
NDL: A Domain-Specific Language for Device Drivers

Christopher L. Conway
conway@cs.columbia.edu

Stephen A. Edwards
sedwards@cs.columbia.edu

Department of Computer Science, Columbia University
1214 Amsterdam Ave., New York, NY 10027

ABSTRACT
Device drivers are difficult to write and error-prone. They
are usually written in C, a fairly low-level language with
minimal type safety and little support for device semantics.
As a result, they have become a major source of instability
in operating system code.

This paper presents NDL, a language for device drivers.
NDL provides high-level abstractions of device resources and
constructs tailored to describing common device driver op-
erations. We show that NDL allows for the coding of a se-
mantically correct driver with a code size reduction of more
than 50% and a minimal impact on performance.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—domain-specific languages; D.1.2
[Programming Techniques]: Automatic
Programming—program synthesis; D.2.3 [Software

Engineering]: Coding Tools and Techniques

General Terms
Design,Languages,Reliability

Keywords
Device drivers, systems programming, domain-specific
languages

1. INTRODUCTION
Device drivers are critical, low-level systems code. Tra-

ditionally, they have been written in C due to its efficiency
and flexibility. Unfortunately, sophisticated device interac-
tion protocols and C’s lack of type safety make driver code
complex and prone to failure. Indeed, device drivers have
been noted as a major source of faults in operating system
code [2]. However, no other high-level language is widely
accepted for device programming.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LCTES’04, June 11–13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-806-7/04/0006 ...$5.00.

To address this challenge, we introduce NDL1, a domain-
specific language for device drivers. The language includes
direct support for the semantics of device drivers, leading to
shorter, more maintainable driver code. NDL can be used
to write drivers for a wide variety of devices in a platform-
neutral fashion. The compiler is designed to be readily
ported to a broad class of operating systems.

In this paper, we demonstrate the features that make NDL
device drivers simple and concise and show that the NDL
compiler produces code which is only marginally less effi-
cient than the equivalent C. Throughout this paper, we will
illustrate the use of NDL using examples from the driver for
an NE2000-compatible Ethernet adapter.

2. RELATED WORK
A variety of approaches have been suggested to improve

the reliability of low-level software and device driver soft-
ware in particular. Crary and Morrissett [3] propose typed
assembly language as a compiler target for preserving type
information from higher-level languages. Unfortunately, C,
the most common systems programming language, is not
much more strongly typed than a traditional assembly lan-
guage; there is little the compiler can do to improve the type
safety of C code.

Deline and Fähndrich [4] use a similar typing system in
the C-like programming language VAULT. The use of vari-
ables is controlled through type guards that describe when
an operation on a variable is valid. In order for the compiler
to accept the program, it must respect the type guards’ ac-
cess specifications and types must match at program join
points. VAULT has shown some success in preventing com-
mon programmer errors, but its limitations on alias types
prevent it from being generally applicable to device driver
development.

Holzmann [5] and Ball and Rajamani [1] have addressed
the use of static analysis in the verification of traditional C
systems software. Static analyses can find subtle bugs and
increase confidence in the code, but the types of detectable
errors are restricted and the quality of the analysis depends
on programmer-written property specifications.

A group at the University of Rennes has done perhaps the
most work on domain-specific languages for device drivers.
Thibault et al.’s GAL [8] is a domain-specific language for
X Windows video drivers. Their compiler combines a par-
tial evaluation framework with a language tailored to video
driver operations to produce driver code that is nearly 90%

1With apologies to GNU, NDL stands for “The NDL Device
Language”.

smaller than the equivalent C code and just as fast. This
work is promising, but the methodology may not be appli-
cable to a wider variety of device drivers.

Also at Rennes, Mérillon et al. [6] developed Devil, an
interface definition language designed to be a more general
solution for device driver development. A Devil specifica-
tion describes hardware components such as I/O ports and
memory-mapped registers. The specification is compiled
into a set of C macros for device manipulation; the macros
are called from traditional C driver code, allowing the driver
programmer to avoid writing the lowest-level code by hand.
This approach prevents certain common programming er-
rors, but it does not specify the protocol for using the device,
and it does not provide the type safety of a higher-level so-
lution. Nevertheless, portions of NDL borrow liberally from
Devil’s interface definition syntax.

O’Nils and Janstch [7] and Wang et al. [9] have also devel-
oped tools for device driver synthesis, but they are primar-
ily concerned with hardware/software codesign for embed-
ded systems. NDL provides a more flexible tool for a wider
range of devices.

3. NDL
NDL is a language for device driver development that

provides high-level constructs for device programming, de-
scribing the driver in terms of its operational interface. Its
declarations are designed to closely resemble the specifica-
tion document for the device it controls. An NDL driver
is typically composed of a set of register definitions, proto-
cols for accessing those registers, and a collection of device
functions. The compiler translates register definitions and
access protocols into an abstract representation of the de-
vice interface. Device functions are then translated into a
series of operations on that interface.

Device drivers are systems-level code that interact directly
with the operating system. The NDL compiler generates C
that makes appropriate operating system calls. Platform-
specific functions are provided through compiler libraries
and device templates; platform dependencies are minimal.

NDL’s main abstraction is a representation of the state
of the peripheral device being controlled. Internally, de-
vices can be in a variety of states, e.g., receiving data, wait-
ing for a certain condition, or having encountered an error.
From software, this state can be fairly awkward to access.
At its simplest, it is spread out across bits in I/O memory
packed carefully into bytes. Typically it is even more com-
plicated, often consisting of an address and data register pair
that provide indirect access to internal device registers. In
both cases, NDL provides an abstraction layer that provides
transparent access to this state information.

For example, a typical sequence of I/O memory accesses
in C might be coded

outb(E8390_NODMA + E8390_PAGE0 + E8390_START,

nic_base + NE_CMD);

outb(count & 0xff, nic_base + EN0_RCNTLO);

outb(count >> 8, nic_base + EN0_RCNTHI);

Bit flags are combined and the integer count is shifted and
masked to force its value into a disjoint register format. The
write operations are a series of low-level I/O calls, using pre-
defined offsets on the device’s base address. The equivalent
NDL code uses a simple assignment syntax:

start = true;

dmaState = DISABLED;

remoteDmaByteCount = count;

NDL also provides a mechanism for describing groups
of mutually exclusive states and procedures for switching
among them. As a result, with a single line of NDL code
the programmer is able to effect a state transition that would
require many I/O operations in an equivalent C program.

Copying large amounts of data to and from buffers is an-
other frequent device operation. There are common idioms
for a buffer-to-buffer copy in C, but they are complicated by
the need to support compatible devices with different data
bus widths in the same driver. NDL treats buffer copy-
ing as a special case of assignment. The following fragment
reads count bytes read from the FIFO dataport (defined
elsewhere) and placed in the array buffer using the appro-
priate I/O operations.

var buffer: byte[count];

buffer = dataport;

3.1 Device Inheritance
An NDL driver may begin by declaring a parent device

from which it should inherit interface and template infor-
mation. For example, the NE2000 driver declares itself as
an extension of NetworkDevice, which is an abstract device
that defines functions and variables common to all Ethernet
adapters, such as the start transmit function, which takes
a packet buffer and queues it for transmission.

In addition, NetworkDevice is associated with a template
that specifies the boilerplate code required to implement a
network driver on a particular platform (e.g., initialization
and release of operating system data structures and requests
for system resources). Templates provide the glue layer
between the high-level device specification and platform-
specific C driver code.

3.2 Device States
Often, aspects of a device’s behavior are most easily mod-

eled as finite-state machines. For example, the direct mem-
ory access system in the NE2000 can be either transferring
data to the card, from the card, or can be idle. NDL sup-
ports this view through explicitly defined state machines,
such as those in Figure 1. A state machine is defined as
a list of mutually exclusive states separated by ‘||’. Each
state may have a an associated list of statements intended
to switch the machine to that state, invoked when a corre-
sponding goto statement is executed.

The states STOPPED and STARTED are mutually exclusive.
When the device needs to enter the STOPPED state, the state-
ments “goto DMA DISABLED” (indicating a transition to state
DMA DISABLED) and “stop = true” will be executed. When
the device needs to enter the STARTED state, the statement
“start = true” will be executed.

The states DMA DISABLED, DMA READING and DMA WRITING

also form a mutually exclusive set. Notice that DMA READING

and DMA WRITING induce a transition to the state STARTED;
the two machines can interact provided the constraints are
not cyclic.

The state PAGE is parameterized and takes an integer ar-
gument in the range 0 to 2, inclusive. When a state defini-
tion is parameterized, each parameter value forms a separate
mutually exclusive state.

state STOPPED {

goto DMA_DISABLED;

stop = true;

}

||

STARTED { start = true; }

state DMA_DISABLED {

dmaState = DISABLED;

}

||

DMA_READING {

goto STARTED;

dmaState = READING;

}

||

DMA_WRITING {

goto STARTED;

dmaState = WRITING;

}

state PAGE(i : int{0..2}) {

registerPage = i;

}

Figure 1: State declarations for the NE2000.

NDL’s state machine declarations differ substantially from
those in a hardware description language such as Verilog.
The main difference is that NDL’s machines are only slightly
constrained models whereas those in an HDL must be com-
pletely specified. For example, NDL assumes that any tran-
sition between states is possible, whereas many would be
illegal in the actual machine. In the future, we plan to allow
a programmer to prohibit certain transitions and automat-
ically check that they can never be taken.

The syntax for state definitions is shown in Figure 2, be-
ginning with the nonterminal StateDecl .

3.3 Memory-mapped I/O
Figure 3 illustrates one of the key features of NDL: a struc-

tured definition of memory-mapped I/O locations and their
meaning. Drivers primarily interact with devices by reading
and writing memory-mapped I/O locations, but the layout
and behavior of these locations is often quite baroque and
is one of the main sources of complexity in device drivers.
One of NDL’s key contributions is a structured way of de-
scribing these locations and their meanings, simplifying code
that interacts with the device and reducing errors through
increased transparency and automatic consistency checks.

The ioport declaration defines a block of memory-mapped
I/O locations. In addition to giving names to words, bytes,
and even bits within these ranges, the ioport declaration
may also generate code that requests exclusive access to
these locations from the operating system. The syntax for
the ioports declaration and register definitions is shown in
Figure 2, beginning with the nonterminal IoportDecl .

An ioports declaration resembles a C struct, but has
more precise semantics and facilities for ensuring consis-
tency. Each field must consume an integral number of bytes
and each bit of every byte must be accounted for. The fields
are laid out sequentially with no implicit padding.

StateDecl → state StateDesc (|| StateDesc)*

StateDesc → Id
| Id ((FParams?))? { SimpleStmts }

IoportDecl → ioports { RegList }

RegList → RangeAssert? RegDecl (, RegList)?

RegDecl → RW ? SimpleReg
| RW ? Id = { SimpleRegList } RegProp
| [RegDeclList (|| RegDeclList)+]

| (StateAssert)=> RegDeclList

RegDeclList → RegDecl (, RegDecl)*

RangeAssert → Num (.. Num)? :

StateAssert → Id ((Params))?

RW → read | write

SimpleReg → Id
| Id : RegProp
| Id : TypeDesc RegProp?
| Id : { (Id = (Num | Mask))+ }

SimpleRegList →
Simple RangeAssert? SimpleReg (, SimpleRegList)?

RegProp → trigger (except Num)?
| volatile

| nopred

Figure 2: A portion of the NDL grammar. Produc-

tions for some nonterminals are omitted.

While the compiler computes the offset from the base I/O
address of each field, the programmer may also include an
offset or range for any field to ensure consistency. The com-
piler signals an error if any user-provided offset is inconsis-
tent with the computed addresses or sizes of the fields.

Figure 3 shows a portion of the ioports declaration for
the NE2000 network card. The one-byte register command

(Lines 2-15) occupies the first position in the device memory,
followed by fifteen bytes of additional registers. The regis-
ters dataport and reset (Lines 55 and 57) are preceded by
a range assertions (e.g., “0x10:”). If the compiler has not
allocated 16 bytes of device memory before it encounters
the definition of dataport, compilation will fail. To pad the
unused space between dataport (byte 16) and reset (byte
31), a 14-byte register is labeled with the don’t-care symbol
‘ ’ (Line 56).

The definition of command register illustrates other con-
structs for defining memory-mapped I/O behavior. The
byte-wide register is subdivided into five fields, or sub-regist-
ers: stop, start, transmit, dmaState, and registerPage.
Each field is preceded by an optional bit offset assertion;
just as with byte offsets, the compiler uses this redundant
information to assure the consistency of the register defini-
tion.

The values stop, start and transmit are of the default

1 ioports {

2 command = {

3 0: stop : trigger except 0,

4 1: start : trigger except 0,

5 2: transmit : trigger except 0,

6 3..5:

7 dmaState : {

8 READING = #001

9 WRITING = #010

10 SENDING = #011

11 DISABLED = #1**

12 } volatile,

13 6..7:

14 registerPage : int{0..2}

15 },

16

17 0x01..0x0f:

18 [

19 (PAGE(0)) => { /* predicated regs. */

20 write rxStartAddr,

21 write rxStopAddr,

22 boundaryPtr,

23

24 [

25 read txStatus = { /* overlay reg. */

26 0: packetTransmitted,

27 1: _,

28 2: transmitCollided,

29 3: transmitAborted,

30 4: carrierLost,

31 5: fifoUnderrun,

32 6: heartbeatLost,

33 7: lateCollision

34 } volatile

35 ||

36 write txStartAddr

37],

38

39 /* ... eleven bytes elided ... */

40 }

41 ||

42 (PAGE(1)) => { /* predicated regs. */

43 physicalAddr : byte[6],

44 currentPage : byte,

45 multicastAddr : byte[8]

46 }

47 ||

48 (PAGE(2)) => { /* predicated regs. */

49 _ : byte[13],

50 read dataConfig,

51 read interruptMask

52 }

53],

54

55 0x10: dataport : fifo[1] trigger,

56 _ : byte[14],

57 0x1f: reset : byte trigger

58 }

Figure 3: A portion of the ioports declaration for

the NE2000.

type for a sub-register (one bit) and are marked as trigger
fields, meaning each write to the field causes a side effect.
The three-bit dmaState field has an enumeration type; its
values are defined using the binary literal syntax (i.e., pre-
ceded by ‘#’). The value DISABLED is a bit-mask—only its
most significant bit is relevant and the rest take don’t-care
values. The registerPage field occupies the remaining two
bits of the eight-bit command register. The field is defined to
range over the integers 0, 1, and 2.

Note that the fields of command occupy exactly eight bits.
Every register must occupy a whole number of bytes and ev-
ery bit within the register must be accounted for; otherwise
the NDL compiler signals an error. Unused or ignored bits
in a register must be labeled with the don’t-care symbol ‘ ’.

Registers can also be given the attributes read and write,
indicating they are read- or write-only. If a register is doubly
defined—once with read and once with write—the defini-
tions will be unified into a single register with disjoint read
and write ports.

3.3.1 Overlaid and Predicated Registers
NDL provides explicit support for device registers that oc-

cupy the same I/O addresses under different circumstances.
The txStatus and txStartAddr fields in Figure 3 (Lines 24-
37) illustrate a common case of such overlay registers (our
term): they share an I/O location that means one thing
when read and something else when written.

Multiple registers may be included in an overlay (e.g., one
2-byte register may be overlaid with two 1-byte registers, or
three 1-byte read-only registers maybe be overlaid with three
1-byte write-only registers using only one parallel operator).
Each memory location thus defined must contain at most
one read and one write definition.

As is fairly common in many devices, most I/O locations
in the NE2000 take on different roles depending on the set-
ting of an address field (in the NE2000, this is the two-bit
registerPage field on Line 14). We model such behavior in
NDL with the concept of predicated registers.

Predicated registers, declared with the syntax “(state)
=> {reg-list },” are accessible only when their predicate
is true, i.e., when a particular state machine is in the pre-
scribed state. The declaration in Figure 3 contains three
groups of predicated registers. The registers rxStartAddr,
rxStopAddr, boundaryPtr, txStatus, and txStartAddr are
governed by the predicate PAGE(0) (Lines 19-40). By def-
inition, any attempt to access these registers must be pre-
ceded by a transition to state PAGE(0). The compiler will
generate this transition automatically. Similarly, the reg-
isters physicalAddr, currentPage and multicastAddr are
governed by the predicate PAGE(1) (Lines 42-46). The com-
piler will precede any attempt to access these registers with
a transition to state PAGE(1). Similarly, the dataConfig

and interruptMask registers are governed by the predicate
PAGE(2) (Lines 48-52).

The predicated registers in Figure 3 are also overlaid. In
this case, the overlay registers are distinguished by their
mutually-exclusive state predicates rather than by their read
or write access modifiers. Any number of register lists may
be overlaid in this fashion, provided their predicates are mu-
tually exclusive. (Recall the parameterized definition of the
state PAGE(i) from Figure 1.) Each register list in a predi-
cated register overlay must occupy exactly the same number
of bytes in the device memory as the other register lists in

critical function @(countersIrq) {

rxFrameErrors += frameAlignErrors;

rxCrcErrors += crcErrors;

rxMissedErrors += packetErrors;

countersIrq = ACK;

}

Figure 4: An anonymous interrupt function for the

NE2000.

the overlay. The PAGE(1) and PAGE(2) register lists both
occupy 15 bytes. Several registers have been omitted from
the PAGE(0) group for space reasons, but together they must
also total 15 bytes.

3.4 Functions and Interrupts
Device functions look much like functions in any imper-

ative, procedural language. Local variables are allowed, as
are reads from and writes to registers. Function calls are
available, but recursion is prohibited. Loops are bounded
by timers or by constant integers.

Functions marked with @(bool-expr) handle interrupts.
Such functions are invoked by a compiler-generated master
interrupt handling routine dispatched by the operating sys-
tem in response to interrupts from the device. When an in-
terrupt occurs, each interrupt function’s boolean expression
is evaluated and, if true, the associated function is executed.

Figure 4 shows an anonymous interrupt-handling func-
tion. In this example, the function will be invoked when the
countersIrq register is true, i.e., when a counter interrupt
occurs. The function accumulates the device counters and
acknowledges the interrupt, clearing the execution condition
for future evaluation. (ACK is a built-in constant equal to 1,
reflecting the common interrupt-handling convention.) By
not naming the function, the programmer indicates that it
is to be called only from the interrupt handler and not from
elsewhere in the driver.

3.5 Library Functions
NDL provides a library of functions that wrap platform-

specific system calls or perform generally useful operations.
For example, Ethernet cards usually have a transmit buffer
which is filled from an operating system queue of outgo-
ing packets. When the transmit buffer is full, the card
must issue a signal to stop pulling packets off the queue
until there is room in the buffer. The nature of this sig-
nal will vary between operating systems. The NDL library
function os stop queue provides access to this signal in a
platform-neutral way. Other library functions include print
(which wraps the platform kernel-mode logging facility) and
systemTimeMillis.

4. IMPLEMENTATION
The NDL compiler is written in Standard ML. The front-

end uses ML-Lex and ML-Yacc to generate an abstract syn-
tax tree. The semantic analyzer produces a three-address-
style intermediate code with C-like control-flow structures.
The back-end performs a straightforward syntax-directed
translation from intermediate code to C.

The intermediate representation targets an abstract ma-
chine with a C-like imperative programming model. Its

main distinguishing feature is operations for loading from
and storing to a device register, e.g.,

LOAD n, register[a:b]

STORE register[a:b], n

These operations are parameterized by bit ranges, allow-
ing arbitrary bit-fields to be read from and written to a
register. These bit ranges allow sub-register accesses to be
translated directly into intermediate form.

The intermediate code generated during semantic analy-
sis is unoptimized. Every register access is preceded by a
state-change predicate, if necessary, and these state-change
predicates are expanded inline. If two adjacent register ac-
cesses share a state predicate, the predicate-setting code will
be included once for each register. In the semantic analysis
phase, the compiler is concerned primarily with correctness
and simplicity; it is expected that an optimization phase will
reduce or eliminate undesirable redundancy.

4.1 Optimizations
We have implemented two optimizations on the NDL IR:

we remove redundant writes to idempotent registers and ag-
gregate multiple writes to adjacent fields. Since the C com-
piler also performs optimization on the generated code, we
focus on higher-level optimizations that depend on domain
knowledge that would be unavailable to a C compiler. At
the same time, we strive to produce code that will not com-
plicate the optimization phase of the C compiler. Our goal
is to produce target code that corresponds to the best prac-
tices of C programmers with respect to execution efficiency.

The optimization passes described may make unsafe as-
sumptions about the behavior of the device. To avoid incor-
rect code generation, optimizations are turned off by default
and each pass may be enabled independently.

4.1.1 Idempotent Register Values
Many registers behave like memory in that writing the

same value to them repeatedly has the same effect as writ-
ing the value once. We term such registers idempotent, and
can eliminate all redundant write operations to such a reg-
ister without changing the behavior of the device. This is
particularly useful with paged or bank-switched registers. In
this case, several sets of logical registers, called pages, are
overlaid on the same memory area. To access a particular
register, the page is selected by first writing to an index reg-
ister. (The registers on Lines 18-53 in Figure 3 are paged by
the index register registerPage.) If multiple registers on
the same page are accessed in sequence, the naive algorithm
will generate a write to the index register before each access.
If the index register holds its value (i.e., is idempotent), as
is typical, these redundant operations can be eliminated.
NDL considers registers idempotent by default; a program-
mer must mark non-idempotent registers with the trigger

keyword.
The idempotence code transformation looks for a constant

assignment to an idempotent register value. It then searches
forward, deleting subsequent assignments of the same value
to the same register, until it reaches a program join point or
the assignment of a different value to the same register.

4.1.2 Field Aggregation
As described in Section 3.3, NDL allows the programmer

to directly address groups of bits within bytes. These ref-

erences are translated by the compiler into reads from and
writes to bit-fields within the address. To protect adjoining
values from interference, writing a sub-register is typically
implemented using a read-modify-write pattern, effectively
doubling the number of load and store operations necessary
to perform a single write. However, if several values con-
tained within the same register are accessed in sequence and
those values do not depend on the sequence of access, the
sequence of read-modify-write operations may be condensed
into a single operation.

The sub-register aggregation code transformation looks
for adjacent assignments to contiguous bit-fields within the
same register. The two store operations are transformed
into a single assignment to the merged bit-fields by shift-
ing, masking and combining the two assignment values. For
example, the following intermediate code sequence could be
optimized by combining the second and third instructions:

STORE command[0:0], 1

STORE command[3:5], 4

STORE command[6:7], 0

The resulting intermediate code would be:

STORE command[0:0], 1

STORE command[3:7], 4

In fact, bits 1 and 2 of the command register (the stop

and transmit sub-registers, respectively) each have a write-
neutral value of 0. Writing to the full register does not
require preserving those bits. Taking this into consideration,
the above code can be transformed into:

STORE command[0:7], 0x21

4.2 Debugging Mode
The NDL compiler can generate driver code that includes

a debugging feature. In this mode, the driver dumps the
device state (i.e., the value of every non-volatile register)
to the system log on entrance to and exit from every de-
vice function. This level of debugging information is rather
coarse, but we have found it extremely useful while coding
drivers.

5. RESULTS
We wish to demonstrate the utility of NDL with respect

to three criteria: the concision of NDL device specifications,
the efficiency of the code generated by the NDL compiler,
and the size of the final object code. We measure concision
as the number of non-comment lines of source code. As a
measure of efficiency, we present the average response time
under heavy load.

We present results from two drivers: a null driver (i.e., a
character device implementing the standard Unix /dev/null

functionality) and a driver for the NE2000-compatible D-
Link DE-220P network card. The NE2000 driver is com-
pared to the equivalent driver from the Linux 2.4 kernel
source distribution. The null driver is compared to a hand-
coded C driver which differs from the standard Linux driver
chiefly in using the loadable kernel module facility.

5.1 Lines of Code
Table 1 shows the number of lines of code for equivalent

C and NDL device drivers. Lines of code were counted us-
ing David A. Wheeler’s SLOCCount tool. The figure for

Lines of code Executable size (bytes)
Driver C NDL C NDL
null 74 7 495 1119
NE2000 1370 677 13623 16934

Table 1: Code measurements for NDL vs. C.

the NE2000 C driver is the total of the lines-of-code figures
for three files—ne.c, 8390.c, and 8390.h—each of which is
essential to the proper operation of the driver.

The NDL code for the null driver is more than 90% shorter
than the equivalent C code, but the null driver is an excep-
tional case since the C code is dominated by boilerplate
code that the NDL compiler generates itself. For moder-
ately complex drivers, the expected gains in code length are
probably closer to those seen with the NE2000 driver: some-
what more than 50%. Even so, this is a dramatic increase
in concision.

Our results are not directly comparable to those of the
Devil project—the Devil NE2000 driver was written for a
PCI variant with a separate C driver (ne2k-pci.c). How-
ever, it may be useful to note that Devil showed an increase
of about 25% in lines of code relative to the comparable C
driver. The primary contribution of Devil was convenience
rather than concision; NDL provides both.

5.2 Performance
We compared the performance of our NE2000 driver gen-

erated by NDL with the stock Linux driver to evaluate the
performance of the code generated by the NDL compiler.
We connected a machine with an NE2000 card to a 10Mb
Ethernet hub with only one other machine connected and
then invoked ping in “flood mode” to send 5000 uniform
packets in a short period of time (i.e., “ping -f -c 5000”).
In individual tests we instructed the driver to send and re-
ceive packets ranging from 64 to 1024 bytes (the size is that
of the ICMP (ping) packet; the actual Ethernet packet, in-
cluding headers, is somewhat larger). Figures 5 and 6 show
the results of these tests.

For both incoming and outgoing packets, the round trip
time for the C driver is less than 15% faster on average, and
the relative difference diminishes as the packets get larger.
This suggests NDL will be practical for all but the most
performance-sensitive drivers; further optimizations could
narrow the gap.

5.3 Code Size
We compared the size of executable from the NDL com-

piler with the stock Linux driver by running the size com-
mand. The figure for the NE2000 C driver is the sum of
the sizes of ne.o and 8390.o. Together, the two modules
comprise the standard driver.

For the NE2000 driver, the object code generated from
the native C code driver is less than 20% smaller. For the
null driver, the C code is more than 55% smaller, reflecting a
large static overhead in the generated code. To date, we have
not focused on optimizing for executable size, but further
improvements are possible.

6. FUTURE WORK
NDL improves the ease and reliability of driver develop-

ment at a slight cost in performance. The results of the

0.5

1

1.5

2

2.5

3

3.5

64 128 256 512 1024

R
o
u
n
d

tr
ip

ti
m

e
(m

s)

Packet Size (bytes)

NDL

3

3

3

3

3

3

C

+
+

+

+

+

+

Figure 5: Average round trip time for incoming

packets.

0.5

1

1.5

2

2.5

3

3.5

64 128 256 512 1024

R
o
u
n
d

tr
ip

ti
m

e
(m

s)

Packet Size (bytes)

NDL

3

3

3

3

3

3

C

+
+

+

+

+

+

Figure 6: Average round trip time for outgoing

packets.

GAL project [8] suggest this trade-off can be mitigated using
clever compilation techniques. Current optimization strate-
gies are able to improve the performance of the driver by
only a few percent. We believe that more aggressive op-
timizations could lead to generated drivers that match or
exceed the performance of hand-coded C drivers.

NDL provides a high-level description of a device inter-
face, with information about underlying state-based behav-
ior and usage protocols maintained. Currently, this informa-
tion is used only to increase the concision of the language.
In the future, we will augment the compiler with static ver-
ification functions in order to improve the correctness and
robustness of the driver.

Currently, the NDL compiler generates C code for the
x86 Linux platform. Future versions will target additional
architectures and operating systems.

7. REFERENCES
[1] T. Ball and S. K. Rajamani. The SLAM project:

Debugging system software via static analysis. In
Symposium on Principles of Programming Languages
(POPL), pages 1–3, Portland, Oregon, January 2002.

[2] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R.
Engler. An empirical study of operating system errors.
In Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP), volume 35 of
Operating System Review, pages 73–88, Banff, Alberta,
Canada, October 2001.

[3] K. Crary and G. Morrisett. Type structure for low-level
programming languages. In International Colloquium
on Automata, Languages, and Programming (ICALP)
1999, volume 1644 of Lecture Notes in Computer
Science, pages 40–54, Prague, Czech Republic, July
1999. Springer Verlag.

[4] R. DeLine and M. Fähndrich. Enforcing high-level
protocols in low-level software. In Proceedings of the
ACM Conference on Programming Language Design
and Implementation (PLDI), pages 59–69, Snowbird,
Utah, June 2001.

[5] G. J. Holzmann. Software analysis and model checking.
In Computer Aided Verification, 14th International
Conference (CAV), volume 2404 of Lecture Notes on
Computer Science, pages 1–16, Copenhagen, Denmark,
July 2002. Springer Verlag.

[6] F. Mérillon, L. Réveillère, C. Consel, R. Marlet, and
G. Muller. Devil: An IDL for hardware programming.
In Proceedings of the 4th USENIX Symposium on
Operating System Design and Implementation (OSDI),
pages 17–30, San Diego, California, October 2000.

[7] M. O’Nils and A. Jantsch. Operating system sensitive
device driver synthesis from implementation
independent protocol specification. In Proceedings of
Design Automation and Test in Europe (DATE), pages
562–567, Munich, Germany, March 1999.

[8] S. Thibault, R. Marlet, and C. Consel. Domain-specific
languages: from design to implementation—application
to video device drivers generation. IEEE Transactions
on Software Engineering, 25(3):363–377, May-June
1999.

[9] S. Wang and S. Malik. Synthesizing operating system
based device drivers in embedded systems. In
Proceedings of the First International Conference on
Hardware/Software Codesign and System Synthesis
(CODES+ISSS), Newport Beach, CA, October 2003.

