
Extend

Language Reference Manual

Ishaan Kolluri(isk2108), Kevin Ye(ky2294) Jared Samet(jss2272), Nigel Schuster(ns3158)

December 20, 2016

Contents

1 Introduction to Extend 3

2 Structure of an Extend Program 3

2.1 Import Statements . 3

2.2 Function Definitions . 4

2.3 Global Variables . 4

2.4 External Library Declarations . 4

2.5 main function . 5

2.6 Scoping and Namespace . 5

2.7 Identifiers . 5

3 Types and Literals 6

3.1 Primitive Data Types . 6

3.2 Ranges . 6

3.2.1 Range Literals . 7

4 Expressions 7

4.1 Arithmetic Operators . 8

4.2 Boolean Operators . 9

4.3 Conditional Expressions . 11

4.3.1 Ternary Expressions . 11

4.3.2 Switch Expressions . 11

4.4 Additional Operators . 12

4.5 Function Calls . 13

4.6 Range Expressions . 13

4.6.1 Slices . 14

4.6.2 Selections . 14

1

4.6.3 Corresponding Cell . 14

4.6.4 Selection Examples . 14

4.7 Precedence Expressions . 15

5 Functions 16

5.1 Format . 16

5.2 Variable Declarations . 16

5.3 Formula Assignment . 17

5.3.1 Combined Variable Declaration and Formula Assignment 17

5.3.2 Formula Assignment Errors . 17

5.4 Parameter Declarations . 18

5.5 Application on Ranges . 18

5.6 Lazy Cell Evaluation and Circular References . 19

5.7 External Libraries . 20

6 Standard Library Reference 20

6.1 File I/O . 20

6.2 Math Functions - Imported straight from C . 20

6.3 Math Functions - Not imported from C . 20

6.4 String Functions . 21

6.5 Plotting . 21

6.6 Range Functions . 21

2

1. Introduction to Extend

Extend is a dynamically-typed, statically-scoped, declarative language that brings the semantics

of an interactive spreadsheet application to a compiled language. Extend features immutable values

and allows the developer to write code without explicitly specifying the order of computations. It

goes beyond typical spreadsheet applications by allowing the developer to encapsulate related sets

of computations in reusable functions. In order to offer the best performance, Extend compiles

down to LLVM.

Extend’s syntax is meant to provide clear punctuation and easily understandable cell range

access specifications, while borrowing elements from languages with C-style syntax for ease of

development. Despite these syntactic similarities, the semantics of an Extend program have more

in common with a spreadsheet such as Microsoft Excel than imperative languages such as C, Java

or Python.

2. Structure of an Extend Program

An Extend program consists of one or more source files. A source file can contain any num-

ber of import directives, function definitions, global variable declarations, and external library

declarations, in any order.

2.1. Import Statements

Import statements in Extend are written with import, followed by the name of a file in double

quotes, and terminated with a semicolon. The syntax is as follows:
import "string.xtnd";

Extend imports act like #include in C, except that multiple imports of the same file are ignored.

The imports are all aggregated into a single namespace.

3

2.2. Function Definitions

Function definitions comprise the bulk of an Extend program. In short, a function consists of a

set of variable declarations, formula assignments, and a return expression. Each variable consists

of cells; the values of each cell are, if necessary, calculated according to formulas which each apply

to a specified subset of the cells. Each cell value, once calculated, is immutable. A couple examples

follow for context; functions are described in detail in section 5.
isNumber(x) {

return typeof(x) == "Number";
}

sum_column([m,1] rng) {
/* Returns the sum of the values in the column, skipping any values that are non-

numeric */
[m,1] running_sum;
running_sum[0,0] = #rng;
running_sum[1:,0] = running_sum[[-1],] + (isNumber(#rng) ? #rng : 0);
return running_sum[-1];

}

2.3. Global Variables

In essence, global variable declarations function as constants in Extend. They are written with

the keyword global, followed by a variable declaration in the combined variable declaration and

assignment format described in section 5.3.1. As with local variables, the cell values of a global

variable, once computed, are immutable. A few examples follow:
global pi := 3.14159265359;
global num_points := 24;
global [num_points,1]

circle_x_vals := cos(2 * pi * row() / num_points),
circle_y_vals := sin(2 * pi * row() / num_points);

2.4. External Library Declarations

An external library is declared with the extern keyword, followed by the name of an object file

in double quotes, followed by a semicolon-delimited list of external function declarations enclosed

by curly braces. A library declaration informs the compiler of the functions’ names and signatures

and instructs the compiler to link the object file when producing an executable. An external

function declared as foo will call an appropriately written C function extend_foo. An example

follows:

4

extern "mylib.o" {
foo(arg1, arg2);
bar();

}

This declaration would cause the compiler to link mylib.o and would make the C functions

extend_foo and extend_bar available to Extend programs as foo and bar respectively. The

required signature and format of the external functions is specified precisely in section 5.7.

2.5. main function

When a compiled Extend program is executed, the main function is evaluated. All computa-

tions necessary to calculate the return value of the function are performed, after which the program

terminates. The main function must be a function of a single argument, conventionally denoted

args, which is guaranteed to be a 1-by-n range containing the command line arguments.

2.6. Scoping and Namespace

For functions and for global variables, there is a single namespace that is shared between all

files composing an Extend program, and they are visible throughout the entire program. Functions

declared in external libraries share this namespace as well. For a local variable, the scope is the

entire body of the function in which it is defined. Functions may declare local variables sharing a

name with a global variable; inside that function, the name will refer to the local variable.
global x := "I’m a global";

foo() {
y := x; // Scope of x is entire function
x := "In here I’m a local";
return y; // Returns "In here I’m a local"

}

bar(x) {
return x; // Parameters mask globals; returns argument

}

baz() {
return x; // Returns "I’m a global"

}

2.7. Identifiers

A function or variable name must begin with a lowercase or uppercase letter and can be followed

by any number of letters, digits, or underscores.

5

3. Types and Literals

Extend has three primitive data types, Number, String, and Empty, and one composite

type, Range.

3.1. Primitive Data Types

A Number is an immutable primitive value corresponding to a double-precision 64-bit binary

format IEEE 754 value. Numbers can be written in an Extend source file as either integer or floating

point constants; both are represented internally as floating-point values. There is no separate type

representing an integer.

A String is a immutable primitive value that is internally represented a C-style null-terminated

byte array corresponding to ASCII values. A String can be written in an Extend source file as

a sequence of characters enclosed in double quotes, with the usual escaping conventions. Extend

does not allow for slicing of strings to access specific characters; access to the contents of a string

will only be available through standard library functions.

The Empty type can be written as the keyword empty, and serves a similar function to NULL

in SQL; it represents the absence of a value.

Primitive Data Types Examples
Number 42 or -5 or 2.71828 or 314159e-5
String "Hello, World!\n" or "foo" or ""
Empty empty

3.2. Ranges

Extend has one composite type, Range. A range is a subset of the cells of a variable, as

described in section 5.2. Ranges can be nested arbitrarily deeply and can be used to represent

(immutable) lists, matrices, or more complicated data structures. For convenience, the range literal

syntax can be used to implicitly declare an anonymous variable and assign the range to the entire

contents of this variable.

6

3.2.1. Range Literals

A range literal is a semicolon-delimited list of rows, enclosed in curly brackets. Each row is a

comma-delimited list of numbers, strings, or range literals. A few examples follow:
legal_ranges() {

r1 := {"Don’t"; "Panic"}; // two rows, one column
r2 := {"Don’t", "Think", "Twice"}; // one row, three columns
r3 := {1,2,3;4,5,6;7,8,9}; // three rows, three columns
r4 := {"Hello";0,1,2,3,4}; // two rows, five columns
r5 := {{{{{1}}}}}; // one row, one column
r7 := {-1.5,-2.5,{-2,"nested"},-3.5}; // one row, four columns
return

print_endline(r1) ->print_endline(r2) ->print_endline(r3) ->
print_endline(r4) -> print_endline(r5) -> print_endline(r7);

}

main(args) {
return legal_ranges();

}

4. Expressions

Expressions in Extend allow for arithmetic and boolean operations, function calls, conditional

branching, extraction of contents of other variables, string concatenation, and determination of the

location of the cell containing the expression. The sections for boolean and conditional operators

refer to truthy and falsey values: the Number 0 is the only falsey value; all other values are truthy.

As empty represents the absence of a value, it is neither truthy nor falsey.

7

4.1. Arithmetic Operators

The arithmetic operators listed below take one or two expressions and return a number, if both

expressions are Numbers, or empty otherwise. Operators grouped within the same inner box have

the same level of precedence, and are listed from highest precedence to lowest precedence. All

of the binary operators are infix operators, and, with the exception of exponentiation, are left-

associative. Exponentiation, bitwise negation, and unary negation are right-associative. All of the

unary operators are prefix operators. The bitwise operators round their operands to the nearest

signed 32-bit integer (rounding half to even) before performing the operation and evaluate to a

Number.

Operator Description Definition

˜ Bitwise NOT Performs a bitwise negation on the binary represen-

tation of an expression.

- Unary negation A simple negative sign to negate expressions.

** Power Returns the first expression raised to the power of

the second expression

* Multiplication Multiplies two expressions

/ Division Divides first expression by second.

% Modulo Finds the remainder by dividing the expression on

the left side of the modulo by the right side expres-

sion.

« Left Shift Performs a bitwise left shift on the binary represen-

tation of an expression.

» Right Shift Performs a sign-propagating bitwise right shift on the

binary representation of an expression.

& Bitwise AND Performs a bitwise AND between two expressions.

+ Addition Adds two expressions together.

- Subtraction Subtracts second expression from first.

8

| Bitwise OR Performs a bitwise OR between two expressions.

ˆ Bitwise XOR Performs a bitwise exclusive OR between two expres-

sions.

easy() {
return 3 - -3 ** 2 %5; //-1

}
g_eazy() {

return (((1 << 2 | 1) << 2) | 1) << 1; //42
}

4.2. Boolean Operators

These operators take one or two expressions and evaluate to empty, 0 or 1. Operators grouped

within the same inner box have the same level of precedence and are listed from highest precedence

to lowest precedence. All of these operators besides logical negation are infix, left-associative

operators. The logical AND and OR operators feature short-circuit evaluation. Logical NOT is a

prefix, right-associative operator. Besides logical NOT, all boolean operators have lower precedence

than all arithmetic operators. For Strings, the boolean operators <, <=, >, and >= implement

case-sensitive lexicographic comparison.

Operator Description Definition

! Logical NOT Evaluates to 0 or 1 given a truthy or falsey

value respectively. !empty evaluates to

empty. It has equal precedence with and

unary minus.

9

== Equals Always evaluates to 0 if the two expressions

have different types. If both expressions are

primitive values, evaluates to 1 if they have

the same type and the same value, or 0 oth-

erwise. If both expressions are ranges, eval-

uates to 1 if the two ranges have the same

dimensions and each cell of the first expres-

sion == the corresponding cell of the second

expression. empty == empty evaluates to 1.

Strings are compared by value.

!= Not equals x != y is equivalent to !(x == y).

< Less than If the expressions are both Numbers or both

Strings and the first expression is less than the

second, evaluates to 1. If the expressions are

both Numbers or both Strings and the first

expression is greater than or equal to the sec-

ond, evaluates to 0. Otherwise, evaluates to

empty.

> Greater than Equivalent rules about typing as for <.

<= Less than or equal to Equivalent rules about typing as for <.

>= Greater than or equal

to

Equivalent rules about typing as for <.

&& Short-circuit Logical

AND

If the first expression is falsey or empty, eval-

uates to 0 or empty respectively. Otherwise,

if the second expression is truthy, falsey, or

empty, evaluates to 1, 0, or empty respec-

tively.

10

|| Short-circuit Logical

OR

If the first expression is truthy or empty, eval-

uates to 1 or empty respectively. Otherwise,

if the second expression is truthy, falsey, or

empty, evaluates to 1, 0, or empty respec-

tively.

somethings_false() {
return !1 != !1 || 4 <= 3;

}
somethings_empty() {

return empty || empty <= !3 || 5 > 3;
}
somethings_true() {

return 6 > 2 && !(1 == !1);
}

4.3. Conditional Expressions

There are two types of conditional expressions: a simple ternary if-then-else expression and a

switch expression which can represent more complex logic.

4.3.1. Ternary Expressions

A ternary expression, written either as cond-expr ? expr-if-true : expr-if-false

or, equivalently, if(cond-expr, expr-if-true, expr-if-false) evaluates to expr-if-true

if cond-expr is truthy, or expr-if-false if cond-expr is falsey. If cond-expr is empty, the

expression evaluates to empty. Both expr-if-true and expr-if-false are mandatory. expr-if-true

is only evaluated if cond-expr is truthy, and expr-if-false is only evaluated if cond-expr

is falsey. If cond-expr is empty, neither expression is evaluated. The ternary operator ? : has

the lowest precedence level of all operators.

4.3.2. Switch Expressions

A switch expression takes a optional condition, and a list of cases and expressions that the

overall expression should evaluate to if the case applies. In the event that multiple cases are true,

the expression of the first matching case encountered will be evaluated. An example is provided

below:

11

switch_example(foo) {
return switch (foo) {

case 2: "foo is 2";
case 3,4: "foo is 3 or 4";
default: "none of the above";

};
}

alternate_format(foo) {
return switch {

case foo == 2:
"foo is 2";

case foo == 3, foo == 4:
"foo is 3 or 4";

default:
"none of the above";

};
}

The format for a switch statement is the keyword switch, optionally followed by pair of paren-

theses containing an expression switch-expr, followed by a list of case clauses enclosed in curly

braces and delimited by semicolons. A case clause consists of the keyword case followed by a

comma-separated list of expressions case-expr1 [, case-expr2, [...]], a colon, and an

expression match-expr, or the keyword default, a colon, and an expression default-expr.

If switch-expr is omitted, the switch expression evaluates to the match-expr for the first

case where one of the case-exprs is truthy, or default-expr if none of the case-exprs ap-

ply. If switch-expr is present, the switch expression evaluates to the match-expr for the

first case where one of the case-exprs is equal (with equality defined as for the == operator) to

switch-expr, or default-expr if none of the case-exprs apply.

The switch expression can be used to compactly represent what in most imperative lan-

guages would require a long string such as if (cond1) {...} else if (cond2) {...}.

The switch operator is internally converted to an equivalent (possibly nested) ternary expres-

sion; as a result, it features short-circuit evaluation throughout.

4.4. Additional Operators

There are four additional operators available to determine the size and type of other expressions.

In addition, the infix + operator is overloaded to perform string concatenation.

12

Operator Description Definition
size(expr) Dimensions Evaluates to a Range consisting of one row and two

columns; the first cell contains the number of rows
of expr and the second contains the number of
columns. If expr is a Number, a String, or Empty,
both cells will contain 1.

typeof(expr)Value Type Evaluates to "Number", "String", "Range", or
"Empty".

row() Row Location No arguments; returns the row of the cell that is
being calculated

column() Column
Location

No arguments; returns the column of the cell that is
being calculated

+ String
concatenation

"Hello, " + "World!\n" == "Hello, World!\n"

Given [5,5]foo, then foo[1,4] = row() * 2 + col() will evaluate to 6.

4.5. Function Calls

A function expression consists of an identifier and an optional list of expressions enclosed in

parentheses and separated by commas. The value of the expression is the result of applying

the function to the arguments passed in as expressions. Extend is an applicative language: the

arguments are evaluated from left to right before the function is called. For more detail, see

section 5.

4.6. Range Expressions

Range expressions are used to select some or all of the cells of a variable or another range. A

range expression consists of a bare identifier, a bare range literal, or an expression and a selector.

If a range expression has exactly 1 row and 1 column, the value of the expression is the value of

the single cell of the range. If it has more than 1 row or more than 1 column, the value of the

expression is the selected range. If the range has zero or fewer rows or zero or fewer columns, the

value of the expression is empty. If a range expression with a selector would access a row index

or column index greater than the number of rows or columns of the range, or a negative row or

column index, the value of the expression is empty.

13

4.6.1. Slices

A slice consists of an optional integer literal or expression start, a colon, and an optional

integer literal or expression end, or a single integer literal or expression index. If start is

omitted, it defaults to 0. If end is omitted, it defaults to the length of the dimension. A single

index with no colon is equivalent to index:index+1. Enclosing start or end in square

brackets is equivalent to the expression row() + start or row() + end, for a row slice, or

column() + start or column() + end for a column slice. The slice includes start and

excludes end, so the length of a slice is end - start. A negative value is interpreted as the

length of the dimension minus the value. As mentioned above, the value of a range that is not 1

by 1 is a range, but the value of a 1 by 1 range is essentially dereferenced to the result of the cell

formula.

4.6.2. Selections

A selection expression consists of an expression and a pair of slices separated by a comma and

enclosed in square brackets, i.e. [row_slice, column_slice]. If one of the dimensions of the

range has length 1, the comma and the slice for that dimension can be omitted. If the comma is

present but a slice is omitted, that slice defaults to [0] for a slice corresponding to a dimension of

length greater than one, or 0 for a slice corresponding to a dimension of length one.

4.6.3. Corresponding Cell

A very common selection to make is the cell in the "corresponding location" of a different

variable. Since this case is so common, #var is syntactic sugar for var[,]. As a result, if var

has more than column and more than one row, #var is equivalent to var[row(),column()].

If var has multiple rows and one column, it is equivalent to var[row(),0]. If var has one row

and multiple columns, it is equivalent to var[0,column()]; and if var has one row and one

column, it is equal to var[0,0].

4.6.4. Selection Examples

14

selection_examples() {
foo :=

{"Alpha", "Bravo", "Charlie", "Delta", "Echo";
"Foxtrot", "Golf", "Hotel", "India", "Juliett";
"Kilo", "Lima", "Mike", "November", "Oscar";
"Papa", "Quebec", "Romeo", "Sierra", "Tango"};

[3,3] bar;
bar[0,0] = foo[0,2]; // "Charlie"
bar[0,1] = foo[0,:]; // {"Alpha", "Bravo", "Charlie", "Delta", "Echo"}
bar[0,2] = foo[:,2]; // {"Charlie"; "Hotel"; "Mike"; "Romeo"}
bar[1,1] = foo[[1],[2]]; // "November" - the [1] indicates relative

// In this case, works out to foo[2,3]

bar[1,2] = foo[3,]; // "Romeo" since foo has multiple columns
bar[2,2] = foo[2:[2],[-1]]; // {"Lima"; "Quebec"}

/* In this example, each cell of spam would be equal to the cell
* in ham in the equivalent location plus 1. */
ham := {2,4,6; 10,11,12; 20,30,40};
[3,3] spam := #ham + 1; // {3,5,7; 11,12,13; 21,31,41}

/* In this example, more_cookies would be a 3x4 range where in each row,
* the value is equal to the value in cookies in the same column.
* In other words, each row of more_cookies would be a copy of cookies. */
cookies := {"Chocolate","Oatmeal","Vanilla","Peanut Butter"};
[3,4] more_cookies := #cookies;

/* In this example, the values of baz would be
* 11, 12, 13 in the first row;
* 21, 22, 23 in the second row;
* 31, 32, 33 in the third row. */
ones := {1,2,3}; // 1 row, 3 columns
tens := {10;20;30}; // 3 rows, 1 column
[3,3] nums := #ones + #tens; // Equivalent to ones[0,[0]] + tens[[0],0]

return 0;
}

4.7. Precedence Expressions

A precedence expression is used to force the evaluation of one expression before another, when

that order of operation is required for functions with side-effects. It consists of an expression

prec-expr, the precedence operator ->, and an expression succ-expr. The value of the ex-

pression is succ-expr, but the value of prec-expr will be calculated first and the result ignored.

All functions written purely in Extend are free of side effects. However, some of the external func-

tions provided by the standard library, such as for file I/O and plotting, do have side effects. The

precedence operator has the second-lowest grammatical precedence of all operators, higher only

than the ternary operator.

15

5. Functions

The bulk of an Extend program consists of functions. Although Extend has some features,

such as immutable and lazily evaluated cell values, that are inspired by functional languages, its

functions are not first class objects. By default, the standard library is automatically compiled and

linked with a program, but there are no functions built into the language itself.

5.1. Format

As in most programming languages, the header of the function declares the parameters it ac-

cepts. The body of the function consists of an optional set of variable declarations and formula

assignments, which can occur in any order, and a return statement, which must be the last state-

ment in the function body. All variable declarations and formula assignments, in addition to the

return statement, must be terminated by a semicolon. This very simple function returns whatever

value is passed into it:
foo(arg) {

return arg;
}

5.2. Variable Declarations

A variable declaration associates an identifier with a set of cells of the specified dimensions,

which are listed in square brackets before the identifier. For convenience, if the square brackets and

dimensions are omitted, the identifier will be associated with a single cell. In addition, multiple

identifiers, separated by commas, can be listed after the dimensions; all of these identifiers will

be separate variables, but with equal dimension sizes. The dimensions can be specified as any

valid expression that evaluates to a Number, which will be rounded to the nearest signed 32-bit

integer. If either dimension is zero or negative, or if the expression does not evaluate to a Number,

a runtime error causing the program to halt will occur.
[2, 5] foo; // Declares foo as a variable with 2 rows and 5 columns
[m, n] bar; // Declares bar as a variable with m rows and n columns
[3, 3] ham, eggs, spam; // Declares ham, eggs and spam as distinct 3x3 variables
baz; // Declares baz as a variable with single cell

16

5.3. Formula Assignment

A formula assignment assigns an expression to a subset of the cells of a variable. Unlike most

imperative languages, this expression is not immediately evaluated, but is instead only evaluated if

and when it is needed to calculate the return value of the function. A formula assignment consists

of an identifier, an optional pair of slices enclosed in square brackets specifying the subset of the

cells that the assignment applies to, an =, and an expression, followed by a semicolon. As with

the expressions specifying the dimensions of a variable, these slices specifying the cell subset can

contain arbitrary expressions, as long as the expression taken as a whole evaluates to a Number,

which will be rounded to the nearest signed 32-bit integer. Negative numbers are legal in these

slices, and correspond to (dimension length + value).
[5, 2] foo, bar, baz; // Declares foo, bar, and baz as distinct 5x2 variables
foo[0,0] = 42; // Assigns the expression 42 to the first cell of the first row of foo
foo[0,1] = foo[0,0] * 2; // Assigns (foo[0,0] * 2) to the 2nd cell of the 1st row of foo
bar = 3.14159; // Assigns pi to every cell of every row of bar
baz[1:-1,0:1] = 2.71828; // Assigns e to cells (1,0) through (3,1), inclusive, of baz

/* The next line assigns foo[[-1],0] + 2 to every cell in
both columns of foo, besides the first row */

foo[1:,:] = foo[[-1],0] + 2;

The last line of the source snippet above demonstrates the idiomatic Extend way of simulating

an imperative language’s loop; foo[4,0] would evaluate to 42+2+2+2+2 = 50 and foo[4,1] would

evaluate to (42*2)+2+2+2+2 = 92.

5.3.1. Combined Variable Declaration and Formula Assignment

For convenience, a variable declaration and a formula assignment to all cells of that variable

can be combined on a single line by inserting a := and an expression after the identifier. Multiple

variables and assignments, separated by commas, can be declared on a single line as well. All

global variables must be defined using the combined declaration and formula assignment syntax.
/* Creates two 2x2 variables; every cell of foo evaluates to 1 and every cell of

bar evaluates to 2. */
[2,2] foo := 1, bar := 2;

5.3.2. Formula Assignment Errors

If the developer writes code in such a way that more than one formula applies to a cell, a

runtime error will occur if the cell’s value is required to compute the return expression. If there is

17

no formula assigned to a cell, the cell will evaluate to empty.

5.4. Parameter Declarations

Parameters can be declared with or without dimensions. If dimensions are declared, they can

either be specified as integer literals or as identifiers. If a dimension is specified as an integer

literal, the program will verify the dimension of the argument before beginning to evaluate the

return expression; if it does not match, a runtime error will occur causing the program to halt. If

it is specified as an identifier, that variable will contain the dimension size and will be available

inside the function body. If the same identifier is repeated in the function declaration, the program

will verify that every parameter dimension with that identifier has equal dimension size; if they

differ, a runtime error will occur causing the program to halt. A few examples follow:
number_of_cells([m,n] arg) {

return m*n; // m and n are initialized with the dimensions of arg
}

die_unless_primitive([1,1] arg) {
return 0; // If arg is not a primitive value, a runtime error will occur

}

num_cells_if_column_vector([m,1] arg) {
// If arg has one column, return number of cells; otherwise runtime error
return m;

}

die_unless_square([m,m] arg) {
return 0; // Runtime error if number of rows != number of columns

}

num_cells_if_same_size([m,n] arg1, [m,n] arg2) {
// If arguments are the same size, return # of cells, otherwise runtime error
return m*n;

}

main(args) {
[3,4] foo;
[3,5] bar;
return print_endline(num_cells_if_same_size(foo,bar));

}

5.5. Application on Ranges

Extend gives the developer the power to easily apply operations in a functional style on ranges.

For example, the following function performs cell wise addition:
foo([m,n] arg1, [m,n] arg2) {

[m,n] bar := #arg1 + #arg2;
return bar;

}

This function normalizes a column vector to have unit norm:

18

normalize_column_vector([m,1] arg) {
[m,1] squared_lengths := #arg * #arg, normalized := #arg / vector_norm;
vector_norm := sqrt(sum(squared_lengths));
return normalized;

}

5.6. Lazy Cell Evaluation and Circular References

All cell values and variable dimensions are evaluated lazily if and when they are needed to

calculate the return expression. Using lazy evaluation ensures that the cell values are calculated

in a valid topological sort order and allows for detection of circular references; internally this

is accomplished by constructing a function for each formula which is called the first time the

cell’s value is needed, and marking the cell as "in-progress" once it starts being evaluated and as

"complete" once the value has been calculated. A cell’s value is needed when a range expression

consists of that single cell, or when the cell belongs to a range that is assigned as the value for

another cell. In other words, an intermediate range expression that consists of multiple cells will

not cause the constituent cells to be evaluated; however, a range expression that has one row and

one column will cause that one cell’s value to be evaluated. In conditional expressions and in

short-circuiting operator expressions, only the predicate and the relevant conditional branch will

be evaluated. In an expression using the precedence operator, the preceding expression will be

evaluated before the succeeding expression. If a program is written in such a way as to cause a

circular dependency of one cell on another, and the return expression is dependent on that cell’s

value, a runtime error will occur. For example, in the following function:
maybeCircular(truth_value) {

x := x;
return truth_value ? x : 0;

}

main(args) {
foo :=

print_endline("To be or not to be?") ->
print_endline("Enter \"Not to be\" to attempt to evaluate a circular reference.") ->
readline(STDIN);

return
maybeCircular(foo == "Not to be" || foo == "\"Not to be\"") ->
print_endline("Good thing I didn’t look at the value of x.");

}

A runtime error will occur if maybeCircular(1) is called; but if maybeCircular(0) is called, the

function will simply return 0.

19

5.7. External Libraries

Using the following library declaration:
extern "mylib.o" {

foo(arg1, arg2);
bar();

}

will make the functions foo (taking two arguments) and bar (taking zero arguments) available

within Extend. In LLVM, the compiler will declare external functions extend_foo and extend_bar

as functions of two and zero arguments respectively. All arguments must have the type value_p,

and the function must have return type value_p, declared in the Extend standard library header

file. In other words, the C file compiled to generate the library must have defined:
value_p extend_foo(value_p arg1, value_p arg2) {

/* function body here; */
}

value_p extend_bar() {
/* function body here; */

}

6. Standard Library Reference

6.1. File I/O

open(filename, mode) - returns a file handle for use with the other file I/O functions
close(file_handle) - close a file handle
read(file_handle, num_bytes) - reads num_bytes from a file; 0 reads entire file
readline(file_handle) - read until the first newline
write(file_handle, buffer) - write the contents of buffer (a String) to the handle
STDIN, STDOUT, STDERR - global variables initialized to the file handles associated with

stdin, stderr, and stdout
print_endline(val) - convert val to a string and write to STDOUT

6.2. Math Functions - Imported straight from C

sin(x), cos(x), tan(x), acos(x), asin(x), atan(x), sinh(x), cosh(x), tanh(x),
exp(x), log(x), log10(x), sqrt(x), ceil(x), fabs(x), floor(x), isNaN(x)
random() - Just for fun - very non-random.

6.3. Math Functions - Not imported from C

isInfinite(x) - returns -1 for -infinity, 0 for finite, or 1 for +infinity
round(val, number_of_digits);
gcd(m, n) - returns the GCD of two numbers
lcm(m, n) - returns the LCM of two numbers
sign(arg) - returns -1, 0, or 1
sum(rng) - adds all the numbers in rng
nmax(n1, n2) - returns the max of two numbers

20

max(rng) - returns the largest number in a range
nmin(n1, n2) - returns the min of two numbers
min(rng) - returns the smallest number in a range
avg([m,n] rng) - return the average of the numbers in a range
stdev([m,n] rng) - return the standard deviation of the numbers in a range
sumsq(rng) - returns the sum of the squares of the numbers in rng
sumproduct([m,n] rng1, [m,n] rng2) - returns the inner product of rng1 and rng2
sumxmy2([m,n] rng1, [m,n] rng2) - returns the sum of squared differences between the

elements of rng1 and rng2
mmult([m,n] rng1, [n,p] rng2) - multiplies two matrices
linest([p,q] known_ys, [p,q] known_xs) - performs a linear regression with known_ys as

the dependent variables and known_xs as the independent variables
normalize([m,n] arg) - return the unit norm vector in the same direction as arg

6.4. String Functions

len(str) - returns the length of a String
toASCII(val) - returns a 1 x n range of the ASCII values of a String
fromASCII(val) - converts a 1 x n range of ASCII values into a String
parseFloat(str) - wrapper around C atof()
toUpper(text) - converts a string to uppercase
toLower(text) - converts a string to lowercase
left(str, num_chars) - returns the leftmost num_chars of str
right(str, num_chars) - returns the rightmost num_chars of str
substring(str, start, length) - returns a substring of str
repeat(str, num) - repeat a string, num times.
toString(arg) - convert any value into a String representation
ltrim(s) - remove whitespace at the beginning of s
rtrim(s) - remove whitespace at the end of s
trim(s) - remove whitespace on both ends of s
reverse(s) - reverses a string
padLeft(str, pad_char, total_length) - for a string shorter than total_length, pad on

the left with pad_char
charAt(str, i) - return the ASCII code of the ith character of str
parseString(s) - best efforts to convert a string into the correct value

6.5. Plotting

bar_chart(file_handle, labels, vals);
line_chart(file_handle, labels, x_vals);

6.6. Range Functions

transpose([m,n] rng) - transpose a matrix; works with any dimensions
flatten([m,n] rng) - turn a rectangular range into a long row vector
isNumber(x) - equal to typeof(x) == "Number"
isEmpty(x) - equal to typeof(x) == "Number"
colRange(start, end) - return a column vector with the integers from start to (end-1)
rowRange(start, end) - return a row vector with the integers from start to (end-1)
match(list, val) - finds the first occurence of val in list; list can be either a row or

a column vector and does not need to be sorted
bsearch(list, val) - finds the first occurrence of val in list; list must be a sorted

column vector
join([m,n] cells, joiner) - concatenate the string representation of either a column or

a row vector, using joiner as the delimiter
joinRange([m,n] cells, rowJoiner, colJoiner) - concatenate a range, joining rows with

rowJoiner and columns with colJoiner
numRows(arg) - return the number of rows in arg
numCols(arg) - return the number of columns in arg
split(string, splitter) - returns a row vector of strings using splitter (which must be

a one-character String) as a delimiter
splitToRange(string, row_splitter, col_splitter) - returns a range of strings using

row_splitter as the row delimiter and col_splitter as the column delimiter
case charAt(trimmed,0) == toASCII("{") && charAt(trimmed,-1) == toASCII("}"):

append([m,n] rg1, [p,q] rg2) - concatenate two ranges, horizontally
stack(rg1, rg2) - concatenate two ranges, vertically

21

mergesort([m,n] rng, sort_col) - return a sorted copy of rng, using sort_col for
comparisons

22

	Introduction to Extend
	Structure of an Extend Program
	Import Statements
	Function Definitions
	Global Variables
	External Library Declarations
	main function
	Scoping and Namespace
	Identifiers

	Types and Literals
	Primitive Data Types
	Ranges
	Range Literals

	Expressions
	Arithmetic Operators
	Boolean Operators
	Conditional Expressions
	Ternary Expressions
	Switch Expressions

	Additional Operators
	Function Calls
	Range Expressions
	Slices
	Selections
	Corresponding Cell
	Selection Examples

	Precedence Expressions

	Functions
	Format
	Variable Declarations
	Formula Assignment
	Combined Variable Declaration and Formula Assignment
	Formula Assignment Errors

	Parameter Declarations
	Application on Ranges
	Lazy Cell Evaluation and Circular References
	External Libraries

	Standard Library Reference
	File I/O
	Math Functions - Imported straight from C
	Math Functions - Not imported from C
	String Functions
	Plotting
	Range Functions

