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Abstract

The coevolution of strategies in the repeated Prisoner's Dilemma game is studied under both perfect and
imperfect information conditions. Players are required to submit. strategies in the form of finite automata in
order to participate in the game. By applying recent developments from the study of genetic algorithms in
computer science, an explicit environment and selection process are derived. Using this framework, the effect
of imperfect information on the development of cooperation and strategic choice is studied. The strategies
that emerge are classified and their performances are analyzed. The results of the analysis indicate that
information conditions lead to significant differences arising between the evolving strategic environments.
Furthermore, they suggest that the general methodology may have much wider applicability.
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1. Introduction

The search for an appropriate way to model the strategic choices of agents has been a
central topic in the study of game theory. While a variety of approaches have been used,
most of them fail to incorporate notions of bounded rationality and implementation costs.
One new technique for directly confronting these issues is the theoretical study of meta-agents
who select a strategy from a well-defined set of available strategies in order to participate in
the game. This paper e:A."plores the coevolution of strategies in the context of the repeated
Prisoner's Dilemma (RPD) game, when the meta-agent's choice is modeled by an evolutionary
process.

Consider the following thought experiment. A group of individuals is about to playa
game. In order to participate, players are required to submit a program which exactly specifies
their moves contingent upon the opponent's reported moves. Initially, the participants have
no lmowledge of how to play the game, and thus randomly choose their programs. After each
round of the game, the actual scores and programs of every player become common knowledge.
Based on this information, each person is allowed to adjust his or her program for the next
round. Participants submit their new programs, and a new round is initiated. Given such an
environment, what types of programs will emerge?

The basic elements of the above scenario encompass important ideas about equilibrium
behavior which have emerged from the recent work of Binmore (1986a). Binmore argues that
descriptive concepts of equilibrium may be more important than prescriptive ones. Fiowever,
current descriptive constructs, for example, the idea of evolutionary stable strategies (Maynard
Smith, 1982), lack the ability to incorporate forms of learning and innovation. The present
study removes this restriction, allowing for both learning and innovative processes to enter the
game in a tractable manner.

Tills work assumes that a player's program can be represented by a finite automaton (a
Moore machine). The idea of selecting a new program based on the results of previous programs
is operationalized through the use of recent results from the study of genetic algorithms in
computer science. Using these elements, the evolving strategic choices of agents are examined
under the conditions of a repeated Prisoner's Dilemma game with both perfect and imperfect
information. The strategies that emerge are classified and their performances are analyzed.

The following research has both theoretical and empirical components. On the theoretical
level, elements of bounded rationality and adaptive behavior are combined in a general method-
ological framework. While the major focus is a game theoretic application of this framework,
generalizations which capture other social science phenomenon exist, and are discussed in the
last section. Empirically, this paper introduces techniques which allow useful experimentation
to be conducted on a wide variety of games and other complex systems. Through the use of
these methods, problems which were previously inaccessible can now be analyzed.

2. Background

The potential of automata theory for the analysis of games was first suggested in the
economics literature by Aumann (1981). Rubinstein (1986) studied an RPD in which both
players were required to submit strategies in the fonn of a Moore machines. Moore machines
were used to model a fonn of bounded procedural rationality, wherein players, recognizing
that strategies are costly to implement, economize on the size of the machine. R.ubinstein did
not, however, consider the cost of computing these optimal rules. The fact that no bounds are
assumed on the abilities of players to derive the best procedural rules is disturbing and the
approach utilized in this study circumvents this inconsistency. Nevertheless, R.ubinstein's work
is an important formalization of the bounded rationality hypothesis. Rubinstein introduced
a c1ynanlic definition of equilibrium in such machine games and found that, in equilibrium,
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machines will have cycles which never use an internal state more than once during any repeti-
tion, and that opposing machines will coordinate their actions. This latter result implies that
the potential set of equilibrium outcomes from the game is sharply reduced. In a later paper,
Abreu and R.ubinstein (1988) weakened the definition of equilibrium and found that a simila.r
class of results holds.

In this paper, the meta-agent's choice of a strategy automaton is modeled through the
use of a genetic algorithm (Holland, 1975). Fogel et al. (1966) and Axelrod (1987) have
presented related applications of the genetic algorithm. Fogel et al. evolved finite automata
which attempted to predict a periodic sequence. Besides the obviously different task, their
adaptive plan lacked many of the important features which produce a powerful genetic algo-
rithm (for example, crossover). Axelrod used a genetic algorithm to evolve RPD strateg-ies
which based their moves on the game's past three-move history. There are a number of ma-
jor differences between his work and the one reported here. First, the environment in this
work is allowed to vary continuously as the population changes. The major focus of Axelrod's
study was on strategies evolving against a fixed environment, one based on eight represen-
tative strategies from his earlier tournaments. 1 Second, a wide variety of experiments are
conducted in this analysis, most notably, the impact of imperfect reporting. Finally, the use of
automata to represent strategies has two major advantages over Axelrod's fL'Ced history strate-
g,-ies: (1) automata are a very flexible description of strategic choice, and thus incorporate
many theoretically important strategies which cannot be easily defined under the restriction of
the past three-move history (for example, strategies which rely on counting or triggers, etc.),
and (2) their analytical possibilities are much richer.

3. The Repeated Prisoner's Dilemma, Finite Automata, and Evolution

,1.1 Repeated Prisoner's Dilemmas

The game used in this analysis is the repeated Prisoner's Dilemma (RPD). The Prisoner's
Dilerruna game was first formalized by Tucker (1950), and its current applications span most
of social science (see Axelrod and Dion, 1987, for a partial review). Important economic
applications include: collusion between finns, trade barriers between countries, and public
goods problems. The Prisoner's Dilemma was chosen for this analysis for two reasons: because
of its wide applicability, and the potential for direct comparisons of the new methodology with
the plethora of previous results.

The basic Prisoner's Dilemma is a two-player game, with each player having a choice of
either cooperating (C) or defecting (D). A typical set of payoffs is presented in Figure 3.1.
Given these payoffs, it is easily shown that mutual defection is the only Nash equilibrium (it
is also a dominant equilibrium). Of course, the intrigue of the Prisoner's Dilemma is that
this unique equilibrium is Pareto inferior to the mutual cooperation outcome. If the basic
Prisoner's Dilemma is iterated, the resulting supergame is a RPD. If the number of iterations
is a known finite number, then a simple backward induction argument implies that the only
equilibrium is mutual defection in every round. However, if the game is repeated a. finite
but unknown number of times or if it is played an infinite number of times with discounting
or payoff averaging, then cooperative outcomes can theoretically emerge--in fact, the folk
theorem (Fudenberg and Maskin, 1986), implies that with sufficiently little discount.ing, any
individually rational outcome can be supported as a (subgame-perfect) Nash equilibrium.

The actual behavior of human subjects in the RPD has been widely analyzed (see the
references cited in Shubik, 1982, pp. 400-401). Axelrod (1984) conducted two tournaments

1 The variable environment case explored here was mentioned in Axelrod's paper, but very little attention \Vas
given to it. The last part of Section 5 develops some links between the two approaches.
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C1 (3,3 0,5)
D 1 5,0 1,1

(The payoffs are ordered Player 1, Player 2.)

Figure 3.1. The Basic Prisoner's Dilemma

which used computerized strategies submitted by subjects from a variety of backgrounds. His
analysis indicated that the most effective strategy in the tournaments, Tit-For-Tat (TFT), was
also the least complicated. TFT begins by cooperating and then mirroring the opponent's last
move. The primacy of TFT was somewhat surprising, given the level of sophistication of other
strategies entered in the tournament.

'While a large amount of analysis exists for the RPD under conditions of perfect infor-
mation, very Uttle exists for the game under imperfect information. A variety of concepts of
imperfect information in these models exist. The concept utilized here is that of noisy report-
ing of the opponent's actual moves. That is, a noise level of a% indicates that 0'% of the
time an opponent's move is reported to be the opposite of what the opponent actually did,
while the remainder of the time the move is perfectly transmitted.2 The introduction of noise
into the system extends the basic RPD game to conditions which model some important situ-
ations, for example, price agreements among oligopolistic firms, arms treaties under uncertain
verifiability conditions, etc.

Experiments similar to Axelrod's have been conducted for noisy RPD by Bergstrom and
IvIiller (1985). Noise has a significant impact on the efficacy of strategies and the results are
very different from the perfect information case. More complex strategies (for example, those
based on Bayesian updating) tend to do quite well, while TFT's performance suffers.3 The
presence of noise in the system impUes that strategies should not only react to the misreporting,
but also try to exploit it. Thus, programs which discount reported defections due to the noise,
may fall victim to strategies which intentionally defect hoping for either a forgiving opponent
or a reporting error.

The R.PD is a natural choice for inclusion in these experiments. Techniques which allow
carefully controlled experimentation with the model under a variety of situations will not only
increase our current knowledge about the game's characteristics, but also expand the possible
set of applications. The RPD is a member of a much broader class of garnes, and therefore
procedures used with this game may be easily transferred into related domains. A key to
maintaining this generality is finding a convenient yet flexible representation for the strategies
in the game. While a variety of possibilities exist, the use of finite automata for this purpose
appears promising.

2 vVhile this analysis will only consider symmetric noise levels, an interestjng extension would be to cases of
asymmetric noise. For example, suppose that defections from a price agreement are hard to detect. Then, the
likelihood that a firm defecting from such an agreement is reported as cooperating may be far higher than the
possibility of a cooperating firm being misreported as defecting.

J Intuition about why TFT does poorly can be gained by considering two TITs playing one another. WiOIO"t.
noise, the two strategies will cooperate for all rounds, while with noise, they can easily get out of synchronizn.t.iol1
resulting in long sequences of CID2,D1C2,ClD2,D1C2 • ... , and thus low payoffs.
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,1.2 Finite Automata

Finite automata mathematically model a system which responds to discrete inputs and
outputs. The models arising from finite automata "capture the notion of a fundamental class
of systems, a class rich in structure and applications" (Hopcroft and Ullman, 1979, p. 14). The
actual applications of finite-state systems range from the analysis of computational processes
and neural networks to a theoretical understanding of costly strategic choice in games. This
latter application is, of course, of most interest to this work; however, the vast modeling
potential of these techniques hints at a far richer set of potential applications of the general
methodology developed here.

The specific type of finite automata used here is a Moore machine. A Moore machine
designed to play the RPD is described by four elements.4 The machine consists of a set of
internal states. One of these states is designated as the starting state, and serves as the initial
state of the machine. Every internal state has associated with it a single strategic action,
thus in the RPD every state indicates whether the machine will cooperate or defect during
the next period. Finally, there is a transition function associated with each internal state
which gives the next internal state that the machine will enter given the reported action of the
opponent. The transitions may go to any of the internal states (including the current one),
and are always conditional on the current state of the machine and the reported move of the
opponent. Thus, a machine begins in its starting state and does the action specified in that
state (either cooperate or defect). The machine then moves to a new internal state based on
the reported move of the opponent, and proceeds with the action specified in the new state.
This process will continue until the game ends.

A more intuitive description of an automaton is given by its transition dia.gram (see Figure
3.2 for some examples). The nodes of the transition diagram represent the internal states, with
the upper-case labels inside of the nodes showing the move that the machine will make when
it enters that state. The transition function is specified by the labeled arcs emerging from
each node, where the lower-case label indicates the observed move of the opponent and the arc
points towards the next state of the machine. The starting state is indicated by the arc labeled
S. For example, the first machine in Fig;ure 3.2 always cooperates, regardless of the opponent's
actions. The second machine is an automaton which models TFT. It starts in the left-hand
state and 'Cooperates. If the opponent is reported as cooperating, it stays in the left-hand state
and again cooperates. However, if a defection is reported, a transition occurs to the right-hand
state and the machine issues a defection. The automaton will remain in the right-hand state
(and thereby continue defecting) until a cooperation is observed by the opponent, at which
time a transition to the left-hand state, and thus cooperation, will ensue. The third machine
is a trigger strategy, which begins by cooperating and continues to do so tmless the opponent
defects. If a defection occurs, the automaton enters a tenninal (absorbing) state of defection.
Once in the ternlinal state, there are no possible transitions which will change the a.utomaton's
internal state, and therefore it will defect for the remainder of the game. The fourth automaton
describes a strategy which always cooperates, unless the opponent is observed to defect. If
a defection is observed, this strategy will defect for two consecutive turns, and then return
to the cooperative state. The final machine begins by cooperating four times in a row and
then defects for the rest of the game. As is apparent from the previous descriptions, automata
capture a large set of potential strategies, including a number of those strategies which have
been of central importance to various earlier studies.

4 Formally, a Moore machine is described by a four-tuple < Q, qo, A, 8 >, where Q is a finite set of int.ernal states,
qO E Q designates the starting state, ,\: Q --> 5, E {C, D} where 5i is the player's move next period, and 5 is the
transition function which maps the current internal state of the machine and the reported move of the opponent
into a new internal state, 8 : Q x 5_i --> Q (5_i E {C, D} is the opponent's reported move last period).
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TFT

TRIGGER

PUNISH
TWICE

S ----.-

states - 1
p-coop - 1.0
c-recp • 1.0
d-tecp ... 0
terminal - 1
counting ... 0

states ... 2
p-<:OOP • 0.5
c-recp 1.0
d-recp 1.0
terminal - 0
counting. 0

states E 2
.P<9OP .0.5
o-recp • 0.5
d-recp - 1.0
terminal 1
counting 0

states ... 3
p-coop - 0.33'
c-recp - 0.66
d-recp ... 0.66
terminal ... 0
counting - 2

Figure 3.2. Some Possible Automata

states = 5
p-Coop -= 0.8
c-recp -= 0.6
d-recp 0.4
terminal -= 1
counting = 4

An important characteristic of automata is that their memory of the game is embedded
in their internal states. The current internal state summarizes all of the relevant history of
the game for the automaton. A strategy which is based on the past n moves of either the
opponent or itself will require a maximum of 2n internal states. Thus, a TFT strategy, which
must only remember the opponent's last move, requires two states, while a strategy which
bases its moves on the full history of the last two rounds (including both the opponent's and
its own last two moves) requires at most sixteen states. Also note that although an automaton
can have, say, sixteen states, only a subset of these states may be accessible given the starting
state and transitions inherent in the machine. That is, there may be states in the machine
which are impossible to reach during the course of the game.

The evolutionary mechanism used in this paper requires strategies to be specified in a well-
defined language. Here, each Moore machine is represented by a string of 148 bj ts (see Fig;ure
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3.3). The first four bits provide the starting state of the automaton. 5 Sixteen nine-bit packets
are then arrayed on the string. Each packet represents an internal state of the automa.ton. The
first bit in a given packet describes the move next period whenever the automaton is in tha.t
state (0 = cooperate, 1 = defect), the next fOUf bits give the transition state if the opponent is
observed to cooperate, and the final four bits give the transition state if a defection is observed.
This scheme allows the definition of any RPD Moore machine of sixteen states or less. Since
bits are restricted to two values, there are 2148 different possible structures.6

A sample automaton:

0010110010101100100001000100001·········0101
, j

148 bits

The structure of an automaton:

###################### #########,'-....,...-..''- .J, -I" j

start
state

state 0 state 1 state 15

where # E {0,1}, the start state is a binary coded decimal (BCD) number in {O, ... ,15}, a.nd
each state i has the following structure:

state i....

move w In sta e 1 ransltlO? state 1

state L opponent IS observed opponent IS observed
o = cooperate to cooperate to defect
1 = defect BCD E {O, ... , 15} BCD E {O, ... , 15}

Using this scheme the sample automaton at the top ofthe figure defines a Tit-Far-Tat strategy,
which uses states 1 and 2.

Figure 3.3. The Biology of Automata

Automata have emerged as a tractable way to model bounded rationality considerations
in the theory of games. The class of Moore machines encompasses an interesting and the-
oretically important class of strategi.es. The previous work utilizing automata offers some
theoretical guidance, but lacks some important theoretical links and does not provide an em-
pirical framework. By introducing an evolutionary process, a syntheses occurs which allows
the derivation of a consistent theoretical structure as well as a tractable empirical approach.

5 A st.ring of four bits can represent 24. :::: 16 values.
6 Although there are 2148 unique strings, the total number of unique automata is much less than this value. For
example, there exists 16! ways to relabel the internal states of each of these strings. Even with t.his duplication,
the number of unique automata is still very large (on the order of 1021 , or so).
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.1. ,1 Evolution

The evolutionary process used in this analysis is derived from a class of optimization
routines from computer science called genetic algorithms. These algorithms were developed
by Holland (1975) for optimization problems in difficult domains. Difficult domains are those
which have both enormous search spaces as well as objective functions with nonlinearities
(many local optima), discontinuities, high dimensionality, and noise. Genetic algorithms pro-
vide a highly efficient mechanism for effectively searching these spaces. Furthermore, their
underlying structure indicates that they may be an appropriate model of certain types of
adaptive behavior (Miller, 1986). Finally, the existing literature from computer science has
important analytical and empirical results regarding the algorithm's, and hence the model's,
behavior.

Genetic algorithms are a large class of optimization routines which share the following
characteristic: a population of well-defined structures acts in an environment and receives payoff
information on each member's performance, and from this information a new generation of
structures is formed by employing a set of genetic operators on the existing structures biased by
the performance measures. The genetic algorithm used here is shown in Figure 3.4. Initially,
thirty binary structures are chosen at random. Each structure is then tested against the
environment (which in this case is composed of the other structures) and receives a performance
score. Given the resulting scores, a new generation of structures is chosen by allowing the top
twenty performers to go directly into the next generation. Ten new structures are also created
by mating. The mating process occurs by probabilistically selecting two parents from the
old population (with the probabilities biased by their scores), and then forming two children
through a process of crossover and mutation (discussed later).

1) Initial random population of 30 structures indexed by i, t = 1.
2) Test each structure against the environment ([1(i, t) = score).
3) Form a new population of 30 structures.

a) Top 20 from the old population.
b) Create 10 new structures via crossover and mutation:

i) Select 2 parents: Prob(i) = ll(i, t)/ I:j p.(j, t).
ii) Form 2 children by applying the crossover operator to the parents.
iii) Mutate the newly formed children.
iv) R.epeat (i) through (iii) until 10 new structures are formed.

4) Increment t by 1 (next generation), and iterate (go to Step 2).

Figure 3.4. The Adaptive Plan

The crossover and mutation operations are both important elements of the algorithm,
as well as interesting ways to tractably model innovative behavior. In order to use these
operators, structures must be defined in an easily manipulable language. Here, structures are
represented as binary strings, with each address on any given string controlling a particular
aspect of the final structure (see Figure 3.3 for the mapping). The crossover operator works
as follows: two structures are chosen as parents and a single crossover point, c, is randomly
selected on the bit string. The first child is formed by taking the first c bits from the first
parent and attaching them to all of the bits after the c + 1 of the second parent. The second
child is formed in a similar way using the remaining portions of the two parental strings (see
Figure 3.5). IVlutation occurs when a bit at a random location on the string changes states.
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Pa and Pb are two parents chosen to crossover at point c.

c

Pb = 88888 8 888······8888
c

After crossover, the resulting children, Cab and Cba, have the following structures:

Cab = EEl EEl EEl EEl EB ED 8 8 8 8 8 8 8

Cba = 8 8 88 8 8 ED EEl EEl· EB EB EEl EEl

Figure 3.5. The Crossover Operator

The effect of crossover on the new members of the population obviously depends on the
exact location and length of the crossover. The impact of crossover ranges from a simple
change in the starting state (even this could have a large impact if previously inaccessible
states become active) to a more radical recombination of the two parents. An actual crossover
is illustrated in Figure 3.6. The first parent describes a strategy which defects after two
consecutive defections by the opponent and continues defecting until the opponent cooperates
(Tit-For-Two-Tats (TF2T), the second one cooperates as long as the opponent cooperates,
but returns any defection with two rounds of defection (Punish-Twice). When these two
parents recombine by a linear crossover at the indicated locus, the children inheri t trai ts from
both parents. The fust child punishes once for two consecutive defections by the opponent (a
more forgiving strategy than TF2T), and the second child immediately punishes a defection
by the opponent \\rith two rounds of defection and then waits for the opponent to reestablish
cooperation (a meaner strategy than Punish-Twice).

The adaptive plan described above has three major components: (1) reproduction based
on performance, (2) recombination (crossover), and (3) mutation. The combination of these
three elements result in a very powerful optimization algorithm. At first glance it may ap-
pear that the plan is no more than "random search with preservation of the best [structure]"
(Booker et ai., 1987, p. 23). However, the algorithm is actually a sophisticated sampling proce-
dure which develops optimized structures by independently manipulating important structural
building blocks.

By reproducing structures based on their performances, only the better strategies are
allowed to proliferate. Note that future generations are composed of better strategies and
thus these new environments put increased performance requirements on future generations.
Moreover) structures which are performing better than average are also being sampled more
often. Under a system of pure reproduction by performance, existing structures which perform
well perpetuate; however, no new structures are introduced. In order to develop new structures
the crossover and mutation operators are employed.

Although the crossover operator may appear to haphazarclly create new structures, in
fact, it is actually able to subtly combine important pattern.s of existing structures into new
structures. By explicitly manipulating the population of structures, crossover is implicitly
able to recombine those parts of the existing structures which account for better performance.
To prevent the adaptive plan from getting trapped by eliminating initially poor performing,
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0000000000001000000010100000010
, v ;

Tit-For-Two-Tats

0000000000001000000010100000000... ,/...
Punish-Once-For-Two-Tats

c,d

0000000000001100100010100000000
Punish-Twice

0000000000001100100010100000010
Punish-Twice-And-Wait

Figure 3.6. An Example of Crossover on Some Automata

but ultimately important patterns, a mutation operator is allowed. Mutation prevents the
elimination of potentially valuable patterns. Its value is not in generating new structures to
test, since this is equivalent to using an enumerative approach, but rather in the prevention of
entrapment on false peaks. Consequently, only a small probability of mutation is required,

The incorporation of the crossover and mutation operators along with reproduction by
performance, results in a powerful adaptive plan. Patterns increase or decrease based only
upon their own observed performances-independent of how the full structures are changing.
Holland (1975, pp. 121-40) demonstrated that the rate at which patterns are sampled closely
corresponds to the optimal sampling path in the canonical n-armed bandit problem, regardless
of the form of the payoff function. While the adaptive plan is generating an appropriate
sampling plan for the existing patterns it is simultaneously generating new patterns to test.
These modifications are implemented in such a way that high interim performance levels al'e
maintained, Finally, the plan accomplishes this while avoiding entrapment on false peaks.
(These results are explored further in the Appendix.)

The performance of the genetic algorithm has been extensively studied. Frantz (1972)
showed that the algorithm effectively adapted to highly nonlinear systems. Mal,tin (1973)
investigated the asymptotic properties of a similar class of adaptive plans. She found that
under certain restrictions the adaptive plan converges to a set of "goocP' structures. DeJong
(1975) simulated various versions of the algorithm over a variety of environments including:
continuous, discontinuous, unimodal, multimodal, convex, nonconvex, low-dimensional, high-
dimensional, and noisy functions. His results, later corrected by Bethke (1981), indicated that
the genetic algorithm performed better than commonly used function optimization techniques.
DeJong found that the algorithm exhibited rapid initial improvement, but that it usually
converged towards a point near, but not at, the optimal value. Subsequent analysis showed that
this was caused by the phenomenon of genetic drift, where certain important schemata were
lost initially and not recovered by the population due to purely stochastic effects. DeJong's
analysis also included an exploration of appropriate parameter settings. In general, these
results revealed that: (1) larger population sizes produce better long term but have slower
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initial perfonnance, (2) larger mutation rates prevent character loss and provide better initial
but poorer long-term performance, and (3) larger crossover rates also prevent character loss
but slow initial performance. DeJong's investigation showed that the version of the algorithm
used here performed well across a variety of environments. Finally, Bethke (1981) extended
DeJong's results. Through the use of Walsh transforms he demonstrated that those functional
forms which confounded the genetic algorithm were also the forms which provided the most
difficulty for other commonly used function optimization methods.

The above adaptive plan closely corresponds to the thought experiment discussed in the
introduction of the paper. The idea of players resubmitting programs after looking at the scores
and programs of the other players is modeled in two ways. The first, is an imitative component,
which allows players to exactly copy the best performing programs. This is implemented when
the plan admits the top twenty performers into the next generation. The second component is
an innovative one, whereby players form new programs by combining different parts of existing
prog;rams (crossover), along with some unique modifications (mutation).

4. Methodology
The three ideas discussed in the previous section are combined to form a general method-

ology: an adaptive plan, based on the genetic algorithm, is used to evolve automata which play
an RPD. The advantage of this methodology is that the very complex optimization problem of
appropriate strategic choice in the RPD can be analyzed empirically. As previously discussed,
the genetic algorithm is a very good optimizer in complex environments. Furthermore, its
underlying mechanisms are appealing as appropriate modeling analogs. The use of automata
allows a velY large set of potential strategies to be easily incorporated into the algorithm. By
combining the three elements, controlled empirical experiments can be conducted within a
theoretically'consistent framework.

-4.1 Some Technical Details
E:>,:periments were conducted under various information conditions. 7 Three levels of in-

formational accuracy were explored: perfect information, 1%, and 5% noise (where the noise
level is the probability that any actual move is misreported). The 1% noise level implies
that 3.0 misreports per supergame can be eA"})ccted while the 5% level is associated with 15.0
misreports. 8 Forty runs were conducted under each of the conditions to allow for stochastic
var·iations.

The ini tial population in each run, consisted of thirty randomly generated automata. Once
created, the population was iterated for fifty generations. In every generation, each automaton
was matched against each of the other automata and a clone of itself for a 150 round RPD. 9
Payoffs were then calculated using the values in Figure 3.1. An automaton's final score was
the sum of the payoffs for each match (when the clone was played, the player was assig,ned the
average score of the match). At the end of each generation, the genetic algorithm discussed
earlier was applied to fonn a new population. 10

7 All programs were written in Pascal by the author. The major programs were run on an IBM-XT wit.h a
Hauppauge 386 MotherBoard (16 MHz Intel 80386 CPU), after compiling the programs in Borland International's
TURBO PASCAL version 4.0. Random numbers were generated using the routine supplied by the compiler, and
were then shuffied following the procedure outlined in Press et al. (1986), p. 195.

8 The respective variances are 2.95 and 14.15.
9 Under conditions of imperfed information, five such supergames were performed between every pair to reduce
the impact of stochastic variations.

10 The final scores for each automaton were normalized by taking Xi = (Xi - 1t)/8 + 0', where Xi is the automaton's
raw score, It is the sample mean, 8 is the sample standard deviation, and 0' = 2 is a parameter wllich determines
the importance of relative performance. The Xi values below 0 were truncated at O. This normalization procedme
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5. Results

The results of the analysis indicate that the approach outlined above provides interest-
ing insights into the development of cooperation and strategic choice in the RPD. Fl1l'ther-
more, they imply that significant differences between the perfect information (PIE), 1% noise
(l%NE), and 5% noise (5%NE) environments occur. The analysis focuses on the evolution of
some important attributes of the individual automata, the population, and also some exper-
iments concerning the robustness of the final strategies. Additional results can be found in
Miller (1988).

The majority of the analysis that follows presents the averages over all thirty members
of each population and forty simulations conditional on the generation and the noise level in
the environment. ll Unless otherwise specified, a test based on a one-tailed likelihood ratio
technique12 (see, Frelllld and Walpole (1980), p. 393) was used to determine whether the
means were significantly different from one another in pair-wise comparisons at a 97.5% level
of significance. Given the potential path dependence of any given population, the average
characteristics of the population are considered to be the unit of analysis. In essence, this
assumption implies that the expected characteristics of a given population as opposed to
an individual are important. This perception is consistent with concerns about the overall
performance of strategies in a given environment. 13

5.1 The Evolution of Payoffs

Figure 5.1 shows the average payoff over all of the automata in the relevant populations.
The payoff is in terms of a single iteration of the game. If there is always mutual cooperation,
then the e:A."pected payoff would be 3.0, mutual defection would imply a payoff of 1.0, and
strategies which randomly choose moves would expect to receive 2.25. The average payoff path
in the three environments quickly trifurcates, and each remains significantly different from the
others past the sixth generation. Initially, the average payoff in all three environments is aboLlt
2.26. The expected payoff experiences a steady decline in all of the environments over the first
few generations (with maximum declines of around 7% per generation). Starting with the
PIE in the seventh, the 1%NE in the eighth, and the 5%NE in the eleventh generations, each
payoff beg,ins to increase after reaching successively lower turning points (1.81, 1.65, and 1.41
respectively). After a period of rapid improvement (with ma.."cimum increases ranging from 3%

eliminates difficulties associated with negative scores, and more importantly is immune to affine transformat.ions
of the payoff function. The choice of Ot = 2 implies that automata which do worse than two standard deviations
from the mean are not allowed to mate. It also determines the importance of relative performance (as Ot ---. = and
Ot -+ 0 the selection probabilities go to lIN and x;/2: j Xj respect.ively). Two parents from the old popnlation

were randomly selected, where the selection probability for choosing automaton i was Xi I L. Xj. A crossover
J

point, c E {1, ... ,148}, and length, 1 E {l, ... , 147}, were randomly selected and two new automata were formed
by exchanging the 1 bits starting at the cth position of each parent. This crossover procedure is slightly differel1t
from the one previously described, and assumes that the strings are actually circular rather than linear. This
eliminates a bias towards preserving the end points which is inherent in the linear procedure. After crossover,
each bit was subjected to a 0.5% independent chance of mutation (implying an expectation of 0.71 bit mlltations
per string with a variance of 0.74 bits). The mating procedure was repeated until ten new members were formed.
This new population was then matched as before.

11 Where alternative approaches are used, they are noted in the text.
12 This test does not place excessive requirements on the underlying distribution of the random variables so long as

sample sizes (here, samples are of size forty) are large enough for an applica.tion of the central limit theorem. The
stochastic process describing the genetic algorithm is likely to be very complicated and not Gaussian. Thronghollt
most of the analysis the focus is on the means of tJle environments. Given the potential for unusual distributiolls,
it is likely that other statistics might also be illuminating.

13 The imp;j.ct of cha.nging the unit of analysis to the individual is minimal, and in fact, t.ends to iJ1crcasc the
significance levels of the statistical tests.
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to 5% per generation), the average payoff tends to plateau by the twenty-fifth generation. 14 The
final payoff levels are about 2.80, 2.54, and 1.94 for the PIE, 1%NE, and 5%NE respectively.
Implying that the e:x-pected performance diminishes by about 9% in the 1%NE, and 31% under
the 5%NE. Under the PIE, payoffs in the:final generation tend to be skewed towards the upper
end of the distribution. In the 1%NE the :final distribution is slightly bimodal, while under
the 5%NE an obvious bimodal pattern emerges. The bimodality of the noisy distributions
indicates a definite path dependence for these latter populations-after the initial generation
a bifurcation occurs in which some populations achieve high payoffs and others do quite poorly.
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Figure 5.1. Average Payoff per Game Iteration

Fig;ure 5.1 illustrates how cooperation can emerge in these systems. Note that in the early
generations the agents tend to evolve strategies which increasingly defect. These conditions
do not however persist, and at some point there is an emergence of cooperative strategies
which tend to proliferate throughout the population under the low noise conditions (a similar
result was found by Axelrod, 1987). A relatively simple explanation underlies these dynamics.
Initially, the strategies are generated at random, and therefore the best strategy in such an
environment is to always defect. Thus, in the early generations the population of strategies
tends to evolve towards always defecting. Although always defecting is a good strategy in a
random environment, if some strategi.es can achieve mutual cooperation, they could do quite
well. In fact, as later results will confinn, this is exactly what happens-a few strategies begin
to reciprocate cooperation, perfonn well, and begin to proliferate in the population.

14 Under the 5%NE the leveling off is not as pronounced, however, the estimated exponential growth rate at the
final generation using the previous ten generations is approximately 0.34%. If this rate were to continue the
average payoff would reach 2.25 in about 44 more generations.
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5.2 The Evolution 0/ Automaton Characteristics
Given the enonnous number of possible automata, it is necessary to develop some summary

measures of automaton behavior to facilitate the analysis. The measures developed here were
guided by results from the existing theoretical and empirical literature, and by no means
exhaust the set of possible descriptive statistics. The measures succinctly describe some of
the important dimensions of the strategies (see Figure 3.2 for some examples). They may not,
however, always prove adequate. For example, the last automaton in Figure 3.2 begins any
game by cooperating four times and then defecting for the rest of the game, yet the descriptive
measures indicate a relatively "nice" strategy.

The first characteristic is the size of the automaton, which is given by its number of acces-
sible states. A state is accessible if, given the automaton's starting state, there is some possible
combination of opponent's moves which will result in a transition to the state. Therefore, even
though all automata are defined for sixteen states, some of these states can never be reached
during a game. The theoretical literature has often used this variable as a determinant of
complexity (Rubinstein, 1986).15 Automaton theory demonstrates that there exists a minimal
state machine for any given behavioral pattern, and that this machine is unique up to an
isomorphism (see, for example, Harrison (1965), Chapter 11). Thus, all of the measures of an
automaton's behavior used in this analysis are based on the implied minimal state machine.

The average number of accessible states for the minimized automata is shown in Figure
5.2. The randomly chosen automata tend to have a high number of accessible states (about
12.25 verses the maximum limit of 16.0). The number of states in the PIE and l%NE initially
declines until the eleventh generation at which point it levels off after about a 10% reduction.
Under the 5%NE the decline continues until about the twentieth generation, after which time
the number of states stabilizes at a 25% lower level than in the first generation. All of the
declines are statistically significant, as is the difference between the number of states in the
5%NE verses the PIE and 1%NE past the fifteenth generation. Note that there was no explicit
attempt to minimize the automata. Thus, the decline in the size of the automata indicates
that the explicit upper bound on the complexity of the machines was not binding. In the
final generation the number of states is 11.01, 11.29, and 9.03 in the PIE, l%NE, and 5%NE
respectively. This implies that under the more extreme noise condition, about 20% fewer
states develop. If the number of states is a good measure of complexity, then the conclusion
is that less complex strategies are used in noisier environments. While this may appear to be
counterintuitive-noisier worlds are in some sense more difficult, and therefore should require
more complex strategies-there do exist some theoretical models (for example, Heiner, 1983)
...."hich suggest that simple rules of thumb may be one way of coping with uncertainty. Further
analysis indicates that the high noise strategies tended to rely on the use of terminal states,
thus supporting this hypothesis.16

Notions of the actual behavior of a given machine during an RPD are derived from
the actions and transitions of each accessible state. The cooperation-reciprocity (defection-
rcciproci ty) is the proportion of accessible states which return an observed cooperation (defec-
tion) by the opponent with a cooperation (defection). These reciprocity measures give only a
genel"al notion of a strategy's reactions, since they assume that all accessible states are equally
likely. The importance of reciprocity is suggested by the work of Axelrod (1984). Tern1inal
states are states which have transitions only into themselves, that is, once a terminal state is

15 Alternative measures of complexity in automata do exist. For example, following the work of !(hTOne and RhDdes,
aut.omaton could be decomposed into their prime components, and then complexity measures based on the type
and connections of these components could be developed (see Arbib. 1968, Chapters 3,5, and 6).

16 Not only did the 5%NE have smaller sizes, but they also tended to be less efficient in their constructiDn. By
minimizing the machines the 5%NE have about 8% fewer states verses 3% fDr the IDwer noise envirDuments.
One possible explanation {or this is that their is an advantage to maintaining evolvability in mDre unpredictable
envi ronme nts.

13



VJ
(I)

iii
iii
<l>
1i

§
<t;
o
;;;
.0
E
::>
Z

16.0..----------------------,

14.0 m • •• ••• •••••• • .

8.0 .

----PI

------®--

o
5%

3
5 9 13 17 21 25 29 33 37 41 45 49
7 11 15 19 23 27 31 35 39 43 47

Generation

Figure 5.2. Average Accessible States per Minimized Automaton

reached the automaton remains in the state for the remainder of the game. These states are of
interest since they are required for any of the well-knO\vu trigger strategies (Friedman, 1971).

Figure 5.3 shows the proportion of the total states which return a cooperation by the
opponent with a cooperation next period (cooperation-reciprocity), and Figure 5.4 gives the
proportion of total states which return a defection by the opponent 'with a defection next
time (defection-reciprocity). Notwithstanding the environment, strategies were always more
likely to a defection by the opponent with a defection than to cooperate after
a cooperation. Similar to the pattern observed throughout the analysis, a period of rapid
adjustment is followed by some minor corrections, and then a period of relative stability.
Differences between the PIE and 1%NE verses the 5%NE are statistically significant past
the seventh generation. I7 The differences between the PIE and 1%NE are not statistically
significant at the group level of analysis, but a.re different past about the twentieth generation
when the individual is used as the unit of analysis. The final values for the cooperation-
reciprocity are .44, .49, and .36 in order of increasing envirorunental noise. For the defection-
reciprocity the corresponding values are .70, .65, and .76. Therefore, with high noise levels,
automata do not reciprocate cooperation as much, and are less forgiving of a defection by
the opponent than under better infonnation. A rise in the cooperation-reciprocity, implying
a greater benefit from cooperative behavior, occurs in both the PIE and 1%NE around the
same time that the payoffs under these two conditions begin to increase. Since this measure
represents an average over all 30 members of the population, even a slight rise can indicate
that a small number of the agents have high levels of cooperation-reciprocity. The general
pattern that emerges from the reciprocity measures is that defections are not tolerated and
that cooperation is reciprocated, though never perfectly. Furthermore, at high noise levels

17 The cooperation-reciprocity measure for the PIE and 5%NE are only significantly different at the 95% level over
the final eight periods.
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Figure 5.3. Average Cooperation Reciprocity

these patterns become more extreme while at low noise levels there is some evidence, at the
individual level of analysis, for them moderating.

Important differences in the average number of terminal states arise.- The average number
of terminal states is given in Figllre 5.5. After a period of rapid growth, the PIE and 1%NE
values peak around the eleventh generation, decline, and then stabilize at about .03 and .01
respectively. Under the 5%NE, terminal states continue to rise until around the twentieth
generation, at which time they level off to about .21. The 5%NE is significantly different from
the other two past the fifteenth generation. The PIE and 1%NE are significantly different
from each other only at the individual level of analysis. The final number of terminal states in
the nosiest environment is around ten times the level in the other two. The fact that terminal
states are more often used in noisier environments supports the earlier argument that rules of
thumb may be important under high uncertainty. In essence, one way to deal with high noise
levels is not to deal with them.

Once a terminal state is reached, the automaton's moves are fixed for the remainder of
the game. Thus, not only the number of terminal states, but also their behavior is of interest.
Defection quickly becomes the predominant terminal action in all of the environments. In
the 5%NE almost 100% of the terminal states defect within three generations. The other two
environments experience more fluctuations, with the 1%NE tending to have fewer terminal
defections.18 The high proportion of defection in the terminal states is consistent with the
types of trigger strategies suggested in the theoretical literature.

The above analysis indicates that a common pattern pervades the evolution of the au-
tomata's characteristics. Initially, a period of rapid change occurs. This change quickly slows
and plateaus after about ten generations-with the actual leveling off taking longer as tbe
noise in the environment increases. Sometimes in the PIE and 1%NE a short period of read-

18 These differences are rarely statistically significant.
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justment occurs just prior to the plateau. A definite bifurcation appears between the 5%NE
and the other two environments. There is also evidence that the impact of low noise levels is
qualitatively different from more extreme levels relative to perfect information. That is, a low
level of noise may make automata more cooperative and less likely to punish defections than
without noise, while higher noise levels have the opposite effect.

5,,9 The Evolution of Population Characteristics

Another area for analysis is the evolution of some general population characteristics.
Knowledge about the dynamics of the population in the model can suggest important hypothe-
ses concerning the behavior of various systems. This section focuses on two areas: changes in
the homogeneity of the population, and differences in survival probabilities over time.

After the selection of the initial structures, the only new structures which emerge are
created by crossover and mutation. Given the lack of other newcomers, it is possible that the
automata which arise may become highly specific to their individual populations. In order to
characterize the extent of specialization, a measure of structural similarity was developed. The
similarity value for any given population is the e..'q)ected proportion of identical bits between
two randomly selected members (bits are compared locus by locus, i.e., this is a measure of the
expected Hamming distance). As illustrated in Figure 5.6, from an initial value of .50 (random
generation) all of the similarity measures rise steadily to around .91 and are not sig-nificantly
different from one another. Thus, the members of the population do tend to converge -towards
a homogeneous structure. Nevertheless, 9% of the loci do differ, an amount 'which cannot be
explained solely by the mutation rate. The increasing population homogeneity implies that
the individual structures become specialized to their own populations. The full impact of this
specialization vis-a.-vis new environments is explored in the ne)..'i section.

While the similarity measures increase over time for any given population, they do not
ch<mge across the populations. For all three environments, the similarity value for a population
consisting of a member from each of the first thirty simulations remained around .50 over all
fifty generations. This implies that the structures developing in each individual population are
very different from those in other populations. Even though the structures are different, the
earlier results indicate that the populations tend to converge on similar qualitative cl1aracter-
istics. It is evident that while general characteristics are important in the choice of strategies,
a lot of flexibility in the actual implementation exists.

Analysis of the creation dates and survival probabilities of the agents indicates that newly
created structures have a more difficult time surviving as the population becomes more evolved.
Notwithstanding this observation, older structures do not appear to dominate the populations,
implying a relatively dynamic environment. Unlike the individual automaton characteristics
discussed in the previous section, the general population characteristics tend to separate the
PIE from the other two environments. Under the PIE, structures created in later generations
have a more difficult time sUl'vi,ring then those created earlier. Therefore, one major effect of
noise appears to be the enhancement of the survival probability of new entrants.

5.4 The Robustness of the Evol'ued Automata

The structures in each population tend to evolve in isolation from other populations.
Given the earlier evidence of specialization from the similarity measure, one wonders whether
the observed results are simply due to the automata adapting to their speciRc environment,
or whether more general changes are occurring. To assess the impact of specialization, three
eA-periments were conducted. The eA-periments matched the top performing automaton from
each of the Rnal populations of the forty simulationsHl against: (1) a group of randomly

19 Only the first thirty simulations were used in the second experiment.
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Table 5.1. Average Scores of Top Automata in Various Environments

Environment

PI
l%NE
5%NE

Own Population
(Final Generation)

2.85
2.67
1.99

R.andomly Generated
Opponents

2.56
2.58
2.61

Other Top
Performers

2.17
2.08
1.76

generated automata, (2) each other, and (3) a representative sample of the strategies submitted
for Axelrod's (1984) second human tournament.20 Table 5.1 summarizes the performance ofthe
top perlorming automata in their own final generation, as well as in the first two experiments.

The first e:h."Periment took each of the top performers and matched them against twenty-
nine randomly generated machines. This environment is very similar to the one which the
automata initially faced in the first generation. On average, the top automata did better than
their opponents. Under the PIE and l%NE the scores were about 15% higher, while they were
about 17% higher in the 5%NE. All of these differences were statistically significant. The fact
that the evolved automata perform significantly better than they did originally in a unique,

20 Thanks to Bob Axelrod for supplying the representative eight strategies from his tournament, and to J. Michael
Coble for programming assistance.
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albeit similar, environment indicates that the evolutionary experience resulted in fundarnental
changes which enhanced strategic perlormance. In the PIE and 1%NE the ultimate payoff to
the automata in the random environment was less than their payoffs in the final genera.tion,
while in the 5%NE, the payoff was higher. One likely explanation for these results is that, in
the lower noise environments, there exist population specific benefits arising from establishing
cooperation which could not be realized playing random automata. In the 5%NE evolved
strategies are probably able to exploit poor players (via, for example, terminal defection), and
thus can do well against random opponents.

The previous experiment indicates that fundamental changes in the evolved automata
allow them to excel in a random environment. To subject the best automata to a more
challenging world, they were matched against one another. The scores resulting from this
experiment were 24%, 22%, and 12% lower than the automata's final generation scores in the
PIE, l%NE, and 5%NE respectively. However, only the first two changes were statistically
different. The low scores achieved in this environment indicate that population specific effects
are somewhat important, especially under better information.

An intriguing test of the top perlormers in a context other than a game against other
automata is provided by matching them against a set of strategies submitted by human subjects
for inclusion in Axelrod's (1984) second tournament. The set of strategies used here consisted
of eight representatives out of the original 63 entries. These eight accounted for 98% of the
variance in the final tournament scores. The forty top PIE21 automata achieved an.avera.ge
score of 352 points in the 151 round tournament. One of the automata did as well as the
top perlormer in the tournament, TFT, and nine of them were above the estimated median
score in the tournament. A control group of forty randomly generated automata were also
run against the representative strategies. Their average score was 295 points, and three of the
forty scored higher than the median. The distribution of these scores is given in Fig;ure 5.7.
The 19% higher score of the evolved verses the random automata was statistically significant.
Given that the evolved agents had only evolved against other environments composed of other
automata, their relatively good performance in the completely novel environment of human
opponents is reassuring. More importantly, however, is the fact that their performance, as
well as the general empirical results, seem to be very consistent with the human tournament.
Thus, the use of the methodology developed in this paper may provide a basis for reliable
e:A-perimentCl.tion in cases where costly e:A-pert tournaments are infeasible.

The automaton which tied for first place in Axelrod's tournament had many characteristics
which were similar to TFT. Its cooperation-reciprocity was 0.83 which is close to TFT's 1.0
measure. Unlike TFT's perfect defection-reciprocity of 1.0, the automaton's value \vas 0.42.
The automaton had a minimized size of 12 states verses the 2 states necessary for TFT. When
played against some standard RPD strategies, the automaton performed very similarly to TFT
with a bit more tolerance for defections for short periods.

5.5 Extensions of the Empirical Analysis

A wide variety of potential extensions of the empirical analysis exists. The results imply
that the level of noise in the environment is quite important. Low levels of noise tend to
promote cooperative behavior while higher levels seem to disrupt it. A definite bifurcation
occurs under different infonnation levels, and additional e)..rperiments with varying levels may
be insightful. Furthermore, the impact of alternative informational configLIrations, for exam-
ple, asymmetric noise levels, could also be explored. Questions about the effect of different
payoff structures on the likelihood of cooperation developing would also be amenable to ex-
perimentation. The general fornl of the RPD allows a lot of flexibility in the actual payoff

21 Only t.he PIE automata were used since these tournaments did not allow the possibility of noise.
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values. While the experimental outcomes of certain standard payoff matrices are well known,
it is possible that other configurations may alter the qualitative results. Improvements and
variations in the specific automaton variables would also be illuminating. Alternative measures
of complexity, various weighting schemes based on the transition function, etc., could provide
valuable empirical clues. Directly incorporating a cost to the size of automata would yield a
better understanding of the role of complexity in these games. Experiments concerning differ-
ent levels of population size, crossover and mutation rates, could also be of interest. Finally,
it would be possible to run two separate populations playing against each other. The previous
results indicate that a single population tends to rapidly lose heterogeneity. By funning two
simultaneous populations the consequences of this loss would not be as severe, and it is likely
that better strategies will be developed.

G. Extensions and Conclusions

6.1 Some Specific Applications of the Results

The general results of this analysis indicate that the level of noise in the system has a
fundamental impact on the outcome of the RPD. Higher levels of imperfect information al'e
associated with less cooperation and lower payoffs. The effect of noise does not appear to
be continuous-definite phase transitions are evident. A variety of direct applications of the
immediate analysis are apparent, for example, the importance of verifiability and effective
arms treaties.

Negotiations on the limitation of strategic armaments have recently experienced major
breakthroughs. Arms treaties are easily modeled as a noisy RPD (two countries can negotiate
a treaty and then either comply (cooperate) with the terms of the treaty or violate (defect)
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it). The ability to verify compliance is directly related to the level of noise in the system. The
importance of effective verification technology is highlighted by the results of this paper: the
effectiveness of an arms control treaty between purely self-interested nations is directly tied to
the accuracy of the verification technology. Highly accurate verification techniques will allow
cooperation to be established and maintained, while less accurate ones may easily lead to a
breakdown of the agreement.

6.2 Some General Extensions and Conclusioill

The elements of this analysis combine to form a methodology well suited for the analysis
of strategic choice in games. The basic theoretical model is easily integrated into a useful
empirical framework, which allows easy experimentation on a previously inaccessible domain.
While the above work explored only a small subset of the potential applications, a rich val'iety
of insights were obtained. The possible extensions are numerous, for example, the impact
of changes in information levels and symmetries, population sizes, innovation rates, payoff
structures, etc., could all be investigated. Beyond simple parametric experimentation, another
obvious extension is to other types of games, for example, games of coordination, multiple
player games, etc. R.apoport and Guyer (1966) have identified 78 unique 2 x 2 player games
in their taxonomy. The above methodology could easily be run on each of these games and
benchmarks could be developed. These would allow interesting games for further analysis to
be identified, as well as provide a database for a broad analysis of strategic behavior.

Automata model an important general class of phenomenan. Thus the above framework is
easily extended to problems outside of the domain of game theory with only minor alterations.
For example, automata can be used as a model of networks, thereby allowing an analysis of
the evolution of organizations. Since the general methodology would be preserved, important
linkages between seemingly disparate phenomenon should become apparent, and the potential
for an important unification of a large class of problems exlsts.

Vvhile the above model focuses on the evolution of automata, a much more general model
is suggested. The adaptive model introduced here has a number of advantages over more
traditional models of economic processes: it is inherently dynamic, it works well in comple...'C
(difficult) environments, it provides a desc.:ription of structure which allows tractable notions
of innovation and imitation, and agents require little information and minimal processing
ability. Along with these benefits, the model retains a strong optimization component and the
potential for generating testable hypotheses. The above elements imply that this model may
be an appropriate choice for a much more general model of economic behavior.
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Appendix

The key to understanding the effectiveness of the genetic algorithm is the idea of schemata.
Given a structure which is described by a bit string oflength k, {O, l}k, a schema can be defined
on the set {O, 1, #}k. A string is a member of a schema if each of its components match the
corresponding elements of the schema which do not specify the # symbol. For example, the
following eight-character binary strings: 10111111, 10110000, and 10010101, all match the
schema 10#1#### (that is, they are all strings which begin with 10 and have a 1 at the
4th address). The importance of schemata is that although a single structure represents only
a small proportion of all potential structures (1/2 k ), it contains a much larger portion of all
of the possible schemata (2 k 13k ). For example, given strings of length eight, a single string
represents only about .4% of all strings, but contains ahnost 4% of all schemata. Therefore,
an adaptive plan which only manipulates a small number of individual structures has access
to a large amount of information about the important schematic building blocks.22

The reproduction of structures based on their payoffs encourages a continual improvement
in the set of structures. Suppose that the expected number 'of offspring is proportional to the
mean performance, that is

(2)

(1)

V

V

( ( I) lJ.t(5')
E N 5 , t +1 ) = L (S)1M'

SES(t) Pt

where N(5', t + 1) is the number of 51 E Set) at time t + 1, Set) is the set of structures in
the population at time t, Pt(S') is the performance of 5' at time t, and J:.1 is the number of
structures. in Set). Equation (1) implies that those structures which do better than average
will increase over time, and that those which do worse will decline. Note also, that if the
environment is unchanging the average performance of the population will rise over time,
putting increased survival pressure on existing structures. Moreover, structures which are
performing better than average are also being sampled more often. Under a system of Pl1l'C
reproduction by performance, existing structures which perform well perpetuate; however, no
new structures are introduced.

If structures are only reproduced according to performance, from (1) the expected number
of schemata of type represented at time t + 1 will be

t + 1)) = LS/ES(t):S/E€11·t(S')
LSES(t) lJ.t(5)IM

Multiplying and dividing the right-hand side by t) yields

t + 1)) = I:t t)
11,t

22 The schemata defined above represent hyperplanes in the string space and do not cover the set of all possible
k

building blocks. This is easily demonstrated since the set of possible building blocks (patterns) jg of size 2 2
which is much greater than the number of potential schemata 3 k • An example of a pattern which cannot be
encompassed by the above system is one which matches an even number of bits.

22



where 1'4 is the average performance of ein the sample S(t), and Pt is the average performance
of all of the structures in S(t). Equation (2) implies that with reproduction alone schemata in
the original subpopulation, S(1), which belong to structures performing better than average
wlll increase in the population. However, as above, reproduction alone does not admit any
new structures into S(t), thus no new schemata are tested, and the sample of old schemata is
biased towards those which existed in the original population.

In order to develop new schemata and to test old schemata in different structural contexts,
the crossover operator is employed. The crossover operator creates instances of new schemata
while simultaneously maintaining old ones. Holland (1975, p. 99) showed that if the two
originally chosen at L positions to the left of and at R.positior:s to the rifht
of the crossover pomt, then elther one of the newly formed structures WIll contaIn 21 - 21- -
21- R + 21-(L+R) new schemata (schemata not found in either of the two original structures)
and 21- L + 21- R - 21-(L+R) old ones, where l is the total length of the string. Crossover
also tends to encourage the linkage of schemata. If one looks at only the defining positions
of a schema (that is, those positions which specify a specific value at a given address), then
the probability of schema ebeing broken by a randomly chosen crossover point is equal to
(l(e) - 1)/(1- 1) where l(e) is the smallest number of loci which contain all of the defining
values for e. Since l - 1 is constant for all structures, schemata which are closer together have
a smaller probability of being separated during crossover.

If the crossover operation is introduced into the adaptive plan, the eA-pected number of
schemata of type ethat will be present at time t + 1 can be obtained by combining {2) with
the lower bound23 of the probability of crossover not breaking up the schema:

E(N(e, t + 1)) [1 - pcJN(e, t) 'r! e,t, (3)

'r! e, t.

where Pc is the probability of crossover. This meanS that a schema, e, will increase its repre-
sentation in the population as long as

AE > 1
Ilt - [1 - pc(l(e) - 1)/(1- 1))) Ilt

This equation implies that longer schemata must have better relative performance thaJl shorter
ones to increase in the population. Also, the change in the number of each type of schema is
independent of the dynamics of the other schemata in the population.

To prevent the adaptive plan from getting trapped by eliminating initially poor per-
forming, but ultimately important schemata, a mutation operator is allowed. The mutation
operator randomly changes existing bits on the string (that is, a 0 becomes a 1 and vice versa).
Mutation prevents the elimination of potentially valuable schemata. Its value is not in gen-
erating new structures to test, since this is equivalent to using an enumerative approach, but
rather in the prevention of entrapment on false peaks. Consequently, only a small probability
of mutation is required. Equation (3) can be modified to reflect the influence of mutation on
the sampling structure of the space of schemata,

'r! e,t

where Pm is the probability of mutation and d(e) is the number of defining elements in e. All
of the previous results about schema growth hold with the mutation operator.

23 This is a lower bound since it is possible, if both parents have the appropriate values, for a schema to remain
intact even if the crossover point breaks up the schema.
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