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Abstract

The advent of multicore processors requires mainstream
concurrent programming languages with high level concur-
rency constructs and effective debugging techniques. Un-
fortunately, many concurrent programming languages are
non-deterministic and allow data races.

We present a deterministic concurrent communication
library for an existing multi-threaded language. We im-
plemented the SHIM communication model in the Haskell
functional language, which supports asynchronous commu-
nication and transactional memory. The SHIM model uses
multi-way rendezvous to guarantee determinism. We de-
scribe two implementations of the model in Haskell, demon-
strating the ease of writing such a library.

We illustrate our library with examples and experimen-
tally compare two implementations. We also compare our
new model with equivalent sequential programs and par-
allel versions using Haskell’s existing concurrency mecha-
nisms.

1. Introduction

Multicore shared-memory multiprocessors now rule the
server market. While such architectures provide better per-
formance per watt, they present many challenges.

Scheduling—instruction ordering—is the biggest issue
in programming shared-memory multiprocessors. While
uniprocessors go to extremes to provide a sequential execu-
tion model despite caches, pipelines, and out-of-order dis-
patch units, multiprocessors typically only provide such a

guarantee for each core in isolation; instructions are at best
partially ordered across core boundaries.

Controlling the scheduling on multiprocessors is crucial
not only for performance, but because data races can cause
scheduling choices to change a program’s function. Worse,
the operating system schedules non-deterministically.

Non-deterministic functional behavior arising from tim-
ing variability—a data race—is among the nastiest thing
a programmer may confront. It makes debugging all
but impossible because unwanted behavior is rarely repro-
ducible [1]. Re-running a non-deterministic program on the
same input usually does not produce the same behavior. In-
serting assert or print statements or running the program in
a debugger usually changes timing enough to make the bug
disappear. Debugging such programs is like trying to catch
a butterfly that is only visible from the corner of your eye.

We believe a programming environment should always
provide functional determinism because it is highly desir-
able and is very difficult to check for on a per-program ba-
sis. Sequential programming environments for languages
such as assembly, C, or BASIC have always guaranteed
such determinism, but many parallel environments do not.

In this paper, we present a concurrency library that guar-
antees deterministic functional behavior. We implemented
this library in the functional language Haskell, but many of
the lessons apply to any language. Haskell actually supports
several concurrency mechanisms, but does not guarantee
functional determinism. We chose Haskell because it has
a fairly mature STM implementation, carefully controlled
side effects, and lightweight user-mode scheduled threads.
We were also curious about whether our model, which we
proposed previously for an imperative setting, would trans-
late well to a functional language.



Our library is based on Edwards and Tardieu’s SHIM
(software-hardware integration medium) model [5], which
consists of concurrent asynchronous processes that com-
municate exclusively through rendezvous communication
channels. Processes only interact at communication points,
where they rendezvous and synchronize. The model com-
bines the functional determinism of Kahn networks [9] with
the more tractable rendezvous of Hoare’s CSP [7]. Our li-
brary provides the multi-way rendezvous, but not the excep-
tions, of the latest version of SHIM [12].

Deadlock is another bane of parallel programming.
While the SHIM model does not prevent deadlocks, they
are at least deterministic, i.e., if a program can deadlock
for a particular input, it will do so consistently. Again, this
aids debugging—a programmer can reliably test whether a
deadlock has been eliminated for a particular input.

We implemented two versions of our library: one that
uses mailboxes for inter-process communication and use
that uses software transactional memory. Experimentally,
we find mailboxes are more efficient for implementing
the multi-way rendezvous mechanism, especially for large
numbers of processes. We also found our library easier to
code using mailboxes. While our results are most relevant
to implementing rendezvous, they suggest not all styles of
concurrent communication are equal.

After reviewing the SHIM communication model, some
related work, and Haskell’s concurrency model, we describe
our library and its implementation in Section 5 and present a
series of experiments with our library on an eight-processor
machine in Section 6.

2. The SHIM Communication Model

The SHIM model guarantees functional determinism by
restricting inter-thread communication to a multi-way ren-
dezvous mechanism. It has been implemented in two lan-
guages [5, 12]. One goal in this paper is to examine the
advantages and disadvantages of implementing this model
in a library instead of a full-blown language.

Unlike Haskell, the SHIM language [12] is impera-
tive with a C-like syntax. SHIM provides function calls
with pass-by-value and pass-by-reference parameters, but
no pointers, references, or support for recursive data struc-
tures. Its syntax and semantics allow the compiler to per-
form an inexpensive syntactic check for possible data races.
Basically, if no variable is passed by reference more than
once at a parallel call site, the program is deterministic.
This is a brute-force way to guarantee unique ownership of
each variable; other researchers have proposed richer mech-
anisms such as ownership and region types.

In our library, we adopt two SHIM language constructs:
p par q runs statements p and q in parallel, waiting for both
to terminate before proceeding; next c is a blocking commu-

void f(int a) {
// a is a copy of c
a = 3; // change local copy
next a; // receive (wait for g)
// a now 5

}

void g(int &b) { // b is an alias of c
next b = 5; // sets c and send (wait for f)
// b now 5

}

void main() {
int c = 0;
f(c); par g(c); // start f() and g() concurrently

}

Figure 1. A SHIM program

nication operator that synchronizes on channel c and either
sends or receives data depending on which side of an as-
signment (=) the next appears. The SHIM language also
provides concurrent exceptions [12]; our library currently
does not implement them.

In Figure 1, functions f and g run in parallel and com-
municate on channel c. Channel c is passed by value to f,
and SHIM interprets the next in f as a receive since it is an
rvalue. Channel c is passed by reference to g and its next
is a send because it is an rvalue. The next in f waits for g
to send a value. The functions therefore rendezvous at their
nexts, then continue to run after communication takes place.

Inter-process communication in SHIM requires synchro-
nization, and is thus more costly than intra-process commu-
nication (i.e., reading and writing local variables). Its im-
plementation on a multiprocessor usually involves locking
a shared data structures. As usual, effective algorithms must
balance local computation with communication.

2.1. SHIM as a Library Versus a Language

The SHIM model provides functional determinacy irre-
spective of being implemented as a language or a library, so
an obvious question is which is preferred. We present the
library approach in this paper. A library can leverage exist-
ing language facilities (editors, compilers, etc.) but does not
provide guarantees about its misuse. A program that uses
our library is functionally deterministic if it only uses our
library for inter-thread communication, but there is nothing
to prevent other mechanisms from being used.

The SHIM language does not provide any other inter-
thread communication mechanism, guaranteeing determin-
ism. However, the SHIM language and compiler are not as
mature or feature-rich as Haskell, the implementation vehi-
cle for our library.



3. Related Work

The advent of mainstream multicore processes has em-
phasized the challenges of concurrent programming. Tech-
niques ranging ranging from new concurrent languages to
new concurrent libraries for existing languages are being
investigated. Cω [2] is an example of a new research lan-
guage, which provides join patterns in the form of chords
that synchronize the arrival of data on multiple channels to
atomically capture and bind values that are used by a han-
dler function (such chords are also easy to implement in an
STM setting). This pattern can capture many kinds of con-
currency mechanisms, including rendezvous and actors, but
it is non-deterministic and suffers from all the debugging
challenges the SHIM model avoids.

Cilk [3] is another C-based language designed for multi-
threaded parallel programming that exploits asynchronous
parallelism. It provides deterministic constructs to the pro-
grammer, but it is the programmer’s responsibility to use
them properly; the compiler does not guarantee determin-
ism. This is one of the major differences between SHIM
and Cilk. Cilk focuses on the runtime system, which esti-
mates the complexities of program parts.

We built our library in Haskell, a functional language
with support for concurrency [8]. Its concurrency mecha-
nisms are not deterministic; our library provides a determin-
istic layer over them. Experimentally, we find such layering
does not impose a significant performance penalty.

Our library resembles that of Scholz [11], which also
provides an existing concurrency model in Haskell. Unlike
Scholz, however, we implement our mechanisms atop the
existing concurrency facilities in Haskell [8] and insist on
functional determinism.

4. Concurrency in Haskell

We built our deterministic communication library atop
Haskell’s concurrency primitives. The most basic is forkIO,
which creates an explicit thread and does not wait for its
evaluation to complete before proceeding.

We implemented two versions of our library: one us-
ing mailboxes [8] for inter-thread communication, the other
using software transactional memory [6, 4]. On a mail-
box, takeMVar and readMVar perform destructive and non-
destructive reads; putMVar performs a blocking write. Sim-
ilarly, within the scope of an atomically statement, readT-
Var and writeTVar read and write transactional variables.
Other threads always perceive the actions within an atomi-
cally block as executing atomically.

The Haskell code in Figure 2 creates a mailbox m and
forks two threads. The first thread puts the value 5 into m
and the second thread takes the value from the mailbox m,
adds one to it, and puts it in mailbox n.

sampleMailbox
= do
m <- newEmptyMVar −− Create a new mailbox
n <- newEmptyMVar
forkIO (putMVar m (5::Int)) −− thread writes 5 to m
forkIO (do

c <- takeMVar m −− thread reads m
putMVar n (c+1)) −− write to n

result <- takeMVar n −− block for result
return result

Figure 2. Using Mailboxes in Haskell. One
thread writes to mailbox m, a second reads
m, adds one, and writes to mailbox n. The
outer thread blocks on n to read the result.

sampleSTM c
= atomically (do

value <- readTVar c
if value == -1 then

retry −− not written yet
else writeTVar c (value + 1))

Figure 3. A Haskell program using STM. This
updates the shared (“transactional”) variable
c when it is not −1, otherwise blocks on c.

Haskell’s software transactional memory mecha-
nisms [6, 4] are another way to manage communication
among concurrent threads. In STM, threads can communi-
cate or manipulate shared variables by reading or writing
transactional variables. Statements within an atomically
block are guaranteed to run atomically with respect to all
other concurrent threads. A transaction can block on a
retry statement. The transaction is rerun when one of the
transaction variables changes.

The code in Figure 3 reads c and updates it if its value
is not −1. The atomically guarantees the read and write
appear atomic to other threads. The thread blocks while c
is −1, meaning no other thread has written to it.

5. Our Concurrency Library

In this section, we present our SHIM-like concurrency
library and its implementation. Our goal is to provide
an efficient high-level abstraction for coding parallel al-
gorithms that guarantees functional determinism. As de-
scribed above, Haskell already has a variety of concurrency
primitives (mailboxes and STM), but none guarantee deter-
minism. Our hypothesis is that determinism can be pro-
vided in an efficient, easy-to-code way.



produce [c]
= do

val <- produceData
dSend c val
if val == -1 then −− End of data

return ()
else

produce [c]

consume [c]
= do

val <- dRecv c
if val == -1 then −− End of data

return ()
else

do consumeData val
consume [c]

producerConsumer
= do

c <- newChannel
( , ) <- dPar produce [c]

consume [c]
return ()

Figure 4. A simple producer-consumer sys-
tem using our library

5.1. Our Library’s API

Our library provides channels with multi-way ren-
dezvous and a facility for spawning concurrent threads that
communicate among themselves through channels.

Figure 4 illustrates the use of our API. The producerCon-
sumer function uses newChannel to create a new channel c
and passes it to the produce and consume functions, which
dPar runs in parallel. The producer sends data to the con-
sumer, which consumes it while the producer is computing
the next iteration. For communication costs not to domi-
nate, evaluating produceData and consumeData should be
relatively costly. Depending on which runs first, either the
dSend of the producer waits for dRecv of the consumer or
vice-versa, after which point both proceed with their execu-
tion to the next iteration.

Such a mechanism is also convenient for pipelines, such
as Figure 5. The four functions run in parallel. The first
feeds data to pipelineStage1, which receives it as val1, pro-
cesses it and sends the processed data val2 to pipelineStage2
through channel c2. PipelineStage2 acts similarly, sending
its output to outputFromPipeline through c3.

Figure 6 shows the formal interface to our library.
newChannel creates a new rendezvous channel. dPar takes
four arguments: the first two are the first function to run and
the list of channels passed to it; the last two are the second

inputToPipeline [c1]
= do

val1 <- getVal
dSend c1 val1
inputToPipeline [c1]

pipelineStage1 [c1, c2]
= do

val1 <- dRecv c1
val2 <- process1 val1
dSend c2 val2
pipelineStage1 [c1, c2]

pipelineStage2 [c2, c3]
= do

val2 <- dRecv c2
val3 <- process2 val2
dSend c3 val3
pipelineStage2 [c2, c3]

outputFromPipeline [c3]
= do

val3 <- dRecv c3
putStrLn (show val3)
outputFromPipeline [c3]

pipelineMain
= do

c1 <- newChannel
c2 <- newChannel
c3 <- newChannel
let dPar2 fun1 clist1 fun2 clist2 clist

= dPar fun1 clist1 fun2 clist2
let forkFunc1 = dPar2 inputToPipeline [c1]

pipelineStage1 [c1, c2]
let forkFunc2 = dPar2 pipelineStage2 [c2,c3]

outputFromPipeline [c3]
dPar forkFunc1 [c1, c2]

forkFunc2 [c2, c3]
return ()

Figure 5. A two-stage pipeline in our library

function and its channel connections. dSend takes two pa-
rameters: the channel and the value to be communicated.
dRecv takes the channel as argument and returns the value
in the channel.

5.1.1 Deadlocks and Other Problems

While our library guarantees functional determinism, it
does not prevent deadlocks. For example, our library dead-
locks when multiple threads call dSend on the same channel
(a channel may only have one writer). While this could be
detected, other deadlocks are more difficult to detect. If no
sender ever rendezvous, the readers will block indefinitely.



newChannel :: IO (Channel a)
dPar :: ([Channel a] -> IO b) ->

[Channel a] ->
([Channel a] -> IO c) ->
[Channel a] -> IO (b,c)

dSend :: Channel a -> a -> IO ()
dRecv :: Channel a -> IO a

Figure 6. The interface to our concurrency li-
brary. newChannel creates a new channel;
dPar forks two threads and waits for them to
terminate; dSend rendezvous on a channel
and sends a value; and dRecv rendezvous
and receives a value.

data Channel a = Channel {
connections :: TVar Int,
waitingReaders :: TVar Int,
written :: TVar Bool,
allReadsDone :: TVar Bool,
val :: TVar (Maybe a)

}

Figure 7. The channel type (STM)

Two threads that attempt to communicate on shared
channels in different orders will deadlock. For example,

dSend c1 value
dRecv c2

dSend c2 value
dRecv c1

will deadlock because the left thread is waiting for the right
to rendezvous on c1, while the right is waiting for the left
to rendezvous on c2. Such a deadlock is deterministic: the
scheduler cannot make it disappear.

5.2. An STM Implementation

One implementation of our library uses Haskell’s facil-
ities for Software Transactional Memory (STM) [6]. Our
goal was to see how difficult it would be to code and how
efficient it would be for multi-way rendezvous. We describe
the implementation below and defer experimental results to
Section 6.

Figure 7 shows the collection of transactional variables
used to represent a channel. The type variable a makes it
polymorphic, connections tracks the number of threads that
must rendezvous to perform the communication (it is ad-
justed by threads starting and terminating), val holds the
data being communicated, waitingReaders tracks the num-
ber of threads that have blocked trying to read from the
channel, written indicates whether the writer has written
the data, and allReadsDone indicates when the last blocked
reader has unblocked itself.

newChannel
= do

connectionsT <- atomically $ newTVar 1
waitingReadersT <- atomically $ newTVar 0
writtenT <- atomically $ newTVar False
allReadsDoneT <- atomically $ newTVar False
valT <- atomically $ newTVar Nothing
return (Channel connectionsT waitingReadersT

writtenT allReadsDoneT valT)

Figure 8. Creating a new channel (STM)

dPar func1 v1 func2 v2 = do
done <- newEmptyMVar
let common =

intersectBy
(\ x y -> (val x) == (val y)) v1 v2

atomically (do
apply (\ c -> do

nt <- readTVar (connections c)
writeTVar (connections c) (nt + 1)

) common)
forkIO (do

res <- func1 v1 −− Run func1 in child
putMVar done res) −− Save result

res2 <- func2 v2 −− Run func2 in parent
res1 <- takeMVar done −− Get func1 result
atomically (do

apply (\ c -> do
nt <- readTVar (connections c)
writeTVar (connections c) (nt - 1)

) common)
return (res1, res2)

apply func [] = return ()
apply func (hd:tl) = do func hd ; apply func tl

Figure 9. Our implementation of dPar

5.2.1 Forking parallel threads

Figure 9 shows our implementation of dPar for STM. It cre-
ates a new MVar to hold the result from the child thread,
then determines which channels are shared (v1 and v2 holds
their names) and atomically increases their connections.

To evaluate the two functions, the parent forks a thread.
The child thread evaluates func2 and then writes the result
into the mailbox. Meanwhile, the parent evaluates func1,
waits for the child to report its result, atomically decreases
the connection count on shared channels, and finally returns
the results from func1 and func2.

Figure 10 illustrates how connections evolves as threads
fork and terminate. In Figure 10(a), F0 has spawned F1
and F2, increasing connections to 2. In (b), F2 has
spawned F3 and F4, increasing connections to 3. Finally, in
(c), F3 and F4 have terminated, reducing connections to 2.
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Figure 10. The effects on connections when (a) main function F0 calls dPar F1 [c] F2 [c], then (b) F2
calls dPar F3 [c] F4 [c], and (c) when F3 and F4 terminate.

Note that this only happens when F0, . . . , F4 are all
connected to channel c. If a thread was not connected,
spawning it would not require the number of connections
to change. This is what the computation of common in Fig-
ure 9 accomplishes by looking for channels passed to both
threads being started.

5.2.2 Deterministic send and receive

Multi-way rendezvous is a three-phase process: wait for all
peers to rendezvous, transfer data, and wait for all peers to
complete the communication. Our library supports single-
writer, multiple-reader channels, so if nc is the number of
threads connected to channel c, a writer waits for nc − 1
readers; a reader waits for one writer and nc −2 other read-
ers. We describe how to maintain nc in the next section.

Figure 11 illustrates a scenario with two readers and a
writer. Threads T1 and T3, call dRecv and dSend respec-
tively. T1 and T3 wait for thread T2 to communicate. Once
T2 calls dRecv, the three threads rendezvous and exchange
data and continue with their individual execution.

Figure 12 shows our implementation of dSend using
STM. It first waits for nc −1 readers to rendezvous, invok-
ing retry to delay. Once they have, it atomically writes the
value to send in val and resets the number of waiting read-
ers, the written flag, and the allReadsDone flag. Finally, it
waits for all the last receiver to set allReadsDone.

Figure 13 is the complementary process. It first incre-
ments waitingReaders, then waits for the written flag to be
set by dSend. Once it has, it reads val—the data being com-
municated, increases waitingReaders, and sees if it was the
last one. If it was, it resets waitingReaders, allReadsDone,
and written, thereby releasing all the readers (including it-
self) and the writer. Otherwise, it waits for another reader
to set allReadsDone.

dRecv c

dRecv c

dSend c v

Time

T1

T3

T2

Wait
Wait

Rendezvous

Figure 11. A rendezvous among two readers
and one writer

dSend c value = do
atomically (do

wr <- readTVar (waitingReaders c)
connections <- readTVar (connections c)
if wr < connections - 1 then retry else (do

writeTVar (val c) (Just value)
writeTVar (waitingReaders c) 0
writeTVar (written c) True
writeTVar (allReadsDone c) False))

atomically (do
ard <- readTVar (allReadsDone c)
if ard == False then retry else return ())

Figure 12. dSend (STM)



dRecv c = do
atomically (do

wr <- readTVar (waitingReaders c)
writeTVar (waitingReaders c) (wr + 1)
return ())

v <- atomically (do
w <- readTVar (written c)
if w == False then retry else (do

Just v <- readTVar (val c)
wr <- readTVar (waitingReaders c)
writeTVar (waitingReaders c) (wr + 1)
nc <- readTVar (connections c)
−− If last reader to read
when (wr + 1 == nc - 1) (do

writeTVar (waitingReaders c) 0
writeTVar (allReadsDone c) True
writeTVar (written c) False)

return v))
atomically (do

ard <- readTVar (allReadsDone c)
if ard == False then retry else return () )

return v

Figure 13. dRecv (STM)

data Channel a = Channel {
mVal :: MVar a,
mVarCount :: MVar Int,
mVarBegin :: MVar (),
mVarEnd :: MVar ()

}

Figure 14. The channel type (Mailboxes)

5.3. A Mailbox Implementation

For comparison, we also implemented our multi-way
rendezvous library using Haskell’s mailboxes [8].

Figure 14 shows the Channel structure used to represent
the channel. Field mVal holds the data, mVarCount holds
the number of connections to this channel, and mVarBegin
and mVarEnd are synchronization variables.

Figure 17 shows the dRecv procedure. A receiver sends
a signal to the sender indicating it has arrived, then the re-
ceiver waits for the value from the sender. Once all receivers
have read the value, the sender signals an end, after which
dRecv returns with the value.

The dSend procedure (Figure 16) waits for all receivers,
then performs a putMVar on the value once per receiver. To
ensure the last receiver has read, it does a redundant putM-
Var and takeMVar. Finally, once all receivers have read the
value, it signals the receivers to continue execution. Wait-
ForRecvrsToArrive waits for every receiver to send a sync
indicating it has arrived. SignalRecvrs signals the end by
informing each receiver the rendezvous is complete.

newChannel
= do

mVal <- newEmptyMVar
mVarCount <- newMVar 1
mVarBegin <- newEmptyMVar
mVarEnd <- newEmptyMVar
return (Channel mVal mVarCount

mVarBegin mVarEnd)

Figure 15. newChannel (Mailboxes)

dSend (Channel mVar mVarCount
mVarBegin mVarEnd) val = do

waitForRecvrsToArrive mVarCount mVarBegin 1
−− Wait for every receiver to send a sync.
n <- readMVar mVarCount
sendValueToRecvrs mVar val (n-1)
putMVar mVar val
takeMVar mVar
signalRecvrs mVarEnd (n-1)

sendValueToRecvrs mVar value count = do
if (count == 0) then

return ()
else do putMVar mVar value

sendValueToRecvrs mVar
value (count - 1)

return ()

waitForRecvrsToArrive mVarCount mVarBegin i
= do

count <- readMVar mVarCount
if (count == i) then return ()
else do

takeMVar mVarBegin
waitForRecvrsToArrive mVarCount

mVarBegin (i+1)

signalRecvrs mVarEnd count
= do if (count == 0)

then return ()
else do putMVar mVarEnd ()

signalRecvrs mVarEnd (count-1)

Figure 16. dSend (Mailboxes)

dRecv (Channel mVar mVarCount
mVarBegin mVarEnd)

= do
putMVar mVarBegin () −− Inform sender
value <- takeMVar mVar −− Wait for sender
takeMVar mVarEnd −− Wait for sender end
return value

Figure 17. dRecv (Mailboxes)



Threads Time to Rendezvous Speedup

STM Mailbox (STM/Mailbox)

2 0.11 ms 0.07 ms 1.6
3 0.14 0.08 1.8
4 0.17 0.14 1.2
5 0.21 0.16 1.3
6 0.28 0.17 1.6
7 0.31 0.21 1.5
8 0.37 0.23 1.6
9 0.42 0.27 1.6

10 0.47 0.28 1.7
100 6.4 1.8 3.5
200 35 6.7 5.2
400 110 14 7.7
800 300 34 8.9

Table 1. Time to rendezvous for STM and
Mailbox implementations

6. Experimental Results

To test the practicality and efficiency of our library, we
created a variety of programs that used it and timed them.

6.1. STM Versus Mailbox Rendezvous

As a basic test of efficiency, we had our library ren-
dezvous 100 000 times among various numbers of threads
on a two-processor machine (a 500 MB, 1.6 GHz Intel
Core 2 Duo running Windows XP) and measured the time.
Table 1 lists the results.

Mailboxes appear to be more efficient for our applica-
tion, especially when large numbers of threads rendezvous.
We believe this may be fundamental to the STM approach,
in which threads continue to execute even if there is a con-
flict. Only at the end of the transaction is conflict checked
and rolled back if needed. In the case of a multi-way ren-
dezvous, many threads will conflict and have to be rolled
back. Mailboxes are more efficient here because they check
for conflicts earlier.

The STM method also requires more memory to hold
the information for a roll-back. Again, mailboxes have less
overhead because they do not need this information.

The STM method is more complicated. Unlike mail-
boxes, which only require a mutual exclusion object, a flag,
and the data to be transferred, STM requires managing in-
formation to identify conflicts and roll back transactions.

However, the ratio of communication to computation is
the most critical aspect of application performance. For
a computationally-intensive application, a 50% increase in
communication time hardly matters.

fib n | n <= 1 = 1
| otherwise =

par res1 (pseq res2 (res1 + res2 + 1))
where res1 = fib (n - 1)

res2 = fib (n - 2)

Figure 18. Calculating Fibonacci numbers
with Haskell’s par-seq

6.2. Examples Without Rendezvous

These examples only call dPar and do not use dSend
or dRecv. Our goal here is to compare our library with
Haskell’s existing par-seq facility, which we feel presents
an awkward programming interface [10].

Haskell’s par-seq constructs can be used to emulate our
dPar. The following are semantically equivalent

dpar M [] N []↔ (par M (pseq N (M, N)))

but the par does not guarantee M and N are executed in
parallel because Haskell uses lazy evaluation. Nevertheless,
we find the par-seq method can run faster than our dPar.

Using par-seq is subtle, illustrated by Figure 18. While
both par and pseq only return the value of their second ar-
gument, the meaning of m1 par m2 is “start the calculation
of m1 for speculative evaluation and then go onto evaluate
m2.” This is useful when m1 is a sub-expression of m2 so
m1 may be evaluated in parallel with the body of m2. Con-
versely, pseq makes sure its first argument is evaluated be-
fore evaluating its second. In this example, the pseq guaran-
tees that fib (n-2) is evaluated before fib (n-1), which
can use fib (n-2).

We find this mechanism subtle and difficult to con-
trol. It provides weak control over the scheduling of
computation—a complex issue for a lazy language like
Haskell made all the more tricky by parallelism. We believe
providing users with easy-to-use mechanisms to control
scheduling is necessary for achieving high performance; ex-
pecting the compiler or runtime system to make the best
choices seems unrealistic.

We ran these and all later experiments on an 8-processor
Intel machine containing two 5300-series 1.6 GHz
quad processors, 2 GB of RAM, and running Win-
dows NT Server.

6.2.1 Maximum element in a list

Figure 19 shows the execution times for a program that uses
a linear search to find the maximum element in a 400 000-
element list. The program, whose behavior is shown in Fig-
ure 20, splits a list into pieces, one per thread, finds the
maximum of each piece, and finally finds the maximum of
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Figure 19. Maximum Element in a List
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the pieces. We compared a sequential implementation, one
that uses Haskell’s par-seq constructs, and one that uses our
dPar to the ideal speedup of the sequential implementation.

Figure 19 shows the par-seq implementation is slightly
more efficient, although both implementations fall short of
the ideal 1/n speedup on more than two processors.

6.2.2 Boolean Satisfiability

Figure 21 shows the execution times of a simple Boolean
SAT solver implemented sequentially, using par-seq, and
with our dPar. We ran it on an unsatisfiable problem
with 600 variables and 2 500 clauses. Figure 22 shows the
structure of our approach: we pick an unassigned variable
and spawn two threads that check whether the expression
can be satisfied if the variable is true or false. Because of
our demand for determinism, we do not asynchronously ter-
minate all the threads when one finds the expression has
been satisfied. Our algorithm is also primitive in the sense
that it does not do any online learning.
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Figure 21. Boolean Satisfiability
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Again, we find our dPar has more overhead than
Haskell’s par-seq. Also, this algorithm does not appear to
benefit from more than four processors, which we attribute
in part to Haskell’s single-threaded garbage collector.
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Figure 23. Times for Linear Search
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6.3. Examples With Rendezvous

Here we consider algorithms that use rendezvous com-
munication among threads. The comparisons are to purely
sequential implementations of the same algorithm.

6.3.1 Linear Search

Figure 23 shows the execution times of a linear search pro-
gram that uses rendezvous communication to find a key in
a 420 000-element list (we put it in the 390 000th position).
Unlike the maximum element problem, linear search gener-
ally does not need to scan the list completely, so the algo-
rithm should have a way of terminating early.

Requiring determinism precludes the obvious solution of
scanning n list fragments in parallel and terminating imme-
diately when the key is found. This constitutes a race if
the key appears more than once, since the relative execution
rates of the threads affect which copy was reported.
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Figure 25. Systolic Filter
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Figure 26. RGB Histogram

Our implementation takes the approach shown in Fig-
ure 24: the list is broken into n fragments and passed to
parallel threads. However, rather than asynchronously ter-
minating all the threads when the key is found, instead all
the threads rendezvous at a prearranged interval to check
whether any have found the key. All threads proceed if the
key is not found or terminate and negotiate which copy is
reported if one has been found.

This technique trades off communication frequency and
the amount of extra work likely to be done. Infrequent com-
munication means less overhead, but it also makes it more
likely the threads will waste time after the key is found. Fre-
quent communication exchanges overhead for punctuality.
We did not have time to explore this trade-off.

6.3.2 Systolic Filter and Histogram

Figure 25 shows the execution times of a Systolic 1-D filter
running on 50 000 samples. Each thread run by the filter can
independently process a chunk of the input in parallel with
other threads following the structure in Figure 27. Because
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of determinism, jobs are distributed and collected from the
worker threads in a round-robin order.

Figure 26 shows the execution time of a similar algo-
rithm: a histogram of RGB values in an image. We ran it on
a 565 KB raster file.

7. Conclusions

While we found it was reasonable and fairly efficient
to implement a deterministic concurrency library based on
multi-way rendezvous, our efforts did raise a few issues.

We found that the performance of our library was slightly
lower than that of Haskell’s built-in par-seq mechanism. We
suspect this is from additional layers of abstraction between
our library calls and the par-seq mechanism. Despite this,
we believe our library provides a nicer abstraction because
it makes communication and synchronization explicit and
therefore makes an easier optimization target, but this is dif-
ficult to quantify.

While we were successful at implementing the library
using both Mailboxes and software transactional memory
(STM), we are happier with the mailbox-based implemen-
tation because it is both faster and easier to program and un-
derstand. While it is clearly possible to wait to synchronize
with peers in STM, coding it seems needlessly awkward.
We also observed STM increased synchronization overhead
by at least 50%, although this is not prohibitive.

Our experiences do provide insight for the library vs. lan-
guage debate. While the library approach has the advantage
of leveraging features of the host language, we encountered
a number of infelicitous that made the library difficult to
implement and use.

Unlike C, Haskell does not allow its type system to be
circumvented. This avoids more runtime errors but makes
building really polymorphic things harder. We would like
a dPar that spawns an arbitrary number of threads, each of
which is connected to an arbitrary number and type of chan-
nels. Such flexibility is difficult to express in a library. We
settled on spawning only two threads at a time (n-way forks
can be recovered by nesting) and not checking the num-
ber of channels, thus deferring certain errors to runtime.
Haskell probably allows a more flexible interface, but the
code can become very obscure.

The type system in C is easy to circumvent and C al-
lows functions with a variable number of parameters, so a
C implementation of our library might have a cleaner API.
However, going around the type system opens the door to
runtime type errors, e.g., trying to pass a string through a
channel intended for floating-point numbers.

We believe our library presents an easier, less error-prone
programming model than either mailboxes or STM, but this
is hard to prove. Anecdotally, we found it easier to de-
bug, especially deadlocks, which were reproducible. Fur-
thermore, it seems easier to reason about explicit synchro-
nization instead of explicitly using retry in the STM setting.

Tardieu and Edwards recently added concurrent, deter-
ministic exceptions to the SHIM model [12], which are a
convenient mechanism for thread control but tricky to im-
plement correctly. We plan to add such concurrent excep-
tions to the next version of our library.
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