VSCOde Language Reference Manual

Jessica Cheng (jc4687)
Anna Lu (ajl2256)
Hana Mizuta (hm2694)
Spencer Yen (ssy2121)
Kenny Yuan (kky2114)

October 15, 2018

Contents

1 Introduction and Motivation

2 Types
2.1 Primitives
2.2 Structures e

3 Lexical Conventions

3.1 Identifiers oo
3.2 Keywords
3.3 Literals e e e
3.3.1 Imteger Literals
3.3.2 Double Literals
3.3.3 Character Literals
3.3.4 Boolean Literals
3.3.5 String Literals
3.3.6 Tuple Literals
3.3.7 Matrix Literals
34 Commentso
3.4.1 Single-line Comments L
3.4.2 Multi-line Comments
3.5 Operators
3.5.1 Arithmetic Operators
3.6 Matrix Operatorso e
4 Syntax Notations
4.1 EXpressions e e e
4.1.1 Precedence and Associativity Rules
4.1.2 Type Conversions v v v v v v i e e
4.1.3 Equalityo
4.1.4 Subscripts
4.2 Declaration
4.2.1 Matrix Declaration L o
4.2.2 Function Declaration oL

w w W

S UL UL UL UL UL UL Ui W i b B W w W

ENEENEEN BEN BER PN o NIe NI

Standard Library Functions
5.1 Functions
5.2 Load and Save Functions

5.3 Matrix Transformations .

Code Samples

6.1 GCD Algorithm.
6.2 Grayscale
6.3 Edge Detection

Team Roles

References

00~ =

© 0o 0o

1 Introduction and Motivation

VSCOde is a language designed to analyze and manipulate images, inspired by the high definition
mapping technology used by autonomous vehicles.

VSCOde performs various image image rotation, color adjustments (saturation, brightness, con-
trast, etc.), basic edge detection, and custom filters. Images are represented as matrices, granting
users greater control over the individual pixels in an image and allowing easy application of filters

through matrix transformations.

VSCOde syntax draws from C, Matlab, and Python with its matrix-focused nature.

2 Types

2.1 Primitives

Type Description

char 8-bits (smallest addressable unit)
int 32-bit signed integer

double | 64-bit float point number

bool 8-bit boolean variable

string | Array of ASCII characters

2.2 Structures

Structure | Description Syntax
matrix Mutable data structure storing [
a collection of primitive data -1, -1, -1;
types with set dimensions (n, m) -1, 8, -1;
that are immutable. All elements -1, -1, -1

of a matrix must be of the same |]
type.

Size = total size of all of the el-
ements in the matrix Saved in
memory with pointer to the first
element. Every other element is
placed next to the preceding ele-
ment.

3 Lexical Conventions

3.1 Identifiers

The convention for identifiers is camel case, where the first letter of the identifier is lowercase, but
every subsequent first character of a word is uppercase (e.g. samplelmage)

3.2 Keywords

The keywords listed in the table below are reserved by the language, and cannot be used as
identifiers.

Keyword | Description
Function declaration. Follows syntax

func func name(type varName) -> returnType

-> Denotes return type of function

return Ends the current function execution and returns a value
void Indicates that function has no return value

true Boolean keyword for true

false Boolean keyword for false

int 32-bit signed integer

double 64-bit floating point number

bool 8-bit boolean

string Array of ASCII characters

matrix Mutable data structure storing any size of primitive data

types

Standard for loop that executes statements when a condi-
tion related to a variable that gets incremented or decre-
for mented is true. Var must be initialized before being used in
the loop. Follows syntax

for(var; condition; incr) { statements }

Standard while loop that executes statements when a con-

while dition holds true. Follows syntax
while(condition) { statements }
if Standard if, else condition clause. Follows syntax
else if (condition) { statements } else { statements }

continue | Stops the current iteration of a for or while loop, and starts
the next iteration

break Stops the iteration of the immediate enclosing for or while
loop

3.3 Literals

3.3.1 Integer Literals

A sequence of one or more numerical digits representing an integer. Example: [0-9]+

3.3.2 Double Literals

[4

A sequence of zero or more numerical digits followed by a ¢.’, followed by one or more numerical

digits. Example: [0-9]*‘.>[0-9]+

3.3.3 Character Literals

A single character enclosed by a pair of single quotation marks representing an unnamed char.
Example: ’a’

3.3.4 Boolean Literals

Consists of two keywords true or false

3.3.5 String Literals

A sequence of character primitives enclosed by a pair of double quotation marks representing an
unnamed string. Example: "this is a string"

3.3.6 Tuple Literals

A comma separated sequence of data types enclosed by parentheses. You can return a tuple, but
cannot move it around as a type (for the scope of our language, it is not necessary).
Example: (int, matrix, boolean)

3.3.7 Matrix Literals

A sequence of primitive data types enclosed by square brackets, with rows delimited by semicolons,
and items delimited by commas.
Example: [-1,-1,-1; -1,8,-1; -1,-1,-1] =

[
-1, -1, -1;
-1, 8, -1;
-1, -1, -1
1

3.4 Comments

3.4.1 Single-line Comments

Single-line comments are denoted by //. Example:

// this is a single-line comment

3.4.2 Multi-line Comments
Multi-line comments are denoted by /* */. VSCOde does not support nested multi-line comments.
Example:

/* this is a
multi
line
comment */

3.5 Operators

3.5.1 Arithmetic Operators

Operator Description

+ Addition (binary operator between two ints or two doubles).
Will throw error if called on an int and double.

- Subtraction (binary operator between two ints or two dou-
bles). Will throw error if called on an int and double.
Multiplication (binary operator between two ints or two
doubles). Will throw error if called on an int and double.

/ Division (binary operator between two ints or two doubles).
Will throw error if called on an int and double.
% Modulo (binary operator between two ints or two doubles).

Will throw error if called on an int and double.

<, >, <=, >= | Greater than, less than, greater than or equal to, less than
or equal to, equal to, not equal to. Binary operator between
two ints or two doubles. Will throw error if called on an int
and double.

3.6 Matrix Operators

Operator | Description Example
+ Addition (binary operator
between two matricesora | 3 + [-1, -1, -1; -1, 8, -1]
scalar and matrix). Will | = [2, 2, 2; 2, 11, 2]
throw error if matrix di-
mensions are incompati- [1, 11 + [2, 2]
ble. =33
- Subtraction (binary oper-
ator between two matrices | [-1, -1, -1; -1, 8, -1] - 3
or a scalar and matrix). | = [-4, -4, -4; -4, 5, -4]
Will throw error if matrix
dimensions are incompati- (1, 11 - [2, 2]
ble. = [-1, -1]
* Multiplication (binary op-
erator between two matri- | 3 * [-1, -1, -1; -1, 8, -1]
ces or a scalar and ma- | = [-3, -3, -3; -3, 24, -3]
trix). Will throw error if
matrix dimensions are in- (1, 2, 3; 2, 3, 4] * [1, 2; 3, 4; 5, 6]
compatible. = [22, 28; 31, 40]
[r, c] Matrix access.
int matrix [3,3] M =
[
-1, -1, -1;
-1, 8, -1;
-1, -1, -1
1;
print(M[1, 2]) // should print element in
2nd row, 3rd column: -1

4 Syntax Notations

4.1 Expressions

4.1.1 Precedence and Associativity Rules

Precedence | Operator Token Associativity
1 Parenthetical Grouping 0 Left
Array/Matrix Subscript
2 Functi/on Call E]) -> Left
3 Unary Operator ! Right
4 Binary Multiplicative Operators | * / % Left
5 Binary Additive Operators + - Left
6 Comparative Operators < <= => > | Left
7 Equality ==I= Left
8 Assignment = Left
9 Sequencing ; Left

4.1.2 Type Conversions

The user must explicitly cast between doubles and ints, and strings with any other type to gen-
erate the string notation. (ie. string x = (string) 5;)

4.1.3 Equality

The equality operators (== and !=) are structural for primitive types, meaning that they recur-
sively compare the values of primitives. However, all other types use referential equality.

4.1.4 Subscripts

A postfix expression in square brackets is a subscript, whose expression has type matrix.

4.2 Declaration

4.2.1 Matrix Declaration

type matrix [m,n] name = [a, b, c; e, £, g; h, i, jl;
Example:
int matrix [3,3] mat = [1, 2, 3; 4, 5, 6; 7, 8, 9];

The matrix specifier, followed by the immutable dimensions of the matrix in brackets, define the
variable as a matrix type of fixed dimensions. The elements within the matrix are of any primitive
type. Semicolons separate every row, while commas separate elements within each row.

4.2.2 Function Declaration

func name(type varName) -> returnType

Use the keyword func to declare this is a function declaration. Then follows the user defined
function name, followed by parentheses. In the parentheses, the arguments (type and name of
argument) that the function accepts is defined. After the parentheses, an arrow represented by ->
followed by a data type signifies the return type of the function

5 Standard Library Functions

5.1 Functions

Name Description Return Type
print(string s) | Prints argument to standard output void

dim(matrix m) | Gets the dimensions of an object (int, int)

load(string Loads an image into a 3-tuple of red, green, | (matrix, matrix, matrix)
name) blue matrices

save(matrix r, | Saves 3 matrices corresponding to RGB values | bool
matrix g, ma- | as a jpg image with name s
trix b, string s)

5.2 Load and Save Functions

The standard library will provide methods to load an image file (.jpg) as matrices and to save
matrices as an image file (.jpg). Our language’s representation of an image will consist of three
separate matrices per image to represent the red, green, and blue color channels. These methods

will be written in C to leverage OpenCV and linked to our implementation. Specifically, our load
method will use OpenCV’s imread() function to read an image file into a C Mat object, a multi-
channeled matrix. We can then iterate through the Mat object and parse it to create three separate
RGB matrices in our language’s format. Our save function will work similar, leveraging OpenCV’s
imwrite() function to parse our matrices into a Mat object and write it back into an image file.

5.3 Matrix Transformations

Method Description

transpose(matrix m) Transposes matrix m

replace(matrix m, int a, int b) | Replaces every instance of a in matrix m with b
multiply (matrix a, matrix b) Multiplies matrix a by matrix b

rotate(matrix a, double deg) Rotates matrix a by deg degrees by multiplying the matrix by
[[cos(deg), sin(deg)], [-sin(deg), cos(deg)]]

convolute(matrix a, matrix b) | Convolutes matrix a with matrix b

6 Code Samples

6.1 GCD Algorithm

// greatest common denominator function in VSCOde
func gcd (int m, int n) -> int {
while (m > 0) {
int ¢ = n % m;

n =m;
m = C;
return n;

6.2 Grayscale

func applyGrayscale (string imageName) -> void {

// read image into a matrix
// 4092 x 4092 because load matrix is of unknown size
double matrix [4092,4092] r, g, b = load(imageName); // load returns a tuple literal

// weighted method of grayscale
multiply(r, 0.3);
multiply(g, 0.59);
multiply(b, 0.11);

save(r, g, b, "new.jpg");

https://docs.opencv.org/3.1.0/d4/da8/group__imgcodecs.html#ga288b8b3da0892bd651fce07b3bbd3a56
https://docs.opencv.org/3.1.0/d3/d63/classcv_1_1Mat.html
https://docs.opencv.org/3.1.0/d4/da8/group__imgcodecs.html#gabbc7ef1aa2edfaa87772f1202d67e0ce

6.3 Edge Detection

func applyAllDirectionEdgeDetection (string imageName) -> void {

// read image into a matrix
// assume that load matrices are 4096 by 4096
double matrix [4096,4096] r, g, b = load(imageName); // load returns a tuple literal

// all direction edge direction matrix
int matrix [3,3] edgeDetection =

[
-1, -1, -1;
-1, 8, -1;
-1, -1, -1
1;

convolute(r, edgeDetection);
convolute(g, edgeDetection);
convolute(b, edgeDetection);

save(r, g, b, "new.jpg");

7 Team Roles

Project Manager — Jessica Cheng
System Architect — Hana Mizuta
System Architect — Kenny Yuan
Language Guru — Spencer Yen
Tester — Anna Lu

8 References

FaceLab Report.
Lane Detection for Self-Driving Cars with OpenCV.
Lode’s Computer Graphics Tutorial.

http://www.cs.columbia.edu/~%20sedwards/classes/2017/4115-fall/reports/Facelab.pdf
https://lodev.org/cgtutor/filtering.html
https://lodev.org/cgtutor/filtering.html

	Introduction and Motivation
	Types
	Primitives
	Structures

	Lexical Conventions
	Identifiers
	Keywords
	Literals
	Integer Literals
	Double Literals
	Character Literals
	Boolean Literals
	String Literals
	Tuple Literals
	Matrix Literals

	Comments
	Single-line Comments
	Multi-line Comments

	Operators
	Arithmetic Operators

	Matrix Operators

	Syntax Notations
	Expressions
	Precedence and Associativity Rules
	Type Conversions
	Equality
	Subscripts

	Declaration
	Matrix Declaration
	Function Declaration

	Standard Library Functions
	Functions
	Load and Save Functions
	Matrix Transformations

	Code Samples
	GCD Algorithm
	Grayscale
	Edge Detection

	Team Roles
	References

