

Project Report:

MEMORY

ISSUES IN

PRET

MACHINES
Nishant R. Shah (nrs2127)

Submitted on: 21
st

 December, 2008.

1. ABSTRACT
In a processor design the premier issues with

memory are (1) main memory allocation and (2)

interprocess communication. These two mainly

affect the performance of the memory system. The

goal of this paper is to formulate a deterministic

model for memory systems of PRET, taking into

account all the intertwined parallelism of modern

memory chips.

Studying existing memory models is necessary

to understand the implications of these factors to

realize a perfectly time predictable memory

system.

2. INTRODUCUTION

1.1 MEMORY MANAGEMENT in PRET

ARCHITECTURE

No large modern memories are pipelined; all of

them are parallelized for maximum performance.

Thus, to access the memory for thread-interleaved

pipelined architecture has to be approached in a

different way. For this purpose the use of window

mechanism was conceptualized. Each thread

would have a window slot in which it can access

main memory. This provides predictable access to

memory. This was called the Memory Wheel.

The PRET machine includes a six-stage thread-

interleaved pipeline in which each stage executes

a separate hardware thread to avoid the need for

bypasses. Each thread has its own register file,

local on-chip memory, and assigned region of off-

chip memory. The THREAD CONTROLLER

component is a simple round-robin thread

scheduler, similar to time division multiplexing.

Each thread occupies one pipeline stage at all

times. To handle the stalls of the pipeline

predictably a replay mechanism was introduced,

that simply repeats the same instruction until the

operation completes. Thus, the stalling of one

thread does not affect any of the other threads.

The round-robin execution of threads avoids

memory consistency issues

The memory hierarchy consists of separate fast

on-chip scratchpad memories (SPM) instead of

cache memories due to the following reasons:

1. Non-deterministic behavior

2. Poor performance for multimedia

 application with regular data access

 patterns

3. Higher power consumption

 SPMs are used for instruction and data, and

also serve as large off-chip main memory. They

are connected to a direct memory access (DMA)

controller responsible for moving data between

main memory and the SPMs.

If all threads were to access the main off-chip

memory as and when they required, then the

access times for each thread will vary according to

the memory patterns and not the structure of the

program. This would introduce non-determinism

and unpredictability beating the whole purpose of

the PRET design. Hence, to ensure time

predictability, access to the off-chip main memory

is only allowed through the memory wheel. Each

thread is given a time slice to access the memory

via the wheel. If a thread misses the window, then

it blocks using the Replay instruction till it gets its

chance again.

Each window slot lasts for 13 cycles and it is

now very important to know that each access can

take anywhere between 13 and 90 cycles. This

number is now based on when the request is

made and not on access patterns. Now, if a thread

starts its access on the first cycle of its window,

the access takes exactly 13 cycles. Otherwise, the

thread blocks until its window reappears, this may

take up to 77 cycles. A successful access after just

missing the first cycle of its window results in 77 +

13 = 90 cycles.

What PRET expects from DRAM?

All DRAM memories are banked and designed

to perform Burst transfers and yet have uniform

latencies. Thus in PRET could advantage of this

fact and design its off-chip memory using DRAM. It

would be very convenient, if a block of data can be

filled in a window of the wheel. Also as these

memories are banked, we can give each thread a

bank and this could increase performance with

time predictability.

Figure 1: Block Diagram of PRET Architecture

3. UNDERSTANDING DDR2:

DDR-2 is the latest generation of computer

memory, which has evolved from DDR (or called

DDR-1) memory. DDR-2 has several advantages

over DDR-1, including higher speeds, lower power

consumption, smaller physical sizes, and greater

MB module sizes available. Also DDR-2 comes

with 8-bank memory interleaving and 4n-prefetch

architecture.

Now for PRET machines we are trying to

dedicate each bank of the RAM chip to a bank, we

need minimum 6 banks and hence the safest

option would be 8-bank memory. The available

size for an 8-bank configuration is 1Gb and above.

This we select the 16meg x 8 x 8 bank RAM

configuration to implement main memory using

DDR-2 for PRET machines.

3.1 BASIC WORKING

It operates from a differential clock (CK and

CK#). Positive edge is when CK goes high and CK#

goes low. All commands are registered at every

positive edge of CK. Input data is registered on

both edges of DQS whereas output data is

registered on both edges of DQS as well as both

edges of CK. DQS is a bidirectional data strobe

used for data capture at the receiver.

Read and write accesses to the DDR2 SDRAM

are burst oriented; accesses start at a selected

location and continue for a burst length of four or

eight in a programmed sequence. Accesses begin

with the registration of an Active command, which

is then followed by a Read or Write command. The

address bits registered coincident with the active

command are used to select the bank and row to

be accessed (BA0-BA2 select the bank; A0-A15

select the row). The address bits registered

coincident with the Read or Write command are

used to select the starting column location for the

burst access and to determine if the auto

precharge command is to be issued. Prior to

normal operation, the DDR2 SDRAM must be

initialized.

As we already noticed, these memory chips are

highly pipelined and its multibank architecture

enables concurrent operations. This concurrent

operation provides high effective bandwidth by

hiding the overhead times for column and

activation precharge.

The addressing, important pins/balls and

functional block diagram of a DDR-2 chip are all

as show below.

of Banks 8

Bank Address BA0-BA2

Auto Precharge A10/AP

Row Address A0-A13

Column Address A0-A9

Page size IKB
Table 1: Memory addressing

PIN/BALL TYPE FUNCTIONALITY

CK/CK# Input CK and CK are differential clock inputs

CKE Input
CKE HIGH activates, and CKE LOW deactivates, internal clock signals and device

input buffers and output drivers.

CS# Input
Commands are masked when CS is registered HIGH. CS provides for external

Rank selection on systems with multiple Ranks.

RAS#, CAS#,

WE#
Input

Command Inputs: RAS, CAS and WE (along with CS) define the command being

entered.

BA0-BA2 Input

Bank Address Inputs: BA0 - BA2 define to which bank an Active, Read, Write or

Precharge command

is being applied.

A0-A15 Input

Provide the row address for Active commands and the column address and Auto

Precharge bit for Read/Write commands to select one location out of the memory

array in the

respective bank

DQ0-7 in/out Data Input/ Output: Bi-directional data bus.

Table2: Important Pins/Balls of DDR2-2

Figure2: Functional Block Diagram of DDR-2 (128Meg x 8)

3.2 MODE REGISTER:

The mode register is used to define the specific

mode of operation of the DDR2 SDRAM. This

definition includes the selection of a burst length,

burst type, CAS latency, operating mode, DLL

RESET, write recovery, and power-down mode.

Contents of the mode register can be altered by re-

executing the LOAD MODE (LM) command. If the

user chooses to modify only a subset of the MR

variables, all variables must be programmed when

the command is issued. The default value of the

mode register is not defined; therefore the

mode register must be programmed during

initialization for proper operation

The LM command can only be issued (or

reissued) when all banks are in the precharged

state (idle state) and no bursts are in progress.

The controller must wait the specified time tMRD

before initiating any subsequent operations such

as an ACTIVATE command. Violating either of

these requirements will result in an unspecified

operation.

The mode register is divided into various fields

depending on functionality. Burst length is defined

by A0 - A2 with options of 4 and 8 bit burst

lengths. The burst length decodes are compatible

with DDR SDRAM. Burst address sequence type is

defined by A3, CAS latency is defined by A4

The DDR2 does not support half clock latency

mode. A7 is used for test mode. A8 is used for DLL

reset. A7 must be set to LOW for normal MRS

operation. Write recovery time WR is defined by

A9 - A11. Refer to the table below for specific

codes.

Figure 3: Mode Register

3.3 COMMANDS & MODES:
The various commands used for functioning of

DDR RAMs are:

DESELECT

The DESELECT function (CS# HIGH) prevents

new commands from being executed by

SDRAM. The DDR2 SDRAM is effectively

deselected. Operations already in progress are not

affected.

NO OPERATION (NOP)

The NO OPERATION (NOP) command is used to

instruct the selected DDR2 SDRAM to

NOP (CS# is LOW; RAS#, CAS#, and WE are HIGH).

This prevents unwanted commands from being

registered during idle or wait states. Operations

already in progress are not affected.

s divided into various fields

depending on functionality. Burst length is defined

A2 with options of 4 and 8 bit burst

lengths. The burst length decodes are compatible

with DDR SDRAM. Burst address sequence type is

ined by A4 - A6.

The DDR2 does not support half clock latency

mode. A7 is used for test mode. A8 is used for DLL

reset. A7 must be set to LOW for normal MRS

operation. Write recovery time WR is defined by

A11. Refer to the table below for specific

The various commands used for functioning of

The DESELECT function (CS# HIGH) prevents

new commands from being executed by the DDR2

SDRAM. The DDR2 SDRAM is effectively

progress are not

The NO OPERATION (NOP) command is used to

instruct the selected DDR2 SDRAM to perform a

NOP (CS# is LOW; RAS#, CAS#, and WE are HIGH).

commands from being

tered during idle or wait states. Operations

LOAD MODE (LM)

The mode registers are loaded via bank address

and address inputs. The bank address

determine which mode registers

programmed. The LM command c

issued when all banks are idle, and a subsequent

executable command cannot be issued until t

met.

ACTIVATE

The Bank Activate command is issued by

holding CAS# and WE# HIGH with CS

LOW at the rising edge of the clock. The bank

addresses BA0- BA2 are used to select the desired

bank. The row address A0 through A15 is

determine which row to activate in the selected

bank. The Bank Activate command must be

applied before any Read or Write operation can be

executed. Immediately after the bank active

command, the DDR2 SDRAM can

write command on the following clock cycle. If a

Read/Write command is issued to a bank that has

not satisfied the tRCDmin specification, then

additive latency must be programmed into the

device to delay when the Read/Write command is

internally issued to the device. The additive

latency value must be chosen to assure

satisfied. Additive latencies of 0, 1, 2, 3, 4 and

optionally 5 are supported. Once a bank has been

activated it must be precharged before another

Bank Activate command can be applied to the

same bank. The bank active and precharge times

are defined as tRAS and tRP, respectively. The

minimum time interval between

Activate commands to the same bank is

determined by the RAS cycle time of the device

(tRC). The minimum time interval between Bank

Activate commands is tRRD.

In order to ensure that 8 bank devices do not

exceed the instantaneous current supplying

capability of 4 bank devices, certain restrict

on operation of the 8 bank devices must be

observed. There are two rules. One for restricting

the number of sequential ACT commands that can

be issued and another for allowing more time for

RAS precharge for a Precharge All command. The

rules are as follows:

• 8 bank device Sequential Bank Activation

Restriction: No more than 4 banks may be

activated in a rolling tFAW window.

The mode registers are loaded via bank address

and address inputs. The bank address balls

mode registers will be

programmed. The LM command can only be

issued when all banks are idle, and a subsequent

executable command cannot be issued until tMRD is

The Bank Activate command is issued by

HIGH with CS# and RAS#

the clock. The bank

BA2 are used to select the desired

bank. The row address A0 through A15 is used to

determine which row to activate in the selected

bank. The Bank Activate command must be

any Read or Write operation can be

after the bank active

command, the DDR2 SDRAM can accept a read or

write command on the following clock cycle. If a

Read/Write command is issued to a bank that has

min specification, then

additive latency must be programmed into the

Read/Write command is

internally issued to the device. The additive

latency value must be chosen to assure tRCDmin is

satisfied. Additive latencies of 0, 1, 2, 3, 4 and

optionally 5 are supported. Once a bank has been

ust be precharged before another

Bank Activate command can be applied to the

active and precharge times

, respectively. The

minimum time interval between successive Bank

Activate commands to the same bank is

etermined by the RAS cycle time of the device

time interval between Bank

In order to ensure that 8 bank devices do not

exceed the instantaneous current supplying

certain restrictions

on operation of the 8 bank devices must be

observed. There are two rules. One for restricting

number of sequential ACT commands that can

be issued and another for allowing more time for

Precharge All command. The

• 8 bank device Sequential Bank Activation

No more than 4 banks may be

window.

• 8 bank device Precharge All Allowance: tRP for

a Precharge All command for an 8 Bank device will

equal to tRP +1 x tCK.

3.3 READ and WRITE ACCESS MODES

After a bank has been activated, a read or write

cycle can be executed. This is accomplished by

setting RAS HIGH, CS and CAS LOW at the clock’s

rising edge. WE must also be defined at this time

to determine whether the access cycle is a read

operation (WE HIGH) or a write operation (WE

LOW). The DDR2 SDRAM provides a fast column

access operation. A single Read or Write

Command will initiate a serial read or write

operation on successive clock cycles. The

boundary of the burst cycle is strictly restricted to

specific segments of the page length.

A new burst access must not interrupt the

previous 4 bit burst operation in case of BL = 4

setting. However, in case of BL = 8 setting, two

cases of interrupt by a new burst access are

allowed, one reads interrupted by a read, the

other writes interrupted by a write with 4 bit

burst boundary respectively. The minimum CAS to

CAS delay is defined by tCCD, and is a minimum of 2

clocks for read or write cycles.

DDR2 SDRAM allows a CAS read or writes

command to be issued immediately after the RAS

bank activate command (or any time during the

RAS-CAS-delay time, tRCD, period). The command is

held for the time of the Additive Latency (AL)

before it is issued inside the device. The Read

Latency (RL) is controlled by the sum of AL and

the CAS latency (CL). Therefore if a user chooses

to issue a Read/Write command before the

tRCDmin, then AL (greater than 0) must be written

into the EMR (1). The Write Latency (WL) is

always defined as RL - 1 (read latency -1) where

read latency is defined as the sum of additive

latency plus CAS latency (RL=AL+CL).

Figure 4: Example of a data transfer in DDR-2

Burst mode operation is used to provide a

constant flow of data to memory locations (write

cycle), or from memory locations (read cycle). The

parameters that define how the burst mode will

operate are burst sequence and burst length.

DDR2 SDRAM supports 4 bit burst and 8 bit burst

modes only. For 8 bit burst mode, full interleave

address ordering is supported, however,

sequential address ordering is nibble based for

ease of implementation. The burst type, either

sequential or interleaved, is programmable and

defined by MR[A3], which is similar to the DDR

SDRAM operation. Seamless burst read or write

operations are supported. Unlike DDR devices,

interruption of a burst read or writes cycle during

BL = 4 mode operations are prohibited. However

in case of BL = 8 mode, interruption of a burst

read or write operation is limited to two cases,

reads interrupted by a read, or writes interrupted

by a write. Therefore the Burst Stop command is

not supported on DDR2 SDRAM devices.

BURST READ OPERATION

The Burst Read command is initiated by having

CS and CAS LOW while holding RAS and WE HIGH

at the rising edge of the clock. The address inputs

determine the starting column address for the

burst. The delay from the start of the command to

when the data from the first cell appears on the

outputs is equal to the value of the read latency

(RL). The data strobe output (DQS) is driven LOW

one clock cycle before valid data (DQ) is driven

onto the data bus. The first bit of the burst is

synchronized with the rising edge of the data

strobe (DQS). Each subsequent data-out appears

on the DQ pin in phase with the DQS signal in a

source synchronous manner. The RL is equal to an

additive latency (AL) plus CAS latency (CL). The

CL is defined by the Mode Register (MR), similar

to the existing SDR and DDR SDRAMs. The AL is

defined by the Extended Mode Register

(1)(EMR(1)). DDR2 SDRAM pin timings are

specified for either single ended mode or

differential mode depending on the setting of the

EMR “Enable DQS” mode bit; timing advantages of

differential mode are realized in system design.

The method by which the DDR2 SDRAM pin

timings are measured is mode dependent. In

single ended mode, timing relationships are

measured relative to the rising or falling edges of

DQS crossing at VREF. In differential mode, these

timing relationships are measured relative to the

cross point of DQS and its complement, DQS. This

distinction in timing methods is guaranteed by

design and characterization. Note that when

differential data strobe mode is disabled via the

EMR, the complementary pin, DQS, must be tied

externally to V through a 20 Ω to 10 kΩ resistor to

ensure proper operation.

Figure 5: Example of a burst read

The seamless burst read operation is supported

by enabling a read command at every other clock

for BL = 4 operation, and every 4 clock for BL = 8

operation. This operation is allowed regardless of

same or different banks as long as the banks are

activated.

Figure 6: Example of a seamless burst read

BURST WRITE OPERATION

The Burst Write command is initiated by having

CS, CAS and WE LOW while holding RAS HIGH at

the rising edge of the clock. The address inputs

determine the starting column address. Write

latency (WL) is defined by a read latency (RL)

minus one and is equal to (AL + CL -1); and is the

number of clocks of delay that are required from

the time the write command is registered to the

clock edge associated to the first DQS strobe. A

data strobe signal (DQS) should be driven LOW

(preamble) nominally half clock prior to the WL.

The first data bit of the burst cycle must be

applied to the DQ pins at the first rising edge of

the DQS following the preamble. The tDQSS

specification must be satisfied for each positive

DQS transition to its associated clock edge during

write cycles. The subsequent burst bit data are

issued on successive edges of the DQS until the

burst length is completed, which is 4 or 8 bit

burst. When the burst has finished, any additional

data supplied to the DQ pins will be ignored. The

DQ Signal is ignored after the burst write

operation is complete. The time from the

completion of the burst write to bank precharge is

the write recovery time (WR). DDR2 SDRAM pin

timings are specified for either single ended mode

or differential mode depending on the setting of

the EMR “Enable DQS” mode bit; timing

advantages of differential mode are realized in

system design. The method by which the DDR2

SDRAM pin timings are measured is mode

dependent. In single ended mode, timing

relationships are measured relative to the rising

or falling edges of DQS crossing at the specified

AC/DC levels. In differential mode, these timing

relationships are measured relative to the cross

point of DQS and its complement, DQS. This

distinction in timing methods is guaranteed by

design and characterization.

Figure 7: Example of a burst write

The seamless burst write operation is

supported by enabling a write command every

other clock for BL = 4 operation, every four clocks

for BL = 8 operation. This operation is allowed

regardless of same or different banks as long as

the banks are activated.

Figure 8: Example of a seamless write burst

 data-transfer

PRECHARGE

The PRECHARGE command is used to

deactivate the open row in a particular bank or

the open row in all banks. The bank(s) will be

available for a subsequent row activation a

specified time (tRP) after the PRECHARGE

command is issued, except in the case of

concurrent auto precharge, where a READ or

WRITE command to a different bank is allowed as

long as it does not interrupt the data transfer in

the current bank and does not violate any other

timing parameters. After a bank has been

precharged, it is in the idle state and must be

activated prior to any READ or WRITE commands

being issued to that bank. A PRECHARGE

command is allowed if there is no open row in that

bank (idle state) or if the previously open row is

already in the process of precharging. However,

the precharge period will be determined by the

last PRECHARGE command issued to the bank.

REFRESH

REFRESH is used during normal operation of

the DDR2 SDRAM and is analogous to CAS#-

before-RAS# (CBR) REFRESH. All banks must be

in the idle mode prior to issuing a REFRESH

command. This command is non-persistent, so it

must be issued each time a refresh is required.

The addressing is generated by the internal

refresh controller. This makes the address bits a

“Don’t Care” during a REFRESH command.

SELF REFRESH

The SELF REFRESH command can be used to

retain data in the DDR2 SDRAM, even if the rest of

the system is powered down. When in the self

refresh mode, the DDR2 SDRAM retains data

without external clocking. All power supply inputs

(including Vref) must be maintained at valid levels

upon entry/exit and during SELF REFRESH

operation.

The SELF REFRESH command is initiated like a

REFRESH command except CKE is LOW. The DLL

is automatically disabled upon entering self

refresh and is automatically enabled upon exiting

self refresh.

To summarize DDR-2 RAMs, it would be helpful

to look at all the different timing considerations

which affect the working of DDR-2 RAMs.

CAS Latency

The CAS latency is the delay, in clock cycles,

between sending a READ command and the

moment the first piece of data is available on the

outputs.

tWR - Write Recovery Time:

tWR is the number of clock cycles taken between

writing data and issuing the precharge command.

tWR is necessary to guarantee that all data in the

write buffer can be safely written to the memory

core.

tRAS - Row Active Time:

tRAS is the number of clock cycles taken between a

bank active command and issuing the precharge

command.

tRC - Row Cycle Time:

The minimum time interval between successive

ACTIVE commands to the same bank is defined by

tRC.

tRC = tRAS + tRP

tRCD - Row Address to Column Address Delay:

tRCD is the number of clock cycles taken between

the issuing of the active command and the

read/write command. In this time the internal

row signal settles enough for the charge sensor to

amplify it.

tRP - Row Precharge Time:

tRP is the number of clock cycles taken between

the issuing of the precharge command and the

active command. In this time the sense amps

charge and the bank is activated.

tRRD - Row Active to Row Active Delay:

The minimum time interval between successive

ACTIVE commands to the different banks is

defined by tRRD.

tWTR - Internal Write to Read Command Delay:

tWTR is the delay that has to be inserted after

sending the last data from a write operation to the

memory and issuing a read command.

To put it all on one piece of paper, the following

state diagram can be studied:

Figure 9: State Diagram of DDR

Now after knowing all the details about DDR

RAMs we can see the block diagram and figure out

that as soon as a bank is Activated and it knows

the row and column address, it fetches 4 words

per cycle, hence 4n-prefetch architecture, and

releases it also at a similar rate in case of the read

cycle. So now knowing the basics of DDR

let us look at the PRET environment and how this

random memory can be used here and made

predictable.

4. DDR-2 as MAIN MEMORY for PRET

MACHINES
A complete understanding of the working and

structure of existing system was necessary in

order to use DDr-2, in PRET machines

is made for modern day PC applications and its

sole purpose was to reduce the overhead latency

and provide more parallelism for faster and faster

use and hence reducing the level

cache miss penalty. It is made to have more

memory at faster speeds ranging from

533MHz.

Internal Write to Read Command Delay:

he delay that has to be inserted after

sending the last data from a write operation to the

memory and issuing a read command.

To put it all on one piece of paper, the following

Figure 9: State Diagram of DDR-2

knowing all the details about DDR-2

RAMs we can see the block diagram and figure out

that as soon as a bank is Activated and it knows

the row and column address, it fetches 4 words

prefetch architecture, and

r rate in case of the read

So now knowing the basics of DDR-2 RAM

let us look at the PRET environment and how this

random memory can be used here and made

2 as MAIN MEMORY for PRET

A complete understanding of the working and

system was necessary in

machines. The DDR-2

is made for modern day PC applications and its

sole purpose was to reduce the overhead latency

and provide more parallelism for faster and faster

level-2 or level-3

cache miss penalty. It is made to have more

memory at faster speeds ranging from 200MHz -

Now the real challenge is to make this random

access memory predictable in time. The need of

the hour is to make this RAM behave in a mann

which will reduce the parallelism

predictability achievable using the DDR

will surely reduce the performance but time

predictability has always been PRETS forte.

Now as we have seen that in PRET it would be

best if each thread is given an individual bank to

use and the DDR-2 has 8 banks; making this a

match. Each thread will be given a bank and the

rest of the memory will be used as shared space,

Monitor program and memory I/O mapping. Our

primary focus here is to make each thread

with the main memory predictably within the

window of time allotted to it.

DDR-2 MEMORY

Figure 10: Memory map of DDR

PRET machine

DDR-2 can be used to realize this type of

memory. The only matter that needs to be

addressed is the address limitations of

thread and also no tolerance for mistaken

addressing; it will cause data sharing issues and

copies of that data will lie in the whole system

causing inconsistency.

Now the most pressing issue is that of

the data within the allotted window time

wheel. If we try and access data in all slots then we

can have the following problems:

1. The activation command comes in the last

 cycle of the window and the column

 like that till the next time we give the

 read/ write command. This is not

 BOOT CODE

SHARED DATA

 MEMORY-MAPPED I/O

THREAD – 1

THREAD-LOCAL INSTRUCTION

AND DATA(1 BANK PER

THREAD)

THREAD – 2

.

.

.

THREAD – 6

Now the real challenge is to make this random

access memory predictable in time. The need of

the hour is to make this RAM behave in a manner

which will reduce the parallelism and make time

predictability achievable using the DDR-2. This

will surely reduce the performance but time

predictability has always been PRETS forte.

Now as we have seen that in PRET it would be

given an individual bank to

2 has 8 banks; making this a

match. Each thread will be given a bank and the

rest of the memory will be used as shared space,

Monitor program and memory I/O mapping. Our

primary focus here is to make each thread work

with the main memory predictably within the

Figure 10: Memory map of DDR-2 for

PRET machine

2 can be used to realize this type of

The only matter that needs to be

limitations of each

thread and also no tolerance for mistaken

; it will cause data sharing issues and

copies of that data will lie in the whole system

ue is that of accessing

hin the allotted window time, by the

ccess data in all slots then we

have the following problems:

The activation command comes in the last

cycle of the window and the column stays

like that till the next time we give the

read/ write command. This is not

SHARED DATA

MAPPED I/O

LOCAL INSTRUCTION

AND DATA(1 BANK PER

 acceptable as only four banks can be

 activated at a time, so somewhere down

 the line one thread will stall for no reason.

2. The bank is transferring data and window

 ends, this would lead to un-predictability

 as we will not know how much of it was

 left and again the same problem of bank

 activation continues to linger around.

3. If Al !=0 we have issues of seamless

 transfers, where data of thread one will

 continue even when it is not suppose to

 and only then data of thread 2 will start.

These are some of the major problems that

could be encountered if normal access were made

in each window. So to make it more controlled and

predictable a method is devised for using the

memory wheel in a controlled environment and

using the memory’s commands more

deterministically.

So the idea is to realize that the following steps

happen while a memory is being accessed:

1. ACTIVATION

2. READ/WRITE command

3. PRECHARGE

Now we propose to use auto precharge as it

takes care of the precharging the row within the

window allotted. During auto-precharge, a Read

command will execute as normal with the

exception that the active bank will begin to

precharge on the rising edge which is CAS latency

(CL) clock cycles before the end of the read burst.

Auto-precharge is also implemented during Write

commands. The precharge operation engaged by

the Auto-precharge command will not begin until

the last data of the burst write sequence is

properly stored in the memory array.

The main idea is to perform each memory

access instruction in two window slots. Al is kept

at ‘0’ so no seamless transfers can happen. Now

consider the following steps:

First cycle:

1. Identify if the thread-1 instructions needs

 memory access or no. If yes than decide if

 it’s a read or write and calculate its

 latency, say X. Now calculate Y = No. of

 clock cycles in a window – X. Now after Y

 cycles of the clock put the Activate

 command along with the column address

 and bank address on the address lines of

 the ddr-2 chip.

2. In the next cycle, the row address along

 with the read/write command are put on

 the bus.

Do the above to steps for every thread.

Second Cycle:

1. Data starts flowing in to data bus for

 every thread from the first cycle of the

 window slot.

2. Each bank is precharged and all 4/8

 length burst data is transferred before the

 window ends.

The above happens for every thread which put

in a memory access. Thus in the first cycle only the

banks are activated and in the second one real

data transfer takes place. This effort to un-

parallelize the memory operations give

predictability to the memory system using DDR-2.

The problem occurs because at a time only 4

banks on the DDR-2 chip can be activated hence

using the 8 bank chip will not give us the

functionality it was chosen for. The solution of this

problem is that we use 2 chips with 4 or 8 banks

each and dedicate 1 or 2 banks to each thread. As

shown

A0-An

A0-An-1 A0-An-1

 DDR-2 Chip 1

 DDR-2 Chip 2

D0-D7 D0-D7

An

CS

CS

below, we use the highest address bit to select

the correct chip. This means that one of the chips

will have memory banks allotted to 2 threads and

the other will have banks for the other four

threads. The address translation would not be

affected and hence this idea seems feasible.

This scheme will give you the predictability

required for PRET environment. Also this scheme

gives you a data bus of 8-bits only. To get larger

data busses, we must use pairs of chip in parallel.

5. INTERPROCESS COMMUNICATION:
Each Thread has its own private context, which

includes the register values, PC registers and

scratch pad. Even though each thread has its own

context, it requires data form threads or tasks or

functions and this would than require them to

share data among all threads of the system. Now

to share data would be simply done if both

threads have access to the same variable. This can

be easily achieved if the variable is defined in one

thread and declare it extern in the other. Now

consider the following example to understand

sharing data and the problems it can create.

 As we see, that vrespondtobutton task prints

out some data that is maintained by the

vcalculatetanklevels task. Both tasks can access

the tank data array of structs just as they would if

this system was free of shared data issues.

 In the above example, the RTOS might stop

vcalculatetanklevels at any time and run

vrespondbutton. Remember, that's what we want

the RTOS to do, so as to get good response.

However, the RTOS might stop vcalculatetanklevel

is right in the middle of setting data in the

tankdata array (which is not a atomic operation),

and vrespondbutton might then read that half-

changed data.

The above code seemed simple enough to run,

two tasks sharing data. Unfortunately it is these

kinds of programs with shared data issues that

blow up space shuttles after their launch. These

bugs show up at the wrongest of times, especially

on friday evenings, just after your product landed

on mars or when no debugging instrument is

attached to the system or worst of them all, during

a demo. Now, as these bugs often show up very

rarely and are therefore difficult to find, it pays to

avoid putting these bugs into your code into

the first place.

To eliminate the shared data bug, we employ

some RTOS techniques, namely:

1. Message Queues

2. Mail Boxes and pipes

3. Semaphores

struct.

{

 long ltanklevel;

 long ltimeupdates;

} tank[max_tanks];

//button task

void vrespondtobutton(void) //high priority

{

 int i;

 while(true)

 {

 //block untill user pushes button

 i=//id of button pressed;

 printf("\ntime:%08ld level:508ld",

 tankdata[i].ltimeupdated,

 tankdata[i]/ltanklevel);

 }

}

//levels task

void vcalculatetanklevels(void) //low priority

{

 int i=0;

 while(true)

 {

 //read levels of floats in tank i

 //do more interminable calculation

 //store the results

 tankdata[i].ltimeupdated = //current time

 //between these two instructions is a bad place

 to task switch

 tankdata[i].ltanklevel = //result of calculation

 //figure out which tank to do next

 i=//something new

 }

}

5.1 MESSAGE QUEUES

Figure 12: Message Queue

Suppose we have two task, task1 and task2,

each of which has a number of high priority,

urgent things to do. Suppose also that from time to

time each have to report an error condition.

Whenever task1 and task2 discover an error, it

reports that error to error_task and then

continues its process. Now the error reporting

process undertaken by error_task does not delay

the other tasks.

 To implement such a system, a message queue

is used. Whenever task1 or task2 reports an error

to the error_task it calls a function error_log. Th

function puts the error on a queue of errors for

error task to deal with.

 Now two other functions have to be defined,

namely add_to_queue and read_from_queue. Each

time the system calls read_from_queue, it gets the

next error, even if the switch from error_task to

taks1 t task1 and again in the middle of the call

occurs.

Here is how this can be implemented.

void task1()

{

 …

 if(!!error arises)

 error_log(error_type1);

 //other high priority tasks

 ….

}

void task2()

{

 …

 if(!!error arises)

 error_log(error_type2);

 //other high priority tasks

 …

 }

Figure 12: Message Queue

task1 and task2,

each of which has a number of high priority,

urgent things to do. Suppose also that from time to

time each have to report an error condition.

Whenever task1 and task2 discover an error, it

that error to error_task and then

s its process. Now the error reporting

process undertaken by error_task does not delay

To implement such a system, a message queue

is used. Whenever task1 or task2 reports an error

to the error_task it calls a function error_log. This

function puts the error on a queue of errors for

Now two other functions have to be defined,

namely add_to_queue and read_from_queue. Each

time the system calls read_from_queue, it gets the

from error_task to

again in the middle of the call

Here is how this can be implemented.

This approach is primitive and not

implemented in RTOSs anymore

the message is a constant sized message but that

may not be the case in all queues. Hence the time

it takes to transfer this message depends on the

size of the message, this increases non

determinism in the system making it impossible to

predict.

 An approach that avoids this non

and also accelerates performance, is to have the

operating system copy a pointer to the message

and deliver that pointer to the message

task without moving the message contents at all.

5.2.1 MAILBOXES:

Mailboxes are very similar to queues. The

system function to write, read and delete them

exists along with a function that checks whether

the mailbox is empty or no in order to destroy it

and free the space. The number of message that

can be store in a mailbox can be chosen

user while creating it. We can also have a mailbox

with unlimited space. Sometimes in a mailbox we

can prioritize the messages. In this case the

higher-priority messages will be read before the

low priority one, regardless of the order in which

they are written into the mailbox. This would be of

help in the error logging example. A more serious

error should be serviced before the others.

 void error_log()

{

 add_to_queue(int error_type);

}

void error_task()

{

 int error_types;

 while(1)

 {

 read_from_queue(&error_type);

 error_queue_no++;

 //send error_queue_no and

error_type

 }

primitive and not

anymore. In our error case

the message is a constant sized message but that

may not be the case in all queues. Hence the time

it takes to transfer this message depends on the

size of the message, this increases non-

determinism in the system making it impossible to

this non-determinism

and also accelerates performance, is to have the

operating system copy a pointer to the message

and deliver that pointer to the message-receiver

the message contents at all.

similar to queues. The

system function to write, read and delete them

exists along with a function that checks whether

the mailbox is empty or no in order to destroy it

and free the space. The number of message that

can be store in a mailbox can be chosen by the

user while creating it. We can also have a mailbox

with unlimited space. Sometimes in a mailbox we

can prioritize the messages. In this case the

priority messages will be read before the

low priority one, regardless of the order in which

y are written into the mailbox. This would be of

help in the error logging example. A more serious

before the others.

add_to_queue(int error_type);

read_from_queue(&error_type);

//send error_queue_no and

5.2.2 PIPES

Pipes are much like queues, we can write to

them, read from them and so on. Some pipes allow

variable length messages unlike the message

queues and mailboxes. The pipe can be

completely byte oriented. A thread can write any

number of bytes and another can pick up the

number bytes it requires from the pipe.

The rest id left on the pipe for some other pipe

or program to read later.

5.2.2 PTIFALLS

Above described queues, pipes and mailboxes

seem to be quite easy to share data but are prone

to introducing bugs into the system. Here are a

few types of bugs they can introduce:

1. There is usually no restriction on who

 reads or writes to these structures, so it is

 the users responsibility to ensure thread

 uses the correct one message each time.

2. A message which is ‘int’ type can be

 treated as a ‘char’ or a pointer and hence

 the bug will corrupt the system even

 without us noticing it.

3. Running out of space is also a possibility.

4. Message passing through all these

 structures is not a bad option but it

 causes a lot of ‘wait’ time which reduces

 performance and also is non

 deterministic as each thread will have

 data in its queue which could be wanted

 by another thread and will have wait

 indefinitely till the producer thread

 passes it.

5.3 SEMAPHORES

In a multitasking environment there is often a

requirement to synchronize the execution of

various tasks or ensure one process has been

completed before another begins. This

requirement is facilitated by the use of a software

switch known as a Semaphore or a Flag. The

function of this is to work in much the same way a

railway signal would; only allowing one train on

the track at a time.

A semaphore object is also a synchronization

object that maintains a count between zero and a

specified maximum value. The count is

decremented each time a thread completes a wait

for the semaphore object and incremented each

time a thread releases the semaphore. When the

count reaches zero, no more threads have to wait

to be signaled or wait for the semaphore. The state

of a semaphore is set to signaled when its count is

greater than zero, and non-signaled when its

count is zero.

The semaphore object is useful in controlling a

shared resource that can support a limited

number of users. It acts as a gate that limits the

number of threads sharing the resource to a

specified maximum number. For example, an

application might place a limit on the number of

windows that it creates. It uses a semaphore with

a maximum count equal to the window limit,

decrementing the count whenever a window is

created and incrementing it whenever a window

is closed. The application specifies the semaphore

object in call to one of the wait function before

each window is created. When the count is zero —

indicating that the window limit has been reached

— the wait function blocks execution of the

window-creation code.

There are many variants of semaphores. Let’s

discuss the binary semaphore and then the other

ones like Mutex or a counting semaphore or

resource semaphore.

Each task can call two RTOS functions,

TakeSemaphore and ReleaseSemaphore. When

task A has called TakeSemaphore and has not

called ReleaseSemaphore, task b which calls

TakeSemaphore is asked to wait. Task B is blocked

till task A calls ReleaseSemaphore. Only one task

can have the semaphore at a time. Now let’s use

these to RTOS functions to solve the shared data

problem in the tank program.

In the above case, updating or using the shared

data is the critical region and is protected by

sempahore. In the above way every critical section

can have a semaphore haence there can be

multiple semaphores. Release of a semaphore by

taskA will not affect taskB if A and B are

independent and using different semaphores.

Some systems offer semaphores that can be

taken multiple times. Essentially, such

semaphores are integers; taking them decrements

the integer and releasing them increments the

integer. If a task tries to take the semaphore when

the integer is equal to zero, then the task will

block. These semaphores are called counting

semaphores, and they were the original type of

semaphores.

Now the thought that semaphore is the best

solution for shared data problem is not entirely

true as semaphore brings along inherent

problems of its own. Thus to design a very robust

system, less number of semaphore should be used.

Semaphores works well only if used carefully and

wisely. The number ways a semaphore won't

work are:

1. Forgetting to take the semaphore

2. Forgetting to release the semaphore

3. Taking the wrong semaphore

4. Holding the semaphore for too long

5. Causing a deadlock

6. Unbound Priority Inversions

The semaphore variants that are most

interesting are mutexes and counting semaphores.

5.4 MUTEX

 A ‘mutex’ is a special kind of semaphore used

particularly to provide mutual exclusion, hence its

name. The operations on a mutex are called ‘lock’

and ‘unlock’, with meanings which are pretty

much intuitive. It can eliminate the unbound

priority inversion problem.

 A mutex can be thought of as being in either a

locked or an unlocked state. A task can use the

lock operation to take the mutex from the

unlocked to the locked state; and if it succeeds in

this operation, the task becomes the “owner” of

the mutex while it remains locked. If the mutex is

already in the locked state, a task trying to use the

lock operation will be prevented from running,

until the mutex is unlocked and becomes

available. Even after it becomes available, the

RTOS decides the next owner of the MUTEX.

Unlike traditional semaphores, mutexes should

not be thought of as having a count. Instead,

they’re best thought of as being in either a locked

or an unlocked state.

Only the task that “owns” the mutex at a given

time, can perform the ‘unlock’ operation on the

mutex. This will take the mutex from the locked to

the unlocked state. This will also end the

“ownership” of the mutex by that task.

The concept of a ’token’ is also not relevant for

mutexes. With traditional semaphores, the 'take'

operation can be thought of as “taking” or

“getting” a token, which can then be passed from

struct.

{

 long ltanklevel;

 long ltimeupdates;

} tank[max_tanks];

//button task

void vrespondtobutton(void) //high priority

{

 …

 if(!!error arises)

 error_log(error_type2);

 //other high priority tasks

 …

 }

 int i;

 while(true)

 {

 //block untill user pushes button

 i=//id of button pressed;

 TakeSemaphore()

 printf("\ntime:%08ld level:508ld",

 tankdata[i].ltimeupdated,

 tankdata[i]/ltanklevel);

 ReleaseSemaphore();

 }

//levels task

void vcalculatetanklevels(void) //low priority

{

 int i=0;

 while(1)

 {

 //read levels of floats in tank i

 //do more interminable calculation

 //store the results

 TakeSemaphore()

 tankdata[i].ltimeupdated = //current time

 //between these two instructions is a bad

place to task switch

 tankdata[i].ltanklevel = //result of calculation

 ReleaseSemaphore();

 //figure out which tank to do next

 i=//something new

 }

}

task to task if necessary. With a mutex, the ‘lock’

operation can be thought of as obtaining

“ownership” of the mutex. But the “owner” task is

not permitted to pass the “ownership” directly to

another task.

Probably the most significant difference

between traditional semaphores and mutexes, is

that the problem of unbounded priority inversion

can not easily be solved using traditional

semaphores. This is because of their lack of a

notion of “ownership” in a traditional semaphore.

When tasks share resources, as they often

do/must, strange things can and will happen.

Priority inversions can be particularly difficult to

anticipate. A basic understanding of the problem

is the key. All the various techniques or tools

discussed related to semaphores are used to share

data through a shared address space either in the

common memory or as a part of the thread's

personal address space.

All the above described methods for resolving

shared memory problems and enable interprocess

communication in PRET environment will not be

sufficient. Each method described has some kind

of non-determinism embedded in it. Like the

mutex or the semaphore, otherwise most widely

used methods, are inherently non-deterministic.

So it cannot be used in PRET machines. The

message passing through queues, mailboxes or

pipes requires a lot of RTOS support, and in a

system where the attempt is to keep the work of

RTOS as minimal as possible they are not a good

idea. These methods when used also require some

memory and all that put with the parallel behavior

of DDR-2 RAMs will be a very difficult process.

6. DIRECTORY BASED IPC:

 In the PRET machines we surely know the

occurrence of memory accesses of each thread

and we also know the time when it is going to

occur. This is possible because of the instructions

like deadline and replay present in the PRET

environment.

 Although, the standard IPC methods don't give

us a good solution, we can try and fill the non-

deterministic holes and innovate to find a solution

that can be used in the PRET environment. Using

those concepts and the deterministic behavior of

the PRET machine we can consider the following

as a possible solution to IPC problem in PRET

machines.

 Consider a directory based system which keeps

a record of which memory bank/location is being

used by each thread. The directory will have a

special type of counter, which will keep a count of

the time for which the particular thread will be

using the current memory location/bank. Now

this counter will be a decrement counter and will

be loaded by the time-count for which the thread

will be using a particular memory/bank for. There

will one such counter for every thread. The

directory would be as shown below:

Memory

Address

Thread

Semaphore

Count

Counter

 1

 2

 3

 4

 5

 6

Figure 13: Directory for IPC

 Now every time a thread wants to access the

memory, it searches through the small directory

and the hit or miss condition would be known to

the user beforehand due to the deterministic

nature of PRET. Now if it is a miss, then normal

memory access takes place. But in case of a hit, the

thread cannot access the memory and has to use

the replay instruction for adding NOPs to avoid

pipeline stall. It then loads the count form thread

using the memory onto its own counter. As soon

as its counter becomes zero, it executed its own

access. This now provides a safe and precise IPC.

 In the case when more than one thread have the

need to access the same shared memory space,

each successive thread would increase the

semaphore counter number and add all the

timings of the executing and waiting threads to

decide when it needs to wait till. In the worst case

scenario, all six threads will want access. The

process will be slow, performance will take a hit,

but determinism in IPC will surely be achieved.

To understand this better consider the

following example: Thread1 is accessing ‘xyz’ part

of the memory. It will require a total sum of

90cycles to complete the transaction. Now say

another thread2 wants to access the same location

and will take 180 cycles to complete its

transaction. So it first waits for 90 cycles, when its

counter becomes zero and starts its own access.

Now, consider a thread3 puts in a request to

use the same location when 35 cycles of thread1

were remaining. In this case the counter of

thread3 would be the addition of the count of the

counter of thread1 and thread2. Thus thread3

would have to wait for 35+180 = 215 cycles before

it begins its own instruction.

 All shared data access will be done directly to

the main memory to avoid data inconsistency. The

process of checking the directory and waiting in

the directory causes some overhead. This

overhead is a small price we pay for Time

Predictability which is the focus of PRET

machines.

7. FUTURE WORK
In the future, we would like to design a

Programmable Memory Wheel. This would allow

us to have a very precisely timed program and

also resolve all our memory related issues. The

programmable memory would be based on the

Timed Triggered Protocol.

The programmable memory wheel will allow

each thread to request for banks and/or

bandwidth. This would be possible only statically,

i.e. only during the initialization process. If

threads make conflicting requests then the RTOS

present on one of the threads, will throw an

exception. Also interprocess communication is

possible if during the initialization process along

with allocation for each thread, RTOS can also

allow two or more threads to access one bank

depending on the available bandwidth. This whole

concept is very important for solving the memory

issues with timing predictability.

 Also so far in PRET machine we have only

spoken of a single-core, but designing memory

system for multi-core PRET machine would be

more challenging with more issues like inter-core

communications and long latencies due structural

hazards.

8. CONCLUSION
The paper addresses different memory models

and in specific DDR-2’s compatibility with PRET

machines From the work done thus far various

decisive conclusions have been made. A clear

understanding has reached of the implications

thrown by DDR-2 memory and ways to resolve are

being worked upon.

Also to resolve the problems introduced by

inter-process communication, the existing

memory wheel structures in the PRET machines

also have to be changed to suit the needs of both

the processor and the DDR-2 memory chips.

9. REFERNCES
[1] B. Lickly, I. Liu, S. Kim, H. Patel, S. Edwards

 and E. Lee. Predictable Programming on a

 Precision Timed Architecture. In

 proceedings for Conference on Compliers,

 Architecture and Synthesis of Embedded

 Systems (CASES ’08), Atlanta, Georgia,

 USA, October , 2008.

[2] JESD79-2E, DDR-2 SDRAM Specification,

 JEDEC Standard, JEDEC Technology Solid

 State Association, April 2008.

[3] O.Ozturk, M Kandemir and I. Kolcu.

 Shared Scratch-Pad Memory Space

 Management.

[4] J Leverich, H. Arakido, A. Solomatnikov,

 A Firoozshahian, M. Horowitz and

 C. Kozyrakis. Comparing Memory Systems

 for Chip Multiprocessors.

[5] B. Jacobs. Cache Design for Embedded

 Real-Time Systems.

 [6] D. Kalinsky. Basics of Real Time Operating

 Systems. Nov. 2003.

 [7] D. Kalinsky, Mutexes Battle Priority

 Inversions.

 [8] D. Simon. An Embedded Software Primer.

 2nd Edition, 12th Indian Reprint.

 [9] Christ of Pitter and M. Schoeberl.

 Time Predictable CPU and DMA

 Shared Memory Access.

