
On Determinism

Stephen A. Edwards

Columbia University in the City of New York

Abstract. The notion of deterministic execution of concurrent systems
has appeared in many guises throughout Edward A. Lee’s œuvre, but few
really grasp how powerful, important, subtle, and flexible the concept re-
ally is. Determinism can be thought of as an abstraction boundary that
delineates where control is passed from a system designer to the imple-
mentation. This paper surveys some of the many forms of determinism
available in the models of computation Lee and others have proposed.

1 Introduction

Edward Lee and I have been chasing determinism for much of our careers, but
the term means different things to different people. The dictionary definition of
“determinism” is roughly the doctrine that nobody has free will, but our defini-
tion is more subtle. First, we concern ourselves with engineered systems instead
of human beings1. Second, and more importantly, our notion of determinism ac-
tually permits a limited amount of free will—a system may make choices (both
when it is implemented or when it is running) provided those choices do not
affect the system’s observed outputs. For example, we consider a combinational
digital logic circuit to be deterministic even though the delays of its gates, and
hence its detailed temporal behavior, may vary. The system specification only
constrains the Boolean input/output relationship of the network; the physical
behavior of an implementation of the network may vary provided the I/O rela-
tionship is respected.

In an attempt to more precisely characterize the notion of determinism, con-
sider a quasi-formalism:2 let M = (S, I,O,C,E,B, p) be a model of computation
(MoC) where S is the set of all legal system specifications (i.e., supplied by a
designer), C be the set of all legal choices that can be made in implementing any
system, I and O be the sets of inputs and outputs accounted for by the model
of computation, E and B be the sets of environmental inputs and behaviors not
accounted for by the model of computation, and p : S×C → (I×E → O×B) be
the system implementation function for the model of computation, which takes

1 At least I do; ignoring people is more-or-less why I entered engineering. That hasn’t
worked out too well.

2 A quasi-formalism because the notions of these sets are far too abstract to be a
proper formalism. In particular, the sets E and B are difficult to define because they
are meant to represent “everything else,” but this requires a careful definition of the
universal set, which is not obvious.



a system specification and implementation choices and returns a system that
transforms known and unaccounted-for inputs into known and unaccounted-for
outputs. A model of computation M is deterministic if for all s ∈ S, c ∈ C,
i ∈ I, and e ∈ E, there is some function d : S × I → O such that

p(s, c)(i, e) =
(
d(s, i), b

)
. (1)

In other words, the outputs that the model of computation accounts for only
depend on the system specification and the inputs accounted for by the model
of computation. Implementation choices and the environment may only affect
the behavior of the system outside of these outputs.

By design, the above takes a very abstract view of what inputs and outputs,
environmental or otherwise, may be. For example, inputs and outputs may be
vectors of Boolean values, sequences of Boolean vectors over time, events tagged
with timestamps [37], continuous-valued signals [38], and many more. In fact, a
crucial choice in the design of a model of computation is whether such physical
properties such as time, space, and voltage are considered part of a system’s
inputs and outputs versus being relegated to the environment. For example,
in most classical models of computation in computer science (e.g., Turing ma-
chines), physical time is ignored; termination or the lack thereof was the only
real concern. While such a view brings many theoretical benefits, it hinders the
control of physical systems, which invariably depend strongly on time.

Example 1. Consider the model of computation embodied in an and/inverter
graph (aig), a streamlined, abstract model of combinational Boolean logic net-
works proposed by Kuehlmann et al. [31] and used, for example, in Brayton and
Mishchenko’s ABC tool [10] to verify and synthesize digital logic circuits.

An aig is a directed acyclic graph with three types of vertices: a vertex with
two incoming arcs represents a logical and gate; a primary input (i.e., from the
environment) is modeled as a vertex with zero incoming arcs; and one particular
vertex with no incoming arcs represents the constant “0.” Vertices with a single
or more than 2 incoming arcs are not allowed, but there is no constraint on
the number of outgoing arcs from a vertex. Certain vertices are also considered
outputs. Each arc has a Boolean inversion attribute that indicates whether the
value flowing through it is to be complemented. For a particular assignment of
input values to input vertices, the output from the network is an assignment of
Boolean values to the output vertices that comes from an assignment of Boolean
values to every and vertex that satisfies all of them, i.e., each vertex takes on
the logical and of the values of the vertices along its incoming arcs, inverted
according to the attribute on each arc.

It is easy to see such the output of such a network is deterministic. Since the
graph is directed and acyclic, its vertices can be topologically ordered starting
from the primary inputs, and the value of each vertex can be established in that
order. The invariant is that a vertex’s value is evaluated after its two fan-in
vertices have been evaluated.

In this MoC, S is the set of all aigs; I is an assignment of a Boolean value
to each primary input vertex, and O is the assignment of Boolean values to



each output vertex that is consistent with the inputs and the network. Choices
C that can be made during the implementation of the system include which
logic gates to use, their speed, and how they are connected. Any circuit that
ultimately gives the same input-output relationship is considered correct; its
structure in not limited by the structure of the aig. Environmental inputs might
include fluctuations in supply voltage that could affect the delays of certain
gates and noise coupled into the circuit from outside. The behavior B may
describe the voltages on each of the wires in the circuit as a function of time, or
approximations to this, such as times at which the signals change.

The aig MoC is deterministic in the sense of (1). An underlying assumption
is that the choices C are correct (i.e., produce a working circuit) and that the
environmental inputs E ultimately do not affect the output O.

Example 2. Consider the model of computation represented by the C program-
ming language. In this MoC, S is the set of all legal C programs; C is the set
of all choices a compiler may make during the compilation process, e.g., which
instructions to choose, which registers to use, etc.

Defining I and O, the inputs specified by the the model of computation, is
a little subtle. I includes command-line arguments, environment variables, the
standard input stream, files in the filesystem, etc. O includes the return value,
the standard output stream, files the program writes to the filesystem, etc.

Defining E and B are more subtle still. E can include things such as the type
and speed of the processor in which the C program is being run, the time of day
at which the program is run, and load and scheduling policy of the operating
system under which it is run. B includes things such as the time it takes to
execute the program, the amount of power consumed by the computer while the
program is running, and many others.

While programmers traditionally think of C as being deterministic, and most
C programs behave deterministically once compiled, certain C constructs have
unspecified behavior, meaning the C standard defines multiple possible behav-
iors but does not specify which must be chosen. Constructs may also have unde-
fined behavior, meaning the standard imposes no requirements whatsoever, and
implementation-defined behavior.

For example, C’s argument evaluation order is unspecified. This readily leads
to nondeterministic behavior when argument evaluation has interacting side-
effects, such as in the (nonsensical) function call foo(a=1, a=2). When the
function foo() executes, the variable a will be either 1 or 2, but the C standard
does not prescribe which (i.e., it is an implementation choice).

The C standard (e.g., ISO/IEC 9899:2011) attempts to legislate away the
problems of nondeterminism by restricting the set of legal C programs S to
those that are strictly conforming : i.e., programs that do not produce output
that depends on unspecified, undefined, or implementation-defined behavior.

Understandably, C programmers are taught to eschew unspecified, undefined,
and implementation-defined behavior, but this approach is only partially effec-
tive. Although good C programmers are aware of and avoid such issues, in reality
programmers rely on the C compiler at their disposal to test the legality of a



program and under this definition, the legality of a C program is technically un-
decidable. For example, while I was pleased to discover the version of gcc on my
desktop machine (5.4) will produce a warning for the foo(a=1, a=2) example
given the -Wsequence-point option, gcc failed to warn when the effects were
moved to functions, i.e., foo(one(), two()).

Time is another thorny issue. The C standard provides the standard library
function time() that returns the current calendar time. If programs that can
call time() are part of S, the C MoC is deterministic only if I includes the
current time and fine details about the execution rate of the program.

A central tenet of determinism is that there are choices (c) to be made in
the implementation of a system (s) that may affect its behavior (b), but they do
not affect the output characterized by the model of computation.

I know of only a few mathematical approaches to determinism. Although
there may be others, the deterministic MoCs I know of all use these. Below, I
discuss these approaches and the models that use them.

2 The Banach Fixed-Point Theorem

Of the various fixed-point theorems at the root of deterministic MoCs, the Ba-
nach Fixed-Point Theorem is the easiest to state and understand. We start with
a set (space) X for which there is a metric d : X × X → R that represents a
distance between two points x, y ∈ X, i.e., d(x, x) = 0, d(x, y) > 0 if x 6= y,
d(x, y) = d(y, x), and d(x, y) ≤ d(x, z) + d(z, y) (the triangle inequality).

Theorem 1 (Banach [1]). If X is a space with metric d and f : X → X
is a contraction mapping on X, i.e., there exists a Lipschitz constant K < 1
such that d

(
f(x), f(y)

)
≤ Kd(x, y), then there is a unique fixed-point x∗, i.e.,

f(x∗) = x∗, where x∗ = limn→∞ fn(x) for any x ∈ X.

Two amazing things are happening here: that two points, after being mapped,
come closer together is enough to ensure a unique fixed point, and that this fixed
point can be found by starting anywhere and simply iterating. Intuitively, the
Lipschitz constant K provides a bound on how iterations of f must behave, in
particular telling us that they must grow closer.

In the MoC setting, the space X is typically the output from the system, the
mapping f corresponds to taking some small step in running the system (e.g.,
evaluating a single logic gate), and the fixed point x∗ corresponds to a “stable”
state of the system in which nothing more can or will be done to evaluate it.
Determinism corresponds exactly to the fixed point being unique.

Lee et al. use Theorem 1 to show how discrete-event simulation models could
be made deterministic. In such a model, a signal (i.e., communication history
between processes) is modeled as a set of events—value-time pairs. The central
challenge is choosing a suitable metric for what is otherwise a rather unwieldy
space of possible behaviors X. Lee’s earlier work [33] uses the Cantor metric
d(x, y) = 1/2t, where the time of each event is represented by a real number and



t is the earliest time at which events in the two signals x and y differ. Later,
Lee et al. [15, 16] adopt superdense time, in which each event is tagged by a real
number-natural number pair to more delicately model simultaneous events. This
complicates the metric, but Lee et al. show Theorem 1 can still be applied to
establish determinism.

3 The Kleene/Knaster-Tarski Fixed-Point Theorem

The Banach Fixed-Point theorem relies on a metric that assigns real numbers
to every pair of points in a space, which may be awkward in certain settings.
Fortunately, another fixed-point theorem demands far less structure, making it
easier to apply to MoCs. I state the theorem first then explain its details and
implications.

Theorem 2 (Kleene/Knaster-Tarski). Let (X,v) be a complete partial or-
der with minimum element ⊥ ∈ X and f : X → X a continuous function. f has
a unique least fixed point

⊔{
fn(⊥) | n ∈ {1, 2, . . .}

}
.

Theorem 2, apparently a “folk theorem” variously attributed to Kleene and
Knaster-Tarski [32, 53], instead of a metric, relies on a partial order relation,
written v and sometimes pronounced “approximates,” that is reflexive (x v x),
antisymmetric (if x v y and y v x, then x = y), and transitive (if x v y and
y v z, x v z). The relation is partial because it may be the case that neither
x v y nor y v x, i.e., x and y may be incomparable. The usual subset relation
⊆ is one such partial order. This mathematical machinery has been published
in many places; Winskel [56] is my favorite; see also Scott [47] and Davey and
Priestley [21].

Theorem 2 further requires the partial order to to be complete: any (increas-
ing) chain C = {c1, c2, . . .} (where c1 v c2 v · · ·) must have a least upper bound⊔
C ∈ D satisfying ck v

⊔
C (i.e.,

⊔
C is an upper bound) and

⊔
C v b for

any b such that ck v b (i.e.,
⊔
C is the least such bound). Intuitively, increasing

sequences in the space can not increase forever.
Finally, Theorem 2 requires a continuous function (sometimes termed “Scott

continuous” after Dana Scott [46], who pioneered their use for modeling recursion
in denotational semantics). Continuity is analogous to the usual definition for
real-valued functions: the limit of the function is the function at the limit, i.e.,
for all chains C,

⊔
{f(c) | c ∈ C} = f(

⊔
C). Informally, nothing strange happens

when you actually reach a limit. Moreover, continuity implies monotonicity, i.e.,
x v y implies f(x) v f(y).

The sketch of the proof of Theorem 2 is quick and illuminating. Montonicity
implies ⊥ v f(⊥) v f2(⊥) v · · · is a chain. Because v is complete, this chain C
has a unique least upper bound

⊔
C. Finally, because f is continuous,

⊔
C is a

fixed point because f(
⊔
C) =

⊔
{f(c) | c ∈ C} =

⊔
C.

Put another way, iterating f produces a nondecreasing sequence that ap-
proaches a unique least upper bound, which happens to be the least fixed point.



Theorem 2 only guarantees a unique least fixed point; f may have other, greater
fixed points.

Perhaps most famously, Kahn [30] uses Theorem 2 to show his process net-
works are deterministic. Kahn networks consist of sequential processes that com-
municate through unbounded FIFO channels. Each process may compute, emit
a token to an output channel, or wait for the next token on an input channel.
Kahn models the contents of each channel as Dω: the set of finite and infinite
sequences over the set of tokens D, and the domain X is a vector of channels.
Kahn shows that each process behaves as a continuous function under his re-
strictions, e.g., monotonicity follows from blocking reads: additional input tokens
can never make a process “unemit” tokens or “change its mind” about a token
emitted earlier; continuity follows because a process can’t “wait forever” before
generating an output. Kahn defines the behavior of his networks as the least
fixed point of the function composed from the functions of all the processes,
which is therefore unique. Furthermore, the proof of Theorem 2 tells us that this
fixed-point may be reached (or at least approximated) by simply running the
processes.

In the vocabulary of (1), Kahn networks have S as the Kahn network, I and
O are the sequences of tokens on the channels, C and E include implementation
choices, e.g., with respect to scheduling the execution of the processes, and B
includes the timing of the tokens on the channels.

Kahn’s networks and its underlying mathematics have spawned a host of vari-
ants. Lee’s Synchronous Dataflow (sdf) [35] is a restriction of Kahn networks to
regular, statically known communication patterns, thus piggybacks on Kahn’s
result to guarantee determinism. Many slight variants have been proposed, in-
cluding cyclo-static dataflow [8] and Boolean dataflow [14]. Lee and Parks [36]
discuss many of these models. Lee and Matsikoudis [34] show how dataflow ac-
tors with firing rules behave like Kahn processes (i.e., continuous functions over
streams). My own shim formalism [24, 22] falls somewhere between the rigid,
predictable communication patterns of Lee’s sdf and Kahn’s Turing-complete
process networks by restricting processes communicate via rendezvous to bound
buffer sizes. Lately, I have devised yet another deterministic dataflow formalism
derived from Kahn, this time synthesizing deterministic hardware from bounded-
buffer dataflow networks [25].

Kahn relies on the ability of Theorem 2 to cope with infinite domains, but
finite domains often suffice.

For example, Theorem 2 also provides determinism to cyclic combinational
logic circuits and related block diagram languages. In classical three-valued cir-
cuit simulation, the domain X is a finite vector of finite elements: three-valued
wire values where the unknown value (usually written “X” in the engineering
literature) is the least element ⊥ and ⊥ v 0 and ⊥ v 1 where 0 and 1 are
incomparable.

Three-valued digital logic simulation has been around since at least the 1950s.
Muller [43] was one of the earliest to consider it in light of the works of Kleene
and others. Eichelberger [26] showed how to use it to detect switching hazards



in circuits. Bryant [11] used this logic to simulate switching networks built from
mos transistors that could include such oddities as pass gates and dynamic logic
families. Later, researchers including Brzozowski and Seger [13, 12], Malik [40]
and Shiple and Berry [48] connected three-valued simulation to the analysis of
logic circuits with loops and time models, ultimately showing it is a precise
abstraction of logic gate networks with unknown timing [42].

Berry [5] adopted what is essentially three-valued logic simulation seman-
tics for later versions of his Esterel language [6] to resolve some longstanding
questions about which programs were self-contradictory. He also noted the con-
nection between three-valued simulation, Theorem 2, and constructive logic,
dubbing this treatment the constructive semantics of Esterel [4].

My own thesis work, which Lee oversaw, produced a block-diagram lan-
guage [23] whose deterministic semantics amounted to three-valued simulation
abstracted further to allow general monotonic functions to operate on arbitrary
data, not just Boolean. August and his group at Princeton used this approach
in their Liberty processor simulation environment [44]. More recently, Lee and
Zheng [39] sewed this model together with discrete-event simulation.

Theorem 2 is often applied in a setting where the behavior and/or imple-
mentation of a system may be one of a family of functions f that arise from
evaluating parts of a system at different rates. For example, implementing an
sdf graph usually involves scheduling the rates and execution order of the pro-
cesses, which generally affects the function f [7]. Fortunately, it turns out that
such restructuring does not affect the fixed point. Bekić [3] shows, for example,
that a system may be split apart and the parts run asynchronously but their
results ultimately merged without affecting the fixed point. See also Winskel [56,
Ch. 10].

Such an asynchronous approach to computing a function is usually termed
“chaotic iteration,” and is a common way to compute large functions on parallel
hardware. Cousot and Cousot [20] and Wei [55] observe the connection between
this approach and Theorem 2. Bourdoncle [9] shows how wisely partitioning
the graph of a system can reduce the amount of effort involved in evaluating it
without affecting the result.

4 Church-Rosser, Confluence, and the Lambda Calculus

Church’s lambda calculus [17, 18, 2] is a remarkable piece of mathematics in that
it is deceptively simple yet somehow all-encompassing. The basis of functional
programming including McCarthy’s lisp [41], Sussman and Steele’s Scheme [50],
Milner’s ml [27], and Haskell [28], it reduces computation to little more than
substituting arguments for variables in functions, which, amazingly, is enough to
make it as powerful as Turing machines [54]. Expositions of the lambda calculus
abound. Berendregt [2] is the all-inclusive reference, but I much prefer Peyton
Jones [29, Ch. 2] as a place to start. Stoy [49] also provides a readable treatment.

Unlike Theorems 1 and 2, the lambda calculus only guarantees that a fixed
point is unique if it exists. This is a side-effect of the “batch mode” bias in the



lambda calculus: it was intended to model computation that produces a result
only when it terminates.

Another big difference of the lambda calculus compared to Theorems 1 and 2
is its explicit use of choice in the evaluation “function.” The lambda calculus
proceeds not by applying a particular function f , but by applying a rewriting
procedure that may make choices that produce different (intermediate) results.

A lambda expression is either x (a variable), (λx.M) (a lambda abstraction—
a model of a function), or (M N) (application of the expression M to argument
N), where M , N , . . . are lambda expression and x, y, . . . are variables.

For example, (λx.x) represents the identity function; (λx.(λy.x)) is a function
that takes an argument x and returns a function that takes an argument y,
ignores it, and returns x, which can be used to represent the Boolean “true.” To
improve the readability of lambda expressions, parentheses are dropped where
ambiguity can be resolved by taking the body of a lambda abstraction to extend
as far to the right as possible and taking juxtaposition as associating left-to-right,
e.g., (λx . x y z)w means ((λx . ((x y) z)))w).

A reducible expression or redex is a lambda expression of the form ((λx .
M)N), i.e., where a lambda abstraction is being applied and thus computation
is to be performed. For example, (λz .z) y is a redex in which the identity function
is being applied to y, but (λx . x), x y, and x (λx . x) are not redexes.

The one interesting computational step in the lambda calculus is β-reduction,
in which a redex is replaced with a version of the body of the lambda abstraction
in which every instance of the variable is replaced with the argument:

((λx .M)N)→β M [x := N ] (β)

where M [x := N ] means a copy of M in which all free3 instances of x have been
replaced with the argument N . So for example, (λx .λy .x) (λz .z)→β λy .λz .z.

In general, β-reduction can be applied anywhere in a lambda expression, not
just at the top level as prescribed by the (β) rule. To do this, the →β rule is
extended with three others that allow β-reduction to be performed inside the
body of a lambda abstraction, or on either the left or right side of an application:

M →β M
′

(body)
(λx .M)→β (λx .M ′)

M →β M
′

(left)
(M N)→β (M ′N)

N →β N
′

(right)
(M N)→β (M N ′)

In general, the (β), (left), and (right) rules may each apply to a lambda
expression, which introduces choice. For example, applying (β) to (λx . λy .
y) ((λw . ww) (λz . z z)) produces λy . y since x does not appear in the body of
the λx expression. However, the (right) rule also applies to this expression, which

3 I am sidestepping all the fussy bookkeeping necessary to deal with reused variable
names because it is ultimately bland, mathematically speaking. See, e.g., Peyton
Jones [29, Ch. 2].



allows the argument to the λx expression to be reduced before it is substituted,
giving

(λw . ww) (λz . z z)→β (λz . z z) (λz . z z)

(λx . λy . y) ((λw . ww) (λz . z z))→β (λx . λy . y) ((λz . z z) (λz . z z)) .

A model of computation in which a choice may be taken is at the heart
of nondeterminism. Superficially, it would seem that allowing a model to take
different steps that produces different results (as the above example illustrated)
would produce a nondeterministic model, but this turns out not to be the case
for the lambda calculus, as Church and Rosser originally showed.

As defined above, determinism constrains the relationship between the inputs
and outputs of a model of computation, but not choices and behavior of how
the system implements the I/O relationship. In the lambda calculus, a redex
represents work yet to be done, i.e., a function that can still be evaluated; any
expression that contains a redex is not (yet) at the point where it will generate
an output.

A lambda expression is in normal form if it contains no redex, i.e., if β-
reduction cannot be applied. “Execution” of a lambda expression amounts to
applying β-reduction (i.e., →β) until the expression reaches normal form, which
is considered the “output” of a lambda expression.

It turns out the lambda calculus is deterministic due to a remarkable result by
Church-Rosser: if a lambda expression can be β-reduced into normal form, there
is only one such normal form. In other words, making choices about which redex
to reduce cannot affect the ultimate result. There are lambda expressions that
do not have a normal form, perhaps the simplest of which is (λx . x x) (λy . y y)
(β-reduction can be applied indefinitely yet the expression does not effectively
change). These are analogous to non-terminating programs on, say, Turing ma-
chines.

The proof of determinism works in two steps. First, β-reduction is confluent :

Theorem 3 (Church-Rosser [19]). Let →β∗ represent one or more applica-
tions of the →β relation. If M →β∗ N1 and M →β∗ N2, then there exists an M ′

such that N1 →β∗ M ′ and N2 →β∗ M ′.

The second, easier step observes confluence implies an expression’s normal
form, if any, is unique:

Corollary 1. No lambda expression can be β-reduced to two different normal
forms.

Proof. Suppose M →β∗ N1, M →β∗ N2, and both N1 and N2 are in normal
form. By Theorem 3, this means there exists M ′ such that N1 →β∗ M ′ and
N2 →β∗ M ′. However, since both N1 and N2 are in normal form, they contain
no redexes, so it must be that N1 = N2.

The proof of Theorem 3 is not obvious because β-reduction can substantially
restructure an expression. Reducing a redex may make others disappear, e.g.,



since (λx . y) M →β y, any redex in M goes away. Reducing a redex may also
make copies of a redex, e.g., since (λx . x x x) M →β M M M , any redex in M
is copied three times. “Reducing” the lambda expression (λx . x x x) (λy . y y y)
actually makes it increase without bound. In general, this makes β-reduction
non-monotonic, precluding a proof like that for Theorem 2.

The usual proof of Theorem 3 demonstrates confluence by showing it is pos-
sible, after any single β-reduction of a redex, to reach the configuration obtained
by reducing all redexes “in parallel.” Induction on this step completes the proof,
which Tait and Martin-Löf developed in the early 1970s but did not publish.
Barendregt [2] recites this proof and others, but I prefer Pollack’s [45] treatment
of Takahashi’s presentation [51, 52].

The rules for maximal parallel β-reduction are deterministic:

x⇒ x (p-var)
M ⇒M ′ N ⇒ N ′

(p-β)
(λx .M) N ⇒M ′[x := N ′]

M ⇒M ′
(p-λ)

λx .M ⇒ λx .M ′
M ⇒M ′ N ⇒ N ′ M is not a lambda

(p-app)
M N ⇒M ′ N ′

The (p-var) rule is the base case, which leaves unbound variables unchanged.
The (p-λ) rule handles a lambda term by rewriting its body. Finally, (p-β) and
(p-app) handle applications. The (p-β) rule performs the usual β-reduction on
redexes, but only after reducing all redexes in the body M and the argument
N . The (p-app) rule applies to every other application term (e.g., when M is an
application or a variable) and reduces all redexes in both of its sub-expressions.

However, reducing all redexes according to these deterministic, maximally
parallel rules does not necessarily produce a normal form; reductions may expose
new ones that were not initially “visible” to the parallel β-reduction rules. For
example, reducing ((λw . λx . w) y) z to normal form takes two steps. The first:

w ⇒ w
(p-λ)

λx . w ⇒ λx . w y ⇒ y
(p-β)

(λw . (λx . w)) y ⇒ λx . y z ⇒ z
(p-app)

((λw . (λx . w)) y) z ⇒ (λx . y) z

Determinism in the lambda calculus, therefore, has parallels with acyclic dig-
ital electronic logic circuits: the implementation may choose to do more work
than necessary, but the outcome of needless work does not affect the ultimate
result. In a lambda expression, “more work” would be performing β-reductions
on terms that are eventually ignored. Similarly, a circuit may “glitch” and tran-
sition more than necessary because of multiple paths with different delays to a
particular logic gate. However, because an acyclic circuit is finite and contains
finitely many paths, glitching always converges, whereas it impossible in general
to guarantee β-reduction will converge because the model is Turing-complete.

For practical reasons, most functional languages (e.g., lisp, Scheme, and ml)
have adopted the applicative execution policy familiar to most programmers, i.e.,
function arguments are evaluated before the function is invoked. In the lambda



calculus, this corresponds to reducing the argument to a lambda term to normal
form before performing β-reduction. However, other languages, notably Haskell,
adopts a more lazy strategy in which evaluation is deferred. The result is that
certain programs coded in Haskell (e.g., those that manipulate infinite lists)
will terminate while the same programs in other functional languages do not.
However, if a Haskell program is coded in an applicative function language and
still terminates, Church-Rosser ensures the result is the same.

5 Conclusion

I presented a very abstract model of models of computation that gives us a start-
ing point for speaking about the determinism of MoCs, provided some examples
and their relationship to the model, and discussed three well-known theorems
that provide determinism to many models of computation.

The goal of determinism is to provide implementation flexibility (e.g., to
optimize metrics such as speed or cost) without these choices affecting how a
designer understands the behavior of the system. Technically speaking, I define
a deterministic model of computation as one in which the relationship between
the defined inputs and outputs of the system is a function that is unaffected by
choices made during its implementation or operation.

The Banach Fixed-point Theorem (Theorem 1) shows a contracting function
in a metric space converges to a fixed point. Lee et al. used this for arguing the
determinism of certain discrete-event models.

The Kleene-Knaster-Tarski Theorem (Theorem 2) relies on a partial order
with well-defined limits and a continuous function, which also happens to be
monotonic. In this setting, iterations starting from the least defined element ⊥
in the space converge to a unique least fixed point. Kahn [30] used this to show
his process networks were deterministic and many variants since then, including
Lee’s sdf [35], have also relied on this result to ensure a parallel, asynchronous
implementation of a system remains deterministic.

The lambda calculus has the Church-Rosser Theorem (Theorem 3), which
states the ultimate result of computation (the normal form of a lambda ex-
pression) is unique if it exists. Reducing an expression to normal form involves
making choices (either statically, as part of the implementation choices, or dy-
namically), but Church-Rosser says these choices only affect performance, not
the ultimate result. This theorem provides determinism guarantees to many
functional languages and can also be used in a parallel setting.

It is my hope that this survey has clarified your understanding of the meaning
and utility of determinism in MoCs, perhaps providing inspiration of how to
ensure determinism in the next MoC you devise.
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