
Resource Allocation for Hardware Implementations of Map

Richard Townsend Martha A. Kim Stephen A. Edwards
Columbia University

{rtownsend,martha,sedwards}@cs.columbia.edu

Abstract
The map operation, in which a function is applied indepen-
dently to each element in a collection to produce a new col-
lection, appears in many settings and is easy to parallelize.
While a straightforward implementation in hardware will
consist of multiple functional units with buffers to balance
variable execution times, the best trade-off between these
two components is not obvious. Too many buffers wastes re-
sources that could otherwise perform computation; too few
buffers causes functional units to lie idle waiting for empty
buffers. Our work considers this abstract problem, derives
worst-case workload distributions, then shows how to trade
functional units for buffers to maximize throughput. Our re-
sults can be used by designers and compilers alike to produce
efficient parallel implementations of map.

1. Introduction
We propose techniques for efficiently implementing in hard-
ware the common, “embarrassingly parallel” map operation,
in which a function is applied independently to each ele-
ment in a collection to produce a new collection. This op-
eration, familiar to functional programmers since at least the
1960s [3], now appears in many languages and settings.

Expressing operations as a map helps to expose paral-
lelism. Consider a brute-force computation to display the
Mandelbrot set [2]. While a natural implementation in an
imperative language might consist of three nested loops (one
for each dimension of the image and a third to perform the
complex iteration), opportunities for parallelizing become
clearer if the computation is thought of as a map: a set of
complex coordinates (each pixel in the image) fed to a func-
tion that tests, iteratively, whether that particular coordinate
is part of the Mandelbrot set.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASBD ’14, June 14, 2014, Minneapolis, MN, United States.
Copyright c© 2014 ACM . . . $15.00.
http://dx.doi.org/10.1145/

f

f

f

f

f

Area 5 (Functional Units)
Area 15 (Buffers)

. . . ,x2,x1 . . . , f (x2), f (x1)

f

f

f

f

f

f

f

f

Area 8
Area 12

Figure 1. Parallel map circuits. These consume a sequence
of inputs x1,x2, . . ., distribute them to functional units that
apply a function f to each input, buffer the results, and re-
combine the results in order f (x1), f (x2), Under an area
budget of 20 (A= 20) with each buffer half the size of a func-
tional unit (β = 0.5), these two configurations are optimal—
they produce the highest possible throughput under the worst
possible distribution of processing times required to evaluate
the f (xi).

We consider the problem of implementing a particular
map operation in hardware given finite resources. While also
commonly implemented in software or even parallel soft-
ware such as Google’s MapReduce [1], we consider high-
speed parallel hardware implementations. Figure 1 illus-
trates the structure of the systems we are considering: a
sequence of data (x1,x2, . . .) arrive on the left and are dis-
tributed among the functional units. Each functional unit
computes a result that it places in its output buffer. Finally,
these results (f (x1), f (x2), . . .) are collected from the buffers
and sent out in the order in which they arrived. In a conven-
tional MapReduce framework, the inputs and outputs to the
map operation are not ordered. We focus on implementing
map in the functional sense, which entails an operator being
applied to an ordered list.

Our main focus is on the trade-off between adding more
functional units (components that perform the operation on
a single data element) and adding more buffering. Buffer-
ing can help maintain functional unit utilization when ele-
ment processing times vary widely. When the per-element
processing time is constant, the need for buffering is lim-
ited since a simple round-robin scheduler will ensure that

all the functional units are always occupied. But when the
per-element time varies widely and unpredictably, a simple
round-robin strategy will leave many units starved for data
when they must wait for another unit to finish processing
more expensive data.

Others have considered related resource allocation prob-
lems, but not exactly this one. Purnaprajna et al. [4] pro-
pose a genetic algorithm approach, but their focus is gen-
eral embedded system designs as opposed to the specific
case of map. Yeung et al. [6], in their implementation of a
MapReduce library supporting FPGAs and GPUs, mention
how they allocated resources to functional units, but do not
address buffer sizing. Shan et al. [5] present a MapReduce
design for FPGAs and discuss resource allocation with re-
spect to functional units, but they assume the simple case of
constant per-element processing times, removing the need
for buffering.

Here, we present a resource allocation methodology for
both functional units and buffers that maximizes through-
put. We explore how different allocations affect throughput
under different constraints, including input job variation and
the relative costs of buffers and functional units. This ex-
ploration provides us with insight on how the number of
functional units and the size of their output buffers affects
throughput.

We then discuss the worst-case throughput an implemen-
tation could experience. The situation leading to the worst
case is formalized and empirically tested. Using the worst-
case behavior as a lower bound on throughput, we empir-
ically derive an optimal allocation of resources that maxi-
mizes throughput in the worst case.

We conclude with a comparison of maximal throughput
allocations across different area budgets and relative buffer
to functional unit costs. This comparison reveals that the
worst-case throughput increases as the area budget increases
and as the relative cost of buffers to functional units de-
creases.

2. Background
Our hardware implementation of map (Figure 1) applies a
function f to an ordered list of data elements, x1,x2, In-
put elements are distributed to functional units that compute
f (x) and store the result in a local FIFO buffer. If the buffer
is full and unable to accept another element, the functional
unit must stall until there is room. Although the buffers al-
low the functional units to finish out of order, the remainder
of the circuit gathers the processed data elements from the
buffers in order to reconstruct the input order, producing the
output sequence f (x1), f (x2),

To reason about resources, we introduce A, the total area
to be distributed between unit-area functional units and
buffer slots of area β . Thus, a system with N functional
units and M buffer slots per unit must satisfy

N(1+βM)≤ A.

Figure 1 shows two configurations for the constraints
A = 20 and β = 0.5. The left configuration corresponds to
N = 5, M = 6; the right one is N = 8, M = 3. It turns out that
these two configurations are optimal in the sense that they
produce the highest throughput under worst-case workload
distributions; we will explain all this below.

2.1 Workloads and Completion Time
We measure throughput as the time a system takes to finish
computing a given input sequence. This completion time
depends not just on the hardware configuration, but also on
the input workload, i.e., the number, order, and processing
time of the input elements. We write W for the sum of the
processing times of all elements (e.g., the time to process
them all on a single functional unit). Ideally, we would like
to ensure that all functional units constantly do useful work,
but this is not always possible. We write S for the total time
all functional units spend stalling (waiting for space in their
output buffers). For N functional units, the wall clock time
to complete all processing is therefore

W +S
N

.

In the best case, which can be attained with constant
job completion time and negligible start-up and flushing
overhead, the completion time approaches

W
N
.

We focus instead on characterizing and compensating for
the worst-case workload, which we discuss below.

2.2 Simulating Our Model
To evaluate the performance of our hardware map circuits,
we constructed a C simulator to run input workloads through
different system configurations. We construct a workload of
size W by sampling a range of positive integers (each value
represents the execution time for a particular data sample)
until the sum of the sampled values is W . We used this
method to craft workloads whose processing times follow
uniform random, Gaussian, and other probabilistic distribu-
tions.

We also implemented a Mandelbrot set generator to
model a specific kind of real-world workload. Different re-
gions of the Mandelbrot set produce different workload dis-
tributions. We assumed each iteration took constant time so
that the cost of evaluating each point was the number of it-
erations it took for the value to diverge up to a maximum
number we set.

Our simulator makes various simplifying assumptions.
We impose no limit on the number of elements that can be
distributed to or gathered from the functional units at once.
We also assume that the start up and shut down time of
the system is negligible relative to the time spent doing real
work.

tmax

tmin

Fu
nc

tio
na

lu
ni

ts
(N

=4
)

Done and buffered
(M=2)

Done and
blocked on
func. unit

N-1 units periodically stalled:
Speriod = [N−1] · [tmax− tmin(M+1)]

Wperiod = tmax + tmin · (N−1)(M+1)

#periods =
⌊

W
Wperiod

⌋
Wremainder =W −#periods ·Wperiod

Sremainder =

{
N · tmax−Wremainder if Wremainder ≥ tmax,
N ·Wremainder−Wremainder if Wremainder < tmax.

S = #periods ·Speriod +Sremainder

Figure 2. The pattern that repeats itself periodically in the
worst case input and the equations formalizing the pattern.

3. Worst-Case Workloads
The worst-case workload maximizes the total time spent
stalling, S, for a given amount of real work, W . While it is
impossible to have all N functional units stalling at once,1

it is possible for N − 1 units to stall simultaneously. This
occurs when there is one long job followed by enough short
jobs to fill the buffers of the other functional units, thereby
blocking those functional units until the long job completes.
Once the long element is finished, the system can drain the
filled buffers, allowing the other functional units to resume
useful work.

Figure 2 depicts this worst-case pattern and includes a
closed-form expression for the total stall time, S, that a
configuration with N functional units and M buffer slots per
functional unit incurs on a worst-case workload with job
processing times ranging from tmin to tmax.

Figure 3 illustrates experimentally how the completion
time for a particular system configuration (a number of func-
tional units and the size of their buffers) varies from the
worst-case workload to the best (uniform processing times,
implying stall-free behavior). To generate these plots, we ran
a variety of workloads with the same total amount of work
on various system configurations and plotted the completion
time of each workload. The abscissa of each plot denotes the
number of functional units; each plot represents a different
number of buffers per functional unit.

1 Were all N functional unit to stall, it would mean every functional unit has
finished processing its input element, each local buffer is full, and the gather
side of the system is waiting to collect some element x that has yet to be
processed. But x had to have been processed already, since the system only
gathers elements that have already been distributed and every functional
unit is finished processing its element. Then the gather side of the system
would have already collected x, contradicting our assumption that it was
waiting to collect x.

The envelope drawn around each plot represents the best-
and worst-case workloads: the solid line on the right of each
is the worst-case workload described in Figure 2; the dotted
line on the left is the best-case workload (uniformly unit-
time work units). All the other points represent various other
workloads, mostly random.

Figure 3 demonstrates that adding buffers improves the
benefits of multiple functional units, but that these benefits
quickly diminish after about four buffer slots per unit. As
the number of buffers per unit increases, the vertical extent
of the envelope diminishes, meaning the variance among
workloads diminishes.

4. Finding Optimal Configurations
We now address the central question in our work: how best
to divide area between functional units and buffers. A key
parameter is β : the relative cost of buffers and functional
units. We consider cases when functional units are larger
than buffers—when our parameter β is less than 1—because
we expect computing data to be more expensive than merely
storing it. Something like the Mandelbrot set generator is
illustrative: a functional unit includes at least one multiplier
(it could easily use four floating-point multipliers), whereas
each unit of buffering might only store eight bits.

Figure 4 shows our experimental results, which provides
a design guide. Each series of points represents how com-
pletion time on a worst-case workload varies as functional
units are replaced with buffers. Points on the left represent
systems with many functional units and minimal buffering;
moving right involves increasing buffer sizes at the expense
of the number of functional units.

Figure 4 provides a technique for finding the optimal con-
figuration under the worst case workload. For a specific β

(size of the functional unit relative to a buffer, something
determined by the function being mapped and how it is im-
plemented), the optimal trade-off between functional units
and buffers occurs at the minimum point on the curve.

Moving to the left on these curves illustrates how elim-
inating buffering can slow worst-case workloads. The ex-
treme leftmost point corresponds to having no buffers, and
having at least single-place buffers always provides some
improvement on a worst-case workload. However, when
buffers are costly, only a few suffice: beyond a certain point,
adding buffers actually decreases performance because the
area could be better spent on functional units perform-
ing more operations in parallel, even though less buffering
means functional units stall more. The rightmost point on
each series corresponds to a nonsensical system: a single
functional unit with an enormous buffer. The buffer is use-
less because a single functional unit never stalls no matter
the size of the buffers.

Interestingly, the optimal configuration is often not unique.
This is most pronounced when the cost of buffers is high,
and we begin to see discretization effects. Since in this ex-

C
om

pl
et

io
n

T
im

e

Num. Func. Units

0 buffers per unit 100

 1000

 10000

 1 10 100 1000

1 2 3 4 5 6

worstcase
uniform

uniform random

Mandelbrot
descending

min + 1

min + 2
min + 3
min + 4

min + 5
min + 6
min + 7

min + 8
min + 9

min + 10

gaussian
ascending

Figure 3. Comparing completion times of workloads across system configurations. These graphs show that the worst-case and
best-case workloads provide upper and lower bounds on completion time, respectively. We generated each plot by holding the
number of buffer slots per functional unit constant and varying the number of functional units on the x-axis. Each point is the
result of a non-worst-case workload being computed by a given system configuration.

 100000

 150000

 200000

 250000

 300000

 350000

 0 5 10 15 20 25 30

C
om

pl
et

io
n

T
im

e

 50 100 150 200 250

Buffer Slots per Functional Unit (M)

β = .2
β = .3
β = .4
β = .5
β = .6

Figure 4. Completion times on a fixed-length worst-case workload as a function of buffer slots for various buffer costs. Each
implementation consumes 50 area units (A= 50). The optimal implementation for a given β (area cost of a buffer slot relative to
a functional unit) is the lowest point on that series—the shortest completion time. Note that most series have multiple minima.
The details (but not total work) of each worst-case workload is tailored to each system configuration.

periment we set the granularity of functional units fairly low
(we can only have exactly 1, 2, 3, . . . , or 50 functional units),
there are cases where we assume area is left unused.

We see a similar common completion time for the con-
figurations that maximize functional units with zero buffers.
The omission of buffers results in a high level of paral-

lelism, which results in lower completion time than when
we chose to maximize buffer slots. However, the fact that
we have so many functional units and zero buffers drastically
increases the probability of functional unit stalls, leading to
sub-optimal completion time.

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 10 20 30 40 50 60

C
om

pl
et

io
n

T
im

e

Optimal Configuration

β = .2
β = .3
β = .4
β = .5
β = .6

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60

B
uf

fe
rs

 S
lo

ts
 /

F
un

ct
io

na
l U

ni
t (

b)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60

F
un

ct
io

na
l U

ni
ts

 (
N

)

Total Area

Figure 5. Sensitivity of the Optimal Configuration to
Changes in Chip Area. In many cases there are multiple opti-
mal configurations for a given area budget and relative buffer
cost

As β decreases, the difference between the best config-
uration and the worst configuration increases. For example,
when β = 0.3 the best configuration runs approximately 2×
faster than the worst configuration, while the speedup for
β = 0.2 is closer to 3×. Furthermore, the completion time
for the optimal configuration decreases as β decreases. This
makes sense, since when buffer slots are smaller relative to
functional units, more buffer slots can fit onto a chip with a
given number of functional units N, decreasing the total stall
time.

Wperiod = tmax + tmin ·4 ·7

N
=

5

M = 6

Wperiod = tmax + tmin ·7 ·4

N
=

8

M = 3

Figure 6. The behavior of the worst-case workloads for
two optimal configurations shown in Figure 1. Although
different, they consume the same area, and perform the same
total amount of work per period at the same periodic rate,
resulting in equal throughput.

5. Sensitivity of the Optimal Configuration
Figure 5 shows how changing the area budget affects the
completion time and design of the optimal configuration.
We first see that increasing the area budget decreases the
completion time of the optimal configuration, which is not
surprising since we either use area to increase parallelism or
decrease overall stalls.

The bottom two plots show how resources were allo-
cated to obtain these optimal configurations. The middle plot
shows the number of buffer slots per functional unit (M) on
the y-axis, while the bottom plot measures the number of
functional units (N). In some cases there are multiple opti-
mal points for a given area budget and size ratio. This indi-
cates that there were multiple resource allocations for that
area budget and relative buffer cost that led to the same,
minimal, completion time. We could then use another met-
ric such as power consumption to break ties between these
optimal allocations.

The two block diagrams from Figure 1 represent the two
optimal system configurations seen in Figure 5 as dark blue
diamonds at A= 20. Figure 6 depicts the periodic worst-case
behavior of these two configurations. On the right side of
Figure 6, each filled-in rectangle represents an input element
and each empty rectangle represents a functional unit stall.
The worst case consists of one maximally long element
followed by enough small elements to fill up the buffers.
The long element requires ten times the processing time of
a small element. By inspecting the number of elements in
each configuration’s block, we see that they do the same
amount of processing in each block (1 long job and 28
small jobs) and both blocks take the same amount of time to
complete since the processing time of a long job is the same
in each configuration. This equivalence in processing speed

will lead the configurations to finish processing a worst-case
workload of the same size at the same time, which explains
how they could both be an optimal system configuration for
a given area budget and relative buffer cost.

6. Conclusions
We considered an abstract implementation of a parallel map
operation in hardware and how best to devote limited area
resources to maximize throughput. Starting from a simple
model with unit-size functional units, buffers of size β , and
an area budget of A units, we devised a worst-case distri-
bution of element execution times that lead to the lowest
throughput, then showed how to best distribute resources
between functional units and buffers in such a setting. Al-
though we focused solely on area restrictions, this model
could be manipulated to include other metrics like power
and timing, and we hope to explore such modifications in
future work.

Through simulation, we showed how the optimal trade-
off between functional units and buffers changes as the rel-
ative cost of buffers drops and how sensitive the optimal
trade-off is for various buffer costs. One unexpected result
was that there were often multiple optimum configurations
that were fairly different.

This work was done in the context of a large project de-
signed to optimize the parallel implementation of algorithms
on custom hardware. Once we integrate our findings into this
project we will get a better sense of how far real workloads
can deviate from our worst-case model. Next, we will use
our work, especially the shape of the curves in Figure 3, to
derive a heuristic design aide that can automatically make a
reasonable trade-off between buffer sizes and the number of
functional units in a synthesis setting. Our ultimate goal is to
make such trade-offs the job of a compiler, not the designer.

References
[1] J. Dean and S. Ghemawat. MapReduce: Simplified data pro-

cessing on large clusters. In Proceedings of Operating System
Design and Implemetation (OSDI), Dec. 2004.

[2] B. B. Mandelbrot. The Fractal Geometry of Nature. W. H.
Freeman and Company, 1982.

[3] J. McCarthy, P. W. abrahams, D. J. Edwards, T. P. Hart, and
M. I. Levin. LISP 1.5 Programmer’s Manual. MIT Press, 1962.

[4] M. Purnaprajna, M. Reformat, and W. Pedrycz. Genetic algo-
rithms for hardware-software partitioning and optimal resource
allocation. Journal of Systems Architecture, 53(7):339–354,
July 2007. .

[5] Y. Shan, B. Wang, J. Yan, Y. Wang, N. Xu, and H. Yang. FPMR:
mapreduce framework on FPGA; a case study of rankboost
acceleration. In Proceedings of the 18th annual ACM/SIGDA
international symposium on FPGAs, pages 93–102, New York,
NY, 2010.

[6] J. H. C. Yeung, C. C. Tsang, K. H. Tsoi, B. S. H. Kwan, C. C. C.
Cheung, A. P. C. Chan, and P. H. Leong. Map-reduce as a
programming model for custom computing machines. In Pro-
ceedings of the Symposium on FPGAs for Custom Computing
Machines (FCCM), pages 149–159, Washington, D.C., 2008.

