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 Econometrica, Vol. 56, No. 6 (November, 1988), 1259-1281

 THE STRUCTURE OF NASH EQUILIBRIUM IN REPEATED

 GAMES WITH FINITE AUTOMATA

 BY DILIP ABREU AND ARIEL RUBINSTEIN'

 We study two person infinitely repeated games in which players seek to minimize the
 complexity of their strategies. Players' preferences are assumed to depend both on repeated
 game payoffs and the complexity of the strategies they use. The model considered is that of
 Rubinstein (1986). Players simultaneously choose finite automata (Moore-machines) to
 implement their strategies. The complexity of a strategy is measured by the number of
 states in the automaton used to play the strategy. We analyze Nash equilibriunm in the
 "machine game." Strong necessary conditions on the structure of equilibrium machine
 pairs are derived, under general assumptions about how players trade off repeated game
 payoffs against implementation costs. These structural results in turn place significant
 restrictions on equilibrium payoffs. We provide a complete characterization for symmetric
 2 x 2 stage games, when repeated game payoffs are evaluated according to the limit of
 means, and complexity costs enter preferences lexicographically. We find that all Nash
 equilibrium payoffs must lie on one of the two "diagonals" of the payoff matrix, and show
 that "main" diagonal payoffs are always attained. Taken together our results suggest that
 the introduction of implementation costs results in a striking discontinuity in the Nash
 equilibrium set in terms of strategies, plays, and payoffs.

 KEywoRDs: Strategic complexity, repeated games, finite automata, Nash equilibrium.

 1. INTRODUCTION

 IN THE STANDARD FORMULATION of a repeated game, players are assumed to be
 able to costlessly implement strategies of arbitrary complexity. We relax this
 assumption, pursuing a line of research initiated in Rubinstein (1986) (hereafter
 (Ru)). We assume instead that strategies vary in their implementation costs. As a

 consequence, players' strategic choices balance the twin objectives of maximizing
 repeated game payoffs and minimizing implementation costs.

 Various features of the model presented below, such as the complexity measure

 we use, are rather special. Our results are therefore best regarded as suggestive,

 and we strongly emphasize the exploratory nature of the present paper. We
 provide a critical discussion of our approach, and comment on alternative
 formulations and possible extensions, after the detailed presentation of Section 2.

 We adopt the model of (Ru): in a two player repeated game, the players are
 assumed to use machines (finite automata-see Hopcroft and Ullman (1979) for

 I The authors would like to thank Thomas Marschak for helpful comments. The remarks of two
 anonymous referees are also gratefully acknowledged. Much of the work on this paper was done while
 the authors visited the Mathematical Sciences Research Institute, Berkeley, during Fall 1985. We are
 grateful to the Institute for its hospitality. Our stay at MSRI was supported by NSF (irants
 MCS-8120790 and SES-8420114. Abreu's research at Harvard was partially supported by NSF Grant
 SES-8509774.
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 1260 DILIP ABREU AND ARIEL RUBINSTEIN

 an introduction) to implement their strategies. A (Moore) machine consists of a
 finite set of internal states (one of which is specified to be the initial state), an
 output function and a transition function. Given that the machine of a player is
 at a certain state at the tth round of the game, the output function determines the
 tth one-shot game action of the player as a function of the state. The transition
 function determines the next state as a function of the current state and of the

 other player's move at period t. A pair of machines induces a sequence of state
 pairs and a sequence of stage game action pairs, starting with the initial states of
 the two machines and their associated outputs.

 In the "machine game" each player chooses a single machine, at the start of
 play. Hence a player's strategy space is the set of all finite machines. Player i's
 preferences over machine pairs (M1, M2) depend on the repeated game payoff

 they yield and the number of states in Mi. The latter term incorporates the cost
 of implementing a repeated game strategy into a player's preferences. It embodies
 the assumption that this cost depends only on the number of states in the
 machine used to play the strategy. Note that in our usage the terms "complexity"

 and "implementation cost" are interchangeable: the complexity of a strategy is
 identified simply with the number of states in the machine used to implement the
 strategy.

 We analyze Nash equilibrium (N.E.) in the machine game. Our main results

 concern the structure of equilibrium machine pairs. They provide necessary
 conditions on the form of equilibrium strategies and plays. This contrasts with
 previous analyses of repeated games which have typically focussed on equi-

 librium payoffs, or shown that a particular subset of strategies was sufficient (for
 example the "simple strategy profiles" of Abreu (1988)). Exceptions are (Ru),
 and, in the context of optimal/extremal equilibria, Abreu (1986) and Abreu,
 Pearce, and Stacchetti (1986).

 These structural results are valid for repeated game payoffs evaluated either
 according to the limit of means or by discounting payoffs, and do not depend on
 the nature of the tradeoff between repeated game payoffs and complexity. We
 require only that preferences are weakly monotonic in the following sense: if

 (Mi, Mj) yields player i the same repeated game payoff as (Mi', Mj), then player
 i strictly prefers the pair (Mi, Mj) to (Mi', Mj) if Mi has fewer states than Mi'. In
 particular our results encompass the case of lexicographic preferences between
 repeated game payoffs and implementation costs.

 We show that in any N.E. of the machine game:

 The two machines have an equal number of states, and maximize
 (a) repeated game payoffs against one another.

 Thus, despite complexity considerations, in equilibrium, players' choices are
 "fully" optimal. The result follows directly from a basic lemma established in
 Section 3: a player's machine need have no more states than his opponent's in
 order to maximize repeated game payoffs against the latter.
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 STRUCTURE OF NASH EQUILIBRIUM 1261

 Notice that since the machines are finite, the pairs of states which are used in
 the play of the game must eventually repeat themselves in a cycle. We partition
 the states in a player's machine into those which are used in the cycle ("cycle
 states") and those which are not. A particular cycle state might conceivably
 appear more than once within the cycle, and noncycle states might be repeated in

 the initial periods of play before the cycle begins. However,

 the states of a player's machine which appear in the cycle are all

 (b) distinct. All the other states appear consecutively at the beginning of
 play and are never repeated.

 Consequently, the periods in which noncycle states and cycle states appear,
 respectively, are connected. Although noncycle states appear only at the begin-
 ning of (equilibrium) play, a machine may return to these states after a deviation
 has occurred. Thus the initial interval of noncycle states has the potential to play

 the role of a punishment phase. The appearance of these states at the beginning
 of play may be interpreted as a "show of strength" or demonstration of

 punishment ability by both players which is "necessary" before the machine pair
 can enter the cyclical phase.

 An immediate implication of (a) and (b) is that the two machines have an

 equal number of cycle and noncycle states respectively. A further implication is
 that there is a one-to-one correspondence between the states of the two machines
 in all periods of equilibrium play. This may be interpreted as saying that the
 machine of each player "knows" which state the other player's machine is in.

 There is also a one-to-one correspondence, in equilibrium, between the stage-
 game actions of the two machines:

 If in any two periods a player's machine plays the same stage-game

 action, this must be true of the other machine as well.

 Thus whenever one machine changes its action, the other machine must change
 its action also. It also follows that the number of distinct G-outcomes is bounded
 above by the minimum of the number of one-shot strategies available to the two
 players.

 These results apply exactly when repeated game payoffs are discounted. If the
 latter are evaluated according to the limit of means, analogous results hold
 modulo a possibly nonempty intermediate interval when cycle states are used by
 both machines, but, of course, not synchronized in the manner they are in the
 cycle.

 The structural properties described above place restrictions on the set of
 equilibrium payoffs. These are particularly dramatic for 2 x 2 matrix games. In
 Section 5 we characterize completely the set of repeated game payoffs in N.E. of
 the machine game (hereafter referred to simply as N.E. payoffs) for symmetric
 2 x 2 games with the limit of means and lexicographic preferences. In the
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 1262 DILIP ABREU AND ARIEL RUBINSTEIN

 following version of the prisoner's dilemma, for example,

 C D

 C 2,2 -1,3

 D 3,-1 0,0

 FIGURE 1.

 only the vectors on the "cross" in Figure 2 are N.E. payoffs.2

 Our results should be contrasted with those for the usual repeated game for

 which the Nash equilibrium set is very large in all the relevant spaces-strategies,

 plays, and payoffs. In particular the "folk-theorem" (see Aumann (1981), Fuden-

 berg and Maskin (1986), and Rubinstein (1977, 1979)) applies: all individually

 rational payoffs are Nash equilibrium payoffs of the repeated game. While it is

 not surprising that complexity considerations affect equilibrium outcomes, the

 extent to which they do so is striking. This is underlined by the fact that the
 differences emerge even when implementation costs enter preferences lexico-
 graphically. Thus there is a severe discontinuity in the model when implementa-

 tion costs are introduced; a "small" perturbation of the model has, because of

 strategic interactions, large consequences.
 Notice that we ignore the complexity issues connected with computing optimal

 strategies and concentrate instead on the costs of implementing them. While a

 unified approach to both these questions would be very attractive, there are

 contexts in which the present formulation appears plausible. One such applica-
 tion is the organization of bureaucracies: sophisticated managers seek to devise

 simple rules of thumb which can be implemented mechanically by lower level

 employees operating in a strategic environment with peers in parallel hierarchies.
 The machine is viewed here as a set of managerial instructions.in accordance with
 which subordinates operate. On a more individualistic and cerebral level one

 could think of the states in a machine as primitive representations of "states of

 mind"-vengefulness, conciliation, aggression, etc. Players seek to devise behav-
 ioral patterns which do not need to be constantly reassessed, and which econo-

 mize on the number of states needed to operate effectively in a given strategic

 environment.

 3-

 FIGuRE 2.

 2 Strictly speaking only vectors on the "cross" which are rational convex combinations of the
 diagonal payoffs (2,2) and (0, 0) or off-diagonal payoffs, (3, - 1) and (- 1, 3), respectively, are
 obtainable.
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 STRUCTURE OF NASH EQUILIBRIUM 1263

 The paper proceeds as follows. We present the model in Section 2. Section 3
 contains the results on the structure of N.E. when repeated game payoffs are
 discounted. In Section 4 we present the corresponding analysis for the limit of
 means. We start with the discounting case because it is technically simpler. The

 basic ideas of the proofs emerge clearly in this setting. Section 5 uses the results
 of Section 4 to characterize N.E. repeated game payoffs for symmetric 2 x 2 stage
 games. Section 6 is a literature review.

 2. THE MODEL

 Let G = SI, S2 U, u2) be a two-person game in normal form. Si is a finite set
 of actions for player i and Ui: S1 x S2 -- R is player i's payoff function. An
 action pair is called an outcome.

 The supergame of G consists of an infinite sequence of repetitions of G at
 t = 1,2,3,.... At period t, the players make simultaneous moves denoted by

 Sit Si, which become common knowledge. A supergame strategy is a sequence of
 functions { a t)'I where at determines player i's action at period t as a function
 of the previous t - 1 outcomes.

 In the standard formulation a player has to choose a supergame strategy. In

 the machine game, Gm, a player chooses a (Moore) machine. A machine for
 player i, denoted by Mi, is a four tuple <Qi, qil X1, ti,) where Qi is a finite set,
 qi E Qi, X: Qi -Si, and i: Qi X Sj-* Qi. The set Qi is the set of states of Mi.
 The state ql is the initial state. The function Xi is the output function, and Xi(qi)
 is the G-action the machine plays whenever it is at state qi. The function yi is the
 transition function. Whenever the machine is at state qi and the other player
 chooses s1 e Sj, then the machine's next state is ti(qj, si).

 A pair of machines M1 and M2 induces deterministically the sequences (s')
 and (qt) in the following way:

 ql= ( q D, qi)

 St= (Xl(qt) X2(q2))

 qt+I = (fil(qit, 2) ( sM.)

 We will refer to the sequence (st) as the action-play of (M1, M2), and to the
 sequence (qt) simply as the play of (M1, M2).

 Since the machines are finite, t2 = min { m I qm + = qn for some n < m }, exists.
 Let tl < t2 satisfy qtl = q t2?. By the stationarity of the output and transition
 functions, the continuation of qt after t2 ? 1 is just like after tl. We refer to
 (qti,..., qt2) as the cycle of the machine pair (M1, M2). The length of the cycle is

 (t2 -tl 1).
 7i(Ml, M2) denotes the (average repeated game) payoff to player i, and

 Ai(kl, k2), k2 > kl, the average payoff to player i between the periods k1 and k2
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 1264 DILIP ABREU AND ARIEL RUBINSTEIN

 both inclusive. We deal with two cases:
 (i) the limit of means:

 I T ~~~~~~1 t2

 '77 (M1, M2) = lim - Ui (s') = (s),
 T-cTt=1 t2 l+ t-tl

 I k2

 Ai (kl, k2) =, k2- W) 1t
 k -kl?I t=kl

 (ii) discounting:

 1-8
 vi(M1, M) = E stui(s'),

 t=1

 Ai (kl, k2) = (1- )+)U 2- 6(1 _ 8k2-kl?l) E 6tk?)i(W).

 Denote by I Mi the number of states in Mi.
 Let >- 1 be player l's (strict) preference relation on the set of pairs (Ml, M2

 We assume that > 1
 (i) depends only on repeated game payoffs and the number of states:

 v7r ( Ml, M2) = 71(A71, M 2 ) and Ml = Ml implies

 (M1, M2) 1(Ml,D M2).

 (ii) is increasing in the payoff:

 s71 ( M1, M2) > 7r1(M1, M2) and J M1 = I M1 I implies

 (M1, M2) >- 1 (M1, MW2)

 (iii) is decreasing in IMl1:

 7T1(Ml, M2) = 7T(M1, 2) and Ml I < IMMl implies

 (MlA M2) >-( l2).

 An analogous assumption applies to >- 2
 In some parts of the paper we consider lexicographic preferences, i.e.,

 (MI, M2) >- i(Mil jq2)

 if i (AM1, M2) > gi (MI, M2) or, v7T(M1, M2) = viA(Ml, M2) and IMiI < A Ml
 The pair of machines (M1, M2) is a Nash Equilibrium (N.E.) if there is no M

 or M21 such that

 (AI{,AM2)>-1(A1,M2) or (Ml1, M2 >) 2(M1, M2).
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 STRUCTURE OF NASH EQUILIBRIUM 1265

 An N.E. payoff is a pair vr = (7r, q72) such that 7ri = 7ri(M1, M2), i = 1, 2, for
 some N.E. (MI, M2).

 Remarks on the Model

 Before proceeding to the results, we discuss various aspects of the model just
 described.

 It is worth emphasizing that the model is embedded firmly within the standard
 noncooperative game-theoretic paradigm. The machine game is simply a normal

 form game in which a player's strategy is the choice of a machine. That is, players
 choose simultaneously, and once for all, machines to play the repeated game. The
 solution concept is just Nash equilibrium. The new element is in incorporating

 considerations of complexity explicitly. This is achieved by taking a player's

 strategy space to be the set of machines, and players' preferences to depend both
 on repeated game payoffs and the complexity costs of the player's machine. It
 should be noted that while not all strategies can be implemented by finite

 machines, the restriction to machine strategies is not in itself significant: any
 Nash equilibrium payoff of the usual repeated game (which is a rational convex
 combination of stage-game payoffs) is also a Nash equilibrium payoff of the
 repeated game in which players only have access to machine-implementable

 strategies.
 The complexity measure is simply the number of states in a player's machine.

 It is one of many measures which have a plausible interpretation within the
 paper's framework. We view the choice of complexity measure to actually be part
 of the description of the repeated game, which ought to be determined by the
 economic environment being modelled.

 The following complexity considerations are captured by the present measure:
 (i) It is costly for a player to hold special routines to punish his opponent were

 the latter to deviate. Devices which may serve as potential punishments are only
 subscribed to if they are also employed along the equilibrium path.

 (ii) Monitoring an opponent's behavior is also costly. Thus players economize
 on the states held to keep track of their opponent's actions.

 On the other hand:

 (iii) The measure neglects the desire of players to simplify their calculations

 during the course of play. This is reflected in the measure being independent of

 the specification of the output and transition functions.

 In our definition, a transition function reacts only to the output of the

 opponent's machine. Thus, strictly speaking, a machine is not equivalent to a
 repeated game strategy since a machine does not include a specification of

 behavior after its own deviation. This is unobjectionable, as we assume that

 machines are "error free." A change in the definition of a transition function to
 allow it to depend on the output of both machines would not alter our results,
 since a player would not waste states to cope with his own deviations in the
 "error free" world we consider.
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 1266 DILIP ABREU AND ARIEL RUBINSTEIN

 An attractive way to make behavior off the equilibrium path important, and

 thereby address issues of perfection, is to consider machines which make "mis-
 takes," for instance in the operation of the output function. However, this cannot
 be modelled in the by now traditional way 'a la Selten (1975), by letting the
 probability of mistakes go to zero. This is simply because if there is any real
 trade-off between repeated game payoffs and implementation costs (this excludes
 the limiting cases of zero discounting and lexicographic preferences) a player

 would not pay for extra states to protect himself against eventualities which are
 arbitrarily unlikely. This incidentally implies that our structural results are robust

 to small probabilities of error. More significantly it points to the need for a new

 approach to perfection in this setting. We hope to investigate this intriguing issue
 in future work.

 Players are not allowed to choose new machines as the play of the game
 proceeds. One could depart from this static setup in a number of directions. If
 new machines could be chosen every period, and there were no change costs, then
 we would be back in the standard repeated game model with players choosing
 new one-state machines every period. If we do assume change costs, we would be
 in quite a different model whose implications we have not investigated. Another
 alternative was explored in (Ru) where dynamic considerations were incorporated
 directly into the solution concept rather than in the extensive form of the game.
 In (Ru) the cost of a state is viewed as a flow of maintainance costs. The solution

 concept therefore requires that a player would never want to alter his machine
 during the course of play. Hence a player will (eventually) drop a state which is
 not used infinitely often. In the present paper the cost of a state is best thought of
 as a one-shot cost. See Section 6 for a comparison of results.

 We do not consider mixed strategy equilibria. This stems in part from a feeling
 of unease about the interpretation of mixed strategies in a number of standard
 economic applications. Unless one assumes that players use randomizing devices,
 which appears counterfactual, one needs much additional structure to provide a
 coherent context for mixed strategies. In our model, mixing raises additional
 delicate issues. It seems natural, given the motivation of the present paper, to
 regard mixing as a costly additional operation. Hence one could plausibly argue

 that players who were minimizing the complexity of their behavior would prefer
 to choose with probability one any particular machine which was a best response.
 Given these interpretational difficulties we feel that a purely technical investiga-
 tion of the structure of mixed-strategy equilibria would be insufficiently moti-
 vated.

 The preceding discussion addresses the question of mixing over deterministic
 machines. One might also consider non-deterministic machines, the output func-
 tions of which map to lotteries over actions. The difficulty noted earlier however
 reappears: given the other player's machine, for any "random machine" there
 exists a deterministic one with no more states which yields at least as high a

 repeated game playoff. Hence, if randomizing is costly, players will not choose to
 use random machines. The skeptical reader may verify that Lemma 1 im-
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 STRUCTURE OF NASH EQUILIBRIUM 1267

 mediately adapts to the case of random machines, and leads directly to the earlier
 assertion.

 3. THE STRUCTURE OF NASH EQUILIBRIUM WITH DISCOUNTING

 We establish here the structural results described in the introduction for the
 case where repeated game payoffs are discounted. No further restrictions on >- i
 are required. In particular (in contrast to (Ru)), we do not assume that prefer-
 ences between repeated game payoffs and the complexity measure are lexico-
 graphic.

 We start with a basic lemma which is a fundamental implication of the
 Markovian structure of finite automata, and of interest in its own right: for any
 machine M1 there exists a machine with an equal number of states which yields
 player 2 at least as high a repeated game payoff against M1, as does any other
 machine. We remark that Lemma 1 and its proof continue to be valid when
 repeated game payoffs are evaluated according to the limit of means.

 LEMMA 1: For any finite machine M1 there exists a machine M2 such that

 IM21 = I M1 1, and r72(M1, M2) > r2(M1, M2) for all machines M2.

 PROOF: Suppose player 2's objective is to maximize repeated game payoffs
 alone, ignoring complexity costs (i.e., the number of states in his machine). Then,
 given M1 the choice of the optimal sequence (52) of one-shot strategies is a

 Markovian problem, and has a stationary solution 52: Q1- S2. Consider M2 as
 defined by: Q2=Q1, q2=q1, X2(q)=s2(q), and ft2(q,X1(q))=1l(q,X2(q)).
 Clearly M2 has the required properties. Q.E.D.

 Lemma 1 is of course true with player subscripts interchanged. Such transla-
 tions of definitions, results and proofs will be left to the reader. An immediate
 implication is that if a machine pair is an N.E., then the machines must have an
 equal number of states, and maximize repeated game payoffs against one another.
 See (a) below.

 Recall that for a machine pair (M1, M2), t1 and t2 denote the times at which
 the cycle of (M1, M2) begins, and ends, respectively.

 THEOREM 1: Let (M1, M2) be an N.E. of the machine game with discounting.
 Then: (a) The machines have an equal number of states, and maximize repeated
 game payoffs against one another. In the course of equilibrium play, (b) the states of
 M1 (resp. M2) which appear in the first t2 periods are distinct; (c) if in any two
 periods, M1 (resp. M2) plays the same stage game action, this must be true of the
 other machine as well.

 Before proceeding to the proof let us emphasize a few points. Observe that
 when preferences are not lexicographic, M2 need not maximize repeated game
 payoffs against M1, in order to be a best response (to M1). This is a property of
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 equilibrium. By (b), both machines have an equal number ((t2 - t1 + 1)) of cycle
 states, and, since in equilibrium all states in a machine must be used, an equal
 number ((t1 - 1)) of non-cycle states also. Furthermore, there is a one-to-one

 correspondence between the states of player l's machine and those of player 2's,
 as they appear in equilibrium play. We may interpret this result as implying that
 in equilibrium each machine "knows" which state the other machine is in. There
 will in general be an introductory phase before the cycle begins, during which the

 machines may be thought of as "counting" the time until the start of the cycle.
 Later (see Section 5) we will see that this interval may serve as a "punishment"

 phase. Part (c) implies that there is also a one-to-one correspondence between the

 stage game actions. Consequently, the number of distinct G-outcomes (or action-
 pairs) which appear in the equilibrium (action) play is bounded above by the
 minimum of the number of one-shot strategies available to the two players. That

 is, I { s t I t > 1} } < min { I S1 1, I S21 }. As we demonstrate in a later section, (c) has a
 dramatic effect on the set of payoffs which can arise in equilibrium.

 We turn now to the proof.

 PROOF OF (a): By Lemma 1, player 2 does not need more than IM I states to
 maximize repeated game payoffs. Hence in an N.E., I M I MI . Similarly for

 player 1. Therefore IMl I = I M21. The equilibrium assumption and Lemma 1 now
 imply that M1 and M2 maximize repeated game payoffs against one another.

 Q.E.D.

 We next establish a useful lemma: if the states of machine M1 which are used
 in any two periods k1 and k2 + 1 of equilibrium play are identical, then the
 average (discounted) payoff of player 2 between k1 and k2 must equal his
 average payoff from k2 + 1 onwards (that is, to x), and therefore also
 his average payoff from k1 onwards. Thus player 2 would not lose, in terms of
 repeated game payoffs, were he to modify his machine such that after k2, the
 sequence of G-outcomes in the interval [k1, k2] were repeated cyclically forever
 after. Alternatively he could modify his machine to "skip" over the interval
 [k1, k2], without loss of repeated game payoffs. Such revisions may be exploited
 to save states. Of course, states cannot be saved (without loss) in equilibrium. As
 we shall see below, this fact has important consequences for the structure of
 equilibrium machine pairs.

 The notation 7T* 7T- (MI, M2) and gi *(k) Ai(k, cc) is used below. The latter
 denotes average discounted payoffs (to player i) from period k on, along the
 equilibrium play of (M1, M2).

 LEMMA 2: Suppose qki - qlk +l,k2> k2 l Then A2(k1, k2) = 72*(k1) =
 7T2*(k2 + 1)

 PROOF: Assume not. By definition,

 T*(kl = (1 - 3k2-kl +1)A2(kl, k2) + 8k2-kl +,2* (k2 + 1).
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 Either A2(k1, k2) > 7T2*(k1), or A.(k1, k2) < 7T2*(k1). In either case, there exists a
 machine M2 such that 7r2(M1, M2) > 7T2*, which contradicts (a). In the former
 case, player 2 can construct a machine M2 such that the action play of (M1, M2)
 is identical to that of (M1, M2) until period k2, and thereafter repeats cyclically
 the sequence of G-outcomes in the interval [k1, k2]. For that, choose Q2 =

 {q2lt = 1,..-, k2}, 2(q2) = X2(q), and for all s E S1, I 2(q2, s) = 4-', and
 tu2(q2, s) = q t + k2. If, on the other hand, A2(k1, k2) < 7T2*(kl), player 2 can
 obtain a higher payoff by modifying M2 to skip over the interval (k1, k2). Q.E.D.

 The next two lemmas lead to a proof of (b). Let mi denote the minimal t such
 that qf is repeated. We first argue that m1 = M2.

 LEMMA 3: m1= M2.

 PROOF: Suppose M2> m1. Let mh > m1 satisfy q{'jI = qfli Player 2 can save
 the state qml be revising t2 as follows: 1'2(qml -', sfml'l) - qt"'. Since qml -' and
 qml do not repeat themselves, this revision will create the play q'. qtml -1,
 qrim, qTl + 1,... By Lemma 2, player 2's repeated game payoff is unchanged but he
 uses one less state, contradicting the N.E. assumption. Q.E.D.

 We now show that m, =m2 is the beginning of the cycle. In terms of the
 notation introduced earlier, we show tl = ml. Given the definition of mi, this
 establishes that all states of Mi which appear before the cycle begins, are distinct,
 and are never repeated in the play of (M1, M2).

 LEMMA 4: The cycle begins at t = mi

 PROOF: Let m-i be the minimal t > mi such that qt= qim. If m- = m2' qml =
 qml, and the lemma is true. Now suppose that m- > m-2. If qml' * q' for all
 <iiml, player 2 can save qm"l by revising M2 such that y2(qm"l - 1, slhm - 1) =qm

 Play prior to mi1 is unaffected and is followed by the cycle (qml ? .. qml --). By
 Lemma 2, player 2's payoffs are unchanged. Alternatively suppose qi"' = qf for
 some ml <s t-< ml. If t= m1, qm' = qm' and we are done. If not, player 1 can save
 qml by revising [L1 as follows:

 I (ql , 2 = and

 Il ( ql l 9 2 )=qll

 These changes create the play: ql,..., qml-1 qrn2 q q2+l.qml followed by
 the perpetual repetition of (q(, q(l '). By Lemma 2, player l's payoffs
 are the same. Q.E.D.

 Finally, we complete the proof of (b).
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 PROOF OF (b): From the remark preceding Lemma 4 it is clear that we need

 only show that qt'...,qt2, the states of Mi which appear in the cycle, are
 distinct. The basic construction used is similar to that in Lemma 3. Suppose not,

 and let m1 now denote the minimal t > t, such that q'=q' for some t < t' < t2.
 Let hii be the maximal t < t2 such that q' = q7i. (Note that since both machines
 have an equal number of states, all of which must appear in equilibrium play, if

 m1 is well defined then so is m2.) If M1 = M2 and Ml = m2 the cycle is
 (qm',..., qn-l-), a contradiction. If M2> m1, or m1M= m2 and 1>i2, player2
 can save q"'i by revising p2 as in Lemma 3. By Lemma 2, payoffs are unaffected,
 and we have obtained our usual contradiction. Q.E.D.

 The basic idea of the proof of (c) is as follows: if player 2 uses two distinct

 states to play the same action, say in periods 2 and 6, it must be so as to be able
 to transit to two different states in periods 3 and 7 respectively. But if the
 corresponding actions of player 1 are distinct, a single state can be used to effect
 the required transition by exploiting the switch in player l's actions. Thus
 unsynchronized switches of action by M1 (relative to M2) can be used by M2 to
 "keep track" of the state of play.

 PROOF OF (c): Assume not and suppose that for some t, t' X1(q) + X1(qf)
 and X2(q') = X2(qf'). The states q' and q"' must be distinct since otherwise by

 (b) q' = q{', and XI(q{) = X1(q'). However, although q' * q" the output function
 assigns the same action to the two states. Furthermore, in the play of the game,

 the transition function operates on the two states in response to two different
 actions. Player 2 can save a state by replacing the states qt and qt' by the single
 state q* and revising 12 as follows:

 (1) I2(qhI , shV1) = q*,

 (2) I (q* 5h) q2 if q2 q2? q2
 q * otherwise,

 where h = t, t'. Of course, if t = 1 < t', q* is the initial state and (1) only applies
 to h = t' (and also to h = t2 + 1 if the cycle begins at t = 1). By (b), in the play of
 (M1, M2) q h always appears with qh, h = t, t', and by assumption s' * stf. Hence
 these revisions are consistent, and result in the same play of G-outcomes as
 (M1, M2). Q.E.D.

 4. THE STRUCTURE OF NASH EQUILIBRIUM WITH THE LIMIT OF MEANS

 We now assume that repeated game payoffs are evaluated according to the
 limit of means. The results obtained here are basically the same as those for
 discounting, with one difference: between the introductory phase of states which
 are never repeated, and the cycle phase, there may be an intermediate interval in
 which cycle states are used, but not synchronized with the other machine's states

 as in the cycle. Let Phase II be the time interval during which the machines use
 cycle states but before the cycle begins.
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 THEOREM 1*: Let (M1, M2) be an N.E. of the machine game with the limit of
 means. Then: (a) The machines have an equal number of states, and maximize
 repeated game payoffs, against one another. In equilibrium play, (b) the states of
 M1 (resp. M2) which appear in the cycle are distinct; all the other states appear

 consecutively at the beginning of play and are never repeated; (c) if in any two
 periods, neither of which belongs to Phase II, M1 (resp. M2) plays the same stage
 game action, this must be true of the other machine as well.

 The explanatory remarks following Theorem 1 continue to be valid modulo
 Phase II. Thus there is a one-to-one correspondence between the states of the two
 machines and the stage-game actions they play, in all periods of equilibrium play,
 except in Phase II. Now the number of distinct G outcomes in all periods other
 than those in Phase II is bounded above by the minimum of the number of

 one-shot strategies available to the two players. That is, tsh I h 0 Phase II} I <
 min { I S1 1, I S21 }. The one-to-one correspondence between stage-game actions in
 the cycle, together with the fact that for the limit of means repeated game payoffs
 depend only on the cycle, place strong restrictions on the set of equilibrium
 payoffs in the machine game. These are heavily exploited in the next section.

 We show by example that Phase II may be nonempty. Consider the stage-game:

 A B

 A 1,1 0,0
 B 0,0 1,1

 FIGURE 3.

 The " transition diagram" below denotes a machine with two states qA and qB,
 the outputs of which are A and B, respectively. The machine transits from state

 qA to state qB if the other machine's output is A and remains in state qA
 otherwise. It transits from state qB to state qA regardless of the other machine's
 output (A or B). In the diagram, a circle (or vertice) represents a state. The
 output function is defined by the action (or letter) beneath the state and the
 transition function by directed arcs from a current state to a subsequent state in
 response to the action(s) indicated beside the arc.

 A, B

 ( A ) A B

 B

 FIGURE 4.

 The machine pair (M1, M2) where M1 starts at qA and M2 starts at qB is an N.E.
 Equilibrium play is AB, AA, BB, AA, BB,...; Phase II = {1}, the cycle begins at
 t = 2 and ends at t2 = 3.

 The proof of Theorem 1* is given in the Appendix.
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 5. NASH EQUILIBRIUM PAYOFFS IN REPEATED 2 x 2 GAMES

 Theorem 1* (c) places significant restrictions on the pattern of G-outcomes

 generated in the course of equilibrium play. For repeated 2 x 2 games it implies
 that all G-action pairs in the cycle must lie on one or the other diagonal of the
 matrix. We provide a complete characterization of N.E. payoffs, with the limit of
 means, and lexicographic preferences, for symmetric 2 x 2 games. Away from the
 limit and for other preferences, the N.E. payoff set will depend in a straightfor-
 ward way on the discount factor 8, and the exact trade-off between the repeated

 game payoff and the complexity measure. The reader is reminded that, for
 discounting, Theorem l(c) implies the same diagonal restrictions on G-outcomes
 which can arise in equilibrium cycles as Theorem 1*(c) does for the limit of
 means.

 Let D, be player i's minmax strategy, i.e., D, solves mmin maxS u.(si, si) =v,
 and let C1 denote the other strategy of Si. Let MD = {(C1, C2), (D1, D2)) denote
 the outcomes on the main diagonal and let AD = {(C1, D2), (D1, C2)) denote the
 outcomes on the auxiliary diagonal. We refer to MD and AD as the main and
 auxiliary diagonals respectively. For the rest of this section (C, D) should be read
 as (C1, D2), etc. MDU denotes the set of rational convex combinations of payoffs
 on the main diagonal, which are also strictly individually rational, i.e.,

 MDU = {(u1, u2)lui > vi, and ui = Xui(C, C) + (1 - X)u1(D, D)

 i = 1, 2 for some rational number O < X < }.

 ADU is defined analogously.

 NE(G) denotes the set of N.E. payoffs of the stage game G and NE(Gm)
 denotes the set of N.E. (repeated game) payoffs of the machine game with the
 limit of means and lexicographic preferences.

 We assume for convenience that no two distinct G-outcomes yield either player

 the same payoff. That is, if ui(s) = ui(s'), then s = s'.

 CONCLUSION 1: Let G be a symmetric 2 x 2 matrix game with no equal
 payoffs for either player:

 (i) if U,(D,C)>u,(C,C), then NE(G.)=NE(G)UMDuUADu;

 (ii) if u1(D, C) <u1(C, C), then NE(G.) = NE(G) U MDU.

 Thus all individually rational (rational convex combinations of) payoffs on the
 main diagonal are N.E. payoffs of the machine-game. The payoffs on the
 auxiliary diagonal are N.E. payoffs of the machine-game only if player 1 (and
 analogously player 2) cannot gain from deviating from (D, C) to (C, C), a
 condition satisfied, for example, in the prisoners' dilemma.
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 Before proving the theorem we demonstrate its conclusion on several games:

 The Game The N.E. Payofls

 Prisoners' Dilemma: C D

 C 2,2 -1,3

 D 3,-1 0,0

 Battle of the sexes: C D

 C 0,0 1,2
 D 2,1 0,0

 Chicken: C D

 C 4,4 2,5
 D 5,2 0,0

 C D

 C 4,4 2,3
 D 3,2 0,0

 FIGURE 5.
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 REMARK: Gm may have no N.E. For

 C D

 C 1,-1 -1, 1
 D -1, 1 1, -1

 vi = 1 and no feasible payoff is individually rational.

 PROOF-Necessity: Let (M1, M2) be an N.E. of Gm and (71*, 7T2*) the associ-
 ated payoff-vector. Clearly 7 * > vi. By Theorem 1*(c) the outcomes in the cycle
 of (M1, M2) are either only elements of MD or only elements of AD. Hence there
 are at most two distinct outcomes in the cycle.

 We first show that 71* = v1 implies (7TI*, 7T2*) E NE(G). Obviously if IM11 = 1
 then IM21 = 1 and (7TI*, T2* ) E NE(G). Assume IMlI > 1. By the unequal payoff
 assumption and the definition of D:

 (a) If there are two outcomes (X, D), (Y, C) in the cycle, then ul(X, D) < 7TI*
 < u(Y, C). Also ul(Y, D) = 7T1* < ul(Y, C). Hence player 1 can deviate to a
 one-state machine which plays only Y.

 (b) If there is a single outcome in the cycle it must be of the form (X, D) where
 u1(X, D) = v1. If X= D then (D, D) E NE(G). If X= C and (C, D) 0 NE(G),
 then u2(C, C) > U2(C, D), and by symmetry ul(C, C) > u1(D, C). Hence, by the
 definition of D, ul(C, C) > vl. Together with ul(C, D) = vl, this implies that
 player 1 can profitably deviate to a one-state machine which plays only C.

 Now consider stage games such that ul(D, C) < ul(C, C). To complete the
 proof we show that there are no equilibrium pairs (M1, M2) with cycle outcomes
 only on AD, and associated repeated game payoffs 7Ti* which are strictly
 individually rational for both players. First note that since 7Ti* > vi, both (C, D)
 and (D, C) must appear in the cycle, and ul(D, C) > 7TI* > v? ul(C, D). The
 proof now proceeds in three steps.

 Step 1: Phase I * 0. This step is analogous to the first part of Proposition 2 of
 (Ru). Let L = (t2 - t1 + 1) be the length of the cycle. Suppose by way of
 contradiction that Phase I is empty. Consider k, > t, such that s k' = C. Let
 o < f~ L L-1 satisfy q2'l + = ( q2, C). Then player 1 can alter his machine to
 obtain the cycle of (action) outcomes ((C,C),Sklj+,s kl?+61,. .., skl+L-1) if
 (> 0, and (C, C) alone if f= 0. Since ul(C, C) > u1(D, C) = ul(s k,) > g and
 this deviation must not increase payoffs, > 1, and AI(k1 + 1, k1 + 6- 1) > 7T* >
 vI. Since ul(C, D) < v1 there exists k2 such that k1 + 1 < k2 < k1 + f- 1, 5k2 -
 (D, C), and AI(k1 + 1, k2) > w*. Letting k2 play the role of k1 we can define k3
 and so on, to obtain a sequence kl, k2, k3. Since M2 has a finite number of
 states we must eventually find p, n such that kp= kn + aL for some natural
 number a, which contradicts AI(kn + 1, kp) = 7rI*I

 Step 2: Phase I does not contain either (C, C) or (D, D). This follows directly
 from I*(c).

 Step 3: Assume that sl = (D, C). Define k by q2 = f2(q', C). Since ul(C, C)
 is the largest payoff for player 1 it is clear that k * 1. If q2 is a cycle state, let
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 k2 > t1 satisfy q22 = qk. Otherwise let k2 = k. Consider k, >? t, such that 1k1 = C.
 Player 1 can save a state by dropping ql, making qkl the initial state, and

 revising LII as follows:

 (1) ,lj(qkli, c) = qk2

 and to cover the case where q2 is not a cycle state and ql is a state which
 appears in Phase II,

 (2) n (ql?1 5to-l) - q{ where n >? t, satisfies qn = qt(,
 which results in player l's revised machine skipping over Phase II. Since s2k * C,
 the cycle is unaffected, and the proof of necessity is complete.

 Sufficiency: Obviously NE(G) C NE(Gm). We complete the proof by explicitly
 constructing N.E. machine pairs which yield the required payoffs.

 Case A: (7TI*, 7T2*) E MDU. Consider N1, N2 such that

 N, N 7 * = Nu(C, C) + N2 u(D, D) > v.

 Since u1(D, D) < v1, u1(C, C) > v,. Let No satisfy uj(D, C) - ul(C, C) <
 NO(qr*- uj(D, D)). Then a pair of machines of the form:

 C ~~~C 0 D

 D D ~~~~~~~~~~~~C
 Start ... . .

 D D eD D CC\

 No N1 N2

 FIGURE 6.

 is an N.E.

 Fix M2 as specified above, and consider deviations by Player 1. The cycles of
 outcomes which he can generate fall into two categories: those with an occur-
 rence of (D, C), and those without. The former consist of blocks of the form:

 N1 (D, D)'s, (N2 - x) (C, C)'s where x > 1, one (D, C),

 (1) No (D, D)'s and some mix (possibly empty) of (C, D)'s
 and (D, D)'s.

 From the definition of No it follows that the equilibrium (outcome) cycle
 dominates.

 The latter consist of blocks of the form:

 (2) (No + N1-x) (D, D)'s and one (C, D),

 which yields a payoff less than v,, or

 (3) N1 (D, D)'s and N2 (C, C)'s, the equilibrium cycle.

 Thus the equilibrium cycle yields strictly higher repeated game payoffs than any
 other attainable cycle. It should be clear that the equilibrium cycle cannot be
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 attained using a machine with less than (No + N1 + N2) states. A formal proof
 may be constructed along the lines of Proposition 2 of (Ru).

 REMARK: The analysis of (Ru) shows that Phase I is necessary for an equi-
 librium on the main diagonal with a cycle outcome which is not an N.E. of the
 stage game.

 Case B: uj(D, C) > ul(C, C) and (7TI*, 7T2*) E ADu. Consider N1, N2 such that

 r* = N2_(D,C) + N1 + u(C, D) > V.

 Let N= N1 + N2. Then the pair of machines below is an N.E.:

 Start 1 2 Cq m N

 0,0D

 0 D 0

 Start q qNi 0, Nj N q M2

 ,_ ~~~~~~C

 FIGuRE 7.

 Consider deviations by player 1 against M2. In any cycle when M2 is in any
 one of its first N1 states it is clearly inoptimal for player 1 to play C rather than
 D, since player 2's next state is unaffected and ul(D, C) > ul(C, C). Abstracting
 from deviations of this sort, all attainable cycles are comprised of:

 (1) blocks of the form: (N2 - x) (C, D)'s and one (D, D), or

 (2) N1 (D, C)'s followed by n >? 0 blocks of type (1),
 and finally N2 (C, D)'s.

 Clearly the equilibrium cycle (n = 0) dominates. It is intuitively obvious that
 unaided by unsynchronized switches of actions, player 1 cannot play the required
 cycle sequence of C's and D's with a smaller machine than M1. The formal
 proof is almost identical to Proposition 2 of (Ru), and is omitted. Q.E. D.

 REMARK: It should be clear that adding identical rows or columns will in
 general alter the set of equilibrium payoffs. We feel that the context determines a
 "natural" representation of the stage game and that a theory of complexity ought
 not to be insensitive to presentational changes which are regarded as "innocuous"
 in the standard theory. Notice that such representational changes are irrelevant if
 the model is reformulated to require the transition between states to depend on
 the player's own stage payoff rather than on the other machine's output. This
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 would correspond to the view that what identifies the other machine's action is its
 consequence rather than its label. We are grateful to Roger Myerson and Sylvain
 Sorin for raising and clarifying these issues.

 6. RELATED LITERATURE

 This paper continues the investigation begun in Rubinstein (1986). The most
 significant difference between (Ru) and the present paper is the solution concept
 used. (Ru) analyzes a much stronger solution concept: players never wish to drop
 states from their machines during the course of play, holding fixed the other
 player's machine, and given that they only pay for states which are held in the
 machine forever. The appropriateness of the concept depends on the interpreta-
 tion of the model. In (Ru) the equilibrium concept is motivated by the view that
 complexity costs are a flow of maintainance costs which players can reduce by
 dropping states as the game proceeds. In the terminology of the present paper,
 this concept implies that Phase I is empty, that is, all the states in a machine must
 appear in the cycle. The present paper, on the other hand, adopts a different
 approach, using the Nash equilibrium solution concept, in a context in which
 players commit themselves to machines at the beginning of play.

 The other differences are that (Ru) deals only with the limit of means and
 lexicographic preferences. For the prisoners' dilemma, the solution concept of
 (Ru) eliminates the payoffs on the main diagonal (except (0,0)) from the set of
 solution payoffs.

 Several earlier papers on "complexity" and "bounded rationality" are referred
 to and commented on in (Ru). Of particular interest are Aumann (1981), who
 first proposed the use of finite automata in the context of repeated games, Green
 (1982), Radner (1978, 1980), and Smale (1980).

 An alternate approach to "complexity and repeated games" has recently been
 proposed by Neyman (1985). He investigates a (finitely) repeated game model in
 which the pure strategies available to players are those which can be generated by
 machines which use no more than a certain number of states. He analyzes the set
 of mixed strategy equilibria of this game. Ben-Porath (1986), and Megiddo and
 Widgerson (1985) pursue this line of enquiry, the latter in the context of Turing
 machines.

 The decisive difference, in our view, between Neyman's formulation and the
 present one is that in the former, the number of states is exogenously given,
 whereas in our work it is explicitly a choice variable. The modelling approach we
 pursue seems to us very economic: complexity is costly and players seek to
 minimize these costs. Indeed, this "cost minimization" is at the heart of our
 results.

 The goal of Green, Neyman, Radner, and Smale is to use complexity to expand
 the equilibrium set, specifically to show that cooperation can emerge even with a
 finite horizon. We, of course, consider infinite repetitions and seek to restrict the
 set of equilibrium payoffs.
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 Other recent work includes Kalai and Stanford (1988). Of most relevance to

 the present paper is their demonstration that for a two-player repeated game, if a
 pair of strategies is a "discount robust subgame perfect equilibrium" (i.e., if the

 pair is a perfect equilibrium for an open interval of discount factors), then the

 strategies must have equal complexity. This theorem is related to our result that if

 (M1, M2) is an N.E., then IMj1 = IM21, which is an immediate corollary of
 Lemma 1. Their theorem is true for quite distinct reasons and the basic assump-

 tions of our analysis are very different: in Kalai and Stanford, complexity does
 not enter players' preferences, nor are there restrictions (apart from finiteness) on

 the complexity of the strategies players may use. The reader is referred to their

 paper and the others cited for further details.

 7. CONCLUDING REMARKS

 When a decision maker formulates a rule of behavior, he confronts the
 following dilemma. On the one hand he wishes to choose a rule which serves his

 direct interests in the best possible way. On the other he attempts to make the
 rule as simple as possible. This paper investigates the effect of introducing the
 latter consideration explicitly into the description of the model. In particular we

 focus on whether a repeated game model without costs of implementing strategies
 is a good approximation of a model where such costs are "small." In our analysis

 a striking discontinuity emerges. It suggests a need to expand the scope of
 standard game theoretic analysis to include procedural aspects of decision
 making.

 Viewed as an exercise in repeated games, our results provide strong restrictions

 on the structure of N.E. strategies. They also shrink dramatically the set of N.E.
 payoffs. It would be reckless, however, to regard these results as amounting to a
 new theory of repeated games: the assumptions which drive them are too special
 to permit such an interpretation. Nevertheless we feel they are suggestive, and
 serve to demonstrate that complexity considerations can be successfully incorpo-
 rated into standard models.

 Department of Economics, Harvard University, Cambridge, MA 02138, U.S.A.
 and

 Department of Economics, The Hebrew University, Jerusalem, Israel

 Manuscript received September, 1986; final revision received September. 1987.

 APPENDIX

 The main difference in the proof of Theorem 1* relative to Theorem 1 is in part (b), the argument
 for which is now rather involved. The proofs of Lemma 1 and (a) are exactly as before and are
 omitted, and (c) requires only a minor addition. The source of the difficulty in (b) is that with the
 limit of means, payoffs only depend on the cycle. Hence it is only possible to establish Lemma 2 for

 periods k, and k2 after the cycle begins. In particular, under the hypotheses of Lemma 2 it is
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 possible that A2(kl, k2) < 7T2*, for k, before the cycle begins.
 Note that now x7T (M1, M2) 7i* = 7Ti*(k) for all k, and recall the definitions of tl, t2.

 LEMMA 2*: Suppose qkl =q2+l, k2 > k? > tl. Then A2(kl, k2) = 7,*.

 PROOF: Suppose not. Assume w.l.o.g. that A2(kl, k2) > 7T2* (otherwise there exists k3 > k2 + 1
 such that qk2+l - qk3+1 and A2(k2 + 1, k3) > T2*). Consider M2 as specified in Lemma 2. Clearly
 7T2(M1, M2) = A2(kl, k2) > 7T2*, which contradicts (a). Q. E. D.

 Recall that m, denotes the minimal t such that q' is repeated.

 LEMMA3*: mI=m2.

 The proof is identical to Lemma 3.

 Unfortunately Lemma 4 cannot be repeated; the cycle need not begin at mI. However, for both
 machines it is still the case that only cycle states appear after ml = M2. Hence non-cycle states appear
 only once, and at the beginning of play, and both machines have the same number of non-cycle states.

 We use the following standard convention for subscripts: if i = 1, - i = 2, and vice-versa. Denote
 by QC the states of M. which appear in the cycle, and by Q' those which do not. That is
 QC= q'I t > t1}, and Qi,= Qi - QiC

 LEMMA 4*: q' c Q, for all t > m, and i = 1,2.

 PROOF: We first show that:

 ()if q mi E QiC, then q' i E QC i for all t > mi . i = 1, 2.

 Let i = 1 and suppose q2cQ2 for some k > ml. Choose ml such that q{ ' = qf' and qt * q2 for all
 t > ml. Player 2 can save q2 by revising M2 as in Lemma 3. To complete the proof we argue that

 (ii) qmi C QC, i = 1,2.

 Suppose not. Then by Lemma 3* and (i), q7' i Qc, i = 1, 2. Let mi be the maximal t such that
 q= qni. Assume w.l.o.g. that -ml > 2(l= 2 implies that the cycle starts at tl = mI = M2). Player
 2 can save q,' by revising M2 as before. Q.E.D.

 Let to = mi denote the beginning of Phase II. Lemmas 3* and 4* allow us to divide equilibrium
 play into the following intervals:

 Phase I I < t <- to - qi I Qi;
 Phase II t0 < t < t -1 qc E Qc but the pair of states

 q' does not repeat itself;

 Phase III t > tI the cycle phase.

 Since all states must be used in equilibrium play, all noncycle states must appear in Phase I. That
 is, Q/ = { qit It < to - 1}. Also, by (a), the two machines must have an equal number of cycle states.

 To establish (b) it remains to show that there is no repetition of a machine's states within the cycle.
 If Phase II is empty the proof is exactly as in the previous section. We complete the proof below
 (Lemmas 5-10) assuming that Phase III is nonempty.

 Let m denote any element of Phase II for which player l's state is the same as his state at the
 beginning of Phase II. That is, m >? t1 and satisfies qj" = q{O. Let L = I QC I be the number of cycle
 states in each of the two machines. We first show that the (L - 1) states of player 1 which follow any
 appearance of q'o in Phase III must be his remaining cycle states. The argument proceeds via Lemma
 5.

 LEMMA 5: Suppose qlk q2+l k2 > k, > tl, k2 > m. Then L < k2-k+1wherek=min(mk1).
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 PROOF: Consider M2 as defined by:

 Q2= {q t =1 to - or t = k,k + 1,.,
 )2(q2)=X2(q2), and for all s c S1

 {q2 { t=t- t,

 A (q2,s q2k, t ,

 t q2+ 1otherwise.

 M2 has I Q2I + (k2 - k + 1) states and 7T2(M1, M2) =A2(kI, k2). Now use Lemma 2*, and note that
 IM21 = IQ2'1 + IQ2CI Q.E.D.

 LEMMA 6: The elements of the sequence { qn, qn +L 1 } are distinct; i.e., QC =
 {q'.. q n+L-I}

 PROOF: Suppose not. Then there exists ('j > ?0,t~2 L - 2, such that qnl+ 4 = qm +f2+ 1. Let k, =m
 + t1, k2 = m + t2 and check that Lemma 5 is contradicted. Q.E.D.

 Consider the L-sequence defined by an appearance of qlo in Phase III and the (L - 1) states of
 player 1 which follow. Lemma 8 asserts that the L states of player 2 which are paired with this
 sequence of player l's states, are all distinct, i.e., the corresponding sequence for player 2 contains all
 his cycle states. Lemma 7 is a key intermediate step.

 LEMMA 7: Suppose qkl = qk2?l k2 - k, > tl, k2 > m. Define k= min(m, kl), and A =
 {q2 kI k k2}. Then

 () A = QC if ( *)(q2 k q2k4+ 1) (qk2, q2k2 +1 ) for all k < k < k - 1, and

 PROOF: (i) Suppose (*) holds. Observe that it implies si k s k2 for all k such that k < k k - 1
 and q - qk2. Hence player 2 can obtain the payoff A2(k1, k2) by revising M2 as follows:

 (1) A2(q2101,slo-1) =qml

 (2) 2 (q2 qk2, ) - qkl.
 Only the states Q' U {q k I k k < k2 } now appear in the play of the game. To complete the proof
 note that by Lemma 2*, A 2(kI, k2) =r2*

 (ii) Suppose not. Then ( * ) is satisfied and the contradiction with (i) is immediate. Q. E. D.

 LEMMA 8: QC= {q'. . I q * * 2 }

 PROOF: Suppose there exists q c QC such that q i4{ q7,.. q-jqn 1}. Let k2 be the minimal t > m such that q = q'. By Lemma 6 there exists m < k, <. m + L - I such that q ki = q kq2 + l. Lemma
 7(ii) now yields a contradiction. Q. E. D.

 The next lemma uses Lemma 7 with the player subscripts interchanged. It also explicitly uses the
 assumption that Phase II is nonempty. In particular the latter implies q' * q'o for all t > to + 1.

 LEMMA9: qn + " =q "

 PROOF: Assume not. Let k2 = m + L - 1 and h2be theminimal h m+L such that qh+ I = q7.
 By Lemma 8 and nonempty Phase II there exists n such that m + 1 < n < m + L - 1, and q' = qo.
 By Lemma 8 (applied to player 1) h2 + 1 < n + L - 1. Hence by Lemma 6 (applied to player 2)
 qk2?+1 * qh2h+ 1. Thus by Lemma 8 there exist k1, h1 c {m,.. ., m + L - 1}, k1 h1, such that qAi k

 qk? + I and q h' = q h2 + 1. Either k, > m, or h, > m. Suppose that k1 > m. Then q{fl 7 { ql Imin(n, kl)
 < k < k2 }. By Lemma 6 player l's states in the interval min(n, kl) < k < k2 are distinct. Hence (*) is
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 satisfied, and Lemma 7 applied to k1, k2 leads to a contradiction. An analogous contradiction results
 if h, > ni, and we consider hl. h2. Q. ED.

 LEMMA 10: qL' q+ =ql + I=_1.. L- 1.

 PROOF: Let t?, be the minimal 0 t {A L - 1 such that qfl /' + q' + . By Lemma 6 there exists
 0 1-- 1 such that qfl - + r. Observe that the preceding lemmas apply to antA k? t1

 such that qA = q'(. By Lemma 9 q"l' - qL ) Hence by Lemma 6 * < {. Define k. = ni + fl, k, =
 + 1. + f - 1, and check that Lemma 5 is contradicted. Q. E. D.

 This completes the proof of (b).

 Finally, we need to make only a minor addition to the proof of (c) provided in Section 4. The
 machine has now also to be altered to skip over Phase II when the latter is nonempty. If Phase I is
 empty, set the initial state to be q"l if q" * qt qY and to q* otherwise. If Phase I is nonemptv revise

 ,u, (further) as follows:

 /I t( q"' if qry" * qt, qt
 112(q24,s I )4) i q*4q'

 q* otherwise,

 h r qJt(4' l if q(l) l q2,q'
 where q* otherwise.

 These revisions result in the same play of G-outcomes itn the (yele, and thus the same repeated game
 pavofl's.
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