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Abstract

Electronic systems are becoming more complex. Using
subproblem-specific languages simplifies their design, but
presents the problem of connecting the parts. I propose a
system description scheme for reactive systems (systems
that maintain a dialog with their environment) that sup-
ports such heterogeneity.

I expect to contribute the system description scheme,
a mathematical framework for it, a set of efficient algo-
rithms for simulating these systems, and a practical imple-
mentation of the scheme. My prototype compiler suggests
this scheme can be made practical, and the mathematical
framework is nearly complete.

I expect this work to make designing complex, hetero-
geneous reactive systems fast and simple.

1 Introduction

Electronic systems are growing more complex. Describ-
ing these with a diverse set of languages, each suited
to a particular subtask, can greatly simplify designing
these systems, but the problem of connecting the subtasks
arises. For example, a convenient descriptionof the digital
answering machine depicted in Figure 1 might use a digi-
tal signal processing language for the dialtone and DTMF
detectors, a traditional sequential programming language
for the memory, and a state-machine centered language
for the controllers. The research proposed here addresses
describing and simulating a large class of such heteroge-
neous systems.
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Figure 1: A digital answering machine—a typical hetero-
geneous system

I propose a specification scheme that supports het-
erogeneity through abstraction—it ignores the details of
large, complex parts of a system. The level of abstraction I
propose is enough to greatly simplify certain analyses, but
not so high as to preclude all.

The inter-task communication scheme I adopt was de-
veloped by others for specifying reactive systems1—
systems that maintain an ongoing dialog with their envi-

1Harel and Pnueli [14] coined the term.
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ronment. In these systems, when things happen is as im-
portant as what happens. Many important systems fit this
mold, including those with complex user interfaces (e.g.,
digital watches, CD players, and most consumer electron-
ics) and those doing real-time control (e.g., anti-lock brak-
ing systems, industrial process controllers).

The contributions of this research will be a specifica-
tion scheme for heterogeneous reactive systems, a math-
ematical framework for it, a set of scheduling algorithms
for quickly simulating systems described in it, and a prac-
tical implementation of the scheme in the existing multi-
language environment Ptolemy [6].

In the following sections, I discuss my specification
scheme (Section 2), its mathematical framework (Sec-
tion 3), and issues in its implementation (Section 4). Sec-
tion 5 concludes with a description of the current state of
the research and proposed future work.

2 The Specification Scheme

In this section, I describe the approach I take to hetero-
geneity and show how it fits into my specification scheme.
My specification scheme is new, although it is similar to
many existing ones. The heterogeneous approach pre-
sented here is not new, but its application to reactive sys-
tems is.

2.1 Heterogeneity

To support heterogeneity, I adopt the technique in Fig-
ure 2. This is a “black box” scheme where the module in-
terface style is dictated, but the contents of these modules
may be anything. The inter-module communication style
is also imposed. The objective of this technique is to main-
tain a high level of abstraction while allowing a reason-
able amount of analysis. Chang, Kalavade, and Lee dis-
cuss this approach at greater length [9].

This approach is especially useful for describing large
systems. For many whole-system analyses, complex mod-
ule contents may be ignored, greatly simplifying the prob-
lem. Moreover, new module specification schemes can
easily be added to such a framework.

Such a heterogeneous approach is employed in
many large system development environments. One

Interfaces: defined

Communication: defined

Contents: arbitrary

Figure 2: A heterogeneous specification scheme.

well-known example is the UNIX programming envi-
ronment [16]. Here, a system under development is
broken into independently-compiled source files, which
are connected later using little knowledge of their con-
tents. Kahn’s network of communicating concurrent
processes [15] are deterministic because of a simple
constraint on process interfaces. The Ptolemy system [6]
also takes a heterogeneous approach to connect systems
specified using different computational paradigms.

2.2 The Scheme

My proposed specification scheme is based on a network
of communicating modules, such as those shown in Fig-
ure 3. The module interfaces are restricted to compute
monotonic functions on finite complete partial orders (see
Section 3.2). Modules communicate through single-driver
wires: each wire takes exactly one value in an instant—
there is no buffering, no production or consumption of
data, and no possibility of deadlock.

That each wire must be driven by exactly one module
is not a significant restriction. The effect of driving a wire
from multiple sources can be achieved by adding a module
that combines the output of each source.
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Figure 3: An example of my specification scheme: A net-
work of communicating modules
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Technically, the input and output domains of the mod-
ule functions are all the wires in the circuit. However, a
module only examines its input wires and only modifies
its output wires, as shown in Figure 4.

m
A

B
C

becomes(A; B; C; D; E; : : :)x = (A; B; C; D; E; : : :)� � �
fm(x) = m

Figure 4: Module functions are extended to consume and
produce the vector of all wires values

A system’s behavior in an instant is defined as the least
fixed point of the system function f , a composition of the
module functions f1, f2, ..., fn. These functions map a
vector of wire values (inputs) to another vector of wire val-
ues (outputs). This definition captures the intuitive notion
of a system being stable when its outputs have the values
imposed by its inputs. In other words, if xt is a vector of
wire values at time t, then the system is stable when

f (xt) = xt :
I define behavior as the least fixed point because it is

defined and unique under a simple constraint on f (The-
orem 1), order-independent (Corollary 1), and makes the
fewest assumptions about the system.

3 The Mathematical Framework

In this section, I present a mathematical framework for my
specification scheme. I adopt synchronous time semantics
(taken from a number of existing languages) and describe
my systems using complete partial orders and monotonic
functions (taken from the theory of program semantics).

3.1 Synchronous Semantics

Synchronous semantics, proposed by Berry, Benveniste,
Pneuli, Halbwachs, and others2, address the problem of
reactive system specification. It employs the strong syn-
chrony hypothesis: computation takes zero time. Such
an assumption leads to the model of time shown in Fig-
ure 5, where real continuous time is divided into a series
of discrete instants. In practice, a system that processes
all its inputs before being presented with more appears
synchronous. The reason to build synchronous systems is
similar to the reason to build digital systems: a discrete
computational domain makes it possible to engineer “per-
fect” systems in the presence of noise. Digital systems
avoid noise from uncertain voltages; synchronous systems
avoid noise from uncertain delays.

Time

Instants

Figure 5: The discrete model of time in synchronous se-
mantics

Instantaneous computation makes contradictory spec-
ifications possible, and any system that has zero delay
must deal with them. Such a contradictory specification
is shown in Figure 6. The problem arises from zero de-
lay coupled with a communication cycle. My scheme
deals with such contradictions by giving them a well-
defined meaning. Other schemes attempt to analyze and
detect such contradictions before the system is simulated,
a costly technique.

A = not B B = A
A A

BB

Figure 6: A contradictory zero-delay specification.

2Benveniste and Berry provide an excellent overview of this ap-
proach in a special issue of Proceedings of the IEEE [2].
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3.2 CPOs and Monotonic Functions

To formally describe the semantics of my specifications, I
use the concepts of complete partial orders and monotonic
functions from the theory of program semantics3. Finite
complete partial orders describe wire values, monotonic
functions describe the modules, and the least fixed point
of the composition of these functions assigns meaning to
a system in an instant.

Definition 1 A finite complete partial order (CPO) is a 3-
tuple (S;v;?) where� S is a finite set� v is a binary relation that is

– Transitive: x v y and y v z implies x v z

– Antisymmetric: x v y and yv x implies x = y

– Reflexive: x v x� ? 2 S is a distiguished element such that ? v x for
all x

Figure 7 shows a pair of CPOs.?1 0 11 01 10 00?1 1? 0? ?0???v 0, ?v 1 Pointwise extension

Figure 7: A simple CPO and its two-vector extension

Definition 2 A monotonic function f : S ! S on a finite
complete partial order (S;v;?) satisfies

xv y implies f (x) v f (y)
for all x;y 2 S.

A visualization of the effect of a monotonic function is
shown in Figure 8.

3Scott and Strachey [19] pioneered this field. Modern-day books on
the subject include Allison [1], Gunter [11], and Winskel [22]
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Figure 8: The effect of a monotonic function. If there is a
path from x to y, then there is a similar path from f (x) to
f (y).
3.3 The Least Fixed Point Theorem

The following well-known theorem is key to my scheme.
It ensures the specifications are deterministic (i.e., there is
exactly one behavior associated with a specification) and
always have meaning. Moreover, the proof suggests how
to compute the behavior efficiently.

Theorem 1 A monotonic function f on a finite complete
partial order (S;v;?) has a unique least fixed point,
given by the limit of the ascending sequence ?v f (?)v
f ( f (?))v �� �.
Proof. ? v f (?), by definition of ?. Since f is
monotone, it follows that f (?) v f ( f (?)), f ( f (?)) v
f ( f ( f (?))), etc. Because S is finite, there must be some
u 2 S that appears twice, i.e., such that f i(?) = f j(?) =
u for some i < j. Because this is an ascending chain,
f i(?)v f i+1(?)v �� �v f j(?). However, since f i(?) =
f j(?) = u, f i+1(?) = � � � = f j�1(?) = u. Since u =
f i(?), and f i+1(?) = f ( f i(?)) = u, f (u) = u, so u is a
fixed point.

This is a least fixed point. Let v be a fixed point, i.e.,
f (v) = v. It follows that ?v v, f (?)v f (v) = v, ..., u =
f i(?)v v.

f0 a
f1

b
f2

c

Figure 9: A simple system

To illustrate the behavior of a system defined using the
least fixed point, consider the simple system in Figure 9.
To compute its behavior in an instant, the fixed point of the
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function f = f2 � f1 � f0 is found though iteration:(a;b;c) = (?;?;?)
f0(?;?;?) = (0;?;?)
f1(0;?;?) = (0;1;?)
f2(0;1;?) = (0;1;0)

f2( f1( f0(0;1;0))) = (0;1;0)
3.4 The Order-Invariance Theorem

The following4 allows the composition order of the mod-
ule functions to be rearranged without affecting the least
fixed point. Not only does this ensure the least fixed point
is a canonical definition of the behavior of the system, but
it allows the order to be arranged for the optimum conver-
gence rate, for example.

Definition 3 A set of functions f1; : : :; fn has the composi-
tional fixed point property if for all permutations a1; : : :;an

of 1; : : :;n, fa1 � � � �� fan(x) = x if and only if fi(x) = x for
all i = 1; : : :;n.

Theorem 2 The module functions have the compositional
fixed point property.

Proof. Clearly, if fi(x) = x for all i, then any composition
f of the fi has f (x) = x, regardless of the functions.

Assume there is some fixed point x of a composition
f = fa1 �� � �� fan such that f (x) = x, but fi(x) 6= x for some
i. This implies there is some element of the vector x that
is modified by fi and f j for some j 6= i. However, by con-
struction, each element is modified by exactly one func-
tion (this is the “one wire,” “one driver” rule), so this is a
contradiction, and no such fixed point may exist.

Theorem 3 The set of fixed points for any compositional
permutation of functions with the compositional fixed
point property is the same and is given by fx j 8i: fi(x) =
xg.

Proof. Clearly, members of the set fx j 8i: fi(x) = xg are
fixed points of all permuted compositions of functions.
Now, let f and g be different compositional permutations
of the elements of f fig and assume f (x) = x and g(x) 6= x.

4Praveen Murthy and I proved this.

Since the elements of f fig have the compositional fixed
point property, f (x) = x implies fi(x) = x for all i. How-
ever, this implies g(x) = x, since g is another permutation.
It follows that the fixed points are the same for all permu-
tations and are exactly fx j 8i: fi(x) = xg.

Corollary 1 There is exactly one least fixed point for all
permutations of the module functions.

Proof. Follows from Theorems 1, 2, and 3.

3.5 Importing Foreign Functions

An objective of my scheme is to allow functions speci-
fied in any domain to be imported easily. One solution,
presented below, is to make the foreign functions strict—
require all inputs to be known before any output is pro-
duced. As many languages only describe strict functions,
this is not a significant restriction.

Modules in my scheme must communicate through data
embedded in a complete partial order and must be mono-
tonic. For a foreign function whose arguments and results
are taken from a finite (discrete) set, the first requirement
is easily satisfied by building a flat domain, such as that
depicted in Figure 10.

0 1 2 � � � n?
Figure 10: A flat CPO built from the set f1; : : :;ng

The second requirement, monotonicity, is satified by
making the module function strict. That is, if any of the
function’s inputs is ?, then its output is ?, i.e.,

f (: : :;?; : : :) =?:
Under this scheme, acyclic networks built exclusively

from strict functions behave as expected. Cyclic networks
with nothing but strict functions usually give ?s on wires
in a cycle, but adding one non-strict function per loop
cures this problem.

This is not the only technique that could be used to
import foreign functions. Non-strict functions could also
be imported, but ensuring the monotonicity condition be-
comes more difficult.
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4 Implementation

Any implementation of a language based on the syn-
chronous semantics must evaluate the least fixed point of
the system in every time step. Two other schemes have
been devised to do this, but neither support heterogeneity.

A diverse collection of languages have evolved around
synchronous semantics. Esterel [4] is a textual imperative
language with concurrent and sequential statements. Lus-
tre [12] is a textual declarative language with dataflow-
style semantics. Signal [17] is a textual relational lan-
guage, also with a dataflow flavor. Argos, a derivative of
Statecharts [13], is a graphical hierarchical finite state ma-
chine language.

Compilers for these languages have been developed
around common intermediate formats [21]. Esterel and
Argos are translated into an imperative format “IC”; Sig-
nal and Lustre are translated into a declarative format
“GC.” Both can be converted into a sequential automa-
ton format “OC,” from which sequential code can be gen-
erated. The OC format describes a monolithic state ma-
chine, which can be exponentially larger than, say, the Es-
terel program it represents.

In effect, the IC-OC path performs an exhaustive sim-
ulation of the program and records these results in a ta-
ble. At runtime, the correct behavior of the program (the
least fixed point) is simply recalled from the table. This
makes for very fast executables (virtually everything is
compiled away), but does so at the expense of exponen-
tially long compilation times and exponentially large ex-
ecutables. Using this scheme, a small (600-line) program
with 32 states can take fifteen minutes to compile and pro-
duce a ten-megabyte executable [10].

The latest Esterel compiler from Berry’s group trans-
lates an Esterel program into a cyclic boolean network [3].
This is transformed into an acyclic boolean network by an
implicit version [20] of Malik’s procedure for analyzing
cyclic combinational circuits [18]. This analysis is prob-
ably NP-complete, but in practice is fast enough for pro-
grams of reasonable size.

The proof of Theorem 1 suggests the execution scheme
I propose. A convergent iteration, it starts with ? on all
the wires and repeatedly applies f , the composition of all
the module functions, until a fixed point is reached. The-
orem 1 ensures this will always converge, and do so in no
more steps than there are wires (for flat domains).

Execution
Scheme

H
eterogeneous

C
om

pilation
T

im
e

E
xecutable

Size

E
xecution

Speed

Tabular
FSM no exp. exp. const.

Boolean
Network no exp. poly. poly.

Convergent
Iteration yes poly. poly. poly.

Table 1: A comparison of synchronous language compil-
ers. I propose the Convergent Iteration scheme.

This scheme, which I have implemented in a prototype
compiler for the Esterel language [10], is compared to
other compilers in Table 1. My shorter compilation times
is mostly due to not doing causality checking. For exam-
ple, the other compilers would flag the contradictory spec-
ification in Figure 6 as non-causal, whereas mine would
compile and run it, giving a run-time error. I believe such
expensive checking, while important to ensure correct de-
signs, should be separated from compilation along with
other difficult verification problems.

Corollary 1 ensures that any permutation of the module
functions will produce the same result, so this order can be
optimized to minimize the amount of work required to find
the least fixed point. For example, finding the fixed point
of the system in Figure 9 using the composition f0� f1� f2
would take three times as many function evaluations as the
composition f2 � f1 � f0.

Finding a rapidly-converging ordering is a scheduling
problem, and variants of it have appeared in many places.
For acyclic systems, the solution is obvious—a topologi-
cal ordering. For cyclic systems, the best ordering is less
obvious.

In my proposed implementation, there are at least two
approaches to system execution. One approach, fully
static scheduling, decides on an evaluation order that will
be used for each instant at compile-time. Another ap-
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proach, fully dynamic scheduling, decides what function
to evaluate next during execution. The advantage here is
that data-dependent decisions can be made, often greatly
accelerating things. However, the higher overhead may
cancel out such gains.

Applicable existing scheduling techniques are numer-
ous. The clustering scheme used in Buck’s boolean
dataflow domain [7] might find application here. Shiple
et al. adopt Bourdoncle’s Weak Topological Ordering
scheme [5] to accelerate a similar problem. Similar prob-
lems can be found throughout engineering. For example,
Buhl et al.’s SPARK system for solving nonlinear differ-
ential algebraic systems [8] addresses exactly this prob-
lem. A optimal solutionmay be expensive, however, since
the minimum feedback arc set problem is NP-complete for
planar graphs.

5 Current and Future Work

As a proof of concept, I have written a compiler for the
Esterel synchronous language that uses my proposed con-
vergent iteration technique [10]. Although preliminary,
it suggests the convergent iteration technique is practical
even for large systems: the system typically converged in
two or three iterations.

The mathematical framework presented in Section 3
is solid, but will be extended and polished. It forms a
solid foundation for future work, and the two main theo-
rems allow significant optimizations without fear of non-
convergence, non-deterministic behavior, etc.

I intend to implement this scheme in the Ptolemy multi-
language simulation/prototyping environment [6]. This
framework is ideally suited for experimenting with my
system description scheme, since it has support for mod-
ules, interconnections, schedulers, and already has many
well-developed language domains designed to be inter-
faced with others.

Work on scheduling algorithms will follow. I intend to
explore first an optimal scheme, probably based on mini-
mum feedback arc set size. I expect this will be impracti-
cal for large systems, so I also intend to explore heuristic
approaches. I also plan to explore the tradeoffs between
static and dynamic scheduling.

In conclusion, I expect to contribute a specification
scheme that supports hetereogeneously-specified syn-

chronous reactive systems, a mathematical framework
for it, a set of scheduling algorithms for the scheme, and
a practical implementation of it within a multi-language
environment.
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[20] Thomas R. Shiple, Gérard Berry, and Hervé Touati. Constructive analysis of cyclic circuits. In Proceedings of the European
Design and Test Conference, March 1996.

[21] The C2A Group. Projet synchrone: Les formats communs des languages synchrones (common formats for the synchronous
languages). Technical Report 157, INRIA, June 1993. Translated from the French by Wendell Baker.

[22] G. Winskel. The Formal Semantics of Programming Languages: An Introduction. Foundations of Computing. MIT Press,
1993.

8


