compromise
another virtual machine running on the same host [24].

Our attack is modeled after the Prime+Probe method,
which was first described by Osvik et al. [19] in the context
of the L1 cache, and later extended by Liu et al. [14] to last-
level caches on systems with large pages enabled. In this
work, we further extend this attack to last-level caches in
the more common case of 4KB-sized pages.

In general, the Prime+Probe attack follows a four-step
pattern. In the first step, the attacker creates one or more
eviction sets. An eviction set is a sequence of memory ad-
dresses that are all mapped by the CPU into the same cache
set. The Prime+Probe attack also assumes that the victim
code uses this cache set for its own code or data. In the sec-
ond step, the attacker primes the cache set by accessing the
eviction set in an appropriate way. This forces the eviction
of the victim’s data or instructions from the cache set and
brings it to a known state. In the third step, the attacker
triggers the victim process, or passively waits for it to exe-
cute. During this execution step, the victim may potentially
utilise the cache and evict some of the attacker’s elements
from the cache set. In the fourth step, the attacker probes
the cache set by accessing the eviction set again.

12MB and 1GB pages are also supported in newer CPUs.

A probe step with a low access latency suggests that the
attacker’s eviction set is still in the cache. Conversely, a
higher access latency suggests that the victim’s code made
use of the cache set and evicted some of the attacker’s mem-
ory elements. The attacker thus learns about the victim’s
internal state. The actual timing measurement is carried out
by using the (unprivileged) instruction rdtsc, which pro-
vides a high-fidelity measurement of the CPU cycle count.
Iterating over the eviction set in the probing phase forces the
cache set yet again into an attacker-controlled state, thus
preparing for the next round of measurements.

3. PRIME+PROBE IN JAVASCRIPT
JavaScript is a dynamically typed, object-based scripting

language with runtime evaluation that powers the client side
of the modern web. Websites deliver JavaScript programs
to the browser, which in turn are (typically) compiled and
optimized using a Just-In-Time (JIT) mechanism.

The core functionality of the JavaScript language is de-
fined in the standard ECMA-262 [5]. The language standard
is complemented by a large set of application programming
interfaces (APIs) defined by the World Wide Web Consor-
tium [27], which make the language practical for developing
web content. The JavaScript API set is constantly evolving,
and browser vendors add support for new APIs over time
according to their own development schedules. Two specific
APIs that are of use to us in this work are the Typed Array
Specification [7], which allows efficient access to unstruc-
tured binary data, and the High Resolution Time API [16],
which provides JavaScript with submillisecond time mea-
surements. As we show in Section 6.1, the vast majority of
Web browsers that are in use today support both APIs.

By default, browsers will automatically execute every Java-
Script program delivered to them by a webpage. To limit
the potential damage of this property, JavaScript code runs
in a sandboxed environment—code delivered via JavaScript
has severely restricted access to the system. For example, it
cannot open files, even for reading, without the permission
of the user. Also, it cannot execute native code or load na-
tive code libraries. Most importantly, JavaScript code has
no notion of pointers. Thus, it is impossible to determine
the virtual address of a JavaScript variable.

Methodology. The four steps involved in a successful
Prime+Probe attack (see Section 2.2) are the following:
(a.) creating an eviction set for one or more relevant cache
sets; (b.) priming the cache set; (c.) triggering the victim
operation; (d.) probing the cache set again. Each of these
steps must be implemented in JavaScript and overcome the
unique limitations of the web environment.

3.1 Creating an Eviction Set
In the first step of a Prime+Probe attack the attacker

creates an eviction set for a cache set whose activity should
be tracked [14]. This eviction set consists of a sequence
of variables (data) that are all mapped by the CPU into a
cache set that is also used by the victim process. We first
show how we create an eviction set for an arbitrary cache
set, and later address the problem of finding which cache set
is particularly interesting from the attacker’s perspective.



Set assignments for variables in the LLC are made by
reference to their physical memory addresses, which are not
available to unprivileged processes.2 Liu et al. [14] partially
circumvented this problem by assuming that the system is
operating in large page (2MB) mode, in which the lower 21
bits of the physical and virtual addresses are identical, and
by the additional use of an iterative algorithm to resolve the
unknown upper (slice) bits of the cache set index.

In the attack model we consider, the system is not running
in large page mode, but rather in the more common 4KB
page mode, where only the lower 12 bits of the physical
and virtual addresses are identical. To our further difficulty,
JavaScript has no notion of pointers, so even the virtual
addresses of our own variables are unknown to us. This
makes it very difficult to provide a deterministic mapping of
memory address to cache sets. Instead, we use the heuristic
algorithm described below.

We assume a victim system with s = 8192 cache sets,
each with l = 12-way associativity. Hund et al. [10] suggest
accessing a contiguous 8MB physical memory eviction buffer
for completely invalidating all cache sets in the L3 cache. We
could not allocate such an eviction buffer in user-mode; in
fact, the aforementioned work was assisted by a kernel-mode
driver. Instead, we allocated an 8MB byte array in virtual
memory using JavaScript (which was assigned by the OS
into an arbitrary and non-contiguous set of 4KB physical
memory pages), and measured the system-wide effects of
iterating over this buffer.

We discovered that access latencies to unrelated variables
in memory increased by a noticeable amount when they were
accessed immediately after iterating through this eviction
buffer. We also discovered that the slowdown effect per-
sisted even if we did not access the entire buffer, but rather
accessed it in offsets of 1 per every 64 bytes (this behaviour
was recently extended into a full covert channel [17]). How-
ever, it is not immediately clear how to map each of the 131K
offsets we accessed inside this eviction buffer into each of the
8192 possible cache sets, since we know neither the physical
memory locations of the various pages of our buffer, nor the
mapping function used by our specific micro-architecture to
assign cache sets to physical memory addresses.

A naive approach to solving this problem would be to fix
an arbitrary “victim” address in memory, and then find by
brute force which of the 8MB/64B=131K possible addresses
in the eviction buffer are in the same cache set as this vic-
tim address, and as a consequence, within the same cache
set as each other. To carry out the brute-force search, the
attacker iterates over all subsets of size l = 12 of all possi-
ble addresses. For each subset, the attacker checks whether
the subset serves as the eviction set for the victim address
by checking whether accessing this subset slows down subse-
quent accesses to the victim variable. By repeating this pro-
cess 8192 times, each time with a different victim address,
the attacker can identify 12 addresses that reside in each
cache set and thereby create the eviction set data structure.

Optimization #1. An immediate application of this
heuristic would take an impractically long time to run. One
simple optimization is to start with a subset containing all
131K possible offsets, then gradually attempt to shrink it

2In Linux, until recently, the mapping between virtual pages
and physical page frames was exposed to unprivileged user
processes through /proc/<pid>/pagemap [12]. In the lat-
est kernels this is no longer possible [25].

Algorithm 1 Profiling a Cache Set.

Let S be the set of currently unmapped page-aligned ad-
dresses, and address x be an arbitrary page-aligned address
in memory.

1. Repeat k times:

(a) Iteratively access all members of S.

(b) Measure t1, the time it takes to access x.

(c) Select a random page s from S and remove it.

(d) Iteratively access all members of S\s.
(e) Measure t2, the time it takes to access x.

(f) If removing s caused the memory access to speed
up considerably (i.e., t1 − t2 > thres), then this
address is part of the same set as x. Place it back
into S.

(g) If removing s did not cause memory access to
speed up considerably, then s is not part of the
same set as x.

2. If |S| = 12, return S. Otherwise report failure.

by removing random elements and checking that the access
latency to the victim address stays high. The final data
structure should be of size 12 and contain only the entries
sharing a cache set with the victim variable. Even this opti-
mization, however, is too slow for practical use. Fortunately,
the page frame size of the Intel MMU, as described in Sec-
tion 2.1, could be used to our great advantage. Since virtual
memory is page aligned, the lower 12 bits of each virtual
memory address are identical to the lower 12 bits of each
physical memory address. According to Hund et al., 6 of
these 12 bits are used to uniquely determine the cache set
index [10]. Thus, a particular offset in our eviction buffer
can only share a cache set with an offset whose bits 12 to 6
are identical to its own. There are only 8K such offsets in the
8MB eviction buffer, speeding up performance considerably.

Optimization #2. Another optimization comes from
the fact that if physical addresses P1 and P2 share a cache
set, then for any value of ∆, physical addresses P1 ⊕∆ and
P2⊕∆ also share a (possibly different) cache set. Since each
4KB block of virtual memory maps to a 4KB block in phys-
ical memory, this implies that discovering a single cache set
can immediately teach us about 63 additional cache sets.
Joined with the discovery that JavaScript allocates large
data buffers along page frame boundaries, this finally leads
to the greedy approach outlined in Algorithm 1.

By running Algorithm 1 multiple times, we gradually cre-
ate eviction sets covering most of the cache, except for those
parts that are accessed by the JavaScript runtime itself. We
note that, in contrast to the eviction sets created by the al-
gorithm of Liu et al. [14], our eviction set is non-canonical :
JavaScript has no notion of pointers, and hence, we cannot
identify which of the CPU’s cache sets correspond to any
particular eviction set we discover. Furthermore, running
the algorithm multiple times on the same system will result
in a different mapping each time. This property stems from
the use of traditional 4KB pages instead of large 2MB pages,
and will hold even if the eviction sets are created using na-
tive code and not JavaScript.



CPU Model Micro-arch. LLC Size Cache Assoc.

Core i5-2520M Sandy Bridge 3MB 12-way

Core i7-2667M Sandy Bridge 4MB 16-way

Core i5-3427U Ivy Bridge 3MB 12-way

Core i7-3667U Ivy Bridge 4MB 16-way

Core i7-4960HQ Haswell 6MB 12-way

Core i7-5557U Broadwell 4MB 16-way

Table 1: CPUs used to evaluate the performance of
the profiling cache set technique (Algorithm 1).
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Figure 2: Cumulative performance of the profiling
algorithm (Haswell i7-4960HQ).

1 // Inva l i da t e the cache se t
2 var currentEntry = star tAddres s ;
3 do {
4 currentEntry =
5 probeView . getUint32 ( currentEntry ) ;
6 } while ( currentEntry != star tAddres s ) ;
7
8 // Measure access time
9 var startTime = window . performance . now ( ) ;

10 currentEntry =
11 primeView . getUint32 ( var iab leToAccess ) ;
12 var endTime = window . performance . now ( ) ;

Evaluation. We implemented Algorithm 1 in JavaScript
and evaluated it on Intel machines using CPUs from the
Sandy Bridge, Ivy Bridge, and Haswell families, running the
latest versions of Safari and Firefox on Mac OS X v10.10 and
Ubuntu 14.04 LTS, respectively. The setting of the evalua-
tion environment represented a typical web browsing session,
with common applications, such as an email client, calen-
dar, and even a music player running in the background.
The attack code was loaded from an untrusted website into
one tab of a multi-tabbed browsing session. Attacks were
performed when the tab was the foreground tab, when the
browser process was in the foreground but a different tab
was the foreground tab, and when the web browser pro-
cess was running in the background. The specifications of
the CPUs we evaluated are listed in Table 1; the systems
were not configured to use large pages, but instead were
running with the default 4KB page size. The code snippet
shown above illustrates lines 1.d and 1.e of Algorithm 1,
and demonstrates how we iterate over the eviction set and
measure latencies using JavaScript. The algorithm requires
some additional steps to run under Internet Explorer (IE)
and Chrome, which we describe in Section 6.1.
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Figure 3: Probability distribution of access times
for a flushed vs. unflushed variable (Haswell i7-
4960HQ).

Figure 2 shows the performance of our profiling algorithm
implemented in JavaScript, as evaluated on an Intel i7-4960-
HQ running Firefox 35 for Mac OS X 10.10. We were pleased
to find that our approach was able to map more than 25% of
the cache in under 30 seconds of operation, and more than
50% of the cache after 1 minute. On systems with smaller
cache sizes, such as the Sandy Bridge i5-2520M, profiling was
even faster, taking less than 10 seconds to profile 50% of the
cache. The profiling technique itself is simple to parallelize,
since most of its execution time is spent on data structure
maintenance and only a small part is spent on the actual
invalidate-and-measure portion; multiple worker threads can
prepare several data structures to be measured in parallel,
with the final measurement step being carried out by a single
master thread.3 Finally, note that the entire algorithm is
implemented in ∼ 500 lines of JavaScript code.

To verify that Algorithm 1 is capable of identifying cache
sets, we designed an experiment that compares the access
latencies for a flushed and an unflushed variable. Figure 3
shows two probability distribution functions comparing the
time required to access a variable that has recently been
flushed from the cache by accessing the eviction set (gray
line), with the time required to access a variable that cur-
rently resides in the L3 cache (black line). The timing mea-
surements were carried out using JavaScript’s high resolu-
tion timer, and thus include the additional delay imposed
by the JavaScript runtime. It is clear that the two distribu-
tions are distinguishable, confirming the correct operation
of our profiling method. We further discuss the effects of
background noise on this algorithm in Section 6.3.

3.2 Priming and Probing
Once the attacker identifies an eviction set consisting of

12 entries that share the same cache set, the next goal is to
replace all entries in the cache of the CPU with the elements
of this eviction set. In the case of the probe step, the attacker
has the added goal of precisely measuring the time required
to perform this operation.

3The current revision of the JavaScript specification does
not allow multiple worker threads to share a single buffer
in memory. An updated specification, which supports this
functionality, is currently undergoing a ratification process
and is expected to be made official by the end of 2015.



Algorithm 2 Identifying Interesting Cache Regions.

Let Si be the data structure matched to eviction set i.

• For each set i:

1. Iteratively access all members of Si to prime the
cache set.

2. Measure the time it takes to iteratively access all
members of Si.

3. Perform an interesting operation.

4. Measure once more the time it takes to iteratively
access all members of Si.

5. If performing the interesting operation caused the
access time to slow down considerably, then this
operation is associated with cache set i.

Modern high-performance CPUs are highly out-of-order,
meaning that instructions are not executed by their order
in the program, but rather by the availability of input data.
To ensure the in-order execution of critical code parts, In-
tel provides “memory barrier” functionality through various
instructions, one of which is the (unprivileged) instruction
mfence. As JavaScript code is not capable of running it,
we had to artificially make sure that the entire eviction set
was actually accessed before the timing measurement code
was run. We did so by accessing the eviction set in the form
of a linked list (as was also suggested by Osvik et al. [19]),
and making the timing measurement code artificially depen-
dent on the eviction set iteration code. The CPU also has
a stride prefetching feature, which attempts to anticipate
future memory accesses based on regular patterns in past
memory accesses. To avoid the effect of this feature we ran-
domly permute the order of elements in the eviction set. We
also access the eviction set in alternating directions to avoid
an excessive amount of cache misses (see Section 6.2).

A final challenge is the issue of timing jitter. In contrast to
native code Prime+Probe attacks, which use an assembler
instruction to measure time, our code uses an interpreted
language API call (Window.Performance.now()), which
is far more likely to be impacted by measurement jitter.
In our experiments we discovered that while some calls to
Window.Performance.now() indeed took much longer to
execute than expected (e.g., milliseconds instead of nanosec-
onds), the proportion of these jittered events was very small
and inconsequential.

3.3 Identifying Interesting Cache Regions
The eviction set allows the attacker to monitor the activity

of arbitrary cache sets. Since the eviction set we receive
is non-canonical, the attacker must correlate the profiled
cache sets to data or code locations belonging to the victim.
This learning/classification problem was addressed earlier
by Zhang et al. [29] and by Liu et al. [14], where various
machine learning methods were used to derive meaning from
the output of cache latency measurements.

To effectively carry out the learning step, the attacker
needs to induce the victim to perform an action, and then
examine which cache sets were touched by this action, as
formally defined in Algorithm 2.

Finding a function to perform the step (3) of Algorithm 2
was actually quite challenging, due to the limited permis-
sions granted to JavaScript code. This can be contrasted
with the ability of Gorka et al. [2] to trigger kernel code
by invoking sysenter. To carry out this step, we had to
survey the JavaScript runtime and discover function calls
which may trigger interesting behaviour, such as file access,
network access, memory allocation, etc. We were also inter-
ested in functions that take a relatively short time to run
and leave no background “trails”, such as garbage collection,
which would impact our measurement in step (4). Several
such functions were discovered in a different context by Ho et
al. [8]. Since our code will always detect activity caused by
the JavaScript runtime, the high performance timer code,
and other components of the web browser that are running
regardless of the call being executed, we actually call two
similar functions and examine the difference between the
activity profile of the two evaluations to identify relevant
cache sets. Another approach would be to induce the user
to perform an interesting behaviour (such as pressing a key
on her keyboard). The learning process in this case might
be structured (the attacker knows exactly when the victim
operation was executed), or unstructured (the attacker can
only assume that relatively busy periods of system activity
are due to victim operations). We examine both of these
approaches in the attack we present in Section 5.

4. NON-ADVERSARIAL SETTING
In this section, we evaluate the capabilities of JavaScript-

based cache probing in a non-adversarial context. By se-
lecting a group of cache sets and repeatedly measuring their
access latencies over time, the attacker is provided with a
very detailed picture of the real-time activity of the cache.
We call the visual representation of this image a memory-
gram, since it looks quite similar to an audio spectrogram.

A sample memorygram, collected over an idle period of
400ms, is presented in Figure 4. The X axis corresponds to
time, while the Y axis corresponds to different cache sets.
The sample shown has a temporal resolution of 250µs and
monitors a total of 128 cache sets (note that the highest
temporal resolution we were able to achieve while monitoring
128 cache sets in parallel was ∼ 5µs). The intensity of each
pixel corresponds to the access latency of a particular cache
set at this particular time, with black representing a low
latency, suggesting no other process accessed this cache set
between the previous measurement and this one, and white
representing a higher latency, suggesting that the attacker’s
data was evicted from the cache between this measurement
and the previous one.

Observing this memorygram can provide several insights.
First, it is clear to see that despite the use of JavaScript
timers instead of machine language instructions, measure-
ment jitter is quite low and that active and inactive sets
are clearly differentiated. It is also easy to notice several
vertical line segments in the memorygram, indicating multi-
ple adjacent cache sets that were all active during the same
time period. Since consecutive cache sets (within the same
page frame) correspond to consecutive addresses in physical
memory, we believe this signal indicates the execution of a
function call that spans more than 64 bytes of instructions.
Several smaller groups of cache sets are accessed together;
we theorise that such groups correspond to variable accesses.
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Figure 4: Sample memorygram collected over an idle period of 400ms. The X axis corresponds to time, while
the Y axis corresponds to different cache sets. The sample shown has a temporal resolution of 250µs and
monitors a total of 128 cache sets. The intensity of each pixel illustrates the access latency of the particular
cache set, with black representing low latency and white representing a higher latency.

Finally, the white horizontal line indicates a variable that
was constantly accessed during our measurements (e.g., a
variable that belongs to the measurement code or the Java-
Script runtime).

4.1 Covert Channel Bandwidth Estimation
Liu et al. [14] and Maurice et al. [17] demonstrated that

last-level cache access patterns can be used to construct a
high-bandwidth covert channel between virtual machines co-
resident on the same physical host, and exfiltrate sensitive
information. We used such a construction to estimate the
measurement bandwidth of our attack. The design of our
covert channel system was influenced by two requirements.
First, we wanted the transmitter part to be as simple as
possible, and in particular we did not want it to carry out
the eviction set algorithm of Section 3.1. Second, since the
receiver’s eviction set is non-canonical, it should be as simple
as possible for the receiver to search for the sets onto which
the transmitter was modulating its signal.

To satisfy these requirements, our transmitter code simply
allocates a 4KB array in its own memory and continuously
modulates the collected data into the pattern of memory ac-
cesses to this array. There are 64 cache sets covered by this
array, allowing the transmission of 64 bits per time period.
To make sure the memory accesses are easily located by the
receiver, the same access pattern is repeated in several addi-
tional copies of the array. Thus, a considerable percentage
of the cache is actually exercised by the transmitter.

The receiver code profiles the system’s RAM, and then
searches for one of the page frames containing the data mod-
ulated by the transmitter. To evaluate the bandwidth of this
covert channel, we wrote a simple program that iterates over
memory in a predetermined pattern. Next, we search for
this memory access pattern using a JavaScript cache attack,
and measure the maximum sampling frequency at which the
JavaScript code could be run. We first evaluated our code
when both the transmitter and receiver were running on
a normal host. Next, we repeated our measurements when
the receiver was running inside a virtual machine (Firefox 34
running on Ubuntu 14.01 inside VMware Fusion 7.1.0). The
nominal bandwidth of our covert channel was measured to
be 320kbps, a figure which compares well with the 1.2Mbps

achieved by the native code, cross-VM covert channel of
Liu et al. [14]. When the receiver code was not running
directly on the host, but rather on a virtual machine, the
peak bandwidth of our covert channel was ∼8kbps.

5. TRACKING USER BEHAVIOR
The majority of the related work in this field assumes

that the attacker and the victim share a machine inside the
data center of a cloud-provider. Such a machine is not typi-
cally configured to accept interactive input, and hence, pre-
vious work focused on the recovery of cryptographic keys or
other secret state elements, such as random number genera-
tor states [30]. In this work, we chose to examine how cache
attacks can be used to track the interactive behaviour of the
user, a threat which is more relevant to the attack model we
consider. We note that Ristenpart et al. [24] have already
attempted to track keystroke timing events using coarse-
grained measurements of system load on the L1 cache.

5.1 Detecting Hardware Events
Our first case study investigated whether our cache attack

can detect hardware events generated by the system. We
chose to focus on mouse and network activity because the
OS code that handles them is non-negligible. In addition,
they are also easily triggered by content running within the
restricted JavaScript sandbox, allowing our attack to have
a training phase.

Design. The structure of both attacks is similar. First,
the profiling phase is carried out, allowing the attacker to
probe individual cache sets using JavaScript. Next, during
a training phase, the activity to be detected (e.g., network
activity, mouse activity) is triggered, and the cache state is
sampled multiple times with a very high temporal resolution.
While the network activity was triggered directly by the
measurement script (by executing a network request), we
simply waved the mouse around over the webpage during
the training period4.

4In a full attack, the user can be enticed to move the mouse
by having her play a game or fill out a form.



By comparing the cache state during the idle and active
periods of the training phase, the attacker learns which cache
sets are uniquely active during the relevant activity and
trains a classifier on these cache sets. Finally, during the
classification phase, the attacker monitors the interesting
cache sets over time to learn about user activity.

We used a basic unstructured training process, assuming
that the most intensive operation performed by the system
during the training phase would be the one being measured.
To take advantage of this property, we calculated the Ham-
ming weight of each measurement over time (equivalent to
the count of cache sets which are active during a certain time
period), then applied a k-means clustering of these Hamming
weights to divide the measurements into several clusters. Fi-
nally, we calculated the mean access latency of each cache
set in every cluster, creating a centroid for each cluster. To
classify an unknown measurement vector, we measured the
Euclidean distance between this vector and each of these
centroids, classifying it to the closest one.

Evaluation. We evaluated our hardware event detection
strategy on an Intel Core i7-4960HQ processor, belonging to
the Haswell family, running Safari 8.0.6 for Mac OS 10.10.3.
We generated network traffic using the command-line tool
wget and mouse activity by using the computer’s internal
trackpad to move the mouse cursor outside of the browser
window. To provide ground truth for the network activity
scenario, we concurrently measured the traffic on the system
using tcpdump, and then mapped the tcpdump timestamps
to the times detected by our classifier. To provide ground
truth for the mouse activity scenario, we wrote a webpage
that timestamps and logs all mouse events, then opened this
webpage using a different browser (Chrome 43) and moved
the mouse over this browser window. The memorygrams we
collected for both experiments spanned 512 different cache
sets and had a sampling rate of 500 Hz.

Our results indicate that it is possible to reliably detect
mouse and network activity. The measurement rate of our
network classifier did not allow us to count individual pack-
ets, but rather monitor periods of network (in)activity. Our
detector was able to correctly detect 58% of these active
periods, with a false positive rate of 2.86%. The mouse de-
tection code actually logged more events than the ground
truth collection code. We attribute this to the fact that
the Chrome browser (or the OS) throttles mouse events at
a rate of ∼60Hz. Yet, 85% of our mouse detection events
were followed by a ground truth event in less than 10ms. The
false positive rate was 3.86%, but most of the false positives
were immediately followed by a series of true positives. This
suggests that our classifier was also firing on other mouse-
related events, such as “mouse down” or simply touches on
the trackpad. Note that the mouse activity detector did not
detect network activity (or vice versa).

Interestingly, we discovered that our measurements were
affected by the ambient light sensor of the victim machine.
Ambient light sensors are always-on sensors that are in-
stalled on high-end laptops, like MacBooks, Dell Latitude,
Sony Vaio, and HP EliteBooks. They are enabled by default,
and allow the OS to dynamically adjust the brightness of
the computer screen to accommodate different lighting con-
ditions. During our experiments we discovered that waving
our hand in front of the laptop generated a noticeable burst
of hardware events. This could be either the result of hard-
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Figure 5: End-to-end attack scenario.

ware interrupts generated by the ambient light sensor itself,
or hardware interrupts generated by the display panel, as it
automatically adjusts its brightness. This side-channel leak-
age means that cache-based attacks can detect the presence
of a user in front of the computer, an item of information
which is highly desirable to advertisers.

5.2 End-to-End Privacy Attacks

5.2.1 Motivation
Modern browsers implement a private or incognito mode,

which allows users to carry out sensitive online activities.
When private browsing mode is enabled, the web browser
does not disclose or collect any cookies, and disables web
cache entries or other forms of local data storage. One
browser executable that is considered extremely secure is the
Tor Browser: a specially-configured browser bundle, built
around the Firefox codebase, which is designed to block
most privacy-sensitive APIs and connect to the Internet only
through the Tor network. Since private browsing sessions
disable certain network functionality, and do not retain the
login credentials of the current user, they are cumbersome
for general-purpose use. Instead, users typically run con-
currently standard browsing sessions and private browsing
sessions, side-by-side, on the same computer, either as two
open windows belonging to the same browser process, or as
two independent browser processes.

We assume that one of the websites opened during the
standard browsing session is capable of performing our Java-
Script cache attack (either by malicious design, or inciden-
tally via a malicious banner ad or other affiliate content
item). As Figure 5 illustrates, we show how an attacker
can detect which websites are being loaded in the victim’s
private browsing session, thus compromising her privacy.

5.2.2 Experimental Setup
Our measurements were carried out on an Intel Core i7-

2667M laptop, running Mac OS X 10.10.3. The attack code
was executed on a standard browsing session, running on the
latest version of Firefox (37.0.2), while the private browsing
session ran on both the latest version of Safari (8.0.6) and
the Tor Browser Bundle (4.5.1). The system was connected
to the WiFi network of Columbia University, and had all
non-essential background tasks stopped. To increase our
measurement bandwidth, we chose to filter all hardware-
related events. We began our attack with a simple training
phase, in which the attacker measured the cache sets that
were idle when the user was touching the trackpad, but not
moving his finger.



Figure 6: Memorygrams for three popular websites (Facebook, Google, Yahoo).

In each experiment, we opened the private-mode brows-
ing window, typed the URL of a website to the address bar,
and allowed the website to load completely. During this op-
eration, our attack code collected memorygrams that rep-
resent cache activity. The memorygrams had a temporal
resolution of 2ms, and a duration of 10 seconds for Safari
private browsing and 50 seconds for the higher-latency Tor
Browser. We collected a total of 90 memorygrams for 8 out
of the top 10 sites on the web (according to Alexa ranking;
May 2015). To further reduce our processing load, we only
saved the mean activity of the cache sets over time, result-
ing in a 5000-element vector for each Safari measurement
and a 25000-element vector for each Tor measurement. A
representative set of the Safari memorygrams is depicted in
Figure 6 (note that the memorygrams shown in the figure
were manually aligned for readability; our attack code does
not perform this alignment step).

Next follows the classification step, which is extremely
simple. We calculated the mean absolute value of the Fourier
transforms for each website’s memorygrams (discarding the
DC component), computed the absolute value of the Fourier
transform for the current memorygram, and then output the
label of the closest website according to the `2 distance.

We performed no other preprocessing, alignment, or mod-
ification to the data. In each experiment, we trained the
classifier on all traces but one, and recorded the label out-
put by the classifier for the missing trace. We expected that
multiple memorygrams would be difficult to align, both since
the attacker does not know the precise time when browsing
begins, and since network latencies are unknown and may
change between measurements.

We chose the Fourier transform method, as it is not af-
fected by time shifting and because of its resistance to back-
ground measurement noise—as we discuss in Section 6.3,
our primary sources of noise were timing jitter and spurious
cache activity due to competing processes. Both sources
manifested as high-frequency additive noise in our memory-
grams, while most of the page rendering activity was cen-
tered in the low frequency ranges. We thus limit our detector
to the low-pass components of the FFT output.

5.2.3 Results
Table 2 (Safari) and Table 3 (Tor Browser) show the con-

fusion matrices of our classifiers. The overall accuracy was
82.1% for Safari and 88.6% for Tor.

Classifier
Output→,

Ground
Truth↓

(1) (2) (3) (4) (5) (6) (7) (8)

Amazon (1) .8 - - - - - - .2
Baidu (2) .2 .8 - - - - - -

Facebook (3) - - .5 - - .5 - -
Google (4) - - - 1 - - - -
Twitter (5) - - - - 1 - - -

Wikipedia (6) - - .2 - - .8 - -
Yahoo (7) - - - - - - 1 -

Youtube (8) - - - - .4 - - .6

Table 2: Confusion matrix for FFT-based classifier
(Safari Private Browsing).

The longer network round-trip times introduced by the
Tor network did not diminish the performance of our classi-
fier, nor did the added load of background activities, which
unavoidably occurred during the 50 seconds of each mea-
surement. The classifier was the least successful in telling
apart the Facebook and Wikipedia memorygrams. We the-
orize that this is due to the fact that both websites load a
minimal website with a blinking cursor that generates the
distinct 2 Hz pulse shown in Figure 6. The accuracy of the
detector can certainly be improved with more advanced clas-
sification heuristics (e.g., timing the keystrokes of the URL
as it is entered, characterizing and filtering out frequencies
with switching noise).

Our evaluation was limited to a closed-world model of the
Internet, in which only a small set of websites was consid-
ered, and where template creation was performed based on
traces from the victim’s own machine. It is possible to justify
this model for our specific attacker, who can easily carry out
profiling on the victim’s machine by instructing it to load
known pages via JavaScript while recording memorygrams.
Nevertheless, it would still be interesting to scale up the
evaluation to an open-world model, where many thousands
of websites are considered, and where the templates are cre-
ated in a different time and place than the victim’s current
browsing session [11].



Classifier
Output→,

Ground
Truth↓

(1) (2) (3) (4) (5) (6) (7) (8)

Amazon (1) 1 - - - - - - -
Baidu (2) - 1 - - - - - -

Facebook (3) - .2 .8 - - - - -
Google (4) - - - 1 - - - -
Twitter (5) - - - .17 .83 - - -

Wikipedia (6) - - .33 - .17 .5 - -
Yahoo (7) - - - - - - 1 -

Youtube (8) - - - - .4 - - 1

Table 3: Confusion matrix for FFT-based classifier
(Tor Browser).

Brand Hi-Res.
Time

Support

Typed
Arrays

Support

Worldwide
Preva-
lence

Internet Explorer v10 v11 11.77%
Safari v8 v6 1.86%

Chrome v20 v7 50.53%
Firefox v15 v4 17.67%
Opera v15 v12.1 1.2%
Total – – 83.03%

Table 4: Affected desktop browsers: minimal ver-
sion and prevalence [26].

6. DISCUSSION

6.1 Prevalence of Affected Systems
Our attack requires a personal computer powered by an

Intel CPU based on the Sandy Bridge, Ivy Bridge, Haswell
or Broadwell micro-architecture. According to data from
IDC, more than 80% of all PCs sold after 2011 satisfy this
requirement. We furthermore assume that the user is using
a web browser that supports the HTML5 High Resolution
Time API and the Typed Arrays specification. Table 4 notes
the earliest version at which these APIs are supported for
each common browser, as well as the proportion of global
Internet traffic coming from such browser versions, accord-
ing to StatCounter measurements (January 2015) [26]. As
the table shows, more than 83% of desktop browsers in use
today are affected by the attack we describe.

The effectiveness of our attack depends on being able to
perform precise measurements using the JavaScript High
Resolution Time API. While the W3C recommendation of
this API [16] specifies that the a high-resolution timestamp
should be “a number of milliseconds accurate to a thou-
sandth of a millisecond”, the maximum resolution of this
value is not specified, and indeed varies between browser
versions and OSes. During our tests, we discovered that the
actual resolution of this timestamp for Safari on Mac OS X
was on the order of nanoseconds, while IE for Windows had
a 0.8µs resolution. Chrome, on the other hand, offered a
uniform resolution of 1µs on all OSes we tested.

Since the timing difference between a single cache hit and
a cache miss is on the order of 50ns (see Figure 3), the profil-
ing and measurement algorithms need to be slightly modified
to support systems with coarser-grained timing resolution.
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Figure 7: L3 cache hit times show a 3-level gradua-
tion (Haswell i7-4960HQ).

In the profiling stage, instead of measuring a single cache
miss, we repeat the memory access cycle multiple times to
amplify the time difference. We have used this observation
to successfully perform cache profiling on versions of the
Chrome browser whose timing resolution was limited5. For
the measurement stage, we cannot amplify a single cache
miss, but we can take advantage of the fact that code ac-
cesses typically invalidate multiple consecutive cache sets
from the same page frame. As long as at least 20 out of the
64 cache sets, in a single page frame, register a cache miss,
our attack is successful even with µs time resolution.

The attack we propose can also be applied to mobile de-
vices, such as smartphones and tablets. It should be noted
that the Android Browser supports High Resolution Time
and Typed Arrays starting from version 4.4, but at the time
of writing the most recent version of iOS Safari (8.1) did not
support the High Resolution Time API.

6.2 Micro-architecture Insights
Despite the fact that our attack was implemented in a

restricted, high-level language, it provides a glimpse into
extremely low-level elements of the victim’s machine. As a
consequence, it is affected by the minute design choices made
by Intel CPU architects. As stated by Aciiçmez [1], two
concepts can affect the functional behavior of a cache: the
mapping strategy and the replacement policy. The former
determines which memory locations are mapped to each set
in the cache, while the latter determines how the cache set
will be modified after a cache miss.

We noticed different behaviour in the mapping strategy of
the systems we surveyed, especially in the choice of the slice
index of each memory address. In the processors we tested,
the sets of the LLC are divided into slices, with each cache
slice located in hardware with close proximity to one of the
CPU’s cores. All of the slices are interconnected via a ring
buffer, allowing all cores to access cache entries in all slices.

5It should be noted that Chrome has an additional feature
called Portable Native Client (PNaCl), which offers direct
access to the native clock_gettime() API.



Cache sets are thus indexed first using the slice index, and
next with the set index within the respective slice.

While the work of Hund et al. [10] showed that on Sandy
Bridge CPUs the slice index is only a function of high-
order bits of the physical address, Liu et al. [14] suggested
that lower-order bits are also considered by newer micro-
architectures. We confirmed this by measuring the cache hit
of each of the cache sets we were able to profile on a quad-
core Haswell processor. In such a system there are three
possible times for an L3 cache hit. L3 cache entries located
in a slice associated with the current core are the fastest to
access. Hits on cache entries located in the two slices which
are a single core’s distance from the current core should be
slightly slower, since the entry has to travel across a single
hop on the ring buffer. Finally, hits on cache entries lo-
cated in the slice which is two cores away from the current
core should be the slowest to access, since the entries travel
across two hops on the ring buffer. If lower-order address
bits are used in the selection of the cache slice, we would
expect to see a variation in the cache hit times for addresses
within the same physical memory page. Figure 7 shows that
this behaviour was indeed observed on a Haswell-generation
CPU, confirming the suggestion of Liu et al.

The timing difference between the worst-case cache hit
(which has to travel across two hops on the ring buffer) and
a cache miss is still enough for Algorithm 1 to operate with-
out modifications. However, an attacker can use this insight
concerning LLC slices to his operative advantage. For ex-
ample, two processes running on the same system can use
this measurement to discover whether they are running on
the same core or not, by comparing cache hit timings for
the same cache sets. This can allow an attacker to option-
ally transition from LLC cache attacks to L1 cache attacks,
which are considered to be more sensitive and simpler to
carry out. More importantly, once the mapping of physi-
cal addresses to cache sets is reverse engineered on newer
systems, this behaviour will allow low-privilege processes to
infer information about the physical addresses of their own
variables, reducing the entropy of several types of attacks
such as ASLR derandomization [10].

When investigating the cache replacement policy, we no-
ticed that the CPUs we surveyed transitioned between two
distinct replacement policies. Modern Intel CPUs usually
employ a least-recently-used (LRU) replacement policy [23],
where a new entry added to the cache is marked as the
most recently used, and is thus the last to be replaced in
the case of future cache misses. In certain cases, however,
these CPUs can transition to the bimodal insertion policy
(BIP) policy, where the new entry added to the cache is
marked most of the times as the least recently used, and
is thus the first to be replaced in the case of future cache
misses. In our measurements we noticed that Sandy Bridge
CPUs kept using the LRU policy throughout our experi-
ments. On Ivy Bridge processors, however, we witnessed
situations where some sets operated in LRU mode and some
in BIP mode. This suggests a “set dueling” mechanism, in
which the two policies are compared in real time to examine
which generates less cache misses. Haswell and Broadwell
CPUs switched between policies with high frequency, but we
could not locate regions in time where both policies were in
effect (in different cache sets).

We hypothesize that Haswell (and newer) CPUs do not
use simple set dueling, but rather a different method, to
choose the optimal cache replacement policy. The choice of
policy had a impact on our measurements, since the BIP
policy makes the priming and probing steps harder. Prim-
ing is more difficult since sequentially accessing all entries
in the eviction set does not bring the cache into a known
state—some of the entries used by the victim process may
still be in the cache set. As a result, the probing step may
spuriously indicate that the victim has accessed the cache set
in a certain time period. The combined effect of these two
artifacts is an effective low-pass filter applied to the memo-
rygram, which reduces our temporal resolution by a factor of
up to 16. To avoid triggering the switch to BIP, we designed
our attack code to minimize the amount of cache misses it
generates in benign cases, both by choosing a zig-zag access
pattern (as suggested by Osvik et al. [19]), and by actively
pruning our measurement data set to remove overly active
cache sets.

6.3 Noise Effects
Sources. Side-channel attacks have to deal with three

general categories of noise [18]: electronic, switching, and
quantization (or measurement). Electronic noise refers to
the “thermal noise” which is inherent in any physical sys-
tem. This source of noise is less prevalent in our attack
setup due to its relatively low resolution. Switching noise
refers to the fact that the measurements capture not only
the victim’s secret information, but also other activities of
the device under test, either correlated or uncorrelated to
the measurement. In our specific case, this noise is caused
by the spurious cache events due to background process ac-
tivity, as well as by the cache activity of the attack code and
the underlying JavaScript runtime itself. Quantization noise
refers to the inaccuracies introduced by the measurement ap-
paratus. In our specific case, this noise can be caused by the
limited resolution of the JavaScript performance counter, or
by low-level events such as context switches that occur while
the measurement code is running. It should be noted that,
with the exception of timer granularity, all sources of noise
in our system are additive (i.e., noise will only cause a mea-
surement to take longer).

Effects. There are two main elements of our attack that
can be impacted by noise. The first is the cache profiling pro-
cess, in which the eviction sets are created. The second is the
online step, in which the individual cache sets are probed.
Noise during the profiling process, specifically during steps
(1.b) and (1.e) of Algorithm 1, will cause the algorithm to
erroneously include or exclude a memory address from an
eviction set. Noise during the online step will cause the at-
tacker to erroneously detect activity on a cache set when
there is none, or to erroneously associate cache activity to a
victim process when in fact it was caused by another source.
Interestingly, one formidable source of switching noise is the
measurement process itself—since a memorygram contains
millions of measurements collected over a short period of
time, creating it has a considerable impact on the cache.

Mitigations. To quantify the prevalence of measurement
noise in our system, we measured the proportion of cache
misses in an area with no cache activity. We discovered that
around 0.3% of cache hits were mis-detected as cache misses
due to timing jitter, mostly because off context switches in
the middle of the measurement process.



Such events are easy to detect since the time that is re-
turned is more than the OS multitasking quantum (10ms on
our system). However, since we want our measurement loop
to be as simple as possible, we did not apply this logic in
our actual attack. To deal with the limited resolution of the
timer on some targets, we could either use the workarounds
suggested in the previous section or find an alternative form
of time-taking that does not rely on JavaScript’s built-in
timer API. Timing jitter was generally not influenced by
CPU-intensive background activities. However, memory-
intensive activities, such as file transfers or video encoders
caused a large amount of switching noise and degraded the
effectiveness of our attack considerably. To deal with the
switching noise caused by our measurement code, we spread
out our data structures so that they occupied only the first
64 bytes of every 4KB block of memory. This guaranteed
that at most 1/64 of the cache was affected by the construc-
tion of the memorygram.

Another source of noise was Intel’s Turbo Boost feature,
which dynamically varied our CPU clock speed between 2.5
GHz and 3.2 GHz. This changed the cache hit timings on
our CPU by a large factor between measurements, making
it difficult to detect cache misses. To mitigate this effect,
we periodically estimated the cache hit time (by measuring
the access time of a cache set immediately after priming it),
and measured cache misses against this baseline.

6.4 Additional Attack Vectors
The general mechanism we presented in this paper can be

used for many purposes other than the attack we presented.
We survey a few interesting directions below.

KASLR Derandomization. Kernel control-flow hijack-
ing attacks often rely on pre-existing code deployed by the
OS. By forcing the OS kernel to jump to this code (for in-
stance by exploiting a memory corruption vulnerability that
overwrites control data), attackers can take over the entire
system [12]. A common countermeasure to such attacks is
the Kernel Address Space Layout Randomization (KASLR),
which shifts kernel code by a random offset, making it harder
for an attacker to hard-code a jump to kernel code in her
exploits. Hund et al. showed that probing the LLC can help
defeat this randomization countermeasure [10].

We demonstrated that LLC probing can also be carried
out in JavaScript, implying that the attack of Hund et al.
can also be carried out by an untrusted webpage. Such at-
tacks are specially suited to our attacker model, because
of drive-by exploits that attempt to profile and then infect
users with a particular strain of malware, tailored to be ef-
fective for their specific software configuration [22]. The
derandomization method we present can be used for boot-
strapping a drive-by exploit, dividing the attack into two
phases. In the first phase, an unprivileged JavaScript func-
tion profiles the system and discovers the address of a kernel
data structure. Next, the JavaScript code connects to the
web server again and downloads a tailored exploit for the
running kernel.

Note that cache sets are not immediately mappable to
virtual addresses, especially in the case of JavaScript where
pointers are not available. An additional building block used
by Hund et al., which is not available to us, is the call to
sysenter with an unused syscall number. This call resulted
in a very quick and reliable trip into the kernel, allowing
efficient measurements [10].

Secret State Recovery. Cache-based key recovery has
been widely discussed in the scientific community and needs
no justification. In the case of cache attacks in the browser,
the adversary may be interested in discovering the user’s
TLS session key, any VPN or IPSec keys used by the sys-
tem, or perhaps the secret key used by the system’s disk
encryption software. There are additional secret state ele-
ments that are even more relevant than cryptographic keys
in the context of network attacks. One secret which is of
particular interest in this context is the sequence number
in an open TCP session. Discovering this value will enable
traffic injection and session hijacking attacks.

6.5 Countermeasures
The attacks described in this paper are possible because

of a confluence of design and implementation decisions start-
ing at the micro-architectural level and ending at the Java-
Script runtime: the method of mapping a physical memory
address to cache set; the inclusive cache micro-architecture;
JavaScript’s high-speed memory access and high-resolution
timer; and finally, JavaScript’s permission model. Mitiga-
tion steps can be applied at each of these junctions, but each
will impose a drawback on the benign uses of the system.

On the micro-architectural level, changes to the way physi-
cal memory addresses are mapped to cache lines will severely
confound our attack, which makes great use of the fact that
6 out of the lower 12 bits of an address are used directly to
select a cache set. Similarly, the move to an exclusive cache
micro-architecture, instead of an inclusive one, will make it
impossible for our code to trivially evict entries from the
L1 cache, resulting in less accurate measurements. These
two design decisions, however, were chosen deliberately to
make the CPU more efficient in its design and use of cache
memory, and changing them will exact a performance cost
on many other applications. In addition, modifying a CPU’s
micro-architecture is far from trivial, and definitely impos-
sible as an upgrade to already deployed hardware.

On the JavaScript level, it seems that reducing the resolu-
tion of the high-resolution timer will make our attack more
difficult to launch. However, the hi-res timer was created
to address a real need of JavaScript developers for applica-
tions ranging from music and games to augmented reality. A
possible stopgap measure would be to restrict access to this
timer to applications that gain the user’s consent (e.g., by
displaying a confirmation window) or the approval of some
third party (e.g., downloaded from a trusted “app store”).

An interesting approach could be the use of heuristic pro-
filing to detect and prevent this specific kind of attack. Just
like the abundance of arithmetic and bitwise instructions
used by Wang et al. to indicate the existence of crypto-
graphic primitives [28], it can be noted that the various
(measurement) steps of our attack access memory in a very
particular pattern. Since modern JavaScript runtimes al-
ready scrutinize the runtime performance of code as part
of their profile-guided optimization mechanisms, it could be
possible for the JavaScript runtime to detect profiling-like
behavior from executing code, and modify its response ac-
cordingly (e.g., by jittering the high-resolution timer or dy-
namically moving arrays around in memory).



7. CONCLUSION
We demonstrated how a micro-architectural, side-channel

cache attack, which is already recognised as an extremely
potent attack method, can be effectively launched from an
untrusted webpage. Instead of the traditional cryptanalytic
applications of the cache attack, we instead showed how user
behaviour can be successfully tracked using our method(s).
The potential reach of side-channel attacks has been ex-
tended, meaning that additional classes of systems must be
designed with side-channel countermeasures in mind.
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