
0740-7475/06/$20.00 © 2006 IEEE Copublished by the IEEE CS and the IEEE CASS September–October 2006 375

THE MAIN REASON people have proposed C-like lan-

guages for hardware synthesis is familiarity. Proponents

claim that by synthesizing hardware from C, we can effec-

tively turn every C programmer into a hardware design-

er. Another common motivation is hardware-software

codesign: Designers often implement today’s systems as a

mix of hardware and software, and it’s often unclear at

the outset which portions can be hardware and which

can be software. The claim is that using a single language

for both simplifies the migration task.

I argue that these claims are questionable and that

pure C is a poor choice for specifying hardware. On the

contrary, the semantics of C and similar imperative lan-

guages are distant enough from hardware that C-like

thinking might be detrimental to hardware design.

Instead, successful hardware synthesis from C seems to

involve languages that vaguely resemble C, mostly its

syntax. Examples of these languages include Celoxica’s

Handel-C1 and NEC’s Behavior Description Language

(BDL).2 You can think of executing C code on a tradi-

tional sequential processor as synthesizing hardware

from C, but the techniques presented here strive for

more highly customized implementations that exploit

greater parallelism, hardware’s main advantage.

Unfortunately, the C language has no support for user-

specified parallelism, and so either the synthesis tool

must find it (a difficult task) or the

designer must use language extensions

and insert explicit parallelism. Neither

solution is satisfactory, and the latter

requires that C programmers think dif-

ferently to design hardware.

My main point is that giving C pro-

grammers tools is not enough to turn

them into reasonable hardware design-

ers. Efficient hardware is usually very difficult to describe

in an unmodified C-like language, because the language

inhibits specification or automatic inference of adequate

concurrency, timing, types, and communication. The

most successful C-like languages, in fact, bear little

semantic resemblance to C, effectively forcing users to

learn a new language (but perhaps not a new syntax).

As a result, techniques for synthesizing hardware from

C either generate inefficient hardware or propose a lan-

guage that merely adopts part of C syntax.

Here, I focus only on the use of C-like languages for

hardware synthesis and deliberately omit discussion of

other important uses of a design language, such as vali-

dation and algorithm exploration. C-like languages are far

more compelling for these tasks, and one in particular,

SystemC, is now widely used, as are many ad hoc variants.

A short history of C
Dennis Ritchie developed C in the early 1970s,3

based on experience with Ken Thompson’s B language,

which had evolved from Martin Richards’ Basic

Combined Programming Language (BCPL). Ritchie

described all three as “close to the machine” in the

sense that their abstractions are similar to data types and

operations supplied by conventional processors.

A core principle of BCPL is its memory model: an

The Challenges of
Synthesizing Hardware from
C-Like Languages

Editor’s note:
This article presents one side of an ongoing debate on the appropriateness
of C-like languages as hardware description languages. The article examines
various features of C and their mapping to hardware, and makes a cogent
argument that vanilla C is not the right language for hardware description if
synthesis is the goal.

—Sandeep K. Shukla, Virginia Polytechnic and State University

Stephen A. Edwards

Columbia University



undifferentiated array of words. BCPL represents inte-

gers, pointers, and characters all in a single word; the

language is effectively typeless. This made perfect sense

on the word-addressed machines BCPL was targeting,

but it wasn’t acceptable for the byte-addressed PDP-11

on which C was first developed.

Ritchie modified BCPL’s word array model to add the

familiar character, integer, and floating-point types now

supported by virtually every general-purpose processor.

Ritchie considered C’s treatment of arrays to be charac-

teristic of the language. Unlike other languages that have

explicit array types, arrays in C are almost a side effect

of its pointer semantics. Although this model leads to

simple, efficient implementations, Ritchie observed that

the prevalence of pointers in C means that compilers

must use careful dataflow techniques to avoid aliasing

problems while applying optimizations.

Ritchie listed a number of infelicities in the language

caused by historical accident. For example, the use of

break to separate cases in switch statements arose

because Ritchie copied an early version of BCPL; later

versions used endcase. The precedence of bitwise-AND

is lower than the equality operator because the logical-

AND operator was added later.

Many aspects of C are greatly simplified from their

BCPL counterparts because of limited memory on the

PDP-11 (24 Kbytes, of which 12 Kbytes were devoted to

the nascent Unix kernel). For example, BCPL allowed

the embedding of arbitrary control flow statements with-

in expressions. This facility doesn’t exist in C, because

limited memory demanded a one-pass compiler.

Thus, C has at least four defining characteristics: a set

of types that correspond to what the processor directly

manipulates, pointers instead of a first-class array type,

several language constructs that are historical accidents,

and many others that are due to memory restrictions.

These characteristics are well-suited to systems soft-

ware programming, C’s original application. C compil-

ers have always produced efficient code because the C

semantics closely match the instruction set of most gen-

eral-purpose processors. This also makes it easy to

understand the compilation process. Programmers rou-

tinely use this knowledge to restructure source code for

efficiency. Moreover, C’s type system, while generally

very helpful, is easily subverted when needed for low-

level access to hardware.

These characteristics are troublesome for synthesiz-

ing hardware from C. Variable-width integers are natur-

al in hardware, yet C supports only four sizes, all larger

than a byte. C’s memory model is a large, undifferenti-

ated array of bytes, yet hardware is most effective with

many small, varied memories. Finally, modern compil-

ers can assume that available memory is easily 10,000

times larger than that available to Ritchie.

C-like hardware synthesis languages
Table 1 lists some of the C-like hardware languages

proposed since the late 1980s (see also De Micheli4).

One of the earliest was Cones, from Stroud et al.5 From

a strict subset of C, it synthesized single functions into

combinational blocks. Figure 1 shows such a function.

Cones could handle conditionals; loops, which it

unrolled; and arrays treated as bit vectors.

Ku and De Micheli developed HardwareC6 for input

to their Olympus synthesis system.7 It is a behavioral

hardware language with a C-like syntax and has exten-

sive support for hardware-like structure and hierarchy.

Electronic System-Level Design

376 IEEE Design & Test of Computers

Performance or bust
Throughout this article, I assume that optimizing perfor-

mance—for example, speed under area and power con-
straints—is the main goal of hardware synthesis (beyond, of
course, functional correctness). This assumption implicitly
shapes all my criticisms of using C for hardware synthesis and
should definitely be considered carefully.

On the one hand, performance optimization has obvious
economic advantages: An efficient circuit solves problems
faster, is cheaper to manufacture, requires less power, and so
forth. Historically, this has been the key focus of logic synthe-
sis, high-level synthesis, and other automated techniques for
generating circuits.

On the other hand, optimization can have disadvantages
such as design time and nonrecurring engineering costs. The
distinction between full-custom ICs and ASICs illustrates this.
A company like Intel, for example, is willing to invest an enor-
mous number of hours in designing and hand-optimizing its
next microprocessor’s layout because of the volume and mar-
gins the company commands. A company like Cisco, howev-
er, might implement its latest high-end router on an FPGA
because it doesn’t make economic sense to design a com-
pletely new chip. Both approaches are reasonable.

A key question, then, is: What class of problems does hard-
ware synthesis from C really target? This article assumes an
audience of traditional hardware designers who want to design
hardware more quickly, but other articles target designers who
would otherwise implement their designs in software but need
faster results. The soundness of my conclusions may well
depend on which side of this fence you’re on.



Figure 2 shows the greatest common divisor (GCD) algo-

rithm in HardwareC.

Galloway’s Transmogrifier C is a fairly small C subset

that supports integer arithmetic, conditionals, and loops.8

Unlike Cones, it generates sequential designs by inferring

a state at function calls and at the beginning of while

loops. Figure 3 shows a decoder in Transmogrifier C.

377September–October 2006

Table 1. C-like languages for hardware synthesis.

Language Comment

Cones Early, combinational only

HardwareC Behavioral synthesis centered

Transmogrifier C Limited scope

SystemC Verilog in C++

Ocapi Algorithmic structural descriptions

C2Verilog Comprehensive

BDL Many extensions and restrictions (NEC)

Handel-C C with CSP (Celoxica)

SpecC Resolutely refinement based

Bach C Untimed semantics (Sharp)

CASH Synthesizes asynchronous circuits

Catapult C ANSI C++ subset (Mentor Graphics)

INPUTS: IN[5];
OUTPUT: OUT[3];
rd53()
{

int count, i;
count = 0;
for (i=0 ; i<5 ; i++)
if (IN[i] == 1)
count = count + 1;

for (i=0 ; i<3 ; i++) {
OUT[i] = count & 0x01;
count = count >> 1;

}
}

Figure 1. A function that returns a count of the

number of 1’s in a five-bit vector in Cones. The

function is translated into a combinational

circuit.

#define SIZE 8
process gcd (xi, yi, rst, ou)

in port xi[SIZE], yi[SIZE];
in port rst;
out port ou[SIZE];

{
boolean x[SIZE], y[SIZE];

write ou = 0;
if ( rst ) <
x = read(xi);
y = read(yi);

>

if ((x != 0) & (y != 0))
repeat {
while (x >= y)
x = x – y;

<
x = y; /* swap x and y */
y = x;

>
} until (y == 0);

else
x = 0;

write ou = x;
}

Figure 2. Greatest common divisor algorithm in

HardwareC. Statements within a < > block run in

parallel; statements within a { } block execute in

parallel when data dependencies allow.

#pragma intbits 8
seven_seg(x)
#pragma intbits 4
int x;
{
#pragma intbits 8

int result;
x = x & 0xf; result = 0;
if (x == 0x0) result = 0xfc; 
if (x == 0x1) result = 0x60;
if (x == 0x2) result = 0xda; 
if (x == 0x3) result = 0xf2;
if (x == 0x4) result = 0x66; 
if (x == 0x5) result = 0xb6;
if (x == 0x6) result = 0xbe; 
if (x == 0x7) result = 0xe0;
if (x == 0x8) result = 0xfe; 
if (x == 0x9) result = 0xf6;
return(~result);

}

twodigit(y)
int y;
{

int tens;
int leftdigit, rightdigit;
outputport(leftdigit, 
37, 44, 40, 29, 35, 36, 38, 39);

outputport(rightdigit, 
41, 51, 50, 45, 46, 47, 48, 49);

tens = 0;
while (y >= 10) {
tens++;
y –= 10;

}
leftdigit = seven_seg(tens);
rightdigit = seven_seg(y);

}

Figure 3. Two-digit decimal-to-seven-segment

decoder in Transmogrifier C. Output-port

declarations assign pin numbers.



SystemC is a C++ dialect that supports hardware and

system modeling.9 Its popularity stems mainly from its

simulation facilities (it provides concurrency with light-

weight threads), but a subset of the language can be syn-

thesized. SystemC uses the C++ class mechanism to

model hierarchical structure and describes hardware

through combinational and sequential processes, much

as Verilog and VHDL do. Cynlib, from Forte Design

Systems, is similar. Figure 4 shows a decoder in SystemC.

The Ocapi system from IMEC (the Interuniversity

Microelectronics Center in Belgium) is also C++ based

but takes a different approach.10 Instead of being

parsed, analyzed, and synthesized, the C++ program is

run to generate in-memory data structures that repre-

sent the hardware system’s structure. Supplied classes

provide mechanisms for specifying data paths, finite-

state machines (FSMs), and similar constructs. These

data structures are then translated into languages such

as Verilog and passed to conventional synthesis tools.

Figure 5 shows an FSM in Ocapi.

The C2Verilog compiler developed at CompiLogic

(later called C Level Design and, since November 2001,

part of Synopsys) is one of the few compilers that can

claim broad support of ANSI C. It can translate pointers,

recursion, dynamic memory allocation, and other

thorny C constructs. Panchul, Soderman, and Coleman

hold a broad patent covering C-to-Verilog-like transla-

tion, which describes their compiler in detail.11

NEC’s Cyber system accepts BDL.2 Like HardwareC,

Cyber is targeted at behavioral synthesis. BDL has been

in industrial use for many years and deviates greatly

from ANSI C by including processes with I/O ports, hard-

ware-specific types and operations, explicit clock

cycles, and many synthesis-related pragmas.

Celoxica’s Handel-C is a C variant that extends the

language with constructs for parallel statements and

Occam-like rendezvous communication.1 Handel-C’s

timing model is uniquely simple: Each assignment state-

ment takes one cycle. Figure 6 shows a four-place buffer

in Handel-C.

Gajski et al.’s SpecC language12 is a superset of ANSI C,

augmented with many system- and hardware-modeling

constructs, including constructs for FSMs, concurrency,

pipelining, and structure. The latest language reference

manual lists 33 new keywords.13 SpecC imposes a refine-

ment methodology. Thus, the entire language is not direct-

ly synthesizable, but a series of manual and automated

rewrites can refine a SpecC description into one that can

be synthesized. Figure 7 shows a state machine described

in a synthesizable RTL dialect of SpecC.

Electronic System-Level Design

378 IEEE Design & Test of Computers

#include “systemc.h”
#include <stdio.h>

struct decoder : sc_module {
sc_in<sc_uint<4> > number;
sc_out<sc_bv<7> > segments;

void compute() {
static sc_bv<7> codes[10] = {
0x7e, 0x30, 0x6d, 0x79, 0x33,
0x5b, 0x5f, 0x70, 0x7f, 0x7b };

if (number.read() < 10)
segments = codes[number.read()];

}

SC_CTOR(decoder) {
SC_METHOD(compute);
sensitive << number;

}
};

struct counter : sc_module {
sc_out<sc_uint<4> > tens;
sc_out<sc_uint<4> > ones;
sc_in_clk clk;

void tick() {
int one = 0, ten = 0;
for (;;) {
if (++one == 10) {
one = 0;
if (++ten == 10) ten = 0;

}
ones = one;
tens = ten;
wait();

}
}

SC_CTOR(counter) {
SC_CTHREAD(tick, clk.pos());

}
};

Figure 4. A two-digit, decimal-to-seven-segment

decoder in SystemC. The decoder produces

combinational logic; the counter produces

sequential logic.

S0

S1

/sfg 1!eof/sfg 3

eof/sfg 2

fsm f;
initials0;
states1;

s0 << always << sfg1 << s1;

s1 << cnd(eof) << sfg2 << s1;

s1 << !cnd(eof)<< sfg3 << s0;

Figure 5. FSM described in Ocapi. This is a declarative style

executed to build data structures for synthesis rather than

compiled in the traditional sense.



Like Handel-C, Sharp’s Bach C is an ANSI C variant

with explicit concurrency and rendezvous communi-

cation.14 However, Bach C only imposes sequencing

rather than assigning a particular number of cycles to

each operation. Also, although it supports arrays, Bach

C does not support pointers.

Budiu and Goldstein’s CASH compiler is unique

among the C synthesizers because it generates asyn-

chronous hardware.15 It accepts ANSI C, identifies

instruction-level parallelism (ILP), and generates an

asynchronous dataflow circuit.

Mentor Graphics’ recent (2004) Catapult C performs

behavioral synthesis from an ANSI C++ subset. Because

it is a commercial product, details of its features and lim-

itations are not publicly available. However, it appears

to be a strict subset of ANSI C++ (that is, with few, if any,

language extensions).

Concurrency
The biggest difference between hardware and soft-

ware is its execution model. Software follows a sequen-

tial, memory-based execution model derived from

Turing machines, whereas hardware is fundamentally

concurrent. Thus, sequential algorithms that are effi-

cient in software are rarely the best choice in hardware.

This has serious implications for software programmers

designing hardware—their familiar toolkit of algorithms

is suddenly far less useful.

Why is so little software developed for parallel hard-

ware? The plummeting cost of parallel hardware

would make such software appear attractive, yet

concurrent programming has had limited success

compared with its sequential counterpart. One funda-

mental reason is that humans have difficulty conceiv-

ing of parallel algorithms, and thus many more

sequential algorithms exist. Another problem is dis-

agreement about the preferred parallel-programming

379September–October 2006

behavior even(
in event clk, 
in unsigned bit[1] rst,
in bit[31:0] Inport, 
out bit[31:0] Outport,
in bit[1] Start, 
out bit[1] Done,
out bit[31:0] idata, 
in bit[31:0] iocount,
out bit[1] istart, 
in bit[1] idone,
in bit[1] ack_istart, 
out bit[1] ack_idone)

{
void main(void) {
bit[31:0] ocount;
bit[31:0] mask;
enum state { S0, S1, S2, S3 } state;

state = S0;

while (1) {
wait(clk);
if (rst == 1b) state = S0;
switch (state) {
case S0:
Done = 0b;
istart = 0b;
ack_idone = 0b;
if (Start == 1b) state = S1;
else state = S0;
break;

case S1:
mask = 0x0001;
idata = Inport;
istart = 1b;
if (ack_istart == 1b) 

state = S2;
else state = S1;
break;

case S2:
istart = 0b;
ocount = iocount;
if (idone == 1b) state = S3;
else state = S2;
break;

case S3:
Outport = ocount & mask;
ack_idone = 1b;
Done = 1b;
if (idone == 0) state = S0;
else state = S3;
break;

}
}

}
};

Figure 7. State machine in a synthesizable RTL

dialect of SpecC. The wait(clk) statement

denotes a clock cycle boundary.

Figure 6. Four-place buffer in Handel-C. The ? and ! operators

are CSP-inspired receive and transmit operators.

const dw = 8;

void main(chan (in) c4 : dw, chan (out) c0 : dw)
{

int d0, d1, d2, d3;
chan c1, c2, c3;

void e0() { while (1) { c1 ? d0; c0 ! d0; } }
void e1() { while (1) { c2 ? d1; c1 ! d1; } }
void e2() { while (1) { c3 ? d2; c2 ! d2; } }
void e3() { while (1) { c4 ? d3; c3 ! d3; } }

par {
e0(); e1(); e2(); e3();

}
}



model (for example, shared memory versus message

passing), as demonstrated by the panoply of parallel-

programming languages, none of which has emerged

as a clear winner.

Rather than exposing concurrency to the program-

mer and encouraging the use of parallel algorithms, the

more successful approach has been to automatically

expose parallelism in sequential code. Because C does

not naturally support user-specified concurrency, such

a technique is virtually mandatory for synthesizing effi-

cient hardware from plain C. Unfortunately, these tech-

niques are limited.

Finding parallelism in sequential code
There are three main approaches to exposing paral-

lelism in sequential code, distinguished by their granu-

larity. Instruction-level parallelism (ILP) dispatches

groups of nearby instructions simultaneously. Although

this has become the preferred approach in the com-

puter architecture community, programmers recognize

that there are fundamental limits to the amount of ILP

that can be exposed in typical programs.16 Adding hard-

ware to approach these limits, usually through specu-

lation, results in diminishing returns.

The second approach, pipelining, requires less hard-

ware than ILP but can be less effective. A pipeline dis-

patches instructions in sequence but overlaps

them—the second instruction starts before the first com-

pletes. Like ILP, interinstruction dependencies and con-

trol-flow transfers tend to limit the maximum amount of

achievable parallelism. Pipelines work well for regular

loops, such as those in scientific or signal-processing

applications, but are less effective in general.

The third approach, process-level parallelism, dis-

patches multiple threads of control simultaneously. This

approach can be more effective than finer-grained par-

allelism, depending on the algorithm, but process-level

parallelism is difficult to identify automatically. Hall et

al. attempt to invoke multiple iterations of outer loops

simultaneously,17 but unless the code is written to avoid

dependencies, this technique might not be effective.

Exposing process-level parallelism is thus usually the pro-

grammer’s responsibility. Such parallelism is usually con-

trolled through the operating system (for example, Posix

threads) or the language itself (for example, Java).

Approaches to concurrency
The C-to-hardware compilers considered here take

either of two approaches to concurrency. The first

approach adds parallel constructs to the language,

thereby forcing the programmer to expose most of the

concurrency. SystemC, BDL, and Ocapi all provide

process-level parallel constructs. HardwareC, Handel-

C, SpecC, and Bach C additionally provide statement-

level parallel constructs. SystemC’s parallelism

resembles that of standard hardware description lan-

guages (HDLs) such as Verilog, in which a system is a

collection of clock-edge-triggered processes. Hard-

wareC, Handel-C, SpecC, and Bach C’s approaches are

more like software, providing constructs that dispatch

collections of instructions in parallel.

The other approach lets the compiler identify paral-

lelism. Although the languages that provide parallel

constructs also identify some parallelism, Cones,

Transmogrifier C, C2Verilog, Catapult C, and CASH rely

on the compiler to expose all possible parallelism. The

Cones compiler takes the most extreme approach, flat-

tening an entire C function with loops and conditionals

into a single two-level combinational function evaluat-

ed in parallel. The CASH compiler takes an approach

closer to compilers for VLIW processors, carefully exam-

ining interinstruction dependencies and scheduling

instructions to maximize parallelism. None of these

compilers attempts to identify process-level parallelism.

Both approaches have drawbacks. The latter

approach places the burden on the compiler and there-

fore limits the parallelism achievable with normal,

sequential algorithms. Although carefully selecting eas-

ily parallelized algorithms could mitigate this problem,

such thinking is foreign to most software programmers

and may be more difficult than thinking in an explicitly

concurrent language.

The former approach, by adding parallel constructs

to C, introduces a fundamental and far-reaching change

to the language, again demanding substantially differ-

ent thinking by the programmer. Even for a programmer

experienced in concurrent programming with, say,

Posix threads, the parallel constructs in hardware-like

languages differ greatly from the thread-and-shared-

memory concurrency model typical of software.

A good hardware specification language must be

able to express parallel algorithms, because they are the

most efficient for hardware. Its inherent sequentiality

and often undisciplined use of pointers make C a poor

choice for this purpose.

Which concurrency model the next hardware design

language should employ remains an open question, but

the usual software model—asynchronously running

threads communicating through shared memory—is

clearly not the one.

Electronic System-Level Design

380 IEEE Design & Test of Computers



Timing
The C language is mute on the subject of time. It

guarantees causality among most sequences of state-

ments but says nothing about the amount of time it

takes to execute each sequence. This flexibility simpli-

fies life for compilers and programmers alike but makes

it difficult to achieve specific timing constraints. C’s

compilation technique is transparent enough to make

gross performance improvements easy to understand

and achieve, and differences in efficiency of sequential

algorithms is a well-studied problem. Nevertheless,

wringing another 5% speedup from an arbitrary piece

of code can be difficult.

Achieving a performance target is fundamental to

hardware design. Miss a timing constraint by a few per-

centage points and the circuit will fail to operate or the

product will fail to sell. Achieving a performance target

under power and cost constraints is usually the only rea-

son to implement a particular function in hardware

rather than using an off-the-shelf processor. Thus, an ade-

quate hardware specification technique needs mecha-

nisms for specifying and achieving timing constraints.

This disparity leads to yet another fundamental ques-

tion in using C-like languages for hardware design: where

to put the clock cycles. Figure 8 shows a program frag-

ment that is interpreted in at least three different ways by

different compilers. Most of the compilers described here

generate synchronous logic in which the clock cycle

boundaries have been defined. There are only two

exceptions: Cones and CASH. Cones only generates com-

binational logic; CASH generates self-timed logic.

Compilers use various techniques for inserting clock

cycle boundaries, which range from fully explicit to

fully implicit. Ocapi’s clocks are the most explicit. The

designer specifies explicit state machines, and each

state gets a cycle. At some point in the SpecC refine-

ment flow, the state machines are also explicit, although

clock boundaries might not be explicit earlier in the

flow. The clocks in the Cones system are also explicit,

but in an odd way—because Cones generates only

combinational logic, clocks are implicit at function

boundaries. SystemC’s clock boundaries are also explic-

it; as in Cones, the clock boundaries of combinational

processes are at the edges, and in sequential processes,

explicit wait statements delay a prescribed number of

cycles. BDL takes a similar approach.

HardwareC lets the user specify clock constraints, an

approach common in high-level synthesis tools. For

example, the user can require that three particular state-

ments should execute in two cycles. This presents a

greater challenge to the compiler and is sometimes more

subtle for the designer, but it allows flexibility that can

lead to a better design. Bach C takes a similar approach.

Like HardwareC, the C2Verilog compiler also inserts

cycles using fairly complex rules and provides mecha-

nisms for imposing timing constraints. Unlike HardwareC,

however, these constraints are outside the language.

Transmogrifier C and Handel-C use fixed implicit

rules for inserting clocks. Handel-C’s are the simplest:

Each assignment and delay statement takes one cycle;

everything else executes in the same clock cycle.

Transmogrifier C’s rules are nearly as simple: Each loop

iteration and function call takes a cycle. Unfortunately,

such simple rules can make it difficult to achieve a par-

ticular timing constraint. To speed up a Handel-C spec-

ification, assignment statements might require fusing,

and Transmogrifier C might require loops to be manu-

ally unrolled.

The ability to specify or constrain detailed timing 

in hardware is another fundamental requirement.

Whereas slow software is an annoyance, slow hardware

is a disaster. When something happens in hardware is

usually as important as what happens. This is another

big philosophical difference between software and

hardware, and again hardware requires different skills.

A good hardware specification language needs the

ability to specify detailed timing, both explicitly and

through constraints, but should not demand the pro-

grammer to provide too many details. The best-effort

model of software is inadequate by itself.

Types
Data types are another central difference between

hardware and software languages. The most fundamen-

tal type in hardware is a single bit traveling through a

memoryless wire. By contrast, each base type in C and

381September–October 2006

for (i = 0 ; i < 8 ; i++) {
a[i] = c[i];
b[i] = d[i] || f[i];

}

Figure 8. It is not clear how many cycles it should

take to execute this (contrived) loop written in C.

Cones does it in one (it is combinational),

Transmogrifier-C chooses eight (one per

iteration), and Handel-C chooses 25 (one per

assignment). Others, such as HardwareC, allow

the user to specify the number.



C++ is one or more bytes stored in memory. Although C’s

base types can be implemented in hardware, C has

almost no support for types smaller than a byte. (The one

exception is that the number of bits for each field in a

struct can be specified explicitly. Oddly, none of these

languages even mimics this syntax.) As a result, straight

C code can easily be interpreted as bloated hardware.

Compilers take three approaches to introducing

hardware types to C programs. The first, and perhaps

the purest, neither modifies nor augments C’s types but

allows the compiler or designer to adjust the width of

the integer types outside the language. For example, the

C2Verilog compiler provides a GUI that lets the user set

the width of each variable in the program. In

Transmogrifier C, the user can set each integer’s width

through a preprocessor pragma.

The second approach is to add hardware types to the

C language. HardwareC, for instance, adds a Boolean

vector type. Handel-C, Bach C, and BDL add integers

with an explicit width. SpecC adds all these types and

many others that cannot be synthesized, such as pure

events and simulated time.

The third approach, used by C++-based languages,

is to provide hardware-like types through C++’s type sys-

tem. C++ supports a one-bit Boolean type by default,

and its class mechanism makes it possible to add more

types, such as arbitrary-width integers, to the language.

The SystemC libraries include variable-width integers

and an extensive collection of types for fixed-point frac-

tional numbers. Ocapi, because it is an algorithmic

mechanism for generating structure, also effectively

takes this approach, letting the user explicitly request

wires, buses, and so on. Catapult C presumably has a

similar library of hardware-like types.

Each approach, however, is a fairly radical departure

from C’s call-it-an-integer-and-forget-about-it approach.

Even the languages that support only C types compel a

user to provide each integer’s actual size. Worrying

about the width of each variable in a program is not

something a typical C programmer does.

Compared with timing and concurrency, however,

adding appropriate hardware types is a fairly easy prob-

lem to solve when adapting C to hardware. C++’s type sys-

tem is flexible enough to accommodate hardware types,

and minor extensions to C suffice. A larger question,

which none of the languages adequately addresses, is

how to apply higher-level types such as classes and inter-

faces to hardware description. SystemC has some facili-

ties for inheritance, but the inheritance mechanism is

simply the one used for software; it is not clear that this

mechanism is convenient for adding to or modifying the

behavior of existing hardware. Incidentally, SystemC has

supported more high-level modeling constructs such as

templates and more elaborate communication protocols

since version 2.0, but they are not typically synthesizable.

A good HDL needs a rich type system that allows pre-

cise definition of hardware types, but it should also

assist in ensuring program correctness. C++’s type sys-

tem is definitely an improvement over C’s in this regard.

Communication
C-like languages are built on the very flexible RAM

communication model. They implicitly treat all memo-

ry locations as equally costly to access, but this is not

true in modern memory hierarchies. At any point, it can

take hundreds or even thousands of times longer to

access certain locations. Designers can often predict the

behavior of these memories, specifically caches, and

use them more efficiently. But doing so is very difficult,

and C-like languages provide scant support for it.

Long, nondeterministic communication delays are

anathema in hardware. Timing predictability is manda-

tory, so large, uniform-looking memory spaces are rarely

the primary communication mechanism. Instead, hard-

ware designers use various mechanisms, ranging from

simple wires to complex protocols, depending on the

system’s needs. An important characteristic of this

approach is the need to understand a system’s com-

munication channels and patterns before it is running

because communication channels must be hardwired.

The problem with pointers
Communication patterns in software are often diffi-

cult to determine a priori because of the frequent use

of pointers. These are memory addresses computed at

runtime, and as such are often data dependent and can-

not be known completely before a system is running.

Implementing such behavior in hardware mandates, at

least, small memory regions.

Aliasing, when a single value can be accessed

through multiple sources, is an even more serious prob-

lem. Without a good understanding of when a variable

can be aliased, a hardware compiler must place that

variable into a large, central memory, which is neces-

sarily slower than a small memory local to the compu-

tational units that read and feed it.

One of C’s strengths is its flexible memory model,

which allows complicated pointer arithmetic and essen-

tially uncontrolled memory access. Although very use-

ful for system programs such as operating systems, these

Electronic System-Level Design

382 IEEE Design & Test of Computers



abilities make analyzing an arbitrary C program’s com-

munication patterns especially difficult. The problem is

so great, in fact, that software compilers often have an

easier time analyzing a Fortran program than an equiv-

alent C program.

Any technique that implements a C-like program in

hardware must analyze the program to understand all

possible communication pathways; resort to large, slow

memories; or do some combination of the two.

Séméria, Sato, and De Micheli applied pointer analy-

sis algorithms from the software compiler literature to esti-

mate the communication patterns of C programs for

hardware synthesis.18 Although this is an impressive body

of work, it illustrates the difficulty of the problem. Pointer

analysis identifies the data to which each pointer can

refer, allowing memory to be divided. Solving the point-

er analysis problem precisely is undecidable, so

researchers use approximations. These are necessarily

conservative and hence might miss opportunities to split

memory regions, leading to higher-cost implementations.

Finally, pointer analysis is a costly algorithm with

many variants.

Communication costs
Software’s event-oriented communication style is

another key difference from hardware. Every bit of data

communicated among parts of a software program has

a cost (that is, a read or write operation to registers or

memory), and thus communication must be explicitly

requested in software. Communicating the first bit is

very costly in hardware because it requires the addition

of a wire, but after that, communication is actually more

costly to disable than to continue.

This difference leads to a different set of concerns.

Good hardware communication design tries to mini-

mize the number of pathways among parts of the

design, whereas good software design minimizes the

number of transactions. For example, good software

design avoids forwarding through copying, preferring

instead to pass a reference to the data being forwarded.

This is a good strategy for hardware that stores large

blocks of data in memory, but is rarely appropriate in

other cases. Instead, good hardware design considers

alternate data encodings, such as serialization.

Communication approaches
The languages considered here fall broadly into two

groups: those that effectively ignore C’s memory model

and look only at communication through variables, and

those that adopt the full C memory model.

Languages that ignore C’s memory model don’t sup-

port arrays or pointers. Instead they look only at how

local variables communicate between statements.

Cones is the simplest; all variables, arrays included, are

interpreted as wires. HardwareC and Transmogrifier C

don’t support arrays or memories. Ocapi also falls into

this class, although arrays and pointers can assist during

system construction. BDL is perhaps the richest of this

group, supporting multidimensional arrays, but it doesn’t

support pointers or dynamic memory allocation.

Languages in the second group go to great lengths to

preserve C’s memory model. The CASH compiler takes

the most brute-force approach. It synthesizes one large

memory and puts all variables and arrays into it. The

Handel-C and C2Verilog compilers can split memory into

multiple regions and assign each to a separate memory

element. Handel-C adds explicit constructs to the lan-

guage for specifying these elements. SystemC also sup-

ports explicit declaration of separate memory regions.

Other languages provide communication primitives

whose semantics differ greatly from C’s memory style of

communication. HardwareC, Handel-C, and Bach C

provide blocking, rendezvous-style (unbuffered) com-

munication primitives for communicating between con-

currently running processes. SpecC and later versions

of SystemC provide a large library of communication

primitives.

Again, the difference between appropriate software

and hardware design is substantial. Software designers

usually ignore memory access patterns. Although this

can slow overall memory access speed, it is usually

acceptable. Good hardware design, in contrast, usual-

ly starts with a block diagram detailing every commu-

nication channel and attempts to minimize

communication pathways.

So, software designers usually ignore the funda-

mental communication cost issues common in hard-

ware. Furthermore, automatically extracting efficient

communication structures from software is challenging

because of the pointer problem in C-like languages.

Although pointer analysis can help mitigate the prob-

lem, it is imprecise and cannot improve an algorithm

with poor communication patterns.

A good hardware specification language should make

it easy to specify efficient communication patterns.

Metadata
A high-level construct can be implemented in many

different ways. However, because hardware is at a far

lower level than software, there are many more ways to

383September–October 2006



implement a particular C construct in hardware. For

example, consider an addition operation. A processor

probably has only one useful addition instruction,

whereas in hardware there are a dizzying number of dif-

ferent adder architectures—for example, ripple carry,

carry look-ahead, and carry save.

The translation process for hardware therefore has

more decisions to make than translation for software.

Making many decisions correctly is difficult and compu-

tationally expensive. Furthermore, the right set of deci-

sions varies with design constraints. For example, a

designer might prefer a ripple-carry adder if area and

power are at a premium and speed is a minor concern,

but a carry-look-ahead adder if speed is a greater concern.

Much effort has gone into improving optimization

algorithms, but it remains unrealistic to expect all these

decisions to be automated. Instead, designers need

mechanisms that let them ask for exactly what they

want. Such designer guidance takes two forms: manu-

al rewriting of high-level constructs into the desired

lower-level ones (for example, replacing a “+” operator

with a collection of gates that implement a carry-look-

ahead adder) or annotations such as constraints or hints

about how to implement a particular construct. Both

are common RTL design approaches. Designers rou-

tinely specify complex data paths at the gate level

instead of using higher-level constructs. Constraint infor-

mation, often supplied in an auxiliary file, usually drives

logic optimization algorithms.

Although it might seem possible to use C++’s opera-

tor-overloading mechanism to specify, for example,

when a carry-look-ahead adder should implement an

addition, using this mechanism is probably very diffi-

cult. C++’s overloading mechanism uses argument types

to resolve ambiguities, which is natural when you want

to treat different data types differently. But the choice

of algorithm in hardware is usually driven by resource

constraints (such as area or delay) rather than data rep-

resentation (although, of course, data representation

does matter). Concurrency is the fundamental problem.

In software, there is little reason to have multiple imple-

mentations of the same algorithm, but it happens all the

time in hardware. Not surprisingly, C++ doesn’t support

this sort of thing.

The languages considered here take two approach-

es to specifying such metadata. One group places it

within the program itself, hiding it in comments, prag-

mas, or added constructs. The other group places it out-

side the program, either in a text file or in a database

populated by the user through a GUI.

C has a standard way of supplying extra information

to the compiler: the #pragma directive. By definition, a

compiler ignores such lines unless it understands them.

Transmogrifier C uses the directive to specify integer

width, and Bach C uses it to specify timing and mapping

constraints. HardwareC provides three language-level

constructs: timing constraints, resource constraints, and

arbitrary string-based attributes, whose semantics are

much like a C #pragma. BDL has similar constructs.

SpecC takes the other approach; many tools for syn-

thesizing and refining SpecC require the user to speci-

fy, using a GUI, how to interpret various constructs.

Constructs such as addition, which are low level in

software, are effectively high level in hardware. Thus,

there must be a mechanism for conveying designer

intent to any hardware synthesis procedure, regardless

of the source language. A good hardware specification

language needs a way of guiding the synthesis proce-

dure to select among different implementations, trad-

ing off between, say, power and speed.

WHY BOTHER generating hardware from C? It is clearly

not necessary, because there are many excellent proces-

sors and software compilers, which are certainly the

cheapest and easiest way to run a C program. So why

consider using hardware? Efficiency is the logical answer.

Although general-purpose processors get the job done,

well-designed customized hardware can always do it

faster, using fewer transistors and less energy. Thus, the

utility of any hardware synthesis procedure depends on

how well it produces efficient hardware specialized for

an application. Table 2 summarizes the key challenges

of a successful hardware specification language.

Concurrency is fundamental for efficient hardware,

but C-like languages impose sequential semantics and

require the use of sequential algorithms. Automatically

exposing concurrency in sequential programs is limit-

ed in effectiveness, so a successful language requires

explicit concurrency, something missing from most 

Electronic System-Level Design

384 IEEE Design & Test of Computers

Table 2. The big challenges for hardware languages.

Challenge Comment

Concurrency model Specifying parallel algorithms

Specifying timing How many clock cycles?

Types Need bits and bit-precise vectors

Communication patterns Need isolated memories

Hints and constraints How to implement something



C-like languages. Adding such a construct is easy, but

teaching software programmers to use concurrent algo-

rithms is difficult.

Careful timing design is also required for efficient

hardware, but C-like languages provide essentially no

control over timing, so the language needs added tim-

ing control. The problem amounts to where to put the

clock cycles, and the languages offer a variety of solu-

tions, both implicit and explicit. The bigger problem,

though, is changing programmer habits to consider

such timing details.

Using software-like types is also a problem in hard-

ware, which wants to manipulate individual bits for effi-

ciency. The problem is easier to solve for C-like

languages. Some languages add the ability to specify

the number of bits used for each integer, for example,

and C++’s flexible type system allows hardware types to

be defined. The type problem is the easiest to address.

Communication also presents a challenge. C’s flexi-

ble global-memory communication model is not effi-

cient for hardware. Instead, memory should be broken

into smaller regions, often as small as a single variable.

Compilers can do so to a limited degree, but efficiency

often demands explicit control over this. A fundamen-

tal problem, again, is that C programmers generally

don’t worry about memory, and C programs are rarely

written with memory behavior in mind.

A high-level HDL must let the designer provide con-

straints or hints to the synthesis system because of the

wide semantic gap between a C program and efficient

hardware. There are many ways to implement a con-

struct such as addition in hardware, so the synthesis sys-

tem needs a way to select an implementation.

Constraints and hints are the two main ways to control

the algorithm, but standard C has no such facility.

Although presenting designers with a higher level of

abstraction is obviously desirable, presenting them with

an inappropriate level of abstraction—one in which

they cannot effectively ask for what they want—is not

much help. Unfortunately, C-like languages, because

they provide abstractions geared toward the generation

of efficient software, do not naturally lend themselves

to the synthesis of efficient hardware.

The next great hardware specification language

won’t closely resemble C or any other familiar software

language. Software languages work well only for soft-

ware, and a hardware language that does not produce

efficient hardware is of little use. Another important

issue will be the language’s ability to build systems from

existing pieces (known as IP-based design), which none

of these languages addresses. This ability appears nec-

essary to raise designer productivity to the level need-

ed for the next generation of chips.

Looming over all these issues, however, is verification.

What we really need are languages that let us create cor-

rect systems faster by making it easier to check for, iden-

tify, and correct mistakes. Raising the abstraction level

and facilitating efficient simulation are two well-known

ways to achieve this, but are there others? ■

Acknowledgments
Edwards is supported by the National Science

Foundation, Intel, Altera, the SRC, and New York

State’s NYSTAR program.

References
1. Handel-C Language Reference Manual, RM-1003-4.0,

Celoxica, 2003.

2. K. Wakabayashi and T. Okamoto, “C-Based SoC Design

Flow and EDA Tools: An ASIC and System Vendor Per-

spective,” IEEE Trans. Computer-Aided Design of Inte-

grated Circuits and Systems, vol. 19, no. 12, Dec. 2000,

pp. 1507-1522.

3. D.M. Ritchie, “The Development of the C Language,”

History of Programming Languages-II, T.J. Bergin Jr.

and R.J. Gibson Jr., eds., ACM Press and Addison-Wes-

ley, 1996.

4. G. De Micheli, “Hardware Synthesis from C/C++

Models,” Proc. Design, Automation and Test in Europe

(DATE 99), IEEE Press, 1999, pp. 382-383.

5. C.E. Stroud, R.R. Munoz, and D.A. Pierce, “Behavioral

Model Synthesis with Cones,” IEEE Design & Test, vol.

5, no. 3, July 1988, pp. 22-30.

6. D.C. Ku and G. De Micheli, HardwareC: A Language for

Hardware Design, Version 2.0, tech. report CSTL-TR-

90-419, Computer Systems Lab, Stanford Univ., 1990.

7. G. De Micheli et al., “The Olympus Synthesis System,”

IEEE Design & Test, vol. 7, no. 5, Oct. 1990, pp. 37-53.

8. D. Galloway, “The Transmogrifier C Hardware Descrip-

tion Language and Compiler for FPGAs,” Proc. Symp.

FPGAs for Custom Computing Machines (FCCM 95),

IEEE Press, 1995, pp. 136-144.

9. T. Grötker et al., System Design with SystemC, Kluwer

Academic Publishers, 2002.

10. P. Schaumont et al., “A Programming Environment for

the Design of Complex High Speed ASICs,” Proc. 35th

Design Automation Conf. (DAC 98), ACM Press, 1998,

pp. 315-320.

11. Y. Panchul, D.A. Soderman, and D.R. Coleman, System

for Converting Hardware Designs in High-Level

385September–October 2006



IEEE Design & Test of Computers

Electronic System-Level Design

Programming Language to Hardware Implementations,

US patent 6,226,776, Patent and Trademark Office,

2001.

12. D.D. Gajski et al., SpecC: Specification Language and

Methodology, Kluwer Academic Publishers, 2000.

13. R. Dömer, A. Gerstlauer, and D. Gajski, SpecC

Language Reference Manual, Version 2.0, SpecC Con-

sortium, 2001.

14. T. Kambe et al., “A C-Based Synthesis System, Bach,

and Its Application,” Proc. Asia South Pacific Design

Automation Conf. (ASP-DAC 01), ACM Press, 2001, pp.

151-155.

15. M. Budiu and S.C. Goldstein, “Compiling Application-

Specific Hardware,” Proc. 12th Int’l Conf. Field-Program-

mable Logic and Applications (FPL 02), LNCS 2438,

Springer-Verlag, 2002, pp. 853-863.

16. D.W. Wall, “Limits of Instruction-Level Parallelism,” Proc.

4th Int’l Conf. Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS 91), Sigplan

Notices, vol. 26, no. 4, ACM Press, 1991, pp. 176-189.

17. M.W. Hall et al., “Detecting Coarse-Grain Parallelism

Using an Interprocedural Parallelizing Compiler,” Proc.

Supercomputing Conf., IEEE Press, p. 49.

18. L. Séméria, K. Sato, and G. De Micheli, “Synthesis of

Hardware Models in C with Pointers and Complex Data

Structures,” IEEE Trans. Very Large Scale Integration

(VLSI) Systems, vol. 9, no. 6, Dec. 2001, pp. 743-756.

Stephen A. Edwards is an associ-
ate professor in the Computer Science
Department of Columbia University.
His research interests include embed-
ded-system design, domain-specific

languages, and compilers. Edwards has a BS from the
California Institute of Technology and an MS and a
PhD from the University of California, Berkeley, all in
electrical engineering. He is an associate editor of
IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems. He is a senior member
of the IEEE.

Direct questions and comments about this article
to Stephen A. Edwards, Dept. of Computer Science,
Columbia University, 1214 Amsterdam Ave. MC 0401,
New York, NY 10027; sedwards@cs.columbia.edu.

For further information on this or any other computing

topic, visit our Digital Library at http://www.computer.org/

publications/dlib.

Product Display
John Restchack
Phone: +1 212 419 7578
Fax: +1 212 419 7589
Email: j.restchack@ieee.org

Recruitment Display
Mid Atlantic (recruitment)
Dawn Becker
Phone: +1 732 772 0160
Fax: +1 732 772 0164
Email: db.ieeemedia@ieee.org

New England (recruitment)
John Restchack
Phone: +1 212 419 7578
Fax: +1 212 419 7589
Email: j.restchack@ieee.org

Southeast (recruitment)
Thomas M. Flynn
Phone: +1 770 645 2944
Fax: +1 770 993 4423
Email: flynntom@mindspring.com

Midwest/Southwest (recruitment)
Darcy Giovingo
Phone: +1 847 498-4520
Fax: +1 847 498-5911
Email: dg.ieeemedia@ieee.org

Northwest/Southern CA (recruitment)
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Japan (recruitment)
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Europe (recuirtment) 
Hilary Turnbull
Phone: +44 1875 825700
Fax: +44 1875 825701
Email: impress@impressmedia.com

A D V E R T I S E R  I N D E X
S E P T E M B E R / O C T O B E R  2 0 0 6

FUTURE ISSUE:

November-December 2006

Process Variation and Stochastic

Design  and Test
Advertising close date: 01 October 06

Advertising Personnel

Marion Delaney
IEEE Media, Advertising Director
Phone: +1 415 863 4717
Email: md.ieeemedia@ieee.org

Marian Anderson
Advertising Coordinator
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: manderson@computer.org

Sandy Brown
IEEE Computer Society,
Business Development Manager
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sb.ieeemedia@ieee.org

Advertising Sales Representatives


