Genetic-8-Queens
Genetic Algorithm for 8-Queens

Zhangyi Pan(zp2223), Shuhong Zhang(sz2949)

December 21, 2021

1 Introduction

In this project, we are interested in solving 8-Queens puzzle, which is a popular board game in
Artificial Intelligence.

1.1 8-queens puzzle

In an 8-queens puzzle, we have a 8*8 board and 8 queens to be placed onto the board. However,
queens will attack each other if they are placed in the same column, row and diagonal line. As a
peace lover, we want to minimize the number of attacks and ideally, we want no combats between
queens. That is, in ideal case, we want exactly 1 queen for each row and column, and at most 1
queen in each diagonal line. The problem can also be generalized to n-queens, in which we have a
n*n board and n queens to be placed. In our project, we also tested our algorithm on 10-Queens
and 16-Queens.

1.2 Genetic Algorithm

Genetic Algorithm is a process inspired by natural selection. In genetic algorithm, we start with
some randomly generated states, which we will call as population. To reach an optimal or ideal
state, we want the population to evolve. To evaluate population, we will need a fitness function
that measures how good an entity is. We will randomly select pairs of individuals to generate a new
populations. The parent individuals are usually selected with respect to some probabilities based
on the fitness function. To generate the offspring, we randomly choose a crossover point and cross
the parents at the crossover point. Each element in the offspring (e.g each character in the string)
will also be subject to some mutation with a small probability. Because we generally select parents
with better fitness, we will expect our new population to be better than the parent population.
The algorithm terminates when we reach a goal or after some number of iterations.

2 Implementation

In this section, we will be introducing our implementation for Parallel Genetic Algorithm to solve
the 8-queens problem.
2.1 Problem Formulation

To solve the problem, we have to first formulate the setting for the game. Since we know we have n
queens and a n*n board, we can represent our board as a list of queen positions, and each position

is represented by a tuple of integers in [1,n]. Our fitness function is the number of non-attacking
pairs, and our goal for a 8-queen setting will give a fitness of 28. In our implementation, we score
each board using fitness(goal) — fitness(state), that is 0 score for a goal state, to make our code
more readable.

2.2 Genetic Algorithm

First of all, the algorithm needs a pool of gene. Here we take all position of the board as gene pool
to make sure the queens can show up in any position on the board.

To generate an entity, we generate a list of random numbers to simulate the shuffle of the pool.
Then we pick n gene in the pool according to the list to guarantee every possible solution has
exactly n queens.

The next step is to select best part of entities depending on their scores. To score them, we
calculate the number of queens on every row, column and diagonal and calculate the sum of max0,
number - 1. In this way , penalty is added by the conflicting pairs of queens.

In order to introduce some new attempt of present entities, mutation is necessary. We simu-
late the mutation by allowing random chess to move one step up, down, left or right.

After finishing all process above, the algorithm goes to next iteration. Then do selection, crossover
and mutation over and over again until max iteration or best answer.

2.3 Parallelization

Since we are generating a large population for each generation and each individual board is highly
independent with the others, we want to use parallelizaiton to speedup our algorithm. By obser-
vation, we can find several parts in our algorithm that can be parallelized.

For a new generation, we will need to generate a large number of boards through crossover. We use
a random seed to choose the parent for a crossover, and the random seed can be drawn i.i.d with
each other. As a result, we can compute the crossover in parallel. In our algorithm, we also have
to keep track of the parent for each new board, thus we will zip the parent boards and offspring
together, we also compute this part in parallel.

Another process we can parallelize is Mutation. Each grid for in a board is subject to a small
chance to mutate, and the mutation does not require information from other process, thus we also
parallelize this mutation process. Just like crossover, we need to keep track of the parent board,
thus we do the zipWith in parallel.

Finding score for each board takes some time, and throughout iterations, we will do lots of redun-
dant score calculations, thus we want to calculate the scores for each potential boards beforehand.
The score for any board depends only on itself, thus we score all the boards in our pool in parallel
to get rid of the redundant calculations.

10 1 —e— Real Time
Ideal Curve

timefs

[

Figure 1: Parallel results and Ideal Curve

3 Result

In this section, we will be presenting our experiment settings and results.

3.1 Experiment Setting

In our experiment, we set our population size to be 300 and we compare our results for 16-queens
because for this setting, the computation will be expensive, and we will be able to see a clear
difference between different number of cores we use. We set the number of iterations to be 500,
because this will guarantee the same specific complexity for every experiment. Our experiment
runs under WSL2-Ubuntu-20.04 on Windows with i7-1165G7 which has 4 cores 8 threads.

3.2 Result Comparison

Cores | Time(s) | Speedup

1 5.198 1

2 3.197 1.63
3 2.694 1.93
4 2.569 2.02
5 2.692 1.93
6 2.923 1.78
7 3.978 1.31
8 9.996 0.52

Table 1: Parallel result and relative speedup. N4 is the best but N8 is the worst

In figure 1, we can see the real time with respect to number of cores used and the ideal curve
computed with 1 core and 2 core. The 1-core case is the sequential genetic algorithm case, and
we can see that the multi-core versions generally achieve an obvious speedup with the sequential
version. We reached the optimal when we are using 4 cores, and with more than 4 cores, the curve
goes up and we are not improving any more. A strange thing we observe is that for the 8-core case,
the algorithm appears to run even slower than the sequential version.

77777777777777

|9 B 3 ENGIEHEIER N B GG @ 2 O EEaa

LT T I T T e e nEag

AN A N O O O NMONNN |0 N A A =om,,) AEIEN | EEEEER 6 EEEEE
(N0 NN NN NN NN NN |0 NN (WA] oom,,) AN | mEnNm | EEE
10 L O AR o m] EEEEN | EEEEER | EEEEE
Figure 2: Threadscope result for N4 Figure 3: Same result but in more finer scope

3.3 Experiment analysis

It is quite interesting that the speedup is not closed to the ideal one when cores number is bigger
than 3. What is more important, the speedup goes down when cores number is bigger than 4.
Therefore we turned to check what is going on by Threadscope. From the statistical result showed
in Table 2, we can easily find that the garbage collect time is huge when we use 8 cores. What
is more, we zoom in the result from Threadscope when cores number equals to 4. It is not hard
to notice that only one core is busy in most time. The others are always waiting. That may be
because we only parallelize crossover, mutation and scoring seperately, but the iteration of these
process is still sequential.

Cores | Total Time(s) | GC Time(s) | Productivity
1 5.13 1.03 79.9%
2 3.13 0.62 80.2%
3 2.63 0.58 78.0%
4 2.50 0.51 79.6%
) 2.62 0.55 78.9%
6 2.85 0.68 76.1%
7 3.90 1.11 71.5%
8 9.92 4.40 55.6%

Table 2: Statistical result from Threadscope

4 Future Work

As I mentioned above, the possible reason for bad performance is sequential iteration. One possible
solution is to pipeline the iteration. However these process are not strictly independent to each
other. It may need more memory space to store the mediate population to make sure the correctness.

5 Source code

5.1 Genetic Algorithm

{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE MultiParamTypeClasses #-}

module GA (Entity(..),

ScoredEntity,
Archive,
GAConfig(..),
evolve,

evolveVerbose,
randomSearch) where
import Control.Monad.Par
import Control.Parallel.Strategies
import qualified Control.Monad.Par.Combinator as C
import Control.Monad (zipWithM)
import Control.Monad.IO.Class (MonadIO, 1iftIO0)
import Data.List (sortBy, nub, nubBy)
import Data.Maybe (catMaybes, fromJust, isJust)
import Data.0Ord (comparing)
import System.Directory (createDirectoryIfMissing, doesFileExist)
import System.Random (StdGen, mkStdGen, random, randoms)

-- |Currify a list of elements into tuples.

currify :: [al] -- ~ list
-> [(a,a)] -- ~ list of tuples
currify (x:y:xs) = (x,y):currify xs

i currify []1 = []
7 currify [_] = error "(currify) ERROR: only one element left?!?"

-- |Take and drop elements of a list in a single pass.

takeAndDrop :: Int -- ~ number of elements to take/drop
-> [al] -- ~ 1list
-> ([al,[al]) -- ~ result: taken list element and rest of list
takeAndDrop n xs
| n >0 = let (hs,ts) = takeAndDrop (n-1) (tail xs)

in (head xs:hs, ts)
| otherwise = ([],xs)

-- |A scored entity.
type ScoredEntity e s = (Maybe s, e)

-- |Archive of scored entities.
type Archive e s = [ScoredEntity e s]

-- |Scored generation (population and archive).
type Generation e s = ([e], Archive e s)

-- |Universe of entities.

1t type Universe e = [el

49
50 —— |Configuration for genetic algorithm.

51 data GAConfig = GAConfig {

52 -- |population size

53 getPopSize :: Int,

54 -- |size of archive (best entities so far)

55 getArchiveSize :: Int,

56 -- |maximum number of generations to evolve

57 getMaxGenerations :: Int,

58 -- |fraction of entities generated by crossover (tip: >= 0.80)

59 getCrossoverRate :: Float,

60 -- |fraction of entities generated by mutation (tip: <= 0.20)

61 getMutationRate :: Float,

62 -- |parameter for crossover (semantics depend on crossover operator)
63 getCrossoverParam :: Float,

64 -- |parameter for mutation (semantics depend on mutation operator)
65 getMutationParam :: Float,

66 -- |enable/disable built-in checkpointing mechanism

67 getWithCheckpointing :: Bool,

68 -- |rescore archive in each generation?

69 getRescoreArchive :: Bool

70 }

71

72 -—— |Type class for entities that represent a candidate solution.

73 |

74 ——- Five parameters:

75 —=

76 —— * data structure representing an entity (e)

77 ==

78 —— * score type (s), e.g. Double

79 —=

80 —- * data used to score an entity, e.g. a list of numbers (d)

81 —-—

82 ——- * some kind of pool used to generate random entities,

83 —- e.g. a Hoogle database (p)

84 —-—

85 —= * monad to operate in (m)

86 —=—

87 —— Minimal implementation should include °’genRandom’, ’crossover’, ’mutation’,
88 -—- and either ’score’’, ’score’ or ’scorePop’.

89 —-—

90 -- The ’isPerfect’, ’showGeneration’ and ’hasConverged’ functions are optional.

92 class (Eq e, Ord e, Read e, Show e,

93 Ord s, Read s, Show s,

94 Monad m)

95 => Entity e s d pm

96 | e ->s, e ->d, e -> p, e -> m where

97

98 -- |Generate a random entity. [required]

99 genRandom :: p -- ~ pool for generating random entities
100 -> Int -- ° random seed

101 ->m e -- ~ random entity

102

103 -- |Crossover operator: combine two entities into a new entity. [required]
104 crossover :: p -- - entity pool

105 -> Float -- ~ crossover parameter

106 -> Int -- ° random seed

107 -> e -- ~ first entity

108 -> e -- 7 second entity

109 -> m (Maybe e) -- ~ entity resulting from crossover

110

111 -- |Mutation operator: mutate an entity into a new entity. [required]
112 mutation :: p -- ~ entity pool

113 -> Float -- ~ mutation parameter

114 -> Int -- ° random seed

115 -> e -- 7 entity to mutate

116 -> m (Maybe e) -- ~ mutated entity

117

118 -- |Score an entity (lower is better), pure version. [optionall

119 --

120 -- Overridden if score or scorePop are implemented.

121 score’ :: d -- ~ dataset for scoring entities

122 -> e -- 7 entity to score

123 -> (Maybe s) -- " entity score

124 score’ _ _ = error $ "(GA) score’ is not defined, "

125 ++ "nmor is score or scorePop!"

126

127 -- |Score an entity (lower is better), monadic version. [optionall]
128 --

129 -- Default implementation hoists score’ into monad,

130 -- overriden if scorePop is implemented.

131 score :: d -- ~ dataset for scoring entities

132 -> e -- 7 entity to score

133 -> m (Maybe s) -- ~ entity score

134 score d e = do

135 return $ score’ d e

136

137 -- |Score an entire population of entites. [optionall

138 ==

139 -- Default implementation returns Nothing,

140 -- and triggers indivual of entities.

141 scorePop :: d -- ~ dataset to score entities

142 -> [e]l] -- ~ universe of known entities

143 -> [e]l] -- ~ population of entities to score

144 -> m (Maybe [Maybe s]) -- ~ scores for population entities
145 scorePop _ _ _ = return Nothing

146

147 -- |Determines whether a score indicates a perfect entity. [optionall
148 --

149 -- Default implementation returns always False.

150 isPerfect :: (e,s) -- ~ scored entity

151 -> Bool -- ~ whether or not scored entity is perfect
152 isPerfect _ = False

153

154 -- |Show progress made in this generation.

155 --

156 -- Default implementation shows best entity.

157 showGeneration :: Int -- ~ generation index

158 -> Generation e s -- ~ generation (population and archive)
159 -> String -- ~ string describing this generation

160 showGeneration gi (_,archive) = "best entity (gen. "

161 ++ show gi ++ "): " ++ (show e)

162 ++ " [fitness: " ++ show fitness ++ "]"
163 where

164 (Just fitness, e) = head archive

165

-- |Determine whether evolution should continue or not,
-- based on lists of archive fitnesses of previous generations.

-- Note: most recent archives are at the head of the list.

-- Default implementation always returns False.

hasConverged :: [Archive e s] -- ~ archives so far
-> Bool -- ~ whether or not convergence was detected
hasConverged _ = False

-- |Initialize: generate initial population.

initPop :: (Entity e s d p m) => p -- ~ pool for generating random entities
-> Int -- ~ population size
-> Int -- ° random seed
->m [e] -- ° initialized population

initPop pool n seed = do

let g = mkStdGen seed

seeds = take n $ randoms g
entities <- mapM (genRandom pool) seeds
return entities

-- |Binary tournament selection operator.

tournamentSelection :: (0rd s) => [ScoredEntity e s] -- ~ set of entities
-> Int -- ° random seed
-> e -- 7 selected entity
tournamentSelection xs seed = if sl < s2 then x1 else x2
where

len = length xs

g = mkStdGen seed

is = take 2 $ map (flip mod len) $ randoms g
[(s1,x1),(s2,x2)] = map ((!!) xs) is

-- |Apply crossover to obtain new entites.

performCrossover :: (Entity e s d p m) => Float -- ~ crossover parameter
-> Int -- ~ number of entities
-> Int -- ° random seed
-> p -- 7 pool for combining entities
-> [ScoredEntity e s] -- ~ entities
-> m [e] -- combined entities
performCrossover p n seed pool es = do

let g = mkStdGen seed
(selSeeds ,seeds) = takeAndDrop (2*2*n) $ randoms g
(crossSeeds,_) = takeAndDrop (2*n) seeds

tuples = currify $ map (tournamentSelection es) selSeeds
resEntities <- sequenceA (zipWith ($)
(map (uncurry . (crossover pool p)) crossSeeds ‘using?

parlist rpar)
tuples ‘using‘ parlList rpar)
return $§ take n $§ catMaybes $ resEntities

-- |Apply mutation to obtain new entites.

; performMutation :: (Entity e s d p m) => Float -- ~ mutation parameter
-> Int -- ~ number of entities
-> Int -- ° random seed
-> p -- ~ pool for mutating entities
-> [ScoredEntity e s] -- ~ entities
-> m [e] -- mutated entities
performMutation p n seed pool es = do

let g = mkStdGen seed

260
261
262
263
264
265

266

(selSeeds ,seeds) = takeAndDrop (2*n) $ randoms g
(mutSeeds,_) = takeAndDrop (2*n) seeds
resEntities <- sequenceA (zipWith ($)
(map (mutation pool p) mutSeeds ‘using
(map (tournamentSelection es) selSeeds
‘using ¢ parlList rpar)
return $§ take n $§ catMaybes $ resEntities

-- |Score a list of entities.

¢ parlist rpar)

‘using ¢ parlList rpar)

scoreAll :: (Entity e s d p m) => d -- ~ dataset for scoring entities
-> [e] -- ~ universe of known entities
-> [e] -- - set of entities to score
-> m [Maybe sl

scoreAll dataset univEnts ents = do

scores <- scorePop dataset univEnts ents
case scores of
(Just ss) -> return ss
-- score one by one if scorePop failed
Nothing -> return (map (score’ dataset) ents ‘using®
-- |Function to perform a single evolution step:
-- % score all entities in the population
-- % combine with best entities so far (archive)
-- *x sort by fitness

-- * create new population using crossover/mutation

-- *x retain best scoring entities in the archive

parlList rpar)

evolutionStep :: (Entity e s d p m) => p -- ~ pool for crossover/mutation
-> d -- ° dataset for scoring entities
-> (Int,Int,Int) -- -~ # of c/m/a entities
-> (Float,Float) -- ~ c¢/m parameters
-> Bool -- " rescore archive in each step?
-> Universe e -- ~ known entities
-> Generation e s -- ~ current generation
-> Int -- ~ seed for next generation

-> m (Universe e, Generat
-- 7 renewed universe,
evolutionStep pool
dataset
(cn,mn,an)
(crossPar ,mutPar)
rescorelArchive
universe
(pop,archive)
seed = do
-- score population
-- try to score in a single go first
scores <- scoreAll dataset universe pop
archive’ <- if rescoreArchive
then return archive
else do
let as = map snd archive
scores’ <- scorelAll dataset universe as
return $ zip scores’ as
let scoredPop = zip scores pop

ion e s)
next generation

299
300
301
302
303
304
305
306
307
308
309

-- combine with archive for selection

combo = scoredPop ++ archive’

-- split seeds for crossover/mutation selection/seeds

g = mkStdGen seed

[crossSeed ,mutSeed] = take 2 $ randoms g
-- apply crossover and mutation
crossEnts <- performCrossover crossPar cn crossSeed pool combo
mutEnts <- performMutation mutPar mn mutSeed pool combo

let -- new population: crossovered + mutated entities
newPop = crossEnts ++ mutEnts
-- new archive: best entities so far
newArchive = take an
$ nubBy (\x y -> comparing snd x y == EQ)
$ sortBy (comparing fst) combo
newUniverse = nub $ universe ++ pop
return (newUniverse, (newPop,newArchive))
-- |Evolution: evaluate generation and continue.
evolution :: (Entity e s d p m) => GAConfig -- ~ configuration for GA
-> Universe e -- ~ known entities
-> [Archive e s] -- ~ previous archives
-> Generation e s -- ~ current generation
-> (Universe e
-> Generation e s
-> Int
-> m (Universe e, Generation e s)
) -- ° function that evolves a generati
-> [(Int,Int)] -- - gen indicies and seeds
-> m (Generation e s) -- “evolved generati
evolution cfg universe pastArchives gen step ((_,seed):gss) = do
(universe’,nextGen) <- step universe gen seed
let (Just fitness, e) = (head $ snd nextGen)
newArchive = snd nextGen
if hasConverged pastArchives || isPerfect (e,fitness)
then return nextGen
else evolution cfg universe’ (newArchive:pastArchives) nextGen step
-- no more gen. indices/seeds => quit
evolution _ _ _ gen _ [] = return gen
-- |Generate file name for checkpoint.
chkptFileName :: GAConfig -- ~ configuration for generation algorithm
-> (Int,Int) -- ~ generation index and random seed
-> FilePath -- ~ path of checkpoint file
chkptFileName cfg (gi,seed) = "checkpoints/GA-"
++ cfgTxt ++ "-gen"
++ (show gi) ++ "-seed-"
++ (show seed) ++ ".chk"
where
cfgTxt = (show $ getPopSize cfg) ++ "-" ++
(show $ getArchiveSize cfg) ++ "-" ++
(show $ getCrossoverRate cfg) ++ "-" ++
(show $ getMutationRate cfg) ++ "-" ++
(show $ getCrossoverParam cfg) ++ "-" ++
(show $ getMutationParam cfg)
-- |Checkpoint a single generation.
checkpointGen :: (Entity e s d p m) => GAConfig -- ~ configuraton for GA
-> Int -- ~ generation index
-> Int -- ~ random seed for gemneration

10

on

on

gss

341 -> Generation e s -- ~ current generation

342 -> I0() -- ~ writes to file

343 checkpointGen cfg index seed (pop,archive) = do

344 let txt = show $ (pop,archive)

345 fn = chkptFileName cfg (index,seed)

346 putStrLn $ "writing checkpoint for gen "

347 ++ (show index) ++ " to " ++ fn

348 createDirectoryIfMissing True "checkpoints"

349 writeFile fn txt

350

351 == |Evolution: evaluate generation, (maybe) checkpoint, continue.

352 evolutionVerbose :: (Entity e s d p m,

353 MonadI0 m) => GAConfig -- ~ configuration for GA

354 -> Universe e -- ~ universe of known entities
355 -> [Archive e s] -- ~ previous archives

356 -> Generation e s -- = current generation
357 -> (Universe e

358 -> Generation e s

359 -> Int

360 -> m (Universe e, Generation e s)

361) -- ° function that evolves a generation
362 -> [(Int,Int)] -- ~ gen indicies and seeds
363 -> m (Generation e s) -- ~ evolved generation
364 evolutionVerbose cfg universe pastArchives gen step ((gi,seed):gss) = do
365 (universe’,newPa@(_,archive’)) <- step universe gen seed

366 let (Just fitness, e) = head archive’

367 -- checkpoint generation if desired

368 1iftI0 $ if (getWithCheckpointing cfg)

369 then checkpointGen cfg gi seed newPa

370 else return () -- skip checkpoint

371 1iftI0 $ putStrLn $ showGeneration gi newPa

372 -- check for perfect entity

373 if hasConverged pastArchives || isPerfect (e,fitness)

374 then do

375 1iftI0 $ putStrLn $ if isPerfect (e,fitness)

376 then "perfect entity found, "

377 ++ "finished after " ++ show gi
378 ++ " generations!"

379 else "no progress for 3 generations, "
380 ++ "stopping after " ++ show gi
381 ++ " generations!"

382 return newPa

383 else evolutionVerbose cfg universe’ (archive’:pastArchives) newPa step gss
384

385 —— no more gen. indices/seeds => quit

386 evolutionVerbose _ _ _ gen _ [] = do

387 1iftI0 $ putStrln $ "done evolving!"

388 return gen

389

300 == |Initialize.

301 initGA :: (Entity e s d p m) => StdGen -- ~ random generator

392 -> GAConfig -- ~ configuration for GA

393 -> p -- ~ pool for gemerating random entities
394 ->m ([e],Int,Int,Int,

395 Float ,Float ,[(Int,Int)]

396) -- °~ initialization result

397 initGA g cfg pool = do

398 -- generate list of random integers

399 let (seed:rs) = randoms g :: [Int]

11

434

136
437
138
139
440

443

446

ps = getPopSize cfg
-- initial population
pop <- initPop pool ps seed
let -- number of entities generated by crossover/mutation
cCnt = round $ (getCrossoverRate cfg) * (fromIntegral ps)
mCnt = round $ (getMutationRate cfg) * (fromIntegral ps)
-- archive size
aSize = getArchiveSize cfg
-- crossover/mutation parameters
crossPar = getCrossoverParam cfg
mutPar = getMutationParam cfg
-- seeds for evolution
seeds = take (getMaxGenerations cfg) rs
-- seeds per generation
genSeeds = zip [0..] seeds
return (pop, cCnt, mCnt, aSize, crossPar, mutPar, genSeeds)

|Do the evolution!

evolve :: (Entity e s d p m) => StdGen -- ~ random generator

-> GAConfig -- ~ configuration for GA
-> p -- ~ random entities pool
-> d -- ° dataset required to score entities

->m (Archive e s) -- best entities

evolve g cfg pool dataset = do

-- initialize
(pop, cCnt, mCnt, aSize,
crossPar, mutPar, genSeeds) <- if not (getWithCheckpointing cfg)
then initGA g cfg pool
else error $ "(evolve) No checkpointing support "
++ "(requires 1iftI0); see evolveVerbose."
-- do the evolution
let rescoreArchive = getRescoreArchive cfg
(_,resArchive) <- evolution
cfg [1 [1 (pop,[1)
(evolutionStep pool dataset
(cCnt ,mCnt ,aSize)
(crossPar ,mutPar)
rescoreArchive)
genSeeds
-- return best entity
return resArchive

|Try to restore from checkpoint.

First checkpoint for which a checkpoint file is found is restored.
restoreFromChkpt :: (Entity e s d p m) => GAConfig -- ~ configuration for GA

-> [(Int,Int)] -- ~ gen indices/seeds
-> I0 (Maybe (Int,Generation e s))

oo restored generation (if any)

restoreFromChkpt cfg ((gi,seed):genSeeds) = do

chkptFound <- doesFileExist fn
if chkptFound
then do
txt <- readFile fn
return $ Just (gi, read txt)
else restoreFromChkpt cfg genSeeds

where

fn = chkptFileName cfg (gi,seed)

restoreFromChkpt _ [] = return Nothing

12

-- |Do the evolution, verbosely.
-- Prints progress to stdout, and supports checkpointing.

-- Note: requires support for 1iftI0 in monad used.

evolveVerbose :: (Entity e s d p m, MonadIO m)
=> StdGen -- ~ random generator
-> GAConfig -- ~ configuration for GA
-> p -- ~ random entities pool
-> d -- ~ dataset required to score entities
-> m (Archive e s) -- ~ best entities
evolveVerbose g cfg pool dataset = do

-- initialize
(pop, cCnt, mCnt, aSize,
crossPar, mutPar, genSeeds) <- initGA g cfg pool
let checkpointing = getWithCheckpointing cfg
-- (maybe) restore from checkpoint
restored <- 1iftI0 $ if checkpointing
then restoreFromChkpt cfg (reverse genSeeds)
else return Nothing
let (gi,gen) = if isJust restored
-- restored pop/archive from checkpoint
then fromJust restored
-- restore failed, new population and empty archive
else (-1, (pop, [1))
-- filter out seeds from past generations
genSeeds’ = filter ((>gi) . fst) genSeeds
rescoreArchive = getRescoreArchive cfg
-- do the evolution
(_,resArchive) <- evolutionVerbose
cfg [1 [1 gen
(evolutionStep pool dataset
(cCnt ,mCnt ,aSize)
(crossPar ,mutPar)
rescoreArchive)
genSeeds’
-- return best entity
return resArchive

-- |Random searching.

-- Useful to compare with results from genetic algorithm.

randomSearch :: (Entity e s d p m) => StdGen -- ~ random generator
-> Int -- ° number of random entities
-> p -- ~ random entity pool
-> d -- 7 scoring dataset
-> m (Archive e s) -- ~ scored entities
)
randomSearch g n pool dataset = do
let seed = fst $ random g :: Int

es <- initPop pool n seed

scores <- scoreAll dataset [] es

return $§ nubBy (\x y -> comparing snd x y == EQ)
$ sortBy (comparing fst)
$ zip scores es

5.2 8-queens

13

(sorted

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE TypeSynonymInstances #-}

import Data.Map(fromListWith, toList)

import System.Random (mkStdGen, random,
import System.I0(IOMode(..), hClose, hGetContents,

import GA (Entity(..), GAConfig(..),

randoms)

evolve, evolveVerbose, randomSearch)

queensNum = 8
count [] = []

count ((a,b):xs) = (b - 1) : (count xs)

bound :: Int -> Int
bound x = (x ‘mod‘ queensNum) + 1

type Location = (Int, Int)
type Board = [(Int, Int)]
type Target = [(Int, Int)]

instance Entity Board Int () [Location] IO where

genRandom pool seed = return $ take queensNum $ map ((!!) pool) is

where
g = mkStdGen seed
k length pool

is = map (flip mod k) $ randoms g
crossover seed el e2 = return $ Just e

where
g = mkStdGen seed

cps = zipWith (\x y -> [x,y]) el e2

picks = map (flip mod 2) $ randoms g

e = zipWith (!!) cps picks

openFile)

mutation _ seed e = return $ Just $ (zipWith replace tweaks e)

where
g = mkStdGen seed

tweaks = randoms g :: [Int]
2)

replace i x = if (2 ‘mod°

then case (i ‘mod‘ 4) of

1 -> (bound(pred $
2 -> (bound(pred $
3 -> (bound(succ $
0 -> (bound(succ $

fst
fst
fst
fst

-> error "crossover:

else x

0

x), bound(pred
x), bound(succ
x), bound(succ
x), bound(pred
unknown case"

@ B L B

snd
snd
snd
snd

score’ _ e = Just $§ fromIntegral (row + column + diagonal)

where

rowfreq e = tolist (fromListWith (+)

[(snd(x),1)

columnfreq e = tolList (fromListWith (+) [(fst(x),1)
freq e = tolList (fromListWith (+) [(x,1) | x <-
row = sum $ count $ rowfreq e
column = sum $ count $ columnfreq e

diagonal = (sum $ count $ freq $ map (\(a,b)

$ freq $ map (\(a,b) -> a+b) e)

14

el)

x))
x))
x))
x))

x <-
| x <-

-> a-b) e) + (sum $ count

59 isPerfect (_,s) = s == 0

61 main :: I0()

62 main = do

63 let cfg = GAConfig

64 200 -- population size

65 30 -- archive size (best entities to keep track of)
66 100 -- maximum number of generations

67 0.8 -- crossover rate (J, of entities by crossover)
68 0.4 -- mutation rate (), of entities by mutation)

69 0.0 -- parameter for crossover (not used here)

70 0.4 -- parameter for mutation (% of replaced letters)
71 False -- whether or not to use checkpointing

72 False -- don’t rescore archive in each generation
73

74 g = mkStdGen 0 -- random generator

75

76 chessPool = [(a,b)| a <- [1..queensNum], b <- [1..queensNum]]
77 -- Do the evolution

78 es <- evolveVerbose g cfg chessPool ()

79 let e = snd $ head es :: Board

80

81 putStrLn $ "best entity: " ++ (show e)

15

	Introduction
	8-queens puzzle
	Genetic Algorithm

	Implementation
	Problem Formulation
	Genetic Algorithm
	Parallelization

	Result
	Experiment Setting
	Result Comparison
	Experiment analysis

	Future Work
	Source code
	Genetic Algorithm
	8-queens

