
Synthesis of High-Performance
Packet Processing Pipelines

Cristian Soviani
∗

Columbia University, CS Dept.
New York, New York

soviani@cs.columbia.edu

Ilija Hadžić
Bell Labs, Lucent Tech.
Murray Hill, New Jersey

ihadzic@bell-labs.com

Stephen A. Edwards
†

Columbia University, CS Dept.
New York, New York

sedwards@cs.columbia.edu

ABSTRACT
Packet editing is a fundamental building block of data communica-
tion systems such as switches and routers. Circuits that implement
this function are critical and define the features of the system. We
propose a high-level synthesis technique for a new model for rep-
resenting packet editing functions. Experiments show our circuits
achieve a throughput of up to 40Gb/s on a commercially available
FPGA device, equal to state-of-the-art implementations.

Categories and Subject Descriptors
B.6.3 [Hardware]: Logic Design—Design Aids

General Terms
Algorithms

Keywords
Packet processors, Networking, FPGAs, high-level synthesis

1. INTRODUCTION
A packet switch (or router) is a basic building block of data com-

munication networks. Its primary role is to forward packets based
on their content, specifically header data at the beginning of the
packets. As part of this forwarding operation, packets are classi-
fied, queued, modified, transmitted, or dropped.

The forwarding algorithms used in most switches are simple to
facilitate efficient hardware implementation. However, they are te-
dious to code at the RT level because performance demands them
to be deeply pipelined circuits that operate on many bits in parallel
(e.g., 128 or 256) and interact with high-speed FIFOs. This makes
for complicated datapaths and controllers.

We propose a high-level synthesis technique for packet editing
processors. We target FPGAs, although ASICs are also possible.

∗This work was done while Soviani was at Bell Labs.
†Edwards and his group are supported by an NSF CAREER award,
gifts from Intel and Altera, and by the SRC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2006, July 24–28, 2006, San Francisco, California, USA.
Copyright 2006 ACM 1-59593-381-6/06/0007 ...$5.00.

Line Card

Ingress
Packet Processor

Ingress
Traffic Manager

Egress
Packet Processor

Egress
Traffic Manager

Switching
Fabric

VLAN
pop

VLAN
push

MPLS
push

TTL
update

ARP
resolve

memory
lookup

memory
lookup

Figure 1: A switch with detail of a packet processing pipeline.

Packet editing is a pivotal function of most switches, which also
include traffic managers, a switching fabric, and other components
(Figure 1). We propose a novel way to model algorithms that trans-
form input into output packets and present a synthesis procedure to
translate these models into efficient VHDL code. Our technique pro-
duces packet editing blocks that are easily connected in pipelines.

We produce circuits for FPGAs that can sustain 40 Gbps through-
put on industrial examples, equal to state-of-the-art switches (a
10 Gbps ASIC was novel in 2003 [6]) and are vastly easier to write
and maintain than RTL descriptions.

2. PACKET PROCESSORS AND EDITING
Figure 1 is a block diagram of a packet switch consisting of line

cards (we only show one) connected to a switching fabric that trans-
fers packets. We focus on designing the line cards, which provide
network interfaces, make forwarding and scheduling decisions, and,
most critically, modify packets according to their contents.

Our synthesis technique builds components in the ingress and
egress packet processors. A packet processor is a functional block
that transforms a stream of input packets into output packets. These
transformations consist of adding, removing, and modifying fields
in the packet header. In addition to headers defined by network pro-
tocols, the switch may add its own control headers for internal use.

Packet processors perform complex tasks through a linear com-
position of simpler functions. This model has been used for soft-
ware implementations on hosts [7] and on switches [4]. A less suit-
able architecture for hardware is a pool of task-specific threads that
process the same packet in parallel without moving the packet [1].

We use a unidirectional, linear pipeline model that simplifies the
implementation without introducing major limitations. For exam-
ple, the loops in Kohler’s IP router [4] only handle exceptions. We
would do this with a separate control processor.

While the logical flow can fork and join, we implement only lin-
ear pipelines that can use flags to emulate such behavior. Non-linear
pipelines are more complicated and would not improve throughput.

(a) The initial specification (b) Split into 64-bit words (c) Read cycle indices and delay
bubbles added

Figure 2: Steps in synthesizing a PEG model for the MPLS push module in Figure 1.

Restruct(node n, pending bits v, word size w)
clean-visit← true if v is empty
if clean-visit and cache contains n then

return cache[n]
case type of node n of
output data : ≥ 1 bytes, one successor

append n to v put n in current word
if v is w∗8 bits then finished word

n′ ← build-node(v) next word node
n′′ ← Restruct(successor of n,(),w)
Make n′′ the successor of n′

else
n′ ← Restruct(successor of n,v,w)

conditional :
n′ = copy of the conditional n
for each successor s of n do

n′′ = Restruct(s,v,w)
Add n′′ as a successor of n′

if clean-visit then
cache[n]← n′

return n′ the restructured node for n

Figure 3: Structuring a packet map into
words

If a packet needs to be dropped or forwarded to the control proces-
sor, we set flags in the control header and perform the action at the
end of the pipeline. This guarantees every processing element sees
all the packets in the same order; packet reordering is usually done
in a traffic manager, a topic beyond the scope of this paper.

Figure 1 shows a packet processing pipeline that edits the Vir-
tual Local Area Network (VLAN) tag of an Ethernet packet [3] and
adds a Multi Protocol Label Switching (MPLS) label [8], based on
unique flow identification (FlowID). We assume a previous stage
has performed flow classification and prepended a control header
with a FlowID.

Both the VLAN push and MPLS push modules insert additional
headers after the Ethernet header, while the Time-To-Live (TTL)
update and Address Resolution Protocol (ARP) resolution modules
only modify existing packet fields. The VLAN pop module removes
a header. While this pipeline is simple, real switches just perform
more such operations, not more complicated ones.

Thus, packet processing amounts to adding, removing, and mod-
ifying fields. Even the flow classification stage, which often in-
volves a complex search operation, ultimately produces a modified
header. We refer to these operations as packet editing; it is the fun-
damental building block of a packet processor.

In addition to the main pipeline, Figure 1 shows two memory
lookup blocks. These blocks store descriptors that define how to
edit the headers (e.g., how many MPLS labels to add). Here, the
FlowID is a index into descriptor memory. A memory lookup mod-
ule is any component that takes selected fields and produces data
for a downstream processing element (e.g., IP address search, present
in all IP routers, is a form of generalized memory lookup). Flow
classification is thus packet editing with memory lookups.

Modules that use memory lookup assume a previous pipeline
stage issued the request, which is processed in parallel to hide mem-
ory latency. We do not synthesize memory lookup blocks, but can
generate requests and consume results. Because our pipelines pre-
serve packet order, simple FIFOs suffice for memory interfaces.

Hence, we model packet processors as linear pipelines whose
elements have four types of ports: input from the previous stage,
output to the next, requests to memory, and memory results. Each
processing element must be capable of editing packets based on
their content and data from memory.

3. RELATED WORK
Kohler et al. [4] propose the CLICK domain-specific language for

network applications. It organizes processing elements in a directed
dataflow graph. CLICK specifies the interface between elements to
facilitate their assembly. Although originally for software, Kulkarni
et al. [5] propose a hardware variant called CLIFF, which represents
its elements in Verilog. Schelle et al.’s [9] CUSP is similar. Brebner
et al. [1] add speculative multi-threaded execution.

Unlike CLIFF/CUSP, we synthesize our modules instead of as-
sembling library components. CLICK, furthermore, defines fine-
grained elements whose connection has substantial handshaking
overhead; our larger processors minimize this problem.

Our approach differs from classical high-level synthesis (c.f., De
Micheli [2]) in important ways. For example, we always use as-
soon-as-possible scheduling for speed; classical high-level synthe-
sis considers others. Furthermore, most operations are smaller than
the muxes needed to share them, so we do not consider sharing.

Our technique differs most from classical high-level synthesis
in its choice of computational model. Rather than assume data are
stored and retrieved from memories, we assume data arrives and
departs a word at a time from FIFOs, thus our scheduling mostly
considers the clock cycle in which data arrive and can leave.

4. THE PACKET EDITING GRAPH
Although the behavior of a node in a packet editing pipeline

can be modeled at the RT level, doing so is awkward for deeply
pipelined circuits that operate on many bits in parallel. By contrast,
our Packet Editing Graph (PEG) model describes such nodes in an
implementation-independent way that is much easier to design and
modify, and it can be synthesized into efficient circuitry.

Figure 2a shows a PEG for a simplified MPLS push module. The
MPLS protocol adds a label to the beginning of a packet that acts
as a shorthand for the IP header. When another switch receives the
packet, it uses separate rules to forward the packet. The module
in Figure 2a inserts up to three MPLS labels according to an in-
memory descriptor. It also updates the label count (LCT) to reflect
any added labels, replaces the FlowID field with the one from the
descriptor and updates various other flags. Replacing the FlowID
maps a set of MPLS tunnels to the set of next-hop destinations.

A PEG is an acyclic, directed graph consisting of inputs (the
packet itself and data from a memory lookup block, drawn as rect-
angles in the top left section of Figure 2a); arithmetic and logi-
cal operators (the circular nodes in the middle of the figure); out-
puts (an output packet map, shown on the right side of the figure;
and data used to generate memory lookup requests, not shown in
this example) and the connections among those. In the figure, time
flows from top to bottom and data flows from left to right.

The packet map—the control-flow graph on the right—is the
most novel aspect of a PEG. The bits of the output packet are as-
sembled by following a downward path. A diamond-shaped node
is a conditional: control flows to one of its successors depending
on the value of the predicate. Conditionals allow bits to be inserted
and deleted from the output packet. The final node, marked with
dots, copies the remainder of the input packet to the output.

5. THE SYNTHESIS PROCEDURE
The challenge in synthesizing a circuit from a PEG is converting

the flat, bit-level specification into the sequential word-level imple-
mentation needed for performance. This is tricky because things
generally do not fall on word boundaries and some results may de-
pend on bits that arrive later. Moreover, a PEG allows conditional
insertions and removals, so there is not always a simple mapping
between the word in which a byte is received and when it is sent.

Our synthesis procedure analyzes the PEG, establishes the neces-
sary mapping, and builds a datapath and controller.

5.1 Wrappers and the Module Interface
We create synthesizable RTL by instantiating a manually-written

wrapper around a core synthesized from a PEG. The wrapper adapts
the core interface to the specific FIFO protocol.

Figure 5 illustrates a typical wrapper. Here, we do not show any
memory input/output ports, which are also handled by the wrapper.
They transfer exactly one word per packet, so the core sees the input
port as a parameter and the output port as a register.

Cores receive and send packets over a w-byte parallel interface
(w = 16 is typical). The module sees the input packet as a sequence
of w-byte words arriving on the idata port (Figure 5). Similarly,
the output is generated as a sequence of w-byte words on the odata
port. Three flags on each port indicate packet boundaries: sop de-
notes the start, eop the end, and the mod signal indicates the number
of bytes in the final word in a packet.

A core communicates with the wrapper through three more sig-
nals. rd and wr request data from the input and indicate when data
are written to the output. Suspend instructs the module to stall. The
wrapper in Figure 5 simply stalls the module when input data are
not available or when the output cannot accept new data.

5.2 Splitting Data into Words
Our synthesis procedure begins by dividing the input and output

packets on word boundaries using the procedure of Figure 3. Divid-
ing the input packet is straightforward; reshaping the output packet
map is complicated because of conditionals. Figure 2b shows the
result of this on the MPLS example of Figure 2a.

We restructure the packet map so conditions are only checked at
the beginning of each word to guarantee that only complete words
are generated in every cycle (except the last, a special case). For
example, the > 0 condition in Figure 2a has been moved four bytes
earlier in Figure 2b and the intervening four bytes have been copied
to the two branches under the conditional to maintain I/O behavior.

The algorithm in Figure 3 recursively walks the packet map to
build a new one whose nodes are all w bytes long (the word size).
Each node is visited with a vector v that contains bits that are “pend-

Figure 4: Controller synthesized
from the packet map in Figure 2c

Figure 5: A core module
and wrapper.

(a) (b)

Figure 6: Scheduling
within a read cycle.

ing” in the current word. Output nodes are added to this vector until
w∗8 bits are accumulated, at which point a new output node is cre-
ated by build-node, which assembles the saved bits in v. The algo-
rithm handles conditionals by copying the condition to a new node
n′, which is placed at the beginning of the current word, and visit-
ing the two successors under the conditional. The same v is copied
to each recursive call, effectively duplicating the rules for the bits
that appeared before the conditional in the current word.

This has the potential of generating an exponentially-large tree,
but in practice protocols are designed to avoid this. For example,
there are four paths in Figure 2b, but we find they lead to only two
different states: the one- and three-label cases converge since they
require the same alignment; the zero and two cases are similar.

We handle reconvergence by maintaining a cache of nodes that
can be reused. If a node visit is “clean,” i.e., the pending vector is
empty, the cache is checked for an earlier visit that can be reused.

5.3 Assigning Read Cycle Indices
After splitting the packet map into words, we label each node

with the logical cycle in which its data are available. These indices
(black boxes in Figure 2c) are like clock cycles, but practically an
index may map to several clocks if the controller causes a stall.

The first input word index is zero, the second is one, etc. The
rest are computed from causality: the index of a node is the highest
index of all its predecessors. Constant nodes and memory inputs,
assumed to be present in all cycles, are therefore ignored.

5.4 Scheduling
Once read cycle indices are assigned, we insert “bubbles” that

correspond roughly to pipeline stages. We draw these as black rect-
angles in Figure 2c. We insert them according to the following
rules: if two indices differ by k > 0, at least k bubbles are needed
between them; and any two output nodes in the packet map, even
with the same index, require at least one bubble between them.

In Figure 2c, two bubbles were inserted between the top-most
node and the first output node because the difference between their
indices is two. This follows the first rule. The first word cannot
be output in cycle 0 because it depends on the flags field, which

becomes available in cycle 1. Following the second rule, bubbles
were also added after the first conditional because these arcs are
between two output nodes. These bubbles are necessary because it
is not possible to write two words simultaneously, even though the
information for building the second word is available earlier.

To comply with the first rule, exactly k bubbles are inserted on
any arc between nodes with different indices. It is harder to comply
with the second rule. Consider the example in Figure 6a. We can
output X , Y , both, or none, depending on conditions a and b. If
both a and b are true, we need two physical cycles; otherwise, one
cycle will suffice. If both a and b are false, the output will idle for
one cycle, as the data to follow will not be available.

Following the second rule, we may insert a bubble in the two
positions in Figure 6a. But if we insert it under X , if a is true and
b is false, we spend two cycles instead of one. The solution is to
reshape the graph by duplicating the second condition (Figure 6b).

The bubble-insertion algorithm is straightforward. For each node
in the original graph, two copies are built: “empty” and “full,”
which handle control flow when the current cycle has and has not
been used for data output respectively. For most nodes, only one
copy remains after a sweep that removes unconnected nodes.

5.5 Synthesizing the controller
Once read cycle indices and bubbles have been added, we syn-

thesize the control machine (FSM). Its structure follows the packet
map. Bubbles in the packet map become states; we replace them
with registers, giving a one-hot encoding. Bubbles adjacent to the
leaves are special states that copy data until ieop, after which the
FSM returns to the initial state.

Figure 4 shows the packet map of Figure 2c translated into an
FSM. When an output node is encountered, the data are steered to
the output, and the owr signal is asserted. The second scheduling
rule ensures that at most one output node is found on any path be-
tween two states. For paths with no output nodes, owr remains de-
asserted. For each arc index increase, the ird signal is asserted to
read the next word from the buffer. The first scheduling rule en-
sures that at most one word will be read between two states. For
paths with no index increase, ird remains deasserted.

5.6 Handling the end of a packet
All paths in the packet map finally reconverge to no more than w

different states, corresponding to no shifting necessary to shifting
w− 1 bytes. Our algorithm merges the end of each path to a com-
mon REP state that is accompanied by an auxiliary align register
of size log2(w). Any transition that leads to REP loads align.

The REP state performs two tasks. First, it aligns the data using
a multiplexer. In Figure 2c, align can take only two values, 0 and 4,
demanding a two-input multiplexer. Second, if eop is active, the
FSM can use align and imod to decide whether an extra cycle is
required for the last word and the input FIFO must stall.

5.7 Synthesizing the data path
Combinational nodes translate directly into combinational logic

to form the datapath. Bubbles become registers that guarantee any
node with read cycle index i has a valid value in the matching cycle.
A read cycle index may correspond to several clock cycles, so reg-
isters must be able to hold their values. We take a simple approach:
values are held when the present state equals the next state. The
data path can be stalled by asserting suspend signal (Section 5.1)
that causes the core module to hold all control and datapath regis-
ters. This is a brute-force solution that could be more clever: only
the output registers are compelled to stall; data could still propagate
within the process unless it would overwrite existing data.

Table 1: Synthesis results for selected modules

Module Core size Delay Throughput

LUTs FFs ns Gbps

MPLSpush 556 107 3.8 33
TTLEXPupdate 43 20 2.9 44
VLANfilter 11 12 2.9 44
VLANedit 505 125 4.0 32
PPPoEfilter 410 151 3.7 34
PPPoEterm 819 322 4.0 32

6. EXPERIMENTAL RESULTS
We synthesized some 128-bit wide modules from industrial de-

signs for a Xilinx Virtex 4 xc4vlx40–ff668–10 FPGA. We generated
VHDL with our synthesis method and fed it to the Xilinx ISE tools
for RTL synthesis, placement, and routing.

Table 1 shows the size and performance of each module. We in-
stantiate a module between two FIFO buffers, place and route the
circuit and report the delay of the longest register-to-register path;
based on this result we calculate the resulting packet processing
throughput. For area, we only report the size of the core mod-
ules with no pipelining (i.e., not including the wrapper circuitry)
in terms of the required number of flip-flop and lookup table prim-
itives for the Virtex 4 device family. As only packet headers flow
through the pipeline, we are able to sustain 40 Gbps throughput
with a realistic distribution of packet sizes, something only very
high-end switches currently achieve.

7. CONCLUSIONS
Establishing a strict formalism for describing packet editing op-

erations (our packet editing graph) allowed us to construct a high-
performance hardware synthesis procedure that can be used to cre-
ate packet processors. The performance of circuits synthesized by
our procedure is comparable to the performance of circuits in state-
of-the-art switches, while the design entry is done at a much higher
level of abstraction than the RTL usually used. The direct benefit
is improved designer productivity and code maintainability. Exper-
imental results on modules extracted from actual product-quality
designs suggest that our approach is viable.

8. REFERENCES
[1] G. Brebner, P. James-Roxby, E. Keller, and C. Kulkarni.

Hyper-Programmable Architecture for Adaptable Networked
Systems. In Application-Specific Arch. and Proc., 2004.

[2] G. De Micheli. Synthesis and Optimization of Digital Circuits.
McGraw-Hill, New York, 1994.

[3] Virtual Bridged Local Area Networks. IEEE 802.1Q, 2003.
[4] E. Kohler et al. The Click Modular Router. ACM Trans.

Comp. Systems, 18(3):263–297, August 2000.
[5] C. Kulkarni, G. Brebner, and G. Schelle. Mapping a domain

specific language to a platform FPGA. In Proc. Design
Automation Conference, pp. 924–927, San Diego, CA, 2004.

[6] M. V. Lau et al. Gigabit Ethernet switches using a shared
buffer architecture. IEEE Comm. Mag., 41(3):76–84, 2003.

[7] S. O’Malley and L. Peterson. Dynamic Network Architecture.
ACM Trans. Comp. Sys., 10(2):110–143, 1992.

[8] E. C. Rosen, A. Viswanathan, and R. Callon. Multiprotocol
Label Switching Architecture. RFC 3031, IETF, January 2001.

[9] G. Schelle and D. Grunwald. CUSP: A modular framework
for high speed network applications on FPGAs. In Proc.
Field-prog. gate arrays, pp. 246–257, Monterey, CA, 2005.

