
Fli-o: The File I/O language
Manager: Matthew Chan (mac2474)

System Architect: Justin Gross (jg3544)

Tester: Gideon Cheruiyot (gkc2112)

Language Guru: Eyob Tefera (et2546)

Motivation
● File manipulation in most

languages leaves something

desired

● Wanted to make file

manipulation easier

What makes Fli-O
so special?

● Native types for Files and

Directories

● Built-in library for common file

and directory operations

● Simplified file interactions

● Originally had two ideas

○ File Manipulation

○ String operations

● Had project proposal reviewed

○ Figured out it was better to focus on

one

● File manipulation seemed more

unique, focused on that

Fli-o’s Evolution

How Fli-o was
created

● Code written in Ocaml, C, and

LLVM

○ LLVM via Ocaml bindings

● Communication through

Facebook messenger

● Collaboration through Github

System Architecture

Testing

We tested Fli-o in three ways:

● Unit Test - short to quickly find

errors.

● Manual Testing - building an exe

for each .ll file. We used this to

develop the test-suite one by one.

● Test Script/Regression Testing

Language Overview

General Attributes:

● Statically typed

● Static scoping

● Applicative order evaluation

● Main function in global scope

○ Ex: OCaml, Python, bash

Unique Features:

● Built-in functions

○ Operations on files and strings

Built-in Functions
stdlib.c

Operations on files

● file fopen(string fname)

● int create(string fname)

● int move(string f1, string f2)

● int copy(string f1, string f2)

● int delete(string fname)

● int write(file f, string buf)

● string read(file f, int len)

● string readLine(file f)

● int appendString(file f, string buf)

Built-in Functions
stdlib.c

Operations on strings

● void prints(string s)

● string concat(string s1, string s2)

● int strcmp(string s1, string s2)

Operations on integers

● void print(int i)

● string intToStr(int i)

Operations on directories

● dir dopen(string path)

● int rmdir(string path)

DEMO

Demo Program
Source Code

def addLineNumbers(string filename)
{
 file f = fopen(filename);
 // Create a copy of the current file
 string copyName = concat('lined_', filename);
 copy(filename, copyName);
 file newFile = fopen(copyName);
 string line = readLine(f);

 // Keep track of which line we are on
 int lineNo = 0;
 string prefix;

 // Loop through all of the lines in file f
 for(; strcmp(line, '') != 0;;) {
 prefix = concat('[', intToStr(lineNo));
 prefix = concat(prefix, '] ');
 // Write the lined version to the new file
 write(newFile, concat(prefix, line));
 line = readLine(f);
 lineNo = lineNo + 1;
 }
}
addLineNumbers('sample.txt');

BEFORE AFTER

Next Steps
Additional Features:

1. Pipes & exec

a. dup2 syscall

b. Issues: LLVM pointer indirection

2. Arrays

3. Built-in functions

Lessons Learned
● Don’t try to do too much

● Be more flexible on work

allocation

● OCaml has a steep learning

curve

● Keep track of your lets and ins

Individual Thoughts
● Eyob

● Gideon

● Matthew

● Justin

