
Hardware Synthesis from a Recursive Functional
Language

Kuangya Zhai Richard Townsend Lianne Lairmore Martha A. Kim
Stephen A. Edwards

Columbia University
{kyzhai,rtownsend,lairmore,martha,sedwards}@cs.columbia.edu

ABSTRACT
Abstraction in hardware description languages stalled at the
register-transfer level decades ago, yet few alternatives have
had much success, in part because they provide only mod-
est gains in expressivity. We propose to make a much larger
jump: a compiler that synthesizes hardware from behavioral
functional specifications. Our compiler translates general
Haskell programs into a restricted intermediate representa-
tion before applying a series of semantics-preserving trans-
formations, concluding with a simple syntax-directed trans-
lation to SystemVerilog. Here, we present the overall frame-
work for this compiler, focusing on the intermediate repre-
sentations involved and our method for translating general
recursive functions into equivalent hardware. We conclude
with experimental results that depict the performance and
resource usage of the circuitry generated with our compiler.

Categories and Subject Descriptors
B.5.2 [Hardware]: Design Aids—Automatic Synthesis

General Terms
Languages, Design, Algorithms

Keywords
Functional Hardware, Recursion, High-Level Synthesis

1. INTRODUCTION
Hardware designer productivity continues to lag far be-

hind improvements in silicon fabrication technology. Design-
ers rely on IP reuse to fully utilize the billions of transistors
on today’s integrated circuits. Unfortunately, creating, op-
timizing, and verifying those IP cores remains stuck at the
register-transfer level. Decades of research on high-level syn-
thesis have produced some successes [11] and continues to
improve, but high-level synthesis still lags far behind what
software programmers have had for years.

We believe a far more radical approach is necessary: we
need to raise the abstraction level drastically, going even
higher than “high-level” C models that are often considered
the cutting edge of input formats for hardware synthesis [5].
To that end, we consider using a functional programming
language as an input specification, which confers a host of
benefits. The user gains productivity-enhancing abstrac-
tions such as recursive functions, algebraic data types, and
type inference. The compiler can use the firm, mathemat-
ical foundation of a pure functional language to implement
sophisticated semantics-preserving optimizations originally
developed for software.

In this paper, we present a compiler that transforms pro-
grams written in a functional language (Haskell) into syn-
chronous digital circuits, which we then synthesize onto an
FPGA for prototyping purposes. The compiler performs
a series of semantics-preserving transformations on a re-
stricted dialect of Haskell, ultimately producing a stream-
based program that permits a syntax-directed translation
to SystemVerilog. We use a single functional intermedi-
ate representation based on the Glasgow Haskell Compiler’s
Core [23], allowing us to use Haskell and GHC as a source
language. Reynolds [24] pioneered the methodology of trans-
forming programs into successively restricted subsets, which
inspired our compiler and many others [2, 15,23].

Figure 1 depicts our compiler’s framework as a series of
transformations yielding a hardware description. Given the
Core representation of the source program, we eliminate
polymorphism by making specialized copies of types and
functions, and implement recursive functions by converting
them into tail form and maintaining an explicit stack. These
functions are then scheduled over time by rewriting them to
operate on infinite streams that model discrete clock cycles.
Finally, the resultant stream program is converted into syn-
thesizable SystemVerilog via a syntax-directed translation.

In this paper, we make the following contributions:

• We propose a Haskell-to-hardware compilation frame-
work based on a series of semantics-preserving trans-
formations that operate on a common functional inter-
mediate representation (IR).

• We show how a stream-based dialect of this IR mod-
els synchronous digital hardware and admits a syntax-
directed translation into synthesizable SystemVerilog.

• We illustrate how recursive algorithms can be imple-
mented in hardware through the use of our framework.

• We present experimental results that suggest our cir-
cuits are practical.

Haskell inferred types, pattern matching, lots of syntactic sugar

GHC Core [17] §3 explicit types, let, case, recursion, polymorphism, lambdas

Combinational IR §5.1 top-level lambdas, tail recursion, monomorphic

Sequential IR §5.2 synchronous: recursive stream definitions only;
no recursive calls, delay operator

System
Verilog
Synthesizable
RTL: registers,
multiplexers,
arithmetic

GHC:
type inference

desugaring

Monomorphise [6]

Recursion Removal §4

Conversion to Streams §5.3 Code Generation §6
Figure 1: Overview of Our Compilation Flow: We rewrite Haskell programs into increasingly simpler dialects
until we can perform a syntax-directed translation into SystemVerilog

2. AN EXAMPLE: FIBONACCI
Our compiler is designed as a sequence of rewriting steps

that each lower the source program’s abstraction level; the
final form enables easy interpretation as hardware. To il-
lustrate the power of this technique, we show how it can
remove recursion from the familiar recursive Fibonacci num-
ber function. The algorithm itself remains recursive, but the
final implementation uses an explicit stack instead of recur-
sive function calls (since the latter cannot be translated into
hardware form). Of course, far better algorithms exist for
computing Fibonacci numbers; our goal here is to illustrate
the recursion removal procedure.

The function below, shown in a pidgin Haskell notation
resembling our IR, compares the integer argument n with
constants 1 and 2 to determine whether it has reached a
base case, for which it returns 1, or needs to recurse on
n− 1 and n− 2.

fib n = case n of 1 → 1
2 → 1
n → fib (n−1) + fib (n−2)

Translating this recursive function into hardware is diffi-
cult because of the two recursive function calls. The usual
technique of inlining calls (e.g., typical for VHDL and Ver-
ilog RTL synthesis tools) would attempt to generate an in-
finitely large circuit unless we limited the recursion depth.
Interpreting the structure of this program literally would
produce a circuit with multiple combinational loops (multi-
ple ones from each recursive call), but it would likely oscil-
late unpredictably. Inserting registers in the feedback loops
would prevent the oscillation, but since this is not simply tail
recursion, it is not obvious how to arbitrate between the two
call sites. Instead, our compiler restructures this program
into a semantically equivalent form that is straightforward
to translate into hardware.

Our IR has no side effects, so the evaluation of fib (n−1)
and fib (n−2) can occur in any order. To avoid arbitration
circuitry, we impose a particular order on them by trans-
forming the function into continuation-passing style [7, 29],
or CPS. In CPS, each function is given an extra “continua-
tion” argument (traditionally named “k”): a function called
with the result of the computation. For example, the con-
tinuation passed to the first recursive call of fib names the
result of the call n1 and calls fib (n−2).

call n k = case n of 1 → k 1
2 → k 1
n → call (n−1) (λn1 →

call (n−2) (λn2 →
k (n1 + n2)))

fib n = call n (λx → x)

Here, call is a CPS helper function that does the real work:
fib invokes call with a continuation that returns the result to
the outside world. The structure of call now represents the
control flow explicitly: recurse on (n−1), name the result
n1, recurse on (n−2), name its result n2, compute n1 + n2,
and finally pass the result to the continuation k.

This transformation to CPS has both scheduled the calls
of fib and transformed the program to use only tail recursion,
which can easily be implemented in hardware as a state ma-
chine. Two issues remain before we can translate this into
hardware: the second continuation references n1, which is
defined by the first continuation, not the second; and more
seriously, unnamed function (continuations: lambda expres-
sions) are being passed as arguments.

We perform lambda lifting [16] to address these issues:
any variables that are not defined within their continuation
(here, n, k, and n1) are added as additional arguments, and
each lambda expression is extracted and named as a top-
level function.

call n k = case n of 1 → k 1
2 → k 1
n → call (n−1) (k1 n k)

k1 n k n1 = call (n−2) (k2 n1 k)
k2 n1 k n2 = k (n1 + n2)
k0 x = x
fib n = call n k0

Here, k0 is the identity function, k1 performs the second
recursive call, and k2 produces the result by adding n1 to n2.
Each of these continuations are passed as partially applied
functions, e.g., k1 takes three arguments, but is only given
n and k when passed to call. The third argument is passed
to k1 when it is called, either in one of call ’s base cases or
in the body of k2.

Partially-applied functions do not have a clear hardware
representation, so we eliminate them via defunctionaliza-
tion [4]: the algebraic data type Cont encodes the continu-
ations, and the helper function ret applies a continuation k
to a result r.

data Cont = K0
K1 Int Cont
K2 Int Cont

call n k = case n of 1 → ret k 1
2 → ret k 1
n → call (n−1) (K1 n k)

ret k r = case k of K1 n k → call (n−2) (K2 r k)
K2 n1 k → ret k (n1 + r)
K0 → r

fib n = call n K0

We next merge ret and call into a single function next by
wrapping their arguments in a shared algebraic data type
Op. The form of next embodies a state machine: it pattern
matches its argument (the current state) then calls itself
with the next state (an instance of the Op data type) after
performing some arithmetic.

data Cont = K0
K1 Int Cont
K2 Int Cont

data Op = Call Int Cont
Ret Cont Int

next z = case z of
Call 1 k → next (Ret k 1)
Call 2 k → next (Ret k 1)
Call n k → next (Call (n−1) (K1 n k))
Ret (K1 n k) r → next (Call (n−2) (K2 r k))
Ret (K2 n1 k) r → next (Ret k (n1 + r))
Ret K0 r → r

fib n = next (Call n K0)

This is now much closer to a hardware implementation.
The body of next is a transition table for a finite-state ma-
chine: for each condition on the left, perform some arith-
metic and transition to a new state. The k argument func-
tions like a top-of-stack: creating a continuation effectively
pushes onto the stack (the old top-of-stack, k, is linked to
this new entry); using a k obtained from an existing contin-
uation (e.g., in Ret (K1 n k) r) pops the stack.

In Section 5.3, we will return to this example and describe
what remains to generate hardware for this.

3. OUR IR: DERIVED FROM GHC CORE
In this section, we begin a detailed description of our com-

piler. We use the Glasgow Haskell Compiler to convert a
Haskell source program into “external core” format [31], a
simplified form of which is shown in Figure 2. Our com-
piler reads the textual external core format. The Intel labs
Haskell research compiler [19] adopts a similar architecture.

A program in our IR defines a collection of algebraic data
types. ADTs are a powerful feature of modern functional
languages that subsume records, enumerations, and union
types. An ADT consists of multiple variants; each variant
has a name (a “data constructor”: Dcon-id in Figure 2) and
zero or more fields, each with its own type. Field types are
either concrete (composed only of “type constructors” Tcon-
id that name other ADTs or basic types) or polymorphic
(containing one or more type variables tvar-id). Any type
variable used in a variant must appear as an argument to
its type definition.

The familiar Boolean type is an algebraic type with two
variants (each with no fields) built into our standard library:

data Bool = True
False

Two other common (polymorphic) examples are singly-
linked lists and binary trees. Here, the a’s represent arbi-
trary types, allowing for lists of, say, 8-bit integers.

data List a = Nil
Cons a List

data Tree a = Leaf a
Node (Tree a) (Tree a)

program ::= type-def ∗ var-def +

type-def ::= data Tcon-id (tvar-id)∗ = variant+

variant ::= Dcon-id (type)∗

type ::= Tcon-id
tvar-id
type → type Function
type type Type application

var-def ::= var-id :: type = expr
expr ::= literal

var-id
Dcon-id
expr expr Application
λ (vbind)+ → expr
let var-def + in expr
case expr of case-alt+

vbind ::= var-id :: type

case-alt ::= Dcon-id (vbind)∗ → expr
literal → expr
→ expr Default

Tcon-id ::= Type constructor (capitalized identifier)

Dcon-id ::= Data constructor (capitalized identifier or �)
literal ::= Integer literal

var-id ::= Variable (lowercase identifier or +, −, etc.)

tvar-id ::= Type variable (lowercase identifier)

Figure 2: Abstract Syntax of Our Intermediate Rep-
resentation: a variant of GHC’s Core [17]

Along with Boolean, our standard library provides 8-, 16-,
and 32-bit signed and unsigned integers.

Variable definitions include functions and comprise the
rest of a program. Each binds a type and an expression to
a name. Expressions are terms in the typed lambda cal-
culus; functions are lambda expressions with typed variable
bindings e.g. “λ x::Int→ + x 1”defines a function that incre-
ments its argument, which must be of type Int. We extend
this basic calculus with let, which introduces local variables,
and case, which matches algebraic types and integer literals
in order. The default pattern “ ” matches anything.

To illustrate, the following defines a recursive function
depth that computes the depth of a binary tree:

depth :: Tree a → Int =
λ t::Tree a → case t of

Leaf → 1
Node l::(Tree a) r::(Tree a) →

let ld::Int = depth l
rd::Int = depth r

in + 1 (max ld rd)

The function uses a case to evaluate its argument t and
select the next step of computation. If t is a Leaf, the func-
tion simply returns 1. Otherwise, t must be a Node with two
sub-trees (that have the same polymorphic type argument
a as the Node itself), in which case the function calls itself
recursively on the two sub-trees and adds 1 to the maximum
depth it found, using a function max that returns the larger
of two integer arguments.

Our compiler transforms a program in this IR (which GHC
generates from Haskell source) into a simpler form that can
be translated into hardware. Next, we present details of how
we transform a program in the IR to remove recursion.

4. COMPILING RECURSION
Here, we present the recursion removal procedure we in-

troduced in Section 2. It starts from any collection of func-
tions, which may be tail-recursive, self-recursive, or mutually
recursive, and produces an equivalent collection of functions
that are at most tail-recursive. This procedure assumes all
function calls are explicit, e.g., that the recursive functions
being called are named directly rather than being passed
around as lambda terms. Similarly, it assumes no partial
function applications.

Our procedure operates by identifying groups of mutually
recursive functions, merging each group into a single self-
recursive function, explicitly scheduling the recursive calls,
then splitting apart each function at recursive call sites, in-
serting continuation control at each point. Finally, we in-
troduce an explicit stack. We describe these steps in detail.

4.1 Combining Mutually Recursive Functions
We begin by combining mutually recursive functions into

a single function. We build a static call graph of all the
functions in the program and treat each strongly connected
component (SCC) as a group of mutually recursive functions
to be merged.

Each function in an SCC can have a different return type,
so to merge the functions, we need to merge the return types.
Consider two mutually recursive functions f and g that re-
turn types T and U :

f :: X → T
f x = . . . g a . . . ff

g :: Y → U
g y = . . . f b . . . gg

To merge f and g, we introduce an algebraic data type
that can hold either T or U,

data FG = FG f T
FG g U

introduce variants of f and g that return this new type

f′ :: X → FG
f′ x = . . . g a . . . (FG f ff)

g′ :: Y → FG
g′ y = . . . f b . . . (FG g gg)

and add wrapper functions with the original signatures

f :: X → T
f x = case f′ x of FG f r → r
g :: Y → U
g y = case g′ y of FG g r → r

Inlining these wrappers leaves only f ′ and g′ as mutually
recursive and all return the same type.

f′ :: X → FG
f′ x = . . . (case g′ a of FG g r → r) . . . (FG f ff)
g′ :: Y → FG
g′ y = . . . (case f′ b of FG f r → r) . . . (FG g gg)

To merge these two functions, we need to also unify their
argument types. Again, we introduce an algebraic type that
can represent either:

data FGc = F X
G Y

and merge their bodies with a case expression, replacing
calls to f ′ and g′ with calls to fg passed a constructor. We
make a similar modification to their wrappers.

fg :: FGc → FG
fg a = case a of

F x = . . . (case fg (G a) of FG g r → r) . . . (FG f ff)
G y = . . . (case fg (F b) of FG f r → r) . . . (FG g gg)

f :: X → T
f x = case fg (F x) of FG f r → r
g :: Y → U
g y = case fg (G y) of FG g r → r

After these transformations, groups of mutually recursive
functions are fused into single self-recursive functions.

This procedure resembles Danvy’s defunctionalization [4],
which introduces an apply function that takes a function
identifier as the first argument, similar to our fg function.

4.2 Sequencing Recursive Call Sites
In preparation for transforming each self-recursive func-

tion into CPS form, we transform each function so that each
recursive call appears only in a let with a single binding.
This effectively imposes a linear order on all the recursive
calls. The body of each such let is exactly the code to be ex-
ecuted after the recursive call returns, i.e., its continuation.
We will later slice the function at these points.

Our algorithm lifts out the scrutinee of any case expres-
sion and the arguments of any recursive call and binds each
such subexpression to a new temporary. Next, our algorithm
flattens any nested let expression to yield a simple sequence
of let expressions. To illustrate, consider the following re-
cursive function f, which contains several recursive calls to
itself along with calls to h and g.

f arg = ...
case h arg of

→ let a = f (g (f b)) in c ...

We change this to bind the result of the inner call of f to
new temporary t1 :

f arg = ...
case h arg of

→ let a = f (let t1 = f b in g t1) in c ...

Next, we lift out the scrutinees of case expressions and
recursive call argument by binding them to new temporaries
so that all recursive calls are in A-normal form [25]. Here,
t2 and t3 hold the argument of f and the case scrutinee.

f arg = ...
let t3 = h arg

in case t3 of
→ let a =

let t2 = (let t1 = f b in g t1)
in f t2

in c ...

Finally, we flatten all nested let expressions, giving

f arg = ...
let t3 = h arg

in case t3 of
→ let t1 = f b in

let t2 = g t1 in
let a = f t2 in c ...

4.3 Dividing Functions into Continuations
After the last step, recursive calls are in a linear sequence

and located in the local bindings of simple let expressions.
Our ultimate goal is to replace these recursive calls with tail-
recursive calls that manipulate continuations on a stack.

Rather than use lambda expressions, which we would ul-
timately have to eliminate in a hardware implementation,
we directly introduce an algebraic data type “Cont” that
represents partially applied continuations (each is missing
the value returned by the recursive call), then introduce a
continuation-handling function “ret” that takes a continua-
tion and a result from a recursive call and evaluates each
continuation in a case expression.

There is always a single continuation implying a return of
the result to the environment. We call this K0, giving us

data Cont = K0

ret k r = case k of K0 → r

The original recursive function is renamed call and given
an additional argument k representing the continuation that
will receive the result. Finally, the original function becomes
a wrapper that calls the new entry point with K0 :

call x1 ... xn k = ...

f x1 ... xn = call x1 ... xn K0

After the last step, the bodies of the let expressions with
recursive calls are exactly the continuations for recursive
function calls, so we divide up the function at these let ex-
pressions and replace each with a call to the call function,
add a alternative to the Cont type that captures all the
free variables in the body of the let (effectively performing
lambda lifting), and add the body of the let to the branch
of the case in the ret function.

For example, if from the last step we have

let v1 = ... in
...
let vn = ... in
let z = f a1 ... am in ... v1 ... vn ...

we turn it into the following fragment

let v1 = ... in
...
let vn = ... in
call a1 ... am (K1 v1 ... vn)

and extend Cont type and ret function as follows:

type Cont = K0
K1 T1 ... TN
...

ret k r = case k of
K0 → r
K1 v1 ... vn → let z = r in ... v1 ... vn ...

Once this is completed, each recursive function has been
replaced by a pair of mutually recursive functions call and
ret. We then combine these two functions into a single tail-
recursive function using the procedure we described earlier
in Section 4.1.

5. IR DIALECTS
As seen in Figure 1, our compilation process uses three

distinct dialects of our IR to describe a program on its way
from Haskell to SystemVerilog. The first dialect is GHC’s
explicitly typed, polymorphic IR, which removes a number
of Haskell constructs but still contains recursion. We ignore
a number of features provided by GHC’s IR (foreign function
calls, newtype definitions, type coercions, etc.), yielding the
IR previously illustrated in Section 3. Our monomorphise
and recursion removal passes (Section 4) transform this IR
into its second form, described below. The third IR version
eliminates all recursive functions by introducing infinite data
streams that model the passage of time. Section 5.2 dis-
cusses this final form in detail.

5.1 Combinational IR
We produce our second IR dialect by removing a number

of language features that cannot be represented in hardware,
resulting in programs that almost look like combinational
logic. We first apply a monomorphise pass from the MLton
compiler [6]: we specialize and rename each polymorphic
function and data type based on their concrete type argu-
ments, which are provided by GHC’s type inference rules.

The recursion removal pass converts all recursive func-
tions into tail form, removing all nested lambda expressions
in the process. We still require lambda expressions to define
top-level functions, but any nested lambdas are lifted and
renamed. Top-level functions will later be translated into
RTL modules, described in Section 6. Tail recursive func-
tions are still permitted at this stage; recursive calls to these
functions are interpreted as clock cycle boundaries (making
this dialect not truly combinational).

The last transformation in this stage removes recursive
algebraic data types definitions. We represent user-defined
data types as statically-sized bit vectors in hardware; if a
definition is recursive, we cannot determine how many bits
to assign to the recursive component at compile time. Thus,
we replace recursive portions of these data types with a
pointer data type e.g. a non-empty integer list defined as
Cons Int List becomes Cons Int Ref, where Ref can be de-
fined as a primitive numeric type. This transformation is
not yet automated; future work will focus on how to deter-
mine an efficient size for the Ref data type based on how
much heap space a program requires.

5.2 Sequential IR: Streams for Time
By design, a program restricted to our second IR dialect

is essentially combinational logic: finite, tail-recursive func-
tions operating on hardware-realizable data types. To syn-
thesize sequential circuits, however, we need to be able to
represent the passage of time.

We use recursively defined infinite streams to model the
behavior of synchronous signals over time. Although the
stream is infinite, its elements are produced by bounded
computation. This structure mirrors synchronous digital
circuitry: gates and wires do a finite amount of compu-
tation each clock cycle, but the system is assumed to run
forever. The Lustre [12] synchronous language suggested
this approach; we adapted it for a Haskell environment as
presented by Hinze [13]. An advantage of our approach is
that it does not require any new semantics: infinite streams
were already lurking in our IR via lazy evaluation, which
Haskell provides for us automatically.

We have one built-in data constructor named delay (rep-
resented “�”) for building streams, defined as follows:

data Stream a = � a (Stream a)

This constructor takes a value of type a and a Stream of
elements (each of type a), defining a stream that consists of
the initial value provided followed by the stream provided.

We usually write � as an infix operator instead of using
the prefix notation associated with data constructors, so in-
stead of

onetwothree = � 1 (� 2 (� 3 onetwothree))

we write the equivalent

onetwothree = 1 � 2 � 3 � onetwothree

A syntax-directed translation suffices to transform such
infinite stream definitions into hardware. Each � becomes a
multiplexer-driven register that takes the first argument to
the � when reset is asserted and the second one otherwise.

onetwothree123

reset

The delay constructor plus the zipWith function found in
most functional languages lets us express state machines.
The zipWith function, which our code generator treats spe-
cially, applies a (combinational) function piecewise to a pair
of input streams to produce an output stream, i.e.,

zipWith f (a0 � a1 � a2 � · · ·) (b0 � b1 � b2 � · · ·) =
f a0 b0 � f a1 b1 � f a2 b2 � · · ·

This allows us to express arbitrary Mealy FSMs in our IR:

states = zipWith nextState inputs (initialState � states)

nextState states
initialState

inputs

reset

We can easily model a memory block as a polymorphic
function that transforms a stream of read and write opera-
tions into a stream of read values. Read and write operations
are represented as instances of a polymorphic data type:

data Memop adr dat = Read adr
Write adr dat

memory :: Stream (Memop adr dat) → Stream dat

This memory function can be used to build a stack of Ints
that takes a stream of push/pop operations (“sops”) and
returns a stream of top-of-stack values (“tos”).

data SOP = Push Int | Pop | NOP
pop c sp = case c of Pop → sp − 1

→ sp
push c sp = case c of Push → sp + 1

→ sp
sps = zipWith pop sops (1 � zipWith push sops sps)
memOp c sp = case c of Push k → Write sp k

→ Read sp
tos = memory (zipWith memOp sops sps)

Here, sps is the stream of stack pointers. Separating
the push and pop functions lets us pre-decrement and post-
increment the stack pointer. Graphically, this is

push

0

pop memOp
sps

memory tos

sops

reset

5.3 Adding Streams to Fibonacci
We now return to the Fibonacci example of Section 2 to

illustrate how we augment a tail-recursive-only IR program
into one with streams.

The Cont data type is recursive and cannot be represented
as a finite-length bit vector since we cannot guarantee a
bound on its depth. In general, it is possible to replace re-
cursive references with pointers and store them on a heap,
but we can do better here. Continuations used for recursion
follow a stack discipline and can be managed accordingly:
constructing a Call involves pushing a continuation on the
stack, and constructing a Ret involves popping a contin-
uation from the stack. As such, we can simply drop the
recursive reference to the Cont type, leaving us with

data Cont = K0
K1 Int
K2 Int

To complete the translation into our IR-with-streams, we
rewrite the next function as combinational and connect it
with a stack via the mergetos function:

next c = case c of
Call 1 k → Ret k 1
Call 2 k → Ret k 2
Call n → Call (n−1) (K1 n)
Ret (K1 n) r → Call (n−2) (K2 r)
Ret (K2 n1) r → Ret K0 (n1 + r)

pop c sp = case c of Ret → sp − 1
→ sp

push c sp = case c of Call → sp + 1
→ sp

sps = zipWith pop states (1 � zipWith push states sps)
memop c sp = case c of Call k → Write sp k

Ret → Read sp
tos = memory (zipWith memop states sps)

mergetos c k = case c of Ret n → Ret k n
c → c

states = map next (zipWith mergetos
(Call n K0 � states) tos)

where map is a unary version of zipWith: it applies a com-
binational function pointwise to a stream. Graphically,

mergetos next

stack tos

statesCall n K0

6. TRANSLATION TO SYSTEMVERILOG
Once a program is in our sequential IR dialect, a syntax-

directed translation suffices to generate equivalent SystemVer-
ilog. We present the general translation scheme for each lan-
guage construct along with an example of each scheme. In
the following examples, a black line separates IR code (on
the left) from the associated SystemVerilog (on the right).
We omit the begin-end statements from the SystemVerilog
code to decrease clutter.

Finite types (non-stream, non-function) in our IR are rep-
resented as bit vectors (SystemVerilog provides tagged union
types, but we found no tools to support them). The log2 n
least-significant bits encode which of the n variants is being
represented; we provide an additional m bits, where m is
large enough to store all the fields in the largest variant.

For example, our Int type is a 32-bit signed integer, so the
bit vector representing the Cont type from our Fibonacci
example needs 34 bits to (possibly) hold an integer along
with two tag bits to distinguish the three variants.

data Cont = K0
K1 Int
K2 Int

typedef logic [33:0] Cont;

Each variant is defined with a SystemVerilog function that
builds and returns the corresponding bit vector. For exam-
ple, the following function constructs a K1 variant of the
Cont type:

function Cont K1(Int t1);
K1 [1:0] = 2′d1; // Set the tag
K1 [33:2] = t1; // Set the integer field

endfunction

Each case expression becomes a multiplexer that selects
the appropriate case alternative. If matching on an algebraic
data type, the SystemVerilog code uses the corresponding
bit vector’s tag bits to select the proper case alternative.

c = case x of
K0 → 0
K1 n → n
K2 n → n

Int c, n;
assign n = x[33:2];
always comb

unique case (x[1:0])
default: c = {32′bx};
0: c = 32′d0;
1: c = n;
2: c = n;

endcase

Each top-level function definition becomes a SystemVer-
ilog module with additional clock and reset inputs. Calls
to a function are translated into module instantiations. For
example, given a primitive SystemVerilog module plus that
adds two integer arguments,

myAdd :: Int→Int→Int =
λ a b → (+) a b

module myadd(
output Int out,
input logic clk, reset,
input Int a, b);

plus a1(out, clk, reset, a, b);
endmodule

The zipWith function produces the same SystemVerilog
code as a standard function call (e.g. the plus function in
the above example): the first argument to zipWith (a func-
tion) becomes a module instantiation, and the following two
Stream arguments are registers passed to the module.

Implementing streams is, by design, very simple. Each
delay constructor (�) becomes a register with a mux con-
trolling how it should be reset.

ys :: Stream Int
ys = x � xs

Int ys;
always ff @(posedge clk)

if (reset) ys <= x;
else ys <= xs;

A let expression in a function introduces local variables
in the corresponding module declaration. We rename these
variables if needed to avoid any collisions.

Below is an example illustrating how functions, let, zip-
With, and � interact.

add2 :: Stream Int
→ Stream Int

add2 nums =
let twos = 2 � twos
in zipWith (+)

nums twos

module add2(
output Int out,
input logic clk, reset ,
input Int nums);

Int twos;
always ff @(posedge clk)

if (reset) twos <= 32′d2;
else twos <= twos;

plus a1(out, clk , reset ,
nums, twos);

endmodule

+

reset
twos2

nums
out

A primitive memory function (which implements the func-
tion shown in Section 5.3 that we provide to the user) takes
a size, a write enable stream, an address stream and a data
input stream, producing a data output stream. We represent
this function with an array declaration and a sequential pro-
cess that reads from or writes to it. FPGA synthesis tools
infer this description as a clocked RAM block.

do = memory 16 we a di Int c1 [15:0], m;
always ff @(posedge clk)

if (we) c1[a] <= di;
do <= c1[a];

7. EXPERIMENTAL RESULTS
We have implemented our compiler in Haskell, which fully

automates the rewriting passes outlined in previous sections
with one exception: the combinational-to-sequential pass is
still under development, but it can currently handle a few
recursive example programs, which we use here to test our
end-to-end pipeline. The full pipeline begins with GHC gen-
erating an external core file from the source program, which
we then parse into an abstract syntax tree using an adapted
version of the parser from Tolmach et al. [31]. This AST
is the input to our compiler, which monomorphises the pro-
gram, removes recursion using the algorithm described in
Section 4, adds streams, and finally generates synthesizable
SystemVerilog. We then synthesized the resultant circuit
designs using Altera’s Quartus 14.0 and targeted a recent
Stratix V FPGA.

7.1 Synthesis Results
There are two types of examples in Table 1: the first group

are classical small recursive algorithms, including the Fi-

Example fmax ALMs RAM Regs

Fib(20) 306 MHz 131 1 360 bits 55
Fib(25) 318 131 1 700 49
Fib(30) 306 132 2 040 48
Ack(3,6) 320 173 1 700 138
Ack(3,7) 325 162 3 400 135
Ack(3,8) 315 173 5 100 130
Sum(10K) 398 57 11 000 52
Sum(100K) 258 71 110 000 65
Sum(1M) 159 140 1 100 000 76

Bresenham 147 117 0 64
Relay Station 650 11 0 31
Length 346 142 2 048 148
Append 232 355 3 136 286

Results from Altera Quartus 14.0.0 targeting a Stratix V
5SGXEA7H3F35C3 with 234,720 ALMs, 52,428,800 RAM bits.

Table 1: FPGA Synthesis Results

fib :: Int → Int
fib 0 = 0
fib 1 = 1
fib n = fib (n−1) + fib (n−2)

sum :: Int → Int
sum 0 = 0
sum n = 1 + sum (n−1)

ack :: Int → Int → Int
ack 0 n = n + 1
ack m 0 = ack (m−1) 1
ack m n = ack (m−1) (ack m (n−1))

Figure 3: Recursive programs for experiments

bonacci and Ackermann functions, and the summation the
first n integers, whose sources are shown in Figure 3. These
examples are small and deliberately näıve, but have the ba-
sic structure of many recursive algorithms. The inputs to
each circuit are fixed, but none of the compilers we tested
attempted to reduce a called function to a simple constant.

We deliberately chose inefficient, recursive algorithms to
compute Fibonacci numbers and sum the first n integers
because they demand recursion be implemented—a center-
piece of our technique. Naturally, more realistic algorithms
for these functions would require constant stack space and
run in linear or constant time but demonstrate little.

We manually wrote the second group of examples in our
sequential IR (i.e., with streams). Bresenham is the familiar
algorithm for computing points on a line using 16-bit inte-
gers; it uses no stack. Relay Station is a buffer whose chan-
nels support backpressure; it performs no arithmetic and
was carefully designed to have short combinational paths.
Length and Append are the familiar list-processing algo-
rithms operating on a rudimentary heap.

Table 1 lists the performance of each synthesized circuit
and what resources it consumes. The fmax column lists the
maximum operating frequency (in MHz) of the circuit on
the FPGA. The ALMs column estimates circuit area: each
adaptive logic module is a basic FPGA building block that
corresponds roughly to a pair of 16-bit RAMs. The RAM
column lists the number of bits of on-chip block RAM the
circuit uses; the Regs column lists the number of (one-bit)
registers in the circuit.

Example C++ Haskell FPGA

time cycles time time cycles

Fib(20) 0.06 ms 204 k 1.67 ms 0.14 ms 43 k
Fib(25) 0.33 1 122 10.4 1.53 486
Fib(30) 3.20 10 880 61.8 17.6 5 385
Ack(3,6) 0.53 1 802 10.1 1.08 344
Ack(3,7) 2.09 7 106 24.1 4.27 1 387
Ack(3,8) 8.09 27 506 85.5 17.7 5 571
Sum(10K) 0.04 136 1.83 0.05 20
Sum(100K) 0.32 1 088 17.3 0.78 200
Sum(1M) 5.45 18 530 138 12.6 2 000

C++ and Haskell versions run on a Linux desktop with an Intel
Core i5-3570K CPU @ 3.40GHz. C++ programs were compiled by
g++ 4.6.3. Haskell programs were compiled by GHC 7.6.3.

Table 2: Performance Results for an FPGA

As shown in Table 1, the designs generated by our com-
piler run at frequencies ranging from 147 MHz to 650 MHz
on this particular FPGA. The first group of examples uses
RAM to hold the stacks. For example, the Fib(20) exam-
ple uses 1360 bits because we set the stack depth to 40 and
the biggest continuation on the stack holds a 32-bit integer
and must distinguish three variants, which requires two ad-
ditional bits. Hence 34× 40 = 1360 bits. The stacks for the
Sum examples are only one bit wide but very deep to accom-
modate their recursion depths. By design, these examples
require unusually deep stacks; we doubt any practical sys-
tem would ever have such a high recursion depth.

We manually set the size of the stack in each example
based on the input values; automating this is future work.

7.2 Performance Results
We give performance result of the example programs af-

ter they are compiled by our compiler and synthesized to
the target FPGA. To compare how they perform relative to
a pure software implementation, we also tested the perfor-
mance of those examples implemented in Haskell and C++.
Table 2 shows running times on the CPU and FPGA.

We did not turn on compiler optimization for the C++ or
Haskell examples since our compiler is also non-optimizing.

As shown from Table 2, our FPGA implementations are
generally slower than the C++ implementations but faster
than the Haskell implementations. Part of this is the un-
avoidable overhead in an FPGA implementation due to its
use of programmable wiring, look-up tables, etc., and we
are using a relatively slow FPGA with adders that operate
substantially slower than the 3.4 GHz processor’s. We ex-
pect an ASIC implementation would be substantially faster,
although we have not conducted those experiments.

Also, note that these circuits consume a very small frac-
tion of the FPGA’s resources, whereas the software im-
plementations are consuming an entire processor core. In
part, this leads to much lower power consumption, although
we did not attempt to measure the energy used by the
two solutions. Something like the Fib(30) circuit is using
much less than 1% of the FPGA’s resources, so running 100
such circuits on the FPGA may be possible given sufficient
I/O bandwidth, promising much higher throughput than the
software counterparts.

8. RELATED WORK
This project synthesizes work from both functional lan-

guages and hardware design; Gammie [8] provides a good
overview of the literature on this.

8.1 Functional Descriptions to Hardware
The Cλash compiler [1, 2] adopts many of the same tech-

niques we have to compile a particular Haskell subset to
hardware. They, too, start from a GHC front-end to gen-
erate Core, then apply rewrite rules (including Danvy’s de-
functionalization [4] inspired by Reynolds [24]) to transform
it into a normal form that can be translated into an HDL.
Like us, they also support algebraic data types. Their fo-
cus, however, has been more on structural, combinational
circuits, and they do not support recursion.

The SHard compiler [26] generates sequential circuits from
a Scheme dialect and supports recursion. Like our work
and the Cλash compiler, their compiler performs series of
semantics-preserving rewrites, including CPS conversion and
lambda lifting. Most notably, it supports memory-resident
closures managed with a read-once discipline instead of a
stack. However, they have very limited support for data
types, forcing their example programs to embed lists in clo-
sures. Furthermore, their compiler exercises little control
over scheduling since it generates hardware from an IR that
does not express clock cycle boundaries, unlike our streams.

Sharp and Mycroft’s FLaSH compiler [22] focuses on shar-
ing a single implementation of a function among multiple
callers, typically placing an arbiter and router around a func-
tion to ensure that it correctly handles multiple, simultane-
ous invocations, something we expect to have to do in our
own work. Despite its focus on function call semantics, it
does not support recursion.

Like FLaSH, resource sharing is a focus of Bluespec [14],
a hardware description language with a strong functional in-
fluence (e.g., higher-order functions, polymorphism). Blue-
spec’s most distinctive feature is its use of “rules”—guarded
atomic actions that are scheduled by a synthesized rule sched-
uler. Unlike FLaSH, SHard, and our work, however, Blue-
spec is fundamentally a hardware description language, forc-
ing designers to describe behavior at a clock-cycle granu-
larity, and therefore provides a lower level of abstraction
to designers. We considered generating Bluespec from our
compiler, but did not want to rely on a proprietary tool.

A variety of other projects have taken a functional ap-
proach to describing hardware structure as opposed to se-
quential algorithms, which are our focus. Sheeran [28] pi-
oneered this area, starting with the FP-inspired language
µfp [27] designed to specify complex combinational struc-
tures. Sheeran and her group later produced the far richer
Lava [3] as a domain-specific language embedded in Haskell,
but it still focuses on describing circuit structures. Gill et
al. [10] also developed a Lava variant. Separate from Lava,
Li and Leeser’s HML [18] also takes a functional approach
to describing circuit structure.

8.2 Compiling Recursion to Hardware
Ghica et al. [9] also implement recursive algorithms in

hardware but their target is an imperative Algol-like lan-
guage. They begin by synthesizing the body of a recursive
function as if it were not recursive, but they replace each reg-
ister used to store a local variable with a little memory that
operates as a stack. All the stacks for a particular function

share a single stack pointer. In contrast, our technique con-
siders exactly which variables are live across recursive calls
and only stores those to a shared stack, which may lead
to reduced memory usage. Furthermore, our technique is
based on a series of rewriting transformations; theirs treats
recursive functions as a special case.

Middendorf et al. [21] take a radically different approach
to implementing recursion in hardware. They transform a C
function into a set of rewrite rules that consume and produce
a certain number of tokens, each of which represents a func-
tion call, an argument, or a result. Their basic architecture
sends a stream of tokens around a loop that includes one
or more blocks that implement the rewriting rules. They
didn’t report the frequency of the FPGAs their algorithm
generates. However, according to the number of clock cy-
cles they report, our method generates much faster circuits
than theirs.

Stitt et al. [30] propose a recursion flattening algorithm
to handle recursion in high-level synthesis. Their algorithm
first determines the depth of the recursion and then fully
inlines the recursive calls. Thus, their algorithm can only
handle programs whose maximum recursion depth can be
determined at compile time and does not allow recursion
to be implemented in time, only space. By contrast, our
translation implements recursion in time. Combining our
approach with theirs would allow for more nuanced tradeoffs.

Maruyama et al. [20] also propose FPGA-friendly archi-
tectures for multithreaded execution of recursive functions.
We also plan to consider their approach in our setting, al-
though they do not propose a synthesis technique.

9. CONCLUSIONS
We presented a compiler able to take Haskell programs

with recursion, algebraic data types, and polymorphic types
and functions and synthesize digital logic from them that
we ran on an FPGA. Our compiler demonstrates it is possi-
ble to compile recursive functional programs to hardware by
performing a series of semantics-preserving rewritings that
transform the program into a series of increasingly simple
normal forms, the last of which corresponds directly to syn-
chronous digital circuits.

We described our intermediate representation, which we
derived from GHC’s core, a procedure for “compiling away”
recursion that substituted true recursion for tail recursion
with explicit stack management, a subset of our IR from
which synthesizable (RTL) System Verilog can be generated
through a syntax-directed translation, and showed experi-
mental results that demonstrated the technique is practical.

Our experimental results are encouraging, suggesting that
such approach can be made practical. In the future, we plan
to add additional optimizations to our compiler and add sup-
port for heap-resident data across multiple small memories:
the long term goal of our larger project.

Acknowledgments
This work was funded by the NSF under CCF–1162124,
“Compiling Parallel Algorithms to Memory Systems.” Jared
Pochtar wrote the initial version of the recursion removal
procedure. David Naveen Dh Arthur helped to run the ex-
periments.

10. REFERENCES
[1] C. Baaij, M. Kooijman, J. Kuper, A. Boeijink, and

M. Gerards. Cλash: Structural descriptions of
synchronous hardware using Haskell. In Proc.
Euromicro Conference on Digital System Design
(DSD), pages 714–721, Lille, France, Sept. 2010.

[2] C. P. R. Baaij and J. Kuper. Using rewriting to
synthesize functional languages to digital circuits. In
Proc. Trends in Functional Programming (TFP),
Lecture Notes in Computer Science, pages 17–33,
Provo, Utah, 2014. Springer.

[3] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh.
Lava: Hardware design in Haskell. In Proc.
International Conference on Functional Programming
(ICFP), pages 174–184, Baltimore, Maryland, 1998.

[4] O. Danvy and L. R. Nielsen. Defunctionalization at
work. In Proc. Principles and Practice of Declarative
Programming (PPDP), pages 162–174, New York, NY,
USA, 2001. ACM.

[5] S. A. Edwards. The challenges of synthesizing
hardware from C-like languages. IEEE Design & Test
of Computers, 23(5):375–386, Sept. 2006.

[6] M. Fluet. Monomorphise, Jan. 2015.
http://mlton.org/Monomorphise [Online; accessed
23-January-2015].

[7] D. P. Friedman and M. Wand. Essentials of
Programming Languages. MIT Press, third edition,
2008.

[8] P. Gammie. Synchronous digital circuits as functional
programs. ACM Computing Surveys, 46(2):article 21,
Nov. 2013.

[9] D. R. Ghica, A. Smith, and S. Singh. Geometry of
synthesis IV: Compiling affine recursion into static
hardware. In Proc. International Conference on
Functional Programming (ICFP), pages 221–233,
Tokyo, Japan, Sept. 2011.

[10] A. Gill, T. Bull, G. Kimmell, E. Perrins, E. Komp,
and B. Werling. Introducing Kansas Lava. In Proc.
International Symposium on Implementation and
Application of Functional Languages, volume 6041 of
Lecture Notes in Computer Science, Nov. 2009.

[11] R. Gupta and F. Brewer. High-level synthesis: A
retrospective. In High-Level Synthesis: From
Algorithm to Digital Circuit, pages 13–28. Springer,
2008.

[12] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous data flow programming language
LUSTRE. Procedings of the IEEE, 79(9):1305–1320,
Sept. 1991.

[13] R. Hinze. Function pearl: Streams and unique fixed
points. In Proc. International Conference on
Functional Programming (ICFP), Victoria, BC, Sept.
2008.

[14] J. C. Hoe and Arvind. Synthesis of operation-centric
hardware descriptions. In Proc. International
Conference on Computer Aided Design (ICCAD),
pages 511–518, Nov. 2000.

[15] S. D. Johnson. Synthesis of Digital Designs from
Recursion Equations. MIT Press, 1984.

[16] T. Johnsson. Lambda lifting: Transforming programs
to recursive equations. In Proc. Functional
Programming Languages and Computer Architecture,

volume 201 of Lecture Notes in Computer Science,
pages 190–203, Nancy, France, 1985. Springer.

[17] S. P. Jones and S. Marlow. Secrets of the Glasgow
Haskell Compiler inliner. Journal of Functional
Programming, 12:393–434, Sept. 2002.

[18] Y. Li and M. Lesser. HML: An innovative hardware
design language and its translation to VHDL. IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, 8(1):1–8, Feb. 2000.

[19] H. Liu, N. Glew, L. Petersen, and T. Anderson. The
Intel labs Haskell research compiler. In Proc. Haskell
Symposium, pages 105–116, Boston, Massachusetts,
Sept. 2013.

[20] T. Maruyama, M. Takagi, and T. Hoshino. Hardware
implementation techniques for recursive calls and
loops. In P. Lysaght, J. Irvine, and R. Hartenstein,
editors, Proc. Conference on Field-Programmable
Logic and Applications (FPL), volume 1673 of Lecture
Notes in Computer Science, pages 450–455. Springer
Berlin Heidelberg, 1999.

[21] L. Middendorf, C. Bobda, and C. Haubelt. Hardware
synthesis of recursive functions through partial stream
rewriting. In Proc. Design Automation Conference
(DAC), pages 1207–1215, San Francisco, California,
2012.

[22] A. Mycroft and R. W. Sharp. Hardware synthesis
using SAFL and application to processor design. In
Proc. Correct Hardware Design and Verification
Methods (CHARME), number 2144 in Lecture Notes
in Computer Science, pages 13–39, Livingston,
Scotland, Sept. 2001.

[23] S. Peyton Jones and A. Santos. Compilation by
transformation in the Glasgow Haskell Compiler. In
K. Hammond, D. Turner, and P. Sansom, editors,
Functional Programming, Glasgow 1994, Workshops in
Computing, pages 184–204. Springer London, 1995.

[24] J. C. Reynolds. Definitional interpreters for
higher-order programming languages. In Proc. ACM
Annual Conference, pages 717–740, 1972.

[25] A. Sabry and M. Felleisen. Reasoning about programs
in continuation-passing style. LISP and Symbolic
Computation, 6(3–4):289–360, 1993.

[26] X. Saint-Mleux, M. Feeley, and J.-P. David. SHard: a
Scheme to hardware compiler. In Proc. Scheme and
Functional Programming Workshop (SFPW), pages
39–49, Portland, Oregon, Sept. 2006. University of
Chicago technical report TR–2006–06.

[27] M. Sheeran. µFP, an algebraic VLSI design language.
In Proc. ACM Symposium on LISP and Functional
Programming (LFP), pages 104–112, Austin, Texas,
Aug. 1984.

[28] M. Sheeran. Hardware design and functional
programming: a perfect match. Journal of Universal
Computer Science, 11(7), July 2005.

[29] G. L. Steele. Rabbit: A compiler for Scheme.
Technical Report AI-TR-474, MIT Press, 1978.

[30] G. Stitt and J. Villarreal. Recursion flattening. In
Proc. Great Lakes Symposium on VLSI (GLSVLSI),
pages 131–134, Orlando, Florida, 2008.

[31] A. Tolmach, T. Chevalier, and T. G. Team. An
external representation for the GHC core language
(for GHC 6.10), Apr. 2010.

