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1.  ABSTRACT 
In a processor design the premier issues with 

memory are (1) main memory allocation and (2) 

interprocess communication. These two mainly 

affect the performance of the memory system. The 

goal of this paper is to formulate a deterministic 

model for memory systems of PRET, taking into 

account all the intertwined parallelism of modern 

memory chips. 

Studying existing memory models is necessary 

to understand the implications of these factors to 

realize a perfectly time predictable memory 

system. 

2. INTRODUCUTION 
 

1.1 MEMORY MANAGEMENT in PRET 

ARCHITECTURE 
 

No large modern memories are pipelined; all of 

them are parallelized for maximum performance. 

Thus, to access the memory for thread-interleaved 

pipelined architecture has to be approached in a 

different way. For this purpose the use of window 

mechanism was conceptualized. Each thread 

would have a window slot in which it can access 

main memory. This provides predictable access to 

memory. This was called the Memory Wheel. 

 

The PRET machine includes a six-stage thread-

interleaved pipeline in which each stage executes 

a separate hardware thread to avoid the need for 

bypasses. Each thread has its own register file, 

local on-chip memory, and assigned region of off-

chip memory. The THREAD CONTROLLER 

component is a simple round-robin thread 

scheduler, similar to time division multiplexing. 

Each thread occupies one pipeline stage at all 

times. To handle the stalls of the pipeline 

predictably a replay mechanism was introduced, 

that simply repeats the same instruction until the 

operation completes. Thus, the stalling of one 

thread does not affect any of the other threads. 

The round-robin execution of threads avoids 

memory consistency issues 

 

The memory hierarchy consists of separate fast 

on-chip scratchpad memories (SPM) instead of 

cache memories due to the following reasons:  

1. Non-deterministic behavior 

2. Poor performance for multimedia  

       application with regular data access 

 patterns  

3. Higher power consumption 

 

 SPMs  are used for instruction and data, and 

also serve as large off-chip main memory. They 

are connected to a direct memory access (DMA) 

controller responsible for moving data between 

main memory and the SPMs. 

 

If all threads were to access the main off-chip 

memory as and when they required, then the 

access times for each thread will vary according to 

the memory patterns and not the structure of the 

program. This would introduce non-determinism 

and unpredictability beating the whole purpose of 

the PRET design. Hence, to ensure time 

predictability, access to the off-chip main memory 

is only allowed through the memory wheel. Each 

thread is given a time slice to access the memory 

via the wheel. If a thread misses the window, then 

it blocks using the Replay instruction till it gets its 

chance again. 

 

Each window slot lasts for 13 cycles and it is 

now very important to know that each access can 

take anywhere between 13 and 90 cycles. This 

number is now based on when the request is 

made and not on access patterns. Now, if a thread 

starts its access on the first cycle of its window, 

the access takes exactly 13 cycles. Otherwise, the 

thread blocks until its window reappears, this may 

take up to 77 cycles. A successful access after just 

missing the first cycle of its window results in 77 + 

13 = 90 cycles. 

 

What PRET expects from DRAM? 
 

All DRAM memories are banked and designed 

to perform Burst transfers and yet have uniform 

latencies. Thus in PRET could advantage of this 

fact and design its off-chip memory using DRAM. It 

would be very convenient, if a block of data can be 

filled in a window of the wheel. Also as these 

memories are banked, we can give each thread a 

bank and this could increase performance with 

time predictability.  



 
Figure 1: Block Diagram of PRET Architecture 

 

3. UNDERSTANDING DDR2: 
 

DDR-2 is the latest generation of computer 

memory, which has evolved from DDR (or called 

DDR-1) memory.  DDR-2 has several advantages 

over DDR-1, including higher speeds, lower power 

consumption, smaller physical sizes, and greater 

MB module sizes available. Also DDR-2 comes 

with 8-bank memory interleaving and 4n-prefetch 

architecture. 

 

Now for PRET machines we are trying to 

dedicate each bank of the RAM chip to a bank, we 

need minimum 6 banks and hence the safest 

option would be 8-bank memory. The available 

size for an 8-bank configuration is 1Gb and above. 

This we select the 16meg x 8 x 8 bank RAM 

configuration to implement main memory using 

DDR-2 for PRET machines. 

 

3.1 BASIC WORKING 

 

It operates from a differential clock (CK and 

CK#). Positive edge is when CK goes high and CK# 

goes low. All commands are registered at every 

positive edge of CK.  Input data is registered on 

both edges of DQS whereas output data is 

registered on both edges of DQS as well as both 

edges of CK.  DQS is a bidirectional data strobe 

used for data capture at the receiver. 

 

Read and write accesses to the DDR2 SDRAM 

are burst oriented; accesses start at a selected 

location and continue for a burst length of four or 

eight in a programmed sequence. Accesses begin 

with the registration of an Active command, which 

is then followed by a Read or Write command. The 

address bits registered coincident with the active 

command are used to select the bank and row to 

be accessed (BA0-BA2 select the bank; A0-A15 

select the row). The address bits registered 

coincident with the Read or Write command are 

used to select the starting column location for the 

burst access and to determine if the auto 

precharge command is to be issued. Prior to 

normal operation, the DDR2 SDRAM must be 

initialized. 

  

As we already noticed, these memory chips are 

highly pipelined and its multibank architecture 

enables concurrent operations. This concurrent 

operation provides high effective bandwidth by 

hiding the overhead times for column and 

activation precharge. 

 

The addressing, important pins/balls and 

functional block diagram of a   DDR-2 chip are all 

as show below. 

 

# of Banks 8 

Bank Address BA0-BA2 

Auto Precharge A10/AP 

Row Address A0-A13 

Column Address A0-A9 

Page size IKB 
Table 1: Memory addressing 



PIN/BALL TYPE FUNCTIONALITY 

CK/CK# Input CK and CK are differential clock inputs 

CKE Input 
CKE HIGH activates, and CKE LOW deactivates, internal clock signals and device 

input buffers and output drivers.  

CS# Input 
Commands are masked when CS is registered HIGH. CS provides for external 

Rank selection on systems with multiple Ranks.  

RAS#, CAS#, 

WE# 
Input 

Command Inputs: RAS, CAS and WE (along with CS) define the command being 

entered. 

BA0-BA2 Input 

Bank Address Inputs: BA0 - BA2 define to which bank an Active, Read, Write or 

Precharge command 

is being applied.  

A0-A15 Input 

Provide the row address for Active commands and the column address and Auto 

Precharge bit for Read/Write commands to select one location out of the memory 

array in the 

respective bank 

DQ0-7 in/out Data Input/ Output: Bi-directional data bus. 
   

Table2: Important Pins/Balls of DDR2-2 

  

Figure2: Functional Block Diagram of DDR-2 (128Meg x 8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2  MODE REGISTER: 

The mode register is used to define the specific 

mode of operation of the DDR2 SDRAM. This 

definition includes the selection of a burst length, 

burst type, CAS latency, operating mode, DLL 

RESET, write recovery, and power-down mode. 

Contents of the mode register can be altered by re-

executing the LOAD MODE (LM) command. If the 

user chooses to modify only a subset of the MR 

variables, all variables must be programmed when 

the command is issued. The default value of the 

mode register is not defined; therefore the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mode register must be programmed during 

initialization for proper operation 

 

The LM command can only be issued (or 

reissued) when all banks are in the precharged 

state (idle state) and no bursts are in progress. 

The controller must wait the specified time tMRD 

before initiating any subsequent operations such 

as an ACTIVATE command. Violating either of 

these requirements will result in an unspecified 

operation. 



The mode register is divided into various fields 

depending on functionality. Burst length is defined 

by A0 - A2 with options of 4 and 8 bit burst 

lengths. The burst length decodes are compatible 

with DDR SDRAM. Burst address sequence type is 

defined by A3, CAS latency is defined by A4 

The DDR2 does not support half clock latency 

mode. A7 is used for test mode. A8 is used for DLL 

reset. A7 must be set to LOW for normal MRS 

operation. Write recovery time WR is defined by 

A9 - A11. Refer to the table below for specific 

codes. 

 

Figure 3: Mode Register 

 

3.3 COMMANDS & MODES: 
The various commands used for functioning of 

DDR RAMs are: 

 

DESELECT 

 

The DESELECT function (CS# HIGH) prevents 

new commands from being executed by

SDRAM. The DDR2 SDRAM is effectively 

deselected. Operations already in progress are not 

affected.  

 

NO OPERATION (NOP) 

 

The NO OPERATION (NOP) command is used to 

instruct the selected DDR2 SDRAM to

NOP (CS# is LOW; RAS#, CAS#, and WE are HIGH). 

This prevents unwanted commands from being 

registered during idle or wait states. Operations 

already in progress are not affected. 

s divided into various fields 

depending on functionality. Burst length is defined 

A2 with options of 4 and 8 bit burst 

lengths. The burst length decodes are compatible 

with DDR SDRAM. Burst address sequence type is 

ined by A4 - A6. 

The DDR2 does not support half clock latency 

mode. A7 is used for test mode. A8 is used for DLL 

reset. A7 must be set to LOW for normal MRS 

operation. Write recovery time WR is defined by 

A11. Refer to the table below for specific 

 
 

The various commands used for functioning of 

The DESELECT function (CS# HIGH) prevents 

new commands from being executed by the DDR2 

SDRAM. The DDR2 SDRAM is effectively 

progress are not 

The NO OPERATION (NOP) command is used to 

instruct the selected DDR2 SDRAM to perform a 

NOP (CS# is LOW; RAS#, CAS#, and WE are HIGH). 

commands from being 

tered during idle or wait states. Operations 

 

 

LOAD MODE (LM) 

 

The mode registers are loaded via bank address 

and address inputs. The bank address

determine which mode registers

programmed. The LM command c

issued when all banks are idle, and a subsequent 

executable command cannot be issued until t

met. 

 

ACTIVATE 

 

The Bank Activate command is issued by 

holding CAS# and WE# HIGH with CS

LOW at the rising edge of the clock. The bank 

addresses BA0- BA2 are used to select the desired 

bank. The row address A0 through A15 is

determine which row to activate in the selected 

bank. The Bank Activate command must be 

applied before any Read or Write operation can be 

executed. Immediately after the bank active 

command, the DDR2 SDRAM can

write command on the following clock cycle. If a 

Read/Write command is issued to a bank that has

not satisfied the tRCDmin specification, then 

additive latency must be programmed into the 

device to delay when the Read/Write command is 

internally issued to the device. The additive 

latency value must be chosen to assure

satisfied. Additive latencies of 0, 1, 2, 3, 4 and 

optionally 5 are supported. Once a bank has been

activated it must be precharged before another 

Bank Activate command can be applied to the 

same bank. The bank active and precharge times 

are defined as tRAS and tRP, respectively. The 

minimum time interval between 

Activate commands to the same bank is 

determined by the RAS cycle time of the device 

(tRC). The minimum time interval between Bank 

Activate commands is tRRD.  

 

In order to ensure that 8 bank devices do not 

exceed the instantaneous current supplying 

capability of 4 bank devices, certain restrict

on operation of the 8 bank devices must be 

observed. There are two rules. One for restricting 

the number of sequential ACT commands that can 

be issued and another for allowing more time for 

RAS precharge for a Precharge All command. The 

rules are as follows: 

• 8 bank device Sequential Bank Activation 

Restriction: No more than 4 banks may be 

activated in a rolling tFAW window. 

The mode registers are loaded via bank address 

and address inputs. The bank address balls 

mode registers will be 

programmed. The LM command can only be 

issued when all banks are idle, and a subsequent 

executable command cannot be issued until tMRD is 

The Bank Activate command is issued by 

HIGH with CS# and RAS# 

the clock. The bank 

BA2 are used to select the desired 

bank. The row address A0 through A15 is used to 

determine which row to activate in the selected 

bank. The Bank Activate command must be 

any Read or Write operation can be 

after the bank active 

command, the DDR2 SDRAM can accept a read or 

write command on the following clock cycle. If a 

Read/Write command is issued to a bank that has 

min specification, then 

additive latency must be programmed into the 

Read/Write command is 

internally issued to the device. The additive 

latency value must be chosen to assure tRCDmin is 

satisfied. Additive latencies of 0, 1, 2, 3, 4 and 

optionally 5 are supported. Once a bank has been 

ust be precharged before another 

Bank Activate command can be applied to the 

active and precharge times 

, respectively. The 

minimum time interval between successive Bank 

Activate commands to the same bank is 

etermined by the RAS cycle time of the device 

time interval between Bank 

In order to ensure that 8 bank devices do not 

exceed the instantaneous current supplying 

certain restrictions 

on operation of the 8 bank devices must be 

observed. There are two rules. One for restricting 

number of sequential ACT commands that can 

be issued and another for allowing more time for 

Precharge All command. The 

• 8 bank device Sequential Bank Activation 

No more than 4 banks may be 

window.  



• 8 bank device Precharge All Allowance: tRP for 

a Precharge All command for an 8 Bank device will 

equal to   tRP +1 x tCK. 

 

3.3 READ and WRITE ACCESS MODES 

 
After a bank has been activated, a read or write 

cycle can be executed. This is accomplished by 

setting RAS HIGH, CS and CAS LOW at the clock’s 

rising edge. WE must also be defined at this time 

to determine whether the access cycle is a read 

operation (WE HIGH) or a write operation (WE 

LOW). The DDR2 SDRAM provides a fast column 

access operation. A single Read or Write 

Command will initiate a serial read or write 

operation on successive clock cycles. The 

boundary of the burst cycle is strictly restricted to 

specific segments of the page length. 

 

A new burst access must not interrupt the 

previous 4 bit burst operation in case of BL = 4 

setting. However, in case of BL = 8 setting, two 

cases of interrupt by a new burst access are 

allowed, one reads interrupted by a read, the 

other writes interrupted by a write with 4 bit 

burst boundary respectively. The minimum CAS to 

CAS delay is defined by tCCD, and is a minimum of 2 

clocks for read or write cycles. 

 

DDR2 SDRAM allows a CAS read or writes 

command to be issued immediately after the RAS 

bank activate command (or any time during the 

RAS-CAS-delay time, tRCD, period). The command is 

held for the time of the Additive Latency (AL) 

before it is issued inside the device. The Read 

Latency (RL) is controlled by the sum of AL and 

the CAS latency (CL). Therefore if a user chooses 

to issue a Read/Write command before the 

tRCDmin, then AL (greater than 0) must be written 

into the EMR (1). The Write Latency (WL) is 

always defined as RL - 1 (read latency -1) where 

read latency is defined as the sum of additive 

latency plus CAS latency (RL=AL+CL). 

 

 
 

Figure 4: Example of a data transfer in DDR-2 

 

 

Burst mode operation is used to provide a 

constant flow of data to memory locations (write 

cycle), or from memory locations (read cycle). The 

parameters that define how the burst mode will 

operate are burst sequence and burst length. 

DDR2 SDRAM supports 4 bit burst and 8 bit burst 

modes only. For 8 bit burst mode, full interleave 

address ordering is supported, however, 

sequential address ordering is nibble based for 

ease of implementation. The burst type, either 

sequential or interleaved, is programmable and 

defined by MR[A3], which is similar to the DDR 

SDRAM operation. Seamless burst read or write 

operations are supported. Unlike DDR devices, 

interruption of a burst read or writes cycle during 

BL = 4 mode operations are prohibited. However 

in case of BL = 8 mode, interruption of a burst 

read or write operation is limited to two cases, 

reads interrupted by a read, or writes interrupted 

by a write. Therefore the Burst Stop command is 

not supported on DDR2 SDRAM devices. 

 

BURST READ OPERATION 

 

The Burst Read command is initiated by having 

CS and CAS LOW while holding RAS and WE HIGH 

at the rising edge of the clock. The address inputs 

determine the starting column address for the 

burst. The delay from the start of the command to 

when the data from the first cell appears on the 

outputs is equal to the value of the read latency 

(RL). The data strobe output (DQS) is driven LOW 

one clock cycle before valid data (DQ) is driven 

onto the data bus. The first bit of the burst is 

synchronized with the rising edge of the data 

strobe (DQS). Each subsequent data-out appears 

on the DQ pin in phase with the DQS signal in a 

source synchronous manner. The RL is equal to an 

additive latency (AL) plus CAS latency (CL). The 

CL is defined by the Mode Register (MR), similar 

to the existing SDR and DDR SDRAMs. The AL is 

defined by the Extended Mode Register 

(1)(EMR(1)). DDR2 SDRAM pin timings are 

specified for either single ended mode or 

differential mode depending on the setting of the 

EMR “Enable DQS” mode bit; timing advantages of 

differential mode are realized in system design. 

The method by which the DDR2 SDRAM pin 

timings are measured is mode dependent. In 

single ended mode, timing relationships are 

measured relative to the rising or falling edges of 

DQS crossing at VREF. In differential mode, these 

timing relationships are measured relative to the 

cross point of DQS and its complement, DQS. This 



distinction in timing methods is guaranteed by 

design and characterization. Note that when 

differential data strobe mode is disabled via the 

EMR, the complementary pin, DQS, must be tied 

externally to V through a 20 Ω to 10 kΩ resistor to 

ensure proper operation. 

 

 
Figure 5: Example of a burst read 

 

The seamless burst read operation is supported 

by enabling a read command at every other clock 

for BL = 4 operation, and every 4 clock for BL = 8 

operation. This operation is allowed regardless of 

same or different banks as long as the banks are 

activated. 

 

 
Figure 6: Example of a seamless burst read 

 

 

BURST WRITE OPERATION 

 

The Burst Write command is initiated by having 

CS, CAS and WE LOW while holding RAS HIGH at 

the rising edge of the clock. The address inputs 

determine the starting column address. Write 

latency (WL) is defined by a read latency (RL) 

minus one and is equal to (AL + CL -1); and is the 

number of clocks of delay that are required from 

the time the write command is registered to the 

clock edge associated to the first DQS strobe. A 

data strobe signal (DQS) should be driven LOW 

(preamble) nominally half clock prior to the WL. 

The first data bit of the burst cycle must be 

applied to the DQ pins at the first rising edge of 

the DQS following the preamble. The tDQSS 

specification must be satisfied for each positive 

DQS transition to its associated clock edge during 

write cycles. The subsequent burst bit data are 

issued on successive edges of the DQS until the 

burst length is completed, which is 4 or 8 bit 

burst. When the burst has finished, any additional 

data supplied to the DQ pins will be ignored. The 

DQ Signal is ignored after the burst write 

operation is complete. The time from the 

completion of the burst write to bank precharge is 

the write recovery time (WR). DDR2 SDRAM pin 

timings are specified for either single ended mode 

or differential mode depending on the setting of 

the EMR “Enable DQS” mode bit; timing 

advantages of differential mode are realized in 

system design. The method by which the DDR2 

SDRAM pin timings are measured is mode 

dependent. In single ended mode, timing 

relationships are measured relative to the rising 

or falling edges of DQS crossing at the specified 

AC/DC levels. In differential mode, these timing 

relationships are measured relative to the cross 

point of DQS and its complement, DQS. This 

distinction in timing methods is guaranteed by 

design and characterization.  

 

 
Figure 7: Example of a burst write 

 

 

The seamless burst write operation is 

supported by enabling a write command every 

other clock for BL = 4 operation, every four clocks 

for BL = 8 operation. This operation is allowed 

regardless of same or different banks as long as 

the banks are activated. 

 

 
Figure 8: Example of a seamless write burst  

                         data-transfer 

 

 

 

 



PRECHARGE 

 

The PRECHARGE command is used to 

deactivate the open row in a particular bank or 

the open row in all banks. The bank(s) will be 

available for a subsequent row activation a 

specified time (tRP) after the PRECHARGE 

command is issued, except in the case of 

concurrent auto precharge, where a READ or 

WRITE command to a different bank is allowed as 

long as it does not interrupt the data transfer in 

the current bank and does not violate any other 

timing parameters. After a bank has been 

precharged, it is in the idle state and must be 

activated prior to any READ or WRITE commands 

being issued to that bank. A PRECHARGE 

command is allowed if there is no open row in that 

bank (idle state) or if the previously open row is 

already in the process of precharging. However, 

the precharge period will be determined by the 

last PRECHARGE command issued to the bank. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFRESH 

 

REFRESH is used during normal operation of 

the DDR2 SDRAM and is analogous to CAS#- 

before-RAS# (CBR) REFRESH. All banks must be 

in the idle mode prior to issuing a REFRESH 

command. This command is non-persistent, so it 

must be issued each time a refresh is required. 

The addressing is generated by the internal 

refresh controller. This makes the address bits a 

“Don’t Care” during a REFRESH command.  

 

SELF REFRESH 

 

The SELF REFRESH command can be used to 

retain data in the DDR2 SDRAM, even if the rest of 

the system is powered down. When in the self 

refresh mode, the DDR2 SDRAM retains data 

without external clocking. All power supply inputs 

(including Vref) must be maintained at valid levels 

upon entry/exit and during SELF REFRESH 

operation. 

 

The SELF REFRESH command is initiated like a 

REFRESH command except CKE is LOW. The DLL 

is automatically disabled upon entering self 

refresh and is automatically enabled upon exiting 

self refresh. 

 

To summarize DDR-2 RAMs, it would be helpful 

to look at all the different timing considerations 

which affect the working of DDR-2 RAMs. 

 

CAS Latency 

The CAS latency is the delay, in clock cycles, 

between sending a READ command and the 

moment the first piece of data is available on the 

outputs. 

 

tWR - Write Recovery Time: 

tWR is the number of clock cycles taken between 

writing data and issuing the precharge command. 

tWR is necessary to guarantee that all data in the 

write buffer can be safely written to the memory 

core. 

 

tRAS - Row Active Time: 

tRAS is the number of clock cycles taken between a 

bank active command and issuing the precharge 

command. 

 

 

tRC - Row Cycle Time: 

The minimum time interval between successive 

ACTIVE commands to the same bank is defined by 

tRC. 

tRC = tRAS + tRP 

 

tRCD - Row Address to Column Address Delay: 

tRCD is the number of clock cycles taken between 

the issuing of the active command and the 

read/write command. In this time the internal 

row signal settles enough for the charge sensor to 

amplify it. 

 

tRP - Row Precharge Time: 

tRP is the number of clock cycles taken between 

the issuing of the precharge command and the 

active command. In this time the sense amps 

charge and the bank is activated. 

 

tRRD - Row Active to Row Active Delay: 

The minimum time interval between successive 

ACTIVE commands to the different banks is 

defined by tRRD. 



 

tWTR - Internal Write to Read Command Delay:

tWTR is the delay that has to be inserted after 

sending the last data from a write operation to the 

memory and issuing a read command.

 

To put it all on one piece of paper, the following 

state diagram can be studied: 

 

Figure 9: State Diagram of DDR

 

 

Now after knowing all the details about DDR

RAMs we can see the block diagram and figure out 

that as soon as a bank is Activated and it knows 

the row and column address, it fetches 4 words 

per cycle, hence 4n-prefetch architecture, and 

releases it also at a similar rate in case of the read 

cycle. So now knowing the basics of DDR

let us look at the PRET environment and how this 

random memory can be used here and made 

predictable. 

 

  

4. DDR-2 as MAIN MEMORY for PRET 

MACHINES 
A complete understanding of the working and 

structure of existing system was necessary in 

order to use DDr-2, in PRET machines

is made for modern day PC applications and its 

sole purpose was to reduce the overhead latency 

and provide more parallelism for faster and faster 

use and hence reducing the level

cache miss penalty. It is made to have more 

memory at faster speeds ranging from 

533MHz. 

 

Internal Write to Read Command Delay: 

he delay that has to be inserted after 

sending the last data from a write operation to the 

memory and issuing a read command. 

To put it all on one piece of paper, the following 

 
Figure 9: State Diagram of DDR-2 

knowing all the details about DDR-2 

RAMs we can see the block diagram and figure out 

that as soon as a bank is Activated and it knows 

the row and column address, it fetches 4 words 

prefetch architecture, and 

r rate in case of the read 

So now knowing the basics of DDR-2 RAM 

let us look at the PRET environment and how this 

random memory can be used here and made 

2 as MAIN MEMORY for PRET 

A complete understanding of the working and 

system was necessary in 

machines. The DDR-2 

is made for modern day PC applications and its 

sole purpose was to reduce the overhead latency 

and provide more parallelism for faster and faster 

level-2 or level-3 

cache miss penalty. It is made to have more 

memory at faster speeds ranging from 200MHz - 

Now the real challenge is to make this random 

access memory predictable in time. The need of 

the hour is to make this RAM behave in a mann

which will reduce the parallelism 

predictability achievable using the DDR

will surely reduce the performance but time 

predictability has always been PRETS forte.

 

Now as we have seen that in PRET it would be 

best if each thread is given an individual bank to 

use and the DDR-2 has 8 banks; making this a 

match. Each thread will be given a bank and the 

rest of the memory will be used as shared space, 

Monitor program and memory I/O mapping. Our 

primary focus here is to make each thread 

with the main memory predictably within the 

window of time allotted to it. 

DDR-2 MEMORY 

 

Figure 10: Memory map of DDR

PRET machine

 

DDR-2 can be used to realize this type of 

memory. The only matter that needs to be 

addressed is the  address limitations of 

thread and also no tolerance for mistaken 

addressing; it will cause data sharing issues and 

copies of that data will lie in the whole system 

causing inconsistency.  

 

Now the most pressing issue is that of

the data within the allotted window time

wheel. If we try and access data in all slots then we 

can have the following problems:

 

1. The activation command comes in the last

 cycle of the window and the column

 like that till the next time we give the 

 read/ write command. This is not 
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Now the real challenge is to make this random 

access memory predictable in time. The need of 

the hour is to make this RAM behave in a manner 

which will reduce the parallelism and make time 

predictability achievable using the DDR-2. This 

will surely reduce the performance but time 

predictability has always been PRETS forte. 

Now as we have seen that in PRET it would be 

given an individual bank to 

2 has 8 banks; making this a 

match. Each thread will be given a bank and the 

rest of the memory will be used as shared space, 

Monitor program and memory I/O mapping. Our 

primary focus here is to make each thread work 

with the main memory predictably within the 

Figure 10: Memory map of DDR-2 for  

PRET machine 
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The only matter that needs to be 

limitations of  each 

thread and also no tolerance for mistaken 

; it will cause data sharing issues and 

copies of that data will lie in the whole system 

ue is that of accessing 

hin the allotted window time, by the 

ccess data in all slots then we 

have the following problems: 

The activation command comes in the last 

cycle of the window and the column stays 

like that till the next time we give the 

read/ write command. This is not 

 

SHARED DATA 

MAPPED I/O 

LOCAL INSTRUCTION 

AND DATA(1 BANK PER 



 acceptable as only four banks can be 

 activated at a time, so somewhere down 

 the line one thread will stall for no reason.  

 

2. The bank is transferring data and window 

 ends, this would lead to un-predictability 

 as we will not know how much of it was 

 left and again the same problem of bank 

 activation continues to linger around.  

3. If Al !=0 we have issues of seamless 

 transfers, where data of thread one will 

 continue even when it is not suppose to 

 and only then data of thread 2 will start. 

 

These are some of the major problems that 

could be encountered if normal access were made 

in each window. So to make it more controlled and 

predictable a method is devised for using the 

memory wheel in a controlled environment and 

using the memory’s commands more 

deterministically. 

 

So the idea is to realize that the following steps 

happen while a memory is being accessed: 

1. ACTIVATION 

2. READ/WRITE command 

3. PRECHARGE 

 

Now we propose to use auto precharge as it 

takes care of the precharging the row within the 

window allotted. During auto-precharge, a Read 

command will execute as normal with the 

exception that the active bank will begin to 

precharge on the rising edge which is CAS latency 

(CL) clock cycles before the end of the read burst. 

Auto-precharge is also implemented during Write 

commands. The precharge operation engaged by 

the Auto-precharge command will not begin until 

the last data of the burst write sequence is 

properly stored in the memory array. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The main idea is to perform each memory 

access instruction in two window slots. Al is kept 

at ‘0’ so no seamless transfers can happen. Now 

consider the following steps: 

 

First cycle: 

1. Identify if the thread-1 instructions needs 

 memory access or no. If yes than decide if 

 it’s a read or write and calculate its 

 latency, say X. Now calculate Y = No. of 

 clock cycles in a window – X. Now after Y 

 cycles of the clock put the Activate 

 command along with the column address 

 and bank address on the address lines of 

 the ddr-2 chip. 

2. In the next cycle,  the row  address along     

 with the read/write  command are put on 

 the bus. 

 

Do the above to steps for every thread. 

 

Second Cycle: 

1. Data starts flowing in to data bus for 

 every thread from the first cycle of the 

 window slot.  

2. Each bank is precharged and all 4/8 

 length burst data is transferred before the 

 window ends.  

 

The above happens for every thread which put 

in a memory access. Thus in the first cycle only the 

banks are activated and in the second one real 

data transfer takes place. This effort to un-

parallelize the memory operations give 

predictability to the memory system using DDR-2. 

 

The problem occurs because at a time only 4 

banks on the DDR-2 chip can be activated hence 

using the 8 bank chip will not give us the 

functionality it was chosen for. The solution of this 

problem is that we use 2 chips with 4 or 8 banks 

each and dedicate 1 or 2 banks to each thread. As 

shown 
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below, we use the highest address bit to select 

the correct chip. This means that one of the chips 

will have memory banks allotted to 2 threads and 

the other will have banks for the other four 

threads. The address translation would not be 

affected and hence this idea seems feasible. 

 

This scheme will give you the predictability 

required for PRET environment. Also this scheme 

gives you a data bus of 8-bits only. To get larger 

data busses, we must use pairs of chip in parallel.  

 

 

 

5.  INTERPROCESS COMMUNICATION: 
Each Thread has its own private context, which 

includes the register values, PC registers and 

scratch pad. Even though each thread has its own 

context, it requires data form threads or tasks or 

functions and this would than require them to 

share data among all threads of the system. Now 

to share data would be simply done if both 

threads have access to the same variable. This can 

be easily achieved if the variable is defined in one 

thread and declare it extern in the other. Now 

consider the following example to understand 

sharing data and the problems it can create. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 As we see, that vrespondtobutton task prints 

out some data that is maintained by the 

vcalculatetanklevels task. Both tasks can access 

the tank data array of structs just as they would if 

this system was free of shared data issues. 

 

     In the above example, the RTOS might stop 

vcalculatetanklevels at any time and run 

vrespondbutton. Remember, that's what we want 

the RTOS to do, so as to get good response. 

However, the RTOS might stop vcalculatetanklevel 

is right in the middle of setting data in the 

tankdata array (which is not a atomic operation), 

and vrespondbutton might then read that half-

changed data. 

  

The above code seemed simple enough to run, 

two tasks sharing data. Unfortunately it is these 

kinds of programs with shared data issues that 

blow up space shuttles after their launch. These 

bugs show up at the wrongest of times, especially 

on friday evenings, just after your product landed 

on mars or when no debugging instrument is 

attached to the system or worst of them all, during 

a demo. Now, as these bugs often show up very 

rarely and are therefore difficult to find, it pays to 

avoid putting these bugs into your code into  

the first place. 

  

To eliminate the shared data bug, we employ 

some RTOS techniques, namely: 

1. Message Queues 

2. Mail Boxes and pipes 

3. Semaphores 

 

 

struct. 

{ 

    long ltanklevel;  

    long ltimeupdates; 

} tank[max_tanks]; 

 

//button task 

 

void vrespondtobutton(void) //high priority 

{ 

   int i; 

   while(true) 

      { 

          //block untill user pushes button  

          i=//id of button pressed; 

          printf("\ntime:%08ld  level:508ld", 

          tankdata[i].ltimeupdated, 

          tankdata[i]/ltanklevel); 

      } 

} 

 

//levels task 

void vcalculatetanklevels(void) //low priority 

{ 

   int i=0; 

   while(true) 

   { 

       //read levels of floats in tank i 

      //do more interminable calculation 

      //store the results 

      tankdata[i].ltimeupdated = //current time 

      //between these two instructions is a bad  place       

 to task switch 

      tankdata[i].ltanklevel = //result of calculation 

      //figure out which tank to do next 

       i=//something new 

   } 

 

} 

 



5.1 MESSAGE QUEUES 

 

 

 

Figure 12: Message Queue

 

Suppose we have two task, task1 and task2, 

each of which has a number of high priority, 

urgent things to do. Suppose also that from time to 

time each have to report an error condition. 

Whenever task1 and task2 discover an error, it 

reports that error to error_task and then 

continues its process. Now the error reporting

process undertaken by error_task does not delay 

the other tasks.  

 

     To implement such a system, a message queue 

is used. Whenever task1 or task2 reports an error 

to the error_task it calls a function error_log. Th

function puts the error on a queue of errors for 

error task to deal with. 

  

     Now two other functions have to be defined, 

namely add_to_queue and read_from_queue. Each 

time the system calls read_from_queue, it gets the 

next error, even if the switch from error_task to 

taks1 t task1 and again in the middle of the call 

occurs. 

 

Here is how this can be implemented.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

void task1() 

{ 

   … 

   if(!!error arises) 

   error_log(error_type1); 

 

   //other high priority tasks 

   ….  

} 

 

void task2() 

{ 

   … 

   if(!!error arises) 

   error_log(error_type2); 

 

   //other high priority tasks 

   … 

   } 

 

Figure 12: Message Queue 
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This approach is primitive and not 

implemented in RTOSs anymore

the message is a constant sized message but that 

may not be the case in all queues. Hence the time 

it takes to transfer this message depends on the 

size of the message, this increases non

determinism in the system making it impossible to 

predict. 

 

     An approach that avoids this non

and also accelerates performance, is to have the 

operating system copy a pointer to the message 

and deliver that pointer to the message

task without moving  the message contents at all.

 

  

5.2.1 MAILBOXES: 

 

Mailboxes are very similar to queues. The 

system function to write, read and delete them 

exists along with a function that checks whether 

the mailbox is empty or no in order to destroy it 

and free the space. The number of message that 

can be store in a mailbox can be chosen

user while creating it. We can also have a mailbox 

with unlimited space. Sometimes in a mailbox we 

can prioritize the messages. In this case the 

higher-priority messages will be read before the 

low priority one, regardless of the order in which 

they are written into the mailbox. This would be of 

help in the error logging example. A more serious 

error should be serviced before the others.

  void error_log() 

{ 

   add_to_queue(int error_type);

} 

 

void error_task() 

{ 

   int error_types; 

   while(1) 

      { 

          read_from_queue(&error_type);

          error_queue_no++; 

         //send error_queue_no and 

error_type 

       } 

primitive and not 

anymore. In our error case 

the message is a constant sized message but that 

may not be the case in all queues. Hence the time 

it takes to transfer this message depends on the 

size of the message, this increases non-

determinism in the system making it impossible to 

this non-determinism 

and also accelerates performance, is to have the 

operating system copy a pointer to the message 

and deliver that pointer to the message-receiver 

the message contents at all. 

similar to queues. The 

system function to write, read and delete them 

exists along with a function that checks whether 

the mailbox is empty or no in order to destroy it 

and free the space. The number of message that 

can be store in a mailbox can be chosen by the 

user while creating it. We can also have a mailbox 

with unlimited space. Sometimes in a mailbox we 

can prioritize the messages. In this case the 

priority messages will be read before the 

low priority one, regardless of the order in which 

y are written into the mailbox. This would be of 

help in the error logging example. A more serious 

before the others. 

add_to_queue(int error_type); 

read_from_queue(&error_type); 

//send error_queue_no and 



  

5.2.2 PIPES 

 

Pipes are much like queues, we can write to 

them, read from them and so on. Some pipes allow 

variable length messages unlike the message 

queues and mailboxes.  The pipe can be 

completely byte oriented. A thread can write any 

number of bytes and another can pick up the 

number bytes it requires from the pipe.  

The rest id left on the pipe for some other pipe 

or program to read later. 

  

 

5.2.2 PTIFALLS 

Above described queues, pipes and mailboxes 

seem to be quite easy to share data but are prone 

to introducing bugs into the system. Here are a 

few types of bugs they can introduce: 

1. There is usually no restriction on who 

 reads or writes to these structures, so it is 

 the users responsibility to ensure thread 

 uses the correct one message each time. 

2.  A message which is ‘int’ type can be 

 treated as a ‘char’ or a pointer and hence 

 the bug will corrupt the system   even 

 without us noticing it. 

3. Running out of space is also a possibility. 

4. Message passing through all these 

 structures is not a bad option but it 

 causes a lot of ‘wait’ time which reduces 

 performance and also is non 

 deterministic as each thread will have 

 data in its queue which could be wanted 

 by another thread and will have wait 

 indefinitely till the producer thread 

 passes it. 

 

 

5.3 SEMAPHORES 

In a multitasking environment there is often a 

requirement to synchronize the execution of 

various tasks or ensure one process has been 

completed before another begins. This 

requirement is facilitated by the use of a software 

switch known as a Semaphore or a Flag. The 

function of this is to work in much the same way a 

railway signal would; only allowing one train on 

the track at a time.  

A semaphore object is also a synchronization 

object that maintains a count between zero and a 

specified maximum value. The count is 

decremented each time a thread completes a wait 

for the semaphore object and incremented each 

time a thread releases the semaphore. When the 

count reaches zero, no more threads have to wait 

to be signaled or wait for the semaphore. The state 

of a semaphore is set to signaled when its count is 

greater than zero, and non-signaled when its 

count is zero. 

 

The semaphore object is useful in controlling a 

shared resource that can support a limited 

number of users. It acts as a gate that limits the 

number of threads sharing the resource to a 

specified maximum number. For example, an 

application might place a limit on the number of 

windows that it creates. It uses a semaphore with 

a maximum count equal to the window limit, 

decrementing the count whenever a window is 

created and incrementing it whenever a window 

is closed. The application specifies the semaphore 

object in call to one of the wait function before 

each window is created. When the count is zero — 

indicating that the window limit has been reached 

— the wait function blocks execution of the 

window-creation code. 

There are many variants of semaphores. Let’s 

discuss the binary semaphore and then the other 

ones like Mutex or a counting semaphore or 

resource semaphore. 

 

Each task can call two RTOS functions, 

TakeSemaphore and ReleaseSemaphore. When 

task A has called TakeSemaphore and has not 

called ReleaseSemaphore, task b which calls 

TakeSemaphore is asked to wait. Task B is blocked 

till task A calls ReleaseSemaphore. Only one task 

can have the semaphore at a time. Now let’s use 

these to RTOS functions to solve the shared data 

problem in the tank program. 

 

In the above case, updating or using the shared 

data is the critical region and is protected by 

sempahore. In the above way every critical section 

can have a semaphore haence there can be 

multiple semaphores. Release of a semaphore by 

taskA will not affect taskB if A and B are 

independent and using different semaphores. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some systems offer semaphores that can be 

taken multiple times. Essentially, such 

semaphores are integers; taking them decrements 

the integer and releasing them increments the 

integer. If a task tries to take the semaphore when 

the integer is equal to zero, then the task will 

block. These semaphores are called counting 

semaphores, and they were the original type of 

semaphores. 

Now the thought that semaphore is the best 

solution for shared data problem is not entirely 

true as semaphore brings along inherent 

problems of its own. Thus to design a very robust 

system, less number of semaphore should be used. 

Semaphores works well only if used carefully and 

wisely. The number ways a semaphore won't 

work are: 

 

1. Forgetting to take the semaphore 

2. Forgetting to release the semaphore 

3. Taking the wrong semaphore 

4. Holding the semaphore for too long 

5. Causing a deadlock 

6. Unbound Priority Inversions 

 

The semaphore variants that are most 

interesting are mutexes and counting semaphores. 

 

5.4 MUTEX 

     A ‘mutex’ is a special kind of semaphore used 

particularly to provide mutual exclusion, hence its 

name. The operations on a mutex are called ‘lock’ 

and ‘unlock’, with meanings which are pretty 

much intuitive. It can eliminate the unbound 

priority inversion problem. 

 

     A mutex can be thought of as being in either a 

locked or an unlocked state.  A task can use the 

lock operation to take the mutex from the 

unlocked to the locked state; and if it succeeds in 

this operation, the task becomes the “owner” of 

the mutex while it remains locked.  If the mutex is 

already in the locked state, a task trying to use the 

lock operation will be prevented from running, 

until the mutex is unlocked and becomes 

available. Even after it becomes available, the 

RTOS decides the next owner of the MUTEX. 

Unlike traditional semaphores, mutexes should 

not be thought of as having a count.  Instead, 

they’re best thought of as being in either a locked 

or an unlocked state. 

 

Only the task that “owns” the mutex at a given 

time, can perform the ‘unlock’ operation on the 

mutex.  This will take the mutex from the locked to 

the unlocked state.  This will also end the 

“ownership” of the mutex by that task.  

 

The concept of a ’token’ is also not relevant for 

mutexes.  With traditional semaphores, the 'take' 

operation can be thought of as “taking” or 

“getting” a token, which can then be passed from 

struct. 

{ 

   long ltanklevel;  

   long ltimeupdates; 

} tank[max_tanks]; 

 

//button task 

void vrespondtobutton(void) //high priority 

{ 

   … 

   if(!!error arises) 

   error_log(error_type2); 

 

   //other high priority tasks 

   … 

   } 

 

 int i; 

   while(true) 

     { 

         //block untill user pushes button 

         i=//id of button pressed; 

        TakeSemaphore() 

        printf("\ntime:%08ld  level:508ld", 

        tankdata[i].ltimeupdated, 

        tankdata[i]/ltanklevel); 

       ReleaseSemaphore(); 

     } 

 

 

//levels task 

void vcalculatetanklevels(void) //low priority 

{ 

   int i=0; 

   while(1) 

     { 

         //read levels of floats in tank i 

         //do more interminable calculation 

         //store the results 

         TakeSemaphore() 

         tankdata[i].ltimeupdated = //current time 

          //between these two instructions is a bad  

place to  task  switch 

          tankdata[i].ltanklevel = //result of calculation 

          ReleaseSemaphore(); 

         //figure out which tank to do next 

         i=//something new 

     } 

} 

 



task to task if necessary. With a mutex, the ‘lock’ 

operation can be thought of as obtaining 

“ownership” of the mutex.  But the “owner” task is 

not permitted to pass the “ownership” directly to 

another task. 

 

Probably the most significant difference 

between traditional semaphores and mutexes, is 

that the problem of unbounded priority inversion 

can not easily be solved using traditional 

semaphores.   This is because of their lack of a 

notion of “ownership” in a traditional semaphore. 

 

When tasks share resources, as they often 

do/must, strange things can and will happen. 

Priority inversions can be particularly difficult to 

anticipate. A basic understanding of the problem 

is the key. All the various techniques or tools 

discussed related to semaphores are used to share 

data through a shared address space either in the 

common memory or as a part of the thread's 

personal address space. 

 

All the above described methods for resolving 

shared memory problems and enable interprocess 

communication in PRET environment will not be 

sufficient. Each method described has some kind 

of non-determinism embedded in it. Like the 

mutex or the semaphore, otherwise most widely 

used methods, are inherently non-deterministic. 

So it cannot be used in PRET machines. The 

message passing through queues, mailboxes or 

pipes requires a lot of RTOS support, and in a 

system where the attempt is to keep the work of 

RTOS as minimal as possible they are not a good 

idea. These methods when used also require some 

memory and all that put with the parallel behavior 

of DDR-2 RAMs will be a very difficult process. 

 

6.    DIRECTORY BASED IPC: 

     In the PRET machines we surely know the 

occurrence of memory accesses of each thread 

and we also know the time when it is going to 

occur. This is possible because of the instructions 

like deadline and replay present in the PRET 

environment. 

 

     Although, the standard IPC methods don't give 

us a good solution, we can try and fill the non-

deterministic holes and innovate to find a solution 

that can be used in the PRET environment. Using 

those concepts and the deterministic behavior of 

the PRET machine we can consider the following 

as a possible solution to IPC problem in PRET 

machines.  

 

     Consider a directory based system which keeps 

a record of which memory bank/location is being 

used by each thread. The directory will have a 

special type of counter, which will keep a count of 

the time for which the particular thread will be 

using the current memory location/bank. Now 

this counter will be a decrement counter and will 

be loaded by the time-count for which the thread 

will be using a particular memory/bank for. There 

will one such counter for every thread. The 

directory would be as shown below: 

 

Memory 

Address 

Thread 

# 

Semaphore 

Count 

Counter 

 1   

 2   

 3   

 4   

 5   

 6   

Figure 13: Directory for IPC 

 

     Now every time a thread wants to access the 

memory, it searches through the small directory 

and the hit or miss condition would be known to 

the user beforehand due to the deterministic 

nature of PRET. Now if it is a miss, then normal 

memory access takes place. But in case of a hit, the 

thread cannot access the memory and has to use 

the replay instruction for adding NOPs to avoid 

pipeline stall. It then loads the count form thread 

using the memory onto its own counter. As soon 

as its counter becomes zero, it executed its own 

access. This now provides a safe and precise IPC. 

 

     In the case when more than one thread have the 

need to access the same shared memory space, 

each successive thread would increase the 

semaphore counter number and add all the 

timings of the executing and waiting threads to 

decide when it needs to wait till. In the worst case 

scenario, all six threads will want access. The 



process will be slow, performance will take a hit, 

but determinism in IPC will surely be achieved. 

 

To understand this better consider the 

following example: Thread1 is accessing ‘xyz’ part 

of the memory. It will require a total sum of 

90cycles to complete the transaction. Now say 

another thread2 wants to access the same location 

and will take 180 cycles to complete its 

transaction. So it first waits for 90 cycles, when its 

counter becomes zero and starts its own access. 

 

Now, consider a thread3 puts in a request to 

use the same location when 35 cycles of thread1 

were remaining. In this case the counter of 

thread3 would be the addition of the count of the 

counter of thread1 and thread2. Thus thread3 

would have to wait for 35+180 = 215 cycles before 

it begins its own instruction. 

  

     All shared data access will be done directly to 

the main memory to avoid data inconsistency. The 

process of checking the directory and waiting in 

the directory causes some overhead. This 

overhead is a small price we pay for Time 

Predictability which is the focus of PRET 

machines. 

 

7. FUTURE WORK 
In the future, we would like to design a 

Programmable Memory Wheel. This would allow 

us to have a very precisely timed program and 

also resolve all our memory related issues. The 

programmable memory would be based on the 

Timed Triggered Protocol.  

 

The programmable memory wheel will allow 

each thread to request for banks and/or 

bandwidth. This would be possible only statically, 

i.e. only during the initialization process. If 

threads make conflicting requests then the RTOS 

present on one of the threads, will throw an 

exception.  Also interprocess communication is 

possible if during the initialization process along 

with allocation for each thread, RTOS can also 

allow two or more threads to access one bank 

depending on the available bandwidth. This whole 

concept is very important for solving the memory 

issues with timing predictability.  

 

 Also so far in PRET machine we have only 

spoken of a single-core, but designing memory 

system for multi-core PRET machine would be 

more challenging with more issues like inter-core 

communications and long latencies due structural 

hazards. 

 

8. CONCLUSION 
The paper addresses different memory models 

and in specific DDR-2’s compatibility with PRET 

machines  From the work done thus far various 

decisive conclusions have been made. A clear 

understanding has reached of the implications 

thrown by DDR-2 memory and ways to resolve are 

being worked upon. 

Also to resolve the problems introduced by 

inter-process communication, the existing 

memory wheel structures in the PRET machines 

also have to be changed to suit the needs of both 

the processor and the DDR-2 memory chips. 
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