
PLTree: Final Report
	
Table of Contents�

Table of Contents
Introduction
Language Tutorial

Environment Setup
Sample Program: Hello World
Sample Program: GCD (Iterative)
Sample Program: GCD (Recursive)
Execution

Language Reference Manual
Lexical Conventions
Tokens
Reserved Keywords
Comments
Identifiers
Constants
Literals
Types
Primitive Types
Collections
Declarations
Variable Declaration
Type Inference
Expressions and Statements
Operators
Operator Precedence
Operator Usage
Control Flow
Conditional Branching

If/Else
Loops

While
Functions

Built-In Functions
User-Defined Functions
Nested Functions
File Input/Output
Importing Files
Program Structure and Scope
Structure
Valid Programs
Scope Rules
Compilation
File Extension
Standard Library
Code Examples
References

Project Plan
Project Processes
Planning
Specification
Development
Testing
Style Guide
Team Responsibilities
Roles
Subteams
Project Timeline
Development Environment
Project Log

Language Evolution
Translator Architecture

Block Diagram
Components

Test Plan and Scripts
Testing Phases
Automation & Implementation
Test Scripts
Sample Test Programs

Lessons Learned
Jacob Graff
Shruti Kulkarni
Luis ‘Bert’ Ramirez
Justin Walters

Code Listing�
	

Introduction
PLTree is a language for usage and manipulation of trees where the main data type is a
tree. The language makes it easy to create and edit trees with functions such as adding
a new item at a certain position in the tree or deleting items. The language will makes it
simple to manipulate trees with common tree functions such as pruning, grafting, finding
the root, and searching for an item. A selection of relevant tree functions are provided, a
standard library is available, and user-defined functions may also be created for working
with trees.
	
Language Tutorial
Environment Setup
At present PLTree is only supported on *nix systems, including Mac OS X and
GNU/Linux. Certain dependencies must be installed in order to compile and run
programs in PLTree.
	
OCaml
PLTree is written in the OCaml programming language. As such, to compile and run
PLTree code, OCaml must be installed. Instructions for OCaml download and installation
on different operating systems can be found on the OCaml site:
http://ocaml.org/docs/install.html

	
For recent Mac OS X systems, OCaml can be installed with Homebrew. First, XCode
command line tools needs to be installed, which can be done with the following
command:

xcode-select –install
Next, Homebrew can be installed via curl with the following command:

ruby -e “$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)”

Finally, OCaml can be installed with the following command:
 brew install ocaml
More information about Homebrew can be found at Homebrew website: http://brew.sh/
	
For Linux systems which utilize the Advanced Packaging Tool (APT) package manager,
such as Debian- or Ubuntu-based systems, OCaml can be simply installed with the
following command:
 sudo apt-get install ocaml
More information about APT can be found on the Debian website:
https://wiki.debian.org/Apt
	
PLTree
A makefile has been provided in order to automatically install the essential components
to run PLTree. The makefile currently requires administrator privileges to run on a
computer. On *nix systems, the makefile installs the standard library at
/usr/local/bin/pltree_std
	
GCC
PLTree compiles to the C programming language. As such, to run programs written in
PLTree after compilation, one must have a means of compiling C code installed. We
recommend the GNU Compiler Collection (GCC) which may be downloaded at:
https://gcc.gnu.org
	
Sample Program: Hello World
Code
$stdio.tree$
string str “hello\n”;
print : str;
	
Walkthrough
The program starts with an import statement:
 $stdio.tree$
This particular statement imports the standard library.
	
Following that is the first execution statement of the program:
 string str “hello\n”;
This line declares a string variable named str. As with all data types in PLTree, a string is
a type of tree. A string tree holds characters, each of which is an individual single node
tree.
	

This particular line makes use of syntactic sugar, a feature of the PLTree language. The
string declaration statement in this sample program is syntactically equivalent to this line
of code:

string str ['h' 'e' 'l' 'l' 'o' '\n'];
which represents the declaration of a string variable named str which is a tree of
characters with six leaf nodes, each of which contains one character in “hello\n”. The ‘\n’
is a newline character, and indicates the end of text on that line and the start of a new
line.
	
The next and final execution statement in this program is a print statement:
 print : str;
This line simply calls the print function on str, to print the str string.
	
Expected Output
The expected output for this program would be:
 hello
This output would be written by the print statement.
	
Sample Program: GCD (Iterative)
Code
$stdio.tree$
	
gcd : any args [
 int a args->0;
 int b args->1;
 int c 0;
 while : a != 0 [
 c = a;
 a = b%a;
 b = c;
]
 return:b;
]
	
print:"Testing iterative gcd with 65 and 195\n";
	
print:[gcd:[65 195] "\n"];
	
Walkthrough
The program starts with an import statement:
 $stdio.tree$
This particular statement imports the standard library.
	
gcd : any args [begins the declaration of a function named gcd. It accepts an argument of
any type, and can refer to the argument as args within the function body.
	
int a args->0; int b args->1; int c 0; declares three variables, all of type int. The variable
named a is set equal to the value of the function’s argument’s first branch. Similarly, b is
set equal to the value of the second branch. c is set to 0.

	
while : a != 0 [begins a while loop that continues as long as the value of a is not 0.
	
c = a; a = b%a; b = c; assigns c the same value as a. a is set to the value of b mod a and b
is set to the same value as c.
	
After the while loop terminates, return:b; causes gcd to return the value of b.
	
print:"Testing iterative gcd with 65 and 195\n"; prints the sentence “Testing iterative gcd
with 65 and 195”, followed by a newline.
	
print:[gcd:[65 195] "\n"]; executes the newly-defined gcd function, passing as an
argument a tree whose first branch is equal to 65 and whose second equals 195. The
return value of that function call is then the first branch of an argument passed to print,
and the newline character is the second. Simply, this statement prints the return value of
gcd:[65 195] followed by a newline.
	
Expected Output
The expected output for this program would be:
 65
This output would be written by the print statement.
	
Sample Program: GCD (Recursive)
Code
$stdio.tree$
	
gcdr : any args [
 int a args->0;
 int b args->1;
	
 if : a == 0 [
 return:b;
]
	
 return:gcdr:[b%a a];
]
	
print:"Testing recursive gcd with 14 and 21\n";
	
print:[gcdr:[14 21] "\n"];
	
Walkthrough
This is similar to the above function. The main difference is this line:

return:gcdr:[b%a a];
This line recursively calls the function gcdr on b%a and a and returns the resulting value.
This accomplishes the same result but recursively.
	
Expected Output
The expected output for this program would be:

 7
This output would be written by the print statement.
	
Execution
To compile a .tree file into a .c file, execute a command in the following way:
$./pltree filename.tree filename.c
filename.c can then be compiled as a normal c file. Alternatively, a provided Makefile can
be used to compile directly to the appropriate executable. From the directory containing
the Makefile and the filename.tree file, execute
$ make filename
and then run the program with
$./filename
	
Language Reference Manual
Lexical Conventions
Tokens
The classes of tokens are: identifiers, keywords, constants, literals, and operators.
	
Reserved Keywords
int
double
char
string
any
args
if
ifelse
while
return
void
tree
width

Comments
The characters /* introduce a comment, which terminates with the characters */.
Comments do not nest, and they cannot occur within a string or character literals.
Comments can span multiple lines; multi-line comments are written in the same way as
single-line comments.
	
Single line comments are written as follows:
/* this is a single-line comment */
	
Multi line comments are written similarly:
/* this is
a
multi-line comment */
	
Nested comments are not presently supported.
	

Identifiers
An identifier is a sequence of letters and digits, where the underscore (_) is included as
a letter. Identifiers must begin with a letter and may be of any length. Upper and
lowercase letters are treated differently, and thus PLTree is case-sensitive.
	
Constants
Constants are fixed values that do not change, which are built into the system. Standard
mathematical constants are included. Constants are of various primitive data types.
Primitive types are listed and described in the ‘Types’ section.
	
Literals
Literals are also items that may be of various primitive data types. The value of a
variable that has been declared as equal to a literal, unlike a constant, may change.
Primitive types are listed and described in the ‘Types’ section.
	
Types
All elements, including primitive types and collections, are trees. When a new variable is
declared, a new tree is created. The smallest unit of the language is a single node. A
node has a data member - for example, the integer 5 - and may have any number of
children. All trees are built from these nodes. Tree roots and nodes may be of various
data types. In this manual, we use node when we are not concerned with the children of
that node, and tree elsewhere.
	
Primitive Types
Literals may be of the following primitive types:

Type Keyword

character char

integer int

double double

	
The boolean primitive type is not specifically included; boolean true/false values are
indicated by int values ‘1’ (if true) or ‘0’ (if false).
	
Primitive types may form parts of expressions. Variables must be declared as of a
particular type. See ‘Variable Declaration’ for explanation and syntax.
	
Collections
Collections are sets of primitive types held together in the same data structure. The
fundamental data structure, on which all other data structures are built in this language,
is the tree.
	
A string is a type of collection which contains a set of characters of type char. This
collection is identified with the keyword string. A character string is a type of collection
which is tree with a single root node of type char whose children are also of type char.
	

User-defined types are not presently supported.
	
Declarations
Variable Declaration
Every variable is treated as a tree. When a new variable is declared, a tree of a single
node is created containing the data that variable is assigned to hold, of the type that the
variable is declared as. For example, a string in our language would be a tree with
leaves of characters.
	
Variables may be declared in the following syntax:

type name literal_value;
where type is one of the primitive types or void, name is an optional identifier for this tree,
literal_value is either a literal or an expression of the data which evaluates to the
appropriate type. These are stand-alone variable trees of a single node with no
branches.
	
For example:

int a 5;
char b ‘h’;
double c 8.8;
void t []; /*empty tree*/

All of these are variable trees of a single node with no branches.
	

	
Variables may also be declared in the following syntax:

type name {tree_root}[children];
where type is one of the primitive types or void, name is an optional identifier for this tree,
tree_root is either a literal or an expression of the data which the root of the variable tree
will store which evaluates to the appropriate type and {children} is an optional argument
that declares the children of the root of the variable tree; these may be values or
variables.
	
When a variable is declared to be of type void, if there is a tree_root and
children, tree_root is ignored. If only one argument is present, it is interpreted as
children.
	
For example:

char str {'h'} ['e' 'l' 'l' 'o' '\n'];

This is a character tree-in other words, a string-with root ‘h’ and children ‘e’, ‘l’, ‘l, ‘o’, and
‘/n’.
	
Variables may also contain trees. This is the case of strings, for example, which hold a
tree with branches of nodes, each representing a single character in the string, as part of
the tree.
	
For example:

char str ['h' 'e' 'l' 'l' 'o' '\n'];
holds a tree with branches that spell the string ‘hello\n’, with ‘\n’ being the new line
character.
	

	
Type Inference
All primitive types can be written as is, without a type declaration or identifier.
	
For example:
 int 5; can be written as 5;
 char ‘a’; can be written as ‘a’;
 double 3.5; can be written as 3.5;
	
In addition, strings, which are really trees of char, can be declared in the following
manner:

[‘h’ ‘e’ ‘l’ ‘l’ ‘o’]; can be written as “hello”;
Note the use of double quotes around strings and single quotes around chars.
	

	
Expressions and Statements
Operators
Arithmetic operators:

Addition Binary +

Subtraction Binary -

Multiplication Binary *

Division Binary /

Modulo Binary %

Minus Unary -

	
Numerical relational operators:

Is equal to ==

Is not equal to !=

Is less than <

Is less than or equal to <=

Is greater than >

Is greater than or equal to >=

	
Logical operators:

And Binary &&

Or Binary ||

	
Other operators:

Width Unary (prefix) #

Branch Accessor Binary (postfix) ->i
where i is the ith branch to be accessed

	
Operator Precedence
Operator precedence follows standard order of operations for all operators. Innermost
parentheses always come first. Arithmetic operators take precedence over numerical
relational operators. Numerical relational operators take precedence over logical
operators. Accessor, width, and branch accessor operators take precedence over all
other types of operators. Where operators share the same precedence, predecessors
take precedence over successors.
	
Operator Usage
Operator functions are also available in addition to the standard operators. Operator
functions are to be used for objects, while standard operators are to be used for primitive
types.
	
All unary operators immediately precede their operand (e.g. -1, !true), except for the one
referred to as Branch Accessor, which immediately follows its operand. Binary operators
separate their operands (e.g 0 - 1, false && true). Operators that act on primitives
automatically access the data member of the operand(s). For all binary operators, both

operands must be of the same type. All arithmetic operators expect Unary Minus are
binary. They are all (including Unary Minus) to be used for either ints or doubles. The
same type will be returned.
	
Numerical relational operators are to be used for either ints or doubles. A boolean value
will be returned. In cases where numerical relational operators are used with other types,
the value of the variables of other types will be converted to an appropriate numerical
value for the purpose of comparison with a numerical relational operator.
	
The logical operators may only be used for ints. A integer value will be returned.
	
Width (#) is a unary prefix operator, shorthand for the function width, referring to all
branches at the root of the present node. Its operand is a tree of any type. It returns an
int equal to the number of branches, also known as the degree, of that tree.
	
The Branch Accessor Operator (->i) is used to access the ith branch of its operand
where i is an integer. Branches are 0-indexed counting from the leftmost branch at the
root. For example,
 my_tree->2
returns branch 2 of tree my_tree, which is the 3rd branch with 0 as the starting index.
Attempting to access a branch that does not exist is undefined.
	
Control Flow
Support for conditional branching in the form of if-statements and if-else
statements, as well as loops in the form of while loops, are included. Conditions
are boolean statements used in conditional branching and loops.
	
Conditional Branching
If/Else
If/else statements are written like this:
if : condition [
 /* condition met; do something */
] else [
 /* condition not met; do something */
]
	
Loops
While
While loops are written like this:
while : condition [
 /* condition met; do something */
]
	
Functions
Functions are actually a specialized type of tree. Children of function trees are
statements, each of which is itself a tree. Nested functions form inner nodes of the same
function tree, as each nested function is a tree whose children are statements. Execution
of a function always proceeds in depth-first search order through the function tree.

Evaluation of a function occurs in applicative order, upon reaching relevant nodes
involved.
	
As an example, a function call to the gcd function, with the int values 65 and 195 as the
arguments of the gcd function, may look like this:
 print: gcd: [65 195];
	
Functions may be called by other functions, with values of other functions serving as
arguments for these functions.
	
As an example, a function call to print the result of the gcd function, with the int values 65
and 195 as the arguments of the gcd function, may look like this:
 print: gcd: [65 195];
	
Built-In Functions
Built in functions are provided to all files by the standard library. The standard library is
provided in the ‘Appendix’ section of this document.
	
User-Defined Functions
All functions accept as an argument any number of trees, each of which must be
declared to be of a particular type. A function is declared in the following syntax:

name: argument-type t [
 /* do something */
 return:value;

]
where return-type is the return type, name is the name of the function, {argument-type t} is
the input argument which must be of type argument-type, and the brackets [/*do
something */] surround an execution block consisting of any number of statements.
	
A function may return any valid type. A function must always return a value of the
appropriate type. If a function never returns, its return type should be declared as void; in
this case, upon completion of the execution block, the function execution terminates
without a returned value.
	
Nested Functions
Functions may be defined within functions; these are known as nested functions. As
functions are trees in PLTree, nested functions further extend the tree with additional
branching. The nested function is itself a function tree, and the root of the nested
function extends the branch of the existing function tree for the function in which the
nested function is nested.
	
File Input/Output
Importing Files
External files may be imported in the following way:
 $filename$
where filename is the name of the external file to be imported in, including the .tree
extension.
	

Program Structure and Scope
Structure
A program may exist entirely within a single source file or within multiple source files. A
source file may include and link with files from existing libraries or other files. By
convention import statements are typically to be included in the header of a source code
file.
	
Valid Programs
A program must at minimum have a single valid execution statement.
	
For example,

put_t : {‘a’};
is a simple, complete program that executes put_t on the tree {‘a’}
This writes ‘a’ to the console.
	
Customarily there will also be at least one import statement:
 $stdio.tree$
to import the standard library.
	
For example:
 $stdio.tree$
 print:”Hello, World!\n”;
Prints “Hello, World!” to the console with a newline
	
Scope Rules
Nodes can see data in child nodes below on the same branch, but not in sibling nodes
on the same level as the nodes, and not in parent/ancestor nodes above the nodes.
	
Compilation
A compiler is provided for source code written in PLTree. Source code compiles to C.
	
File Extension
File extension for all PLTree programs shall be .tree
	
Standard Library
A standard library is included with our programming language with select built-in
functions.
	
Code Examples
/* classic “Hello, World” */
$stdio.tree$
print:“Hello, World!\n”;
$stdio.tree$
/* iterative gcd function*/
gcd : any args [
 int a args->0;
 int b args->1;
 int c 0;

 while : a != 0 [
 c = a;
 a = b%a;
 b = c;
]
 return:b;
]
	
print:"Testing iterative gcd with 65 and 195\n";
print:[gcd:[65 195] "\n"];
	
/* recursive gcd function */
gcdr : any args [
 int a args->0;
 int b args->1;
	
 if : a == 0 [
 return:b;
]
 return:gcdr:[b%a a];
]
	
print:"Testing recursive gcd with 14 and 21\n";
print:[gcdr:[14 21] "\n"];
	
Project Plan
	
Project Processes
Planning
 We met at minimum twice weekly (once with TA on a fixed date at a fixed time,
once as a team with a target set date/time set every week, aimed to be regular but open
to flexibility to accommodate individual needs), but often met more frequently,
particularly when our discussions needed to go longer than the allotted time and/or
around deadline times. Subteams also met separately on an as-needed basis.
 For communication and collaboration we utilized Git (for version control), Slack
(for collaboration, file sharing, and online discussion), Google Docs/Google Drive (for
collaborative document editing, file sharing, and online discussion through commenting
and the Google Docs chat panel), Google Chats/Hangouts, email, and mobile phone
(both voice calls and SMS) to stay connected while we were away from each other.
Email was used rather infrequently. We almost always met in person, but during certain
occasions (such as Fall Break-during which two of our group mates travelled out) when
we could not meet together in-person, we were able to collaborate online and continue
working remotely while staying in touch. Fortunately it was only rarely that this needed to
be done, and we usually worked together in-person.
 We utilized a roughly ‘waterfall’ approach to project management, whereby we
completed the entire project from start to finish in distinct linear stages. However, our
‘planning’ phase was relatively short, and we were more flexible and open to immediate
change than is typically allowed in the usual ‘waterfall’ style of project management.
	
Specification

 The Language Reference Manual (LRM) served as our primary specification
document. We started writing the LRM from very early on in the project. However, our
LRM underwent continuous revisions and significant changes throughout the project as
our language evolved. We do not regret early writing of our LRM, however, as it made
sure that we kept the important elements of our specification in mind constantly
throughout the process. Back and forth discussion with the TA and some advice from
Prof. Stephen Edwards helped significantly to evolve our language, and our LRM, into
what it eventually became-more logical, more consistent, more robust.
	
Development

Development started with defining a grammar-first on paper, then typed-and then
by implementation of a significant part of the lexer/parser and scanner. Code generation
in the C programming language followed. This started very simply, with a basic 'hello
world' functional program followed by a working 'print' function and then followed by the
ability to 'pretty print' trees in a hierarchal structure. From there we moved onto more
complex functions. Semantic analysis followed as did more complex code generation
and improvements to all components. New functionality and revisions to syntax and
grammar were included iteratively with time.
	
Testing
Unit testing, integration testing, and system testing were all used. Testing was performed
continuously right from the start to ensure validity of code and to catch bugs/fix problems
early on. We compared the expected code with the generated code and their results
initially, but as our code became more robust, we compared the expected outputs with
generated outputs.
	
Style Guide
Guidelines that we aimed to follow included the following:

• One statement per line where practical
• Use indentation to clearly mark code blocks
• Use indentation to clearly mark what falls within what sets of parentheses
• Use tab indentation rather than space indentation
• Helper/library functions may be written for commonly used code
• Encourage-but do not require-use of comments liberally to explain code well
• Use lowercase and/or camelcase for names (of functions, variables, files, etc.)

These were applied not as strict rules to be followed obligatorily but as general guides.
	
Team Responsibilities
Roles
Official team roles are assigned as follows:
	
Jacob Graff - System Architect
Shruti Kulkarni - Manager
Luiz ‘Bert’ Ramirez - Tester
Justin Walters - Language Guru
	
Subteams
Originally assigned subteams are as follows:
	

Jacob Graff & Justin
Walters

syntax, grammar, scanner, parser, code generation

Luis ‘Bert’ Ramirez &
Shruti Kulkarni

syntax, code generation, test plans, diagramming, planning,
language tutorial, documentation

	
In reality, these roles and subteams were quite fluid as team members were willing and
able to help out with what were originally other team members’ assigned parts (i.e.,
people on the scanner/parser subteam also helped out with documentation, people on
the documentation/test plans subteam discussed with the group what the grammar and
syntax should look like, etc.). Team members did end up doing some thing(s) outside of
their originally assigned parts at some point in the development and/or documentation
process.
	
Project Timeline
Approximate timeline
Week of 09/23/2015 – Finalize proposal
09/30/2015 – Proposal submitted
Week of 10/15/2015 – Rough draft of LRM; work on grammar, lexer/parser
10/26/2015 – LRM Submitted
Week of 11/2/2015 – Work on lexer/parser, basic AST, early version of “Hello World”, Test Plans
Week of 11/9/2015 – Better AST; update LRM, finalize “Hello World”, test plans
11/16/2015 – Hello World completed
Week of 11/25 – Improve AST, SAST, test plans
Week of 12/2/2015 – Continue work on SAST, code generation, test plans
Week of 12/9/2015 – Finalize code, test plans, presentation slides
Week of 12/16/2015 – Fix bugs, presentation slides, final reports
12/22/2015 – Final report submitted
	
Development Environment
PLTree was built on a combination of Mac OS X and Linux platforms. Git was used as a
distributed version control system. Vim, emacs, TextWrangler, and Sublime Text were
among the text editors used. Most of the project code was done in OCaml. A makefile is
used for installation and compilation. Tests were run from a bash script.
	
Project Log
We integrated Git with Slack to keep of project commits. This way every member of our
team would be notified in case any change was made-however big or small-
automatically. Some very early commits were lost due to mistakes in setup of Git;
however, this was resolved early on. We also utilized Google Docs for collaborative
document editing (in certain cases) which allowed us to keep track of who was working
on what within the document at what time(s).
	
Selected excerpts and representative samples of our project log commits are included
below:
	
Starting the project & initial development
----- November 8th -----
	
sgk2118 [10:39 PM]

enabled an integration in this channel: github
	

----- November 9th -----
	
github BOT [2:01 PM]
[PLTree:master] 2 new commits by Jacob:
3d7a159: Variable declaration, assignment (note: used = for assignment indication,
might be necessary). Updated Makefile - Jacob
227976d: Fix merge conflicts - Jacob
	
[2:03]
[PLTree:master] 1 new commit by Jacob:
007a77e: Bring back Makefile - Jacob
	
jag2302 [2:04 PM]
joined #code
	

github BOT [2:15 PM]
[PLTree:master] 2 new commits by Jacob:
adea28f: More comprehensive test program - Jacob
e3acd3e: Makefile: hello depends on helloWorld.tree - Jacob
	

----- November 10th -----
	
github BOT [3:59 PM]
[PLTree:master] 1 new commit by Shruti Kulkarni:
d02b52e: test - Shruti Kulkarni
	
Parsing & revised test scripts
----- November 14th -----
	
github BOT [1:00 AM]
[PLTree:trees] 1 new commit by Jacob:
bf25aa1: Add support for comparisons, subtraction, addition - Jacob
	

github BOT [1:36 PM]
[PLTree:trees] 1 new commit by Jacob:
1451f69: Better tree printing - Jacob
	
[1:36]
[PLTree:master] 7 new commits by Jacob:
b4f7386: Start adding tree support - Jacob
449f006: Working hello world with trees - Jacob
e418e38: Improve support for trees, strings suck now though - Jacob
eb77253: Much more extensive tree support - Jacob
4160f94: remove test.py - Jacob Show more...

	

github BOT [1:51 PM]
[PLTree] New branch "printing" was pushed by jagraff
	

github BOT [2:08 PM]
[PLTree:printing] 1 new commit by Jacob:
8ec249b: improved printing - Jacob
	

github BOT [2:14 PM]
[PLTree:master] 2 new commits by Jacob:
d5999ca: Better pretty printing - Jacob
8ec249b: improved printing - Jacob
	

github BOT [4:36 PM]
[PLTree:master] 2 new commits by Luis Ramirez:
3955aaa: v1 of test suite: see comments at top of tester.sh - Luis Ramirez
6707795: Merge branch 'master' of PLTree - Luis Ramirez
	

github BOT [5:32 PM]
[PLTree:master] 1 new commit by Jacob:
37c4bb4: Changes to hello.tree and expected output - Jacob
	

github BOT [9:58 PM]
[PLTree] New branch "prog-rep" was pushed by JustWalters
	

github BOT [10:15 PM]
[PLTree:master] 2 new commits by Luis Ramirez:
7128e82: update tester script; accepts dirs & multi args - Luis Ramirez
e475f66: Merge branch 'master' of PLTree - Luis Ramirez
	
Further revisions to code & test plans
	
----- November 18th -----
	
github BOT [1:13 PM]
[PLTree:master] 1 new commit by Jacob:
1b1b51e: Modify loop printing slightly - Jacob
	

----- November 21st -----
	
github BOT [10:51 PM]
[PLTree:prog-rep] 24 new commits by Jacob and 2 others:

b4f7386: Start adding tree support - Jacob
449f006: Working hello world with trees - Jacob
e418e38: Improve support for trees, strings suck now though - Jacob
eb77253: Much more extensive tree support - Jacob
4160f94: remove test.py - Jacob Show more...
	

----- November 23rd -----
	
github BOT [4:30 PM]
[PLTree] New branch "Syntax" was pushed by jagraff
	

----- November 25th -----
	
github BOT [8:53 PM]
[PLTree] New branch "syntax" was pushed by jagraff
	

----- November 26th -----
	
github BOT [3:12 PM]
[PLTree:master] 5 new commits by Jacob:
ca7b144: Saving changes to parser - Jacob
6de432c: Remove .swp file - Jacob
25b2861: Working parser with new syntax - Jacob
9e54429: Fix a shift/reduce and update tests - Jacob
1efa54a: Fix all shift/reduce conflicts - Jacob
	

----- December 1st -----
	
github BOT [2:26 AM]
[PLTree:prog-rep] 2 new commits by Justin Walters:
2e02e54: Transformation from AST to SAST outputs rigt type - Justin Walters
e92c1c5: Slight changes to SAST printing - Justin Walters
	

github BOT [3:09 AM]
[PLTree:prog-rep] 3 new commits by Justin Walters:
2fcd890: Transformation returns more than last statement - Justin Walters
c1be084: Collect top-level var decs - Justin Walters
9c1283b: Preparing for top-level func declarations - Justin Walters
	

github BOT [3:18 AM]
[PLTree:prog-rep] 1 new commit by Justin Walters:
2e76edd: = and < return bool, not int - Justin Walters
	

github BOT [5:10 PM]
[PLTree:master] 1 new commit by Jacob:
035de74: Modified tester; grammer fixed - Jacob
	

----- December 2nd -----
	
github BOT [4:48 PM]
[PLTree:master] 3 new commits by Luis Ramirez:
128e26e: Added 'ignore whitespace' to tester - Luis Ramirez
4eaea2c: Added 'ignore whitespace' to tester - Luis Ramirez
d73ddae: Merge branch 'testsuite' - Luis Ramirez
	

Finalizing code
-- December 16th -----
	
github BOT [10:16 PM]
[PLTree] New branch "imports" was pushed by jagraff
	

github BOT [10:21 PM]
[PLTree:imports] 1 new commit by Jacob:
732a824: Fix some printing issues - Jacob
	

github BOT [10:37 PM]
[PLTree:imports] 1 new commit by Jacob:
69e6436: Add stdio library - Jacob
	

----- December 17th -----
	
github BOT [12:04 AM]
[PLTree:imports] 1 new commit by Jacob:
e99df2e: Add double import checking - Jacob
	

github BOT [12:45 AM]
[PLTree:imports] 3 new commits by Jacob:
3d95b9d: Making sure everything imports properly - Jacob
1f8f452: get rid of extra files - Jacob
7a82b52: Update Makefile to remove c files - Jacob
	

github BOT [12:56 AM]
[PLTree:imports] 1 new commit by Jacob:
a9eb22d: Get rid of all menhir warnings - Jacob
	

github BOT [11:04 AM]
[PLTree:imports] 1 new commit by Jacob:
90c70cf: Get tester working with new compiler - Jacob
	

github BOT [2:01 PM]
[PLTree:imports] 1 new commit by Jacob:
c8f1f63: Fix some warnings - Jacob
	

github BOT [2:36 PM]
[PLTree:master] 11 new commits by Jacob:
c82d1d0: working imports - Jacob
93abcb1: Get rid of unnecessary files - Jacob
732a824: Fix some printing issues - Jacob
69e6436: Add stdio library - Jacob
e99df2e: Add double import checking - Jacob Show more...
	

github BOT [3:17 PM]
[PLTree:master] 1 new commit by Jacob:
f96d35f: Modify print function slightly - Jacob
	

github BOT [6:42 PM]
[PLTree:master] 1 new commit by Jacob:
93976b7: Add install target to Makefile - Jacob
	

github BOT [6:49 PM]
[PLTree:master] 1 new commit by Jacob:
383a999: Remove void as vtype - Jacob
	

github BOT [6:54 PM]
[PLTree:master] 1 new commit by Jacob Graff:
052529e: Get rid of more unecessary vtype stuff - Jacob Graff
	

github BOT [10:50 PM]
[PLTree:master] 1 new commit by Justin Walters:
bc9ce72: All returns in a function must be the same type - Justin Walters
	

github BOT [11:56 PM]
[PLTree:master] 1 new commit by Justin Walters:
38c682d: FuncDec was returning its internal environment - Justin Walters
	

----- December 18th -----

	
github BOT [5:23 AM]
[PLTree:master] 1 new commit by Justin Walters:
7325f88: Can't redeclare a function - Justin Walters
	

github BOT [12:30 PM]
[PLTree:master] 1 new commit by Jacob:
f131b4a: Add uninstall target, change pretty_print name - Jacob
	

github BOT [12:44 PM]
[PLTree:master] 1 new commit by Shruti Kulkarni:
a2ebac4: presentation code - Shruti Kulkarni
	
Initial documentation
September 30, 9:38 PM
Jacob Abraham Graff
Shruti Gopal Kulkarni
September 30, 9:37 PM
Luis Alberto Ramirez
Jacob Abraham Graff
Shruti Gopal Kulkarni
September 30, 9:37 PM
Jacob Abraham Graff
Shruti Gopal Kulkarni
September 30, 9:30 PM
Jacob Abraham Graff
September 30, 9:30 PM
Luis Alberto Ramirez
Jacob Abraham Graff
September 30, 9:30 PM
Luis Alberto Ramirez
Jacob Abraham Graff
Shruti Gopal Kulkarni
September 30, 9:28 PM
Luis Alberto Ramirez
Jacob Abraham Graff
September 30, 9:28 PM
Luis Alberto Ramirez
Jacob Abraham Graff
Shruti Gopal Kulkarni
September 30, 9:26 PM
Jacob Abraham Graff
Shruti Gopal Kulkarni
September 30, 9:24 PM
Justin Walters
Jacob Abraham Graff
Shruti Gopal Kulkarni
September 30, 9:24 PM
Jacob Abraham Graff
Shruti Gopal Kulkarni
September 30, 9:24 PM
Luis Alberto Ramirez
Jacob Abraham Graff
Shruti Gopal Kulkarni
September 30, 9:23 PM
Luis Alberto Ramirez

Jacob Abraham Graff
September 30, 9:21 PM
Luis Alberto Ramirez
Justin Walters
Jacob Abraham Graff
September 30, 9:20 PM
Luis Alberto Ramirez
Jacob Abraham Graff
September 30, 9:16 PM
Luis Alberto Ramirez
Jacob Abraham Graff
Shruti Gopal Kulkarni
September 30, 9:16 PM
Luis Alberto Ramirez
Jacob Abraham Graff
September 30, 9:14 PM
Luis Alberto Ramirez
Jacob Abraham Graff
Shruti Gopal Kulkarni
September 30, 8:56 PM
Luis Alberto Ramirez
Jacob Abraham Graff
September 30, 8:54 PM
Jacob Abraham Graff
September 30, 8:53 PM
Luis Alberto Ramirez
Jacob Abraham Graff
September 30, 8:53 PM
Jacob Abraham Graff
September 30, 8:51 PM
Jacob Abraham Graff
Shruti Gopal Kulkarni
September 30, 8:47 PM
Luis Alberto Ramirez
Jacob Abraham Graff
Shruti Gopal Kulkarni
September 30, 8:47 PM
Luis Alberto Ramirez
Jacob Abraham Graff
September 30, 8:43 PM
Luis Alberto Ramirez
September 30, 8:25 PM
Luis Alberto Ramirez
Shruti Gopal Kulkarni
September 30, 5:01 PM
Shruti Gopal Kulkarni
September 29, 8:13 PM
Shruti Gopal Kulkarni
September 29, 8:13 PM
Shruti Gopal Kulkarni
	
Finalizing documentation
December 22, 11:45 PM
Shruti Gopal Kulkarni
December 22, 3:29 PM
Jacob Abraham Graff
December 21, 6:38 PM
Jacob Abraham Graff
December 18, 2:16 PM
Shruti Gopal Kulkarni
December 17, 10:26 PM

Shruti Gopal Kulkarni
December 17, 12:41 AM
Shruti Gopal Kulkarni
December 16, 11:30 PM
Shruti Gopal Kulkarni
December 16, 5:30 PM
Jacob Abraham Graff
Shruti Gopal Kulkarni
December 16, 4:58 PM
Shruti Gopal Kulkarni
December 16, 4:53 PM
Shruti Gopal Kulkarni
	
Language Evolution
	

Our language began with many parentheses, and so it looked a bit like Lisp. As
in Lisp, where everything is a list, everything in PLTree is a tree, and so we wanted to
illustrate that in code. It turned out to be unwieldy and confusing, and it received
negative feedback, and so we shifted to a completely different syntax that no longer has
any connection to the underlying tree concept.
 Instead, we moved to a simple syntax without too many extraneous symbols. We
did preserve the consistency between different kinds of statements that we had in mind
with the original syntax. For instance, while, if, and function declarations look similar,
with a keyword or id followed by a colon, an expression or argument type and name,
followed by a list of statements enclosed in square brackets.
 Major changes in language design were largely spurred by either a desire to
ease development in PLTree or a realization that our plans were too technically complex
for us to implement well given our time constraints. For instance, our language reference
manual stated that user defined functions must declare the type that they return. We
later removed that requirement because we found it unnecessary and in order to simplify
the compilation process. Several weeks later, when we started adding support for
passing arguments, we realized that functions should know and control the type of their
argument and so added support for that. At the same time, we allowed the naming of the
argument. Because all functions have at most one argument, we could have reserved
arg, or something similar as a keyword, but instead allow the programmer to name it
because it improves their experience and was very simple to implement.
 Two major features that we ended up not implementing were representing
functions as trees and typedef. We pictured functions as something like their AST
representation, and the programmer would be able to manipulate the statements of a
function. This may have had some interesting uses, but was not needed and so was
always somewhat of a low priority. Unfortunately, this means not everything in the
language is a tree. This is a slight inconsistency, but we do not believe it substantially
detracts from PLTree. Typedef would have made it possible to name a tree of a
particular structure. For instance, a user could declare a type called binaryTree, where
objects of this type may have no more than two children per node. This would have fit
nicely with the function declaration syntax we settled on, but it did not come together.
Users are fully able to define functions that check the structure of their argument and
either coerce it into an acceptable form or simply inform the caller that it is not what was
expected. Typedef could have simplified this for the programmer, but it had to be
sacrificed in the interest of time.
 We did add some features that were not originally planned. We had not intended
to support the import of external files, but we also wanted to minimize the number of

built-in functions. As our standard library began to grow, and we saw how large
generated files were in comparison to the original .tree file, partially due to the standard
library functions we were including in all files, we decided to extract that and have the
user explicitly include them.

Another change we made that is the switch from compiling to LLVM to C. Early
on, we realized that representing our tree-based language in LLVM would be more
difficult than first anticipated. Rather than cripple our language in any way, we changed
our target language. Because all of us have some familiarity with C, as opposed to
LLVM, which none of us have experience with, we were better able to gauge the
difficulty of implementing various features, and this allowed us to concentrate on parts of
the language that were both important and feasible.
 Future versions of PLTree would hopefully include the features we were forced to
leave out as well as some additional ones that we did not even consider implementing
this semester. Syntactic sugar like an incrementer operator (++) and for loops are two
simple examples. Programmers should also be able to directly access the root of a tree.
This was discussed during initial design sessions, but forgotten as we moved to
implementation. Built in arithmetic and comparison operators and the default print
function use the root, and programmers can by convention dedicate a branch to hold
data if they need to modify it themselves, so it is neither useless nor necessary.
However, it would obviously make sense to allow read and write access after the tree
has already been created.

A function type was beyond our scope, but would greatly enhance the language.
Currently, any function that needs to traverse a tree must implement the walk itself.
Instead, passing a function to a depth-first traversal that calls the function on each node
should be an option. We would also like to see domain-specific libraries. Those using
PLTree as an educational tool or general purpose language will have different needs
than those using it for those using it to work with decision trees. However, these groups
will have common operations within themselves, and so it would be nice if they have
specific libraries.

Anything is possible in the current incarnation of PLTree, but some routine tasks
could definitely be made easier.
	
Translator Architecture
Block Diagram
	

IMPORT PREPROCESSOR:

	
Components
Scanner:
 The scanner is fairly simple. It reads through the input stream, character by
character,

and aggregates them into tokens. These tokens may have some data attached
as well,

but not all of them do.
Parser:

The parser converts the tokens into an Abstract Syntax Tree. The different
acceptable patterns of tokens are given by a context free grammar; parsing is
done by building up a parse tree from the tokens. The Abstract Syntax Tree
(AST) is built from this.

Semantic Checker:
The semantic checker is used to make sure that scoping rules are followed, and
types aren’t mismatched. In order to do this, the checker translates the AST to
and SAST, and at each step updates an environment container. This
environment maintains a list of global and local variables and function names. As
a result, all scoping rules can be checked (for example, a statement that uses the
variable ‘x’ must have a local or global variable named ‘x’ within its scope). In
addition, the type of a variable is maintained, so any type mismatches cause an
error.

Translator:
From the SAST, we generate a C AST, a tree of syntactically and semantically

valid C
statements and expressions. During this translation, function declarations are
moved to the global scope, since C does not allow nested functions.

C Pretty Printer:
The C pretty printer is fairly simple. It simply takes our CAST, which contains our
representation of a C program, and prints out each element as a C statement.

Import Preprocessor:
 The import preprocessor is another scanner/parser pair. The scanner looks for

statements surrounded by ‘$’s, and reads in whatever is inside of those as import
statements.
From there, each import statement is processed. For every import statement
found, the same process is run on each file that needs to be imported, and a list
maintained of all processes that have been imported (to prevent double imports).
All of this is written into a .tmp file, which contains all the same code, with imports
expanded.

	
Test Plan and Scripts
The tester suite was created using a bash script to automate actions and a number of
support files. The files were initially the expected abstract syntax trees created by
programs in PLTree. As the programs grew more complex, we switched to using the
expected output of programs after compilation. The test programs were ran and
compared with the bash script: it first runs the "make" command, then compiles the
program, runs it and saves the output, and finally uses the "diff" command to compare it
to the expected output.
	
The following program files were used to test the language:

• hello.tree: “Hello World” implementation
• fact.tree: factorial function; tests if loops
• fibo.tree: calculate Fibonacci sequence
• full.tree: used to test full system; tries to use all language features
• func_test.tree: test function declaration
• gcd.tree: test recursive functions
• unit.tree: incrementally test language features, such as operators

Testing Phases

Unit Testing
The "unit" program incrementally tested variables and simple operators as they were
added to the language. It would define different types and try to operate on
combinations, in order to ensure proper behavior and to test if errors are caught. It also
tested the conditional loops once they were implemented.
	
Integration Testing
This was tested by the "hello" program. As the most used module that we created was
the stdio library, this program tested all the code in this module to ensure it was imported
correctly and was producing the expected output.
	
System Testing
The "full" program attempted to test the language in its entirety. Almost all language
features, such as definitions, operations, and standard functions are tested in the same
program. Some code is repeated from the "unit" and "hello" programs, but some new
scenarios are also added to inspect every side of the language.
	
Automation & Implementation
The tester script takes in files and directories as arguments. It also accepts the “-c” flag
to compile and run the program. As stated before, it initially used abstract syntax trees to
test programs. The “-c” flag was added to bypass this and compare the output of the
compiled program.
The script goes through every argument given. If the “-c” flag is present, it switches to
compile mode. If it is not, it goes through every given file and every file in a given
directory. It checks to make sure the expected AST is present, runs it through the
compiler, and compares the expected AST to the produced AST. If it is as expected,
“SUCCESS” is printed in green. If it is not, “FAILED” is printed in red.
In compile mode, the script goes through every given file and every file in a given
directory. It compiles it into a c file, executes it, and saves the output of the program.
This output is compared to a pre-existing file to ensure that the program is outputting
what it should. The following diagram illustrates it more clearly.
	

	
In its final iteration, the test script was run by simply entering:
$./tester.sh
This would automatically look in the tests/programs directory, assume
that it was filled with .tree files, and test each file one by
one, but only if no flags or arguments are given.
	
Test Scripts
tester.sh:
#!/bin/bash

This script tests .tree files.
usage: ./tester.sh [-c] [FILE.tree | treedir/]?
the '-c' flag compiles the program and compares expected output

File structure:
.tree files go in tests/programs
expected AST files go in tests/output_exp/FILE_exp
expected compiled output files go in tests/output_res/FILE_res
All other directories are only used by the script

	
define suffixes
out='_out'
exp='_exp'
define directories

progdict='tests/programs/'
outdict='tests/output_out/'
expdict='tests/output_exp/'
define default option
options='./pltree'
	
Make sure there's arguments
if [$# -eq 0]
then
 expdict='tests/output_res/'
 exp='_res'
 for f in $(ls $progdict)
 do
 # remove .tree extension
 progname="${f%.*}"
 # Make sure an expected output file is present
 if ! [-a ${expdict}${progname}${exp}]
 then
 echo "Place ${progname}${exp} file in ${expdict} directory."
 exit 2;
 else
 # make all the files and save output
 make $progdict$progname &> /dev/null
 $progdict$progname > "${outdict}${progname}${out}"
	
 # check if there are diffs
 if ! [[$(diff -bw ${outdict}${progname}${out} ${expdict}${progname}${exp})
]]
 then
 printf "${progdict}${progname}: \033[0;32mSUCCESS\033[0m\n"
 else
 printf "${progdict}${progname}: \033[0;31mFAILED\033[0m\n"
 fi
	
 # clean directory of all non-.tree files
 find $progdict ! -name "*.tree" -type f -delete
 fi
 done
fi
	
make_calc() {
 # run "make"; surpress output
 make install &> /dev/null
 # double check that calc was created
 if ! [-a pltree]
 then
 echo 'Invoke lexer/parser to produce calc file.'
 exit 2;
 fi
}

	
First, check for -c (compile) flag
while getopts ":c" opt; do
 case $opt in
 c)
 # change variables if the -c flag is present
 outdict='tests/output_com/'
 expdict='tests/output_res/'
 rundict='tests/output_run/'
 out='_run'
 exp='_res'
 options='./pltree'
 make_calc
 for arg
 do
 # if it's a regular file
 if [-f $arg]
 then
 # remove .tree extension
 progname="${arg%.*}"
 # Make sure an expected output file is present
 if ! [-a ${expdict}${progname}${exp}]
 then
 echo "Place ${progname}${exp} file in ${expdict}
directory."
 exit 2;
 else
 # compile given file; save output
 $options $arg "${outdict}${progname}.c"
 gcc -Wall "${outdict}${progname}.c" -o
"${outdict}${progname}"
 rm -rf *.tmp
 touch "${rundict}${progname}${out}"
 "./${outdict}${progname}" >
"${rundict}${progname}${out}"
	
 # check if there are diffs
 if ! [[$(diff -bw ${rundict}${progname}${out}
${expdict}${progname}${exp})]]
 then
 printf "${progname}:
\033[0;32mSUCCESS\033[0m\n"
 else
 printf "${progname}:
\033[0;31mFAILED\033[0m\n"
 fi
 fi
 # if it's a directory
 elif [-d $arg]
 then
 for f in $(ls $arg)

 do
 # remove .tree extension
 progname="${f%.*}"
 # Make sure an expected output file is present
 if ! [-a ${expdict}${progname}${exp}]
 then
 echo "Place ${progname}${exp} file in
${expdict} directory."
 exit 2;
 else
 # compile given file; save output
 $options $arg/$f "${outdict}${progname}.c"
 gcc -Wall "${outdict}${progname}.c" -o
"${outdict}${progname}"
 rm -rf $arg/*.tmp
 touch "${rundict}${progname}${out}"
 "./${outdict}${progname}" >
"${rundict}${progname}${out}"
	
 # check if there are diffs
 if ! [[$(diff -bw ${rundict}${progname}${out}
${expdict}${progname}${exp})]]
 then
 printf "${arg}${progname}:
\033[0;32mSUCCESS\033[0m\n"
 else
 printf "${arg}${progname}:
\033[0;31mFAILED\033[0m\n"
 fi
 fi
 done
 fi
 done
 exit 2;
 ;;
	
 \?)
 # exit on invalid flag
 echo "Invalid option: -$OPTARG"
 exit 2;
 ;;
 esac
done
	
make_calc
	
 for arg
 do
 # if it's a regular file
 if [-f $arg]

 then
 # remove .tree extension
 progname="${arg%.*}"
 # Make sure an expected output file is present
 if ! [-a ${expdict}${progname}${exp}]
 then
 echo "Place ${progname}${exp} file in ${expdict} directory."
 exit 2;
 else
 # run parser on input file; save output
 cat $arg | $options > "${outdict}${progname}${out}"
	
 # check if there are diffs
 if ! [[$(diff -bw ${outdict}${progname}${out}
${expdict}${progname}${exp})]]
 then
 printf "${progname}: \033[0;32mSUCCESS\033[0m\n"
 else
 printf "${progname}: \033[0;31mFAILED\033[0m\n"
 fi
 fi
 # if it's a directory
 elif [-d $arg]
 then
 for f in $(ls $arg)
 do
 # remove .tree extension
 progname="${f%.*}"
 # Make sure an expected output file is present
 if ! [-a ${expdict}${progname}${exp}]
 then
 echo "Place ${progname}${exp} file in ${expdict} directory."
 exit 2;
 else
 # run parser on input file; save output
 cat $arg/$f | $options > "${outdict}${progname}${out}"
	
 # check if there are diffs
 if ! [[$(diff -bw ${outdict}${progname}${out}
${expdict}${progname}${exp})]]
 then
 printf "${arg}/${progname}:
\033[0;32mSUCCESS\033[0m\n"
 else
 printf "${arg}/${progname}:
\033[0;31mFAILED\033[0m\n"
 fi
 fi
 done
 fi
 done

	

Sample Test Programs
This program did the unit testing. It defines variables and tests while and for loops. The
penultimate line references an undefined variable. The compiler recognizes as such and
returns an error during compilation.
	
$stdio.tree$
	
int a 2;
double b 3.0;
char c 'a';
print: a;
	
if: 2 > 1 [return:3;]
 else [return:2;]
	
while: a < 6 [
 a = a + 1;]
	
char b z;
print: b;
	
The following output is displayed when the compilation is attempted:
Fatal error: exception Failure("z does not exist or is not visible")
/usr/lib/gcc/x86_64-unknown-linux-gnu/5.3.0/../../../../lib/crt1.o: In function `_start':
(.text+0x20): undefined reference to `main'
collect2: error: ld returned 1 exit status
	
The compiler recognizes that the error is an undefined variable “z” and alerts the user of
this.
	
	

The following program ensures that our functions were recursive; that is, that a function
could call itself. It calculates the greatest common denominator of the given arguments.
	
gcd.tree:
$stdio.tree$
	
gcd : any args [
 int a args->0;
 int b args->1;
 int c 0;
 while : a != 0 [
 c = a;
 a = b%a;
 b = c;
]

 return:b;
]
	
print:"Testing iterative gcd with 65 and 195\n";
	
print:[gcd:[65 195] "\n"];
	

gcdr : any args [
 int a args->0;
 int b args->1;
	
 if : a == 0 [
 return:b;
]
	
 return:gcdr:[b%a a];
]
	
print:"Testing recursive gcd with 14 and 21\n";
	
print:[gcdr:[14 21] "\n"];
	

gcd.c (compiled code):
#include <stdio.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
	
	

struct List {
 struct node *head;
 struct node *tail;
};
	
struct node {
 void *data;
 struct node *next;
};
	
void init_list(struct List *list);
	
void traverse_list(struct List *list, void (*f)(void *));
	
void free_list(struct List *list);

	
void *get(struct List *list, int i);
	
void append(struct List *list, void *data);
	
void init_list(struct List *list) {
 list->head = NULL;
 list->tail = NULL;
}
	
void *get(struct List *list, int n) {
 int i = 0;
 struct node *curr;
	
 curr = list->head;
	
 while (i < n && curr != NULL) {
 curr = curr->next;
 i++;
 }
	
 return curr->data;
}
	
	
	

void traverse_list(struct List *list, void (*f)(void *))
{
 //Start at the beginning
 struct node *curr = list->head;
	
 //Iterate until we get to the end of the list
 while (curr != NULL)
 {
 f(curr->data);

 //Move to next node
 curr = curr->next;
 }
}
	

void free_list(struct List *list) {
 while (list->head != NULL) {
 struct node *curr = list->head;
 struct node *next = curr->next;
 free(curr);
 list->head = next;

 }
 free(list);
}
	
	

void append(struct List *list, void *data) {
 struct node *curr;
 struct node *new;
	
 curr = list->tail;
	
 if (curr == NULL) {
 curr = malloc(sizeof(struct node));
 curr->next = NULL;
 curr->data = data;
 list->head = curr;
 list->tail = curr;
 } else {
 new = malloc(sizeof(struct node));
	
 new->data = data;

 new->next = NULL;
	
 curr->next = new;
	
 list->tail = new;
 }
}
	

typedef enum {INT, CHAR, DOUBLE, BOOL, VOID, TREE} data_type;
	
union data_u {
 int i;
 char c;
 double d;
 struct tree *t;
};
	
struct tree {
 data_type type;
 union data_u data;
 int width;
 int refcount;
 struct List *children;
};
	
void put_t (struct tree *t);

	
struct tree *get_width_t(struct tree *t);
	
void init_tree (struct tree *root);
	
void free_tree(struct tree *t);
	
struct tree* inc_refcount(struct tree *t);
struct tree* dec_refcount(struct tree *t);
	
int equal(struct tree *lhs, struct tree *rhs);
int nequal(struct tree *lhs, struct tree *rhs);
int lt(struct tree *lhs, struct tree *rhs);
int gt(struct tree *lhs, struct tree *rhs);
int lte(struct tree *lhs, struct tree *rhs);
int gte(struct tree *lhs, struct tree *rhs);
	
struct tree *sub(struct tree *lhs, struct tree *rhs);
struct tree *add(struct tree *lhs, struct tree *rhs);
struct tree *mult(struct tree *lhs, struct tree *rhs);
struct tree *divd(struct tree *lhs, struct tree *rhs);
struct tree *mod(struct tree *lhs, struct tree *rhs);
	
struct tree *int_treemake(int i_data, struct tree *child, ...);
struct tree *char_treemake(char c_data, struct tree *child, ...);
struct tree *double_treemake(int d_data, struct tree *child, ...);
struct tree *tree_treemake(struct tree *t_data, struct tree *child, ...);
struct tree *void_treemake(struct tree *child, ...);
	
struct tree *treemake(data_type type, union data_u data, struct tree *child, va_list args);
int add_sibling (struct tree *root, struct tree *sibling, int n);
int add_child (struct tree *root, struct tree *child);
void set_type (struct tree *root, data_type type);
data_type get_type(struct tree *root);
struct tree *get_ith_sibling(struct tree *root, int i);
struct tree *get_branch_t(struct tree *root, struct tree *branch);
struct tree *get_branch(struct tree *root, int branch);
	

void put_t(struct tree *str) {
	
 switch(str->type) {
 case CHAR:
 putchar(str->data.c);
 break;
 case INT:
 printf("%d", str->data.i);
 break;
 case DOUBLE:
 printf("%f", str->data.d);

 break;
 case TREE:
 put_t(str->data.t);
 break;
 default:
 break;
 }
}
	
struct tree *get_width_t(struct tree *t) {
 return int_treemake(t->width, NULL);
}
	

int equal(struct tree *lhs, struct tree *rhs) {
	
 int retval;
 inc_refcount(lhs);
 inc_refcount(rhs);
	
 if (lhs->type != rhs->type) {
 retval = 0;
 } else {
 switch(lhs->type) {
 case CHAR:
 retval = lhs->data.c == rhs->data.c;
 break;
 case INT:
 retval = lhs->data.i == rhs->data.i;
 break;
 case DOUBLE:
 retval = lhs->data.d == rhs->data.d;
 break;
 default:
 retval = 0;
 }
 }
	
 dec_refcount(rhs);
 dec_refcount(lhs);
 return retval;
}
	
int nequal(struct tree *lhs, struct tree *rhs) {
 return !equal(lhs, rhs);
}
int lt(struct tree *lhs, struct tree *rhs) {
 int retval;
 inc_refcount(lhs);
 inc_refcount(rhs);

	
 if (lhs->type != rhs->type) {
 fprintf(stderr, "TYPE MISMATCH!\n");
 retval = 0;
 } else {
 switch(lhs->type) {
 case CHAR:
 retval = lhs->data.c < rhs->data.c;
 break;
 case INT:
 retval = lhs->data.i < rhs->data.i;
 break;
 case DOUBLE:
 retval = lhs->data.d < rhs->data.d;
 break;
 default:
 retval = 0;
 }
 }
	
 dec_refcount(rhs);
 dec_refcount(lhs);
 return retval;
}
int gt(struct tree *lhs, struct tree *rhs) {
 int retval;
 inc_refcount(lhs);
 inc_refcount(rhs);
	
 if (lhs->type != rhs->type) {
 retval = 0;
 } else {
 switch(lhs->type) {
 case CHAR:
 retval = lhs->data.c > rhs->data.c;
 break;
 case INT:
 retval = lhs->data.i > rhs->data.i;
 break;
 case DOUBLE:
 retval = lhs->data.d > rhs->data.d;
 break;
 default:
 retval = 0;
 }
 }
	
 dec_refcount(rhs);
 dec_refcount(lhs);
 return retval;

}
int lte(struct tree *lhs, struct tree *rhs) {
 return gt(rhs, lhs);
}
int gte(struct tree *lhs, struct tree *rhs) {
 return lt(rhs, lhs);
}
void dec_refcount_child(void *child) {
 dec_refcount((struct tree *)child);
}
	
void free_tree(struct tree *t) {
 if (t == NULL) {
 return;
 }
	
 traverse_list(t->children, dec_refcount_child);
 free_list(t->children);
 if (t->type == TREE) {
 dec_refcount(t->data.t);
 }
 free(t);
}
	
	

struct tree* inc_refcount(struct tree *t) {
 if (t) {
 t->refcount++;
 }
	
 return t;
}
	
struct tree *dec_refcount(struct tree *t) {
 if (t) {
 if (--(t->refcount) <= 0) {
 free_tree(t);
 t = NULL;
 }
 }
	
 return t;
}
	
struct tree *sub(struct tree *lhs, struct tree *rhs) {
 struct tree *retval;
	
 inc_refcount(lhs);
 inc_refcount(rhs);

	
 if (lhs->type != rhs->type) {
 retval = NULL;
 } else {
 switch (lhs->type) {
 case CHAR:
 retval = char_treemake(lhs->data.c - rhs->data.c, NULL);
 break;
 case INT:
 retval = int_treemake(lhs->data.i - rhs->data.i, NULL);
 break;
 case DOUBLE:
 retval = double_treemake(lhs->data.d - rhs->data.d, NULL);
 break;
 default:
 retval = NULL;
 }
 }
	
 dec_refcount(rhs);
 dec_refcount(lhs);
	
 return retval;
}
struct tree *add(struct tree *lhs, struct tree *rhs) {
 struct tree *retval;
	
 inc_refcount(lhs);
 inc_refcount(rhs);
	
 if (lhs->type != rhs->type) {
 retval = NULL;
 } else {
 switch (lhs->type) {
 case CHAR:
 retval = char_treemake(lhs->data.c + rhs->data.c, NULL);
 break;
 case INT:
 retval = int_treemake(lhs->data.i + rhs->data.i, NULL);
 break;
 case DOUBLE:
 retval = double_treemake(lhs->data.d + rhs->data.d, NULL);
 break;
 default:
 retval = NULL;
 }
 }
	
 dec_refcount(rhs);
 dec_refcount(lhs);

	
 return retval;
}
	
struct tree *mult(struct tree *lhs, struct tree *rhs) {
 struct tree *retval;
	
 inc_refcount(lhs);
 inc_refcount(rhs);
	
 if (lhs->type != rhs->type) {
 retval = NULL;
 } else {
 switch (lhs->type) {
 case CHAR:
 retval = char_treemake(lhs->data.c * rhs->data.c, NULL);
 break;
 case INT:
 retval = int_treemake(lhs->data.i * rhs->data.i, NULL);
 break;
 case DOUBLE:
 retval = double_treemake(lhs->data.d * rhs->data.d, NULL);
 break;
 default:
 retval = NULL;
 }
 }
	
 dec_refcount(rhs);
 dec_refcount(lhs);
	
 return retval;
	
}
	
struct tree *divd(struct tree *lhs, struct tree *rhs) {
 struct tree *retval;
	
 inc_refcount(lhs);
 inc_refcount(rhs);
	
 if (lhs->type != rhs->type) {
 retval = NULL;
 } else {
 switch (lhs->type) {
 case CHAR:
 retval = char_treemake(lhs->data.c / rhs->data.c, NULL);
 break;
 case INT:
 retval = int_treemake(lhs->data.i / rhs->data.i, NULL);

 break;
 case DOUBLE:
 retval = double_treemake(lhs->data.d / rhs->data.d, NULL);
 break;
 default:
 retval = NULL;
 }
 }
	
 dec_refcount(rhs);
 dec_refcount(lhs);
	
 return retval;
}
	
struct tree *mod(struct tree *lhs, struct tree *rhs) {
 struct tree *retval;
	
 inc_refcount(lhs);
 inc_refcount(rhs);
	
 if (lhs->type != rhs->type) {
 retval = NULL;
 } else {
 switch (lhs->type) {
 case CHAR:
 retval = char_treemake(lhs->data.c % rhs->data.c, NULL);
 break;
 case INT:
 retval = int_treemake(lhs->data.i % rhs->data.i, NULL);
 break;
 default:
 retval = NULL;
 }
 }
	
 dec_refcount(rhs);
 dec_refcount(lhs);
	
 return retval;
}
void init_tree(struct tree *root) {
 root->children = malloc(sizeof(struct List));
 root->type = VOID;
 root->width = 0;
 root->refcount = 0;
 init_list(root->children);
}
	
struct tree *int_treemake(int i_data, struct tree *child, ...) {

 va_list args;
 union data_u data;
 struct tree *root;
	
 va_start(args, child);
 data.i = i_data;
 root = treemake(INT, data, child, args);
 va_end(args);
	

 return root;
}

	
struct tree *char_treemake(char c_data, struct tree *child, ...) {
 va_list args;
 union data_u data;
 struct tree *root;
	
 va_start(args, child);
 data.c = c_data;
 root = treemake(CHAR, data, child, args);
 va_end(args);
	
 return root;
}
	

struct tree *double_treemake(int d_data, struct tree *child, ...) {
 va_list args;
 union data_u data;
 struct tree *root;
	
 va_start(args, child);
 data.d = d_data;
 root = treemake(DOUBLE, data, child, args);
 va_end(args);
	
 return root;
}
	
struct tree *tree_treemake(struct tree *t_data, struct tree *child, ...) {
 va_list args;
 union data_u data;
 struct tree *root;
	
 va_start(args, child);
 data.t = t_data;
 root = treemake(TREE, data, child, args);
 va_end(args);

	
 return root;
}
	
struct tree *void_treemake(struct tree *child, ...) {
	
 va_list args;
 struct tree *root;
 union data_u data;
	
 data.t = NULL;
	
 va_start(args, child);
 root = treemake(VOID, data, child, args);
 va_end(args);
	
 return root;
}
	
struct tree *treemake(data_type type, union data_u data, struct tree *child, va_list args) {
 struct tree *root = malloc(sizeof(struct tree));
	
 init_tree(root);
 root->type = type;
 root->data = data;
	

 while (child != NULL) {
 add_child(root, child);
 inc_refcount(child);
 child = va_arg(args, struct tree *);
 }
	
 return root;
}
	
int add_child (struct tree *root, struct tree *child) {
 if (root == NULL) {
 return -1;
 }
 inc_refcount(child);
 append(root->children, child);
 root->width += 1;
 return root->width;
}
	
void set_type (struct tree *root, data_type t) {
 root->type = t;
}

	
data_type get_type(struct tree *t) {
 return t->type;
}
	
struct tree *get_branch_t(struct tree *root, struct tree *branch) {
 struct tree *child;
 inc_refcount(branch);
 child = (struct tree *)get_branch(root, branch->data.i);
 dec_refcount(branch);
 return child;
}
	

struct tree *get_branch(struct tree *root, int branch) {
 return (struct tree *)get(root->children, branch);
}
	
struct tree *print(struct tree *data){inc_refcount(data);
 struct tree * n = get_width_t(data); inc_refcount(n);;
 struct tree * i = int_treemake(0, NULL); inc_refcount(i);;
 put_t(
 data);
 i = int_treemake(0, NULL); inc_refcount(i);;
 while (lt(i, n)) {
 print(
 get_branch_t(data, i));
 i = add(i, int_treemake(1, NULL)); inc_refcount(i);;
	
 };
 return data;;
return NULL;}
struct tree *pretty_print(struct tree *t){inc_refcount(t);
 struct tree * num_tabs = get_branch_t(t, int_treemake(0, NULL)); inc_refcount(num_tabs);;
 struct tree * data = get_branch_t(t, int_treemake(1, NULL)); inc_refcount(data);;
 struct tree * n = get_width_t(data); inc_refcount(n);;
 struct tree * i = int_treemake(0, NULL); inc_refcount(i);;
 if (gt(num_tabs, int_treemake(0, NULL))) {
 while (lt(i, num_tabs)) {
 print(
 void_treemake(
 char_treemake('\t', NULL),
 NULL));
 i = add(i, int_treemake(1, NULL)); inc_refcount(i);;
	
 };
	
 };
 put_t(
 data);

 print(
 void_treemake(
 char_treemake('\n', NULL),
 NULL));
 i = int_treemake(0, NULL); inc_refcount(i);;
 while (lt(i, n)) {
 pretty_print(
 void_treemake(
 add(num_tabs, int_treemake(1, NULL)),
 get_branch_t(data, i),
 NULL));
 i = add(i, int_treemake(1, NULL)); inc_refcount(i);;
	
 };
 return void_treemake(NULL);;
return NULL;}
struct tree *gcd(struct tree *args){inc_refcount(args);
 struct tree * a = get_branch_t(args, int_treemake(0, NULL)); inc_refcount(a);;
 struct tree * b = get_branch_t(args, int_treemake(1, NULL)); inc_refcount(b);;
 struct tree * c = int_treemake(0, NULL); inc_refcount(c);;
 while (nequal(a, int_treemake(0, NULL))) {
 c = a; inc_refcount(c);;
 a = mod(b, a); inc_refcount(a);;
 b = c; inc_refcount(b);;
	
 };
 return b;;
return NULL;}
struct tree *gcdr(struct tree *args){inc_refcount(args);
 struct tree * a = get_branch_t(args, int_treemake(0, NULL)); inc_refcount(a);;
 struct tree * b = get_branch_t(args, int_treemake(1, NULL)); inc_refcount(b);;
 if (equal(a, int_treemake(0, NULL))) {
 return b;;
	
 };
 return gcdr(
 void_treemake(
 mod(b, a),
 a,
 NULL));;
return NULL;}
int main(int argc, char **argv) {
;
;
;
 print(
 void_treemake(
 char_treemake('T', NULL),
 char_treemake('e', NULL),
 char_treemake('s', NULL),

 char_treemake('t', NULL),
 char_treemake('i', NULL),
 char_treemake('n', NULL),
 char_treemake('g', NULL),
 char_treemake(' ', NULL),
 char_treemake('i', NULL),
 char_treemake('t', NULL),
 char_treemake('e', NULL),
 char_treemake('r', NULL),
 char_treemake('a', NULL),
 char_treemake('t', NULL),
 char_treemake('i', NULL),
 char_treemake('v', NULL),
 char_treemake('e', NULL),
 char_treemake(' ', NULL),
 char_treemake('g', NULL),
 char_treemake('c', NULL),
 char_treemake('d', NULL),
 char_treemake(' ', NULL),
 char_treemake('w', NULL),
 char_treemake('i', NULL),
 char_treemake('t', NULL),
 char_treemake('h', NULL),
 char_treemake(' ', NULL),
 char_treemake('6', NULL),
 char_treemake('5', NULL),
 char_treemake(' ', NULL),
 char_treemake('a', NULL),
 char_treemake('n', NULL),
 char_treemake('d', NULL),
 char_treemake(' ', NULL),
 char_treemake('1', NULL),
 char_treemake('9', NULL),
 char_treemake('5', NULL),
 char_treemake('\n', NULL),
 NULL));
 print(
 void_treemake(
 gcd(
 void_treemake(
 int_treemake(65, NULL),
 int_treemake(195, NULL),
 NULL)),
 void_treemake(
 char_treemake('\n', NULL),
 NULL),
 NULL));
;
 print(
 void_treemake(
 char_treemake('T', NULL),

 char_treemake('e', NULL),
 char_treemake('s', NULL),
 char_treemake('t', NULL),
 char_treemake('i', NULL),
 char_treemake('n', NULL),
 char_treemake('g', NULL),
 char_treemake(' ', NULL),
 char_treemake('r', NULL),
 char_treemake('e', NULL),
 char_treemake('c', NULL),
 char_treemake('u', NULL),
 char_treemake('r', NULL),
 char_treemake('s', NULL),
 char_treemake('i', NULL),
 char_treemake('v', NULL),
 char_treemake('e', NULL),
 char_treemake(' ', NULL),
 char_treemake('g', NULL),
 char_treemake('c', NULL),
 char_treemake('d', NULL),
 char_treemake(' ', NULL),
 char_treemake('w', NULL),
 char_treemake('i', NULL),
 char_treemake('t', NULL),
 char_treemake('h', NULL),
 char_treemake(' ', NULL),
 char_treemake('1', NULL),
 char_treemake('4', NULL),
 char_treemake(' ', NULL),
 char_treemake('a', NULL),
 char_treemake('n', NULL),
 char_treemake('d', NULL),
 char_treemake(' ', NULL),
 char_treemake('2', NULL),
 char_treemake('1', NULL),
 char_treemake('\n', NULL),
 NULL));
 print(
 void_treemake(
 gcdr(
 void_treemake(
 int_treemake(14, NULL),
 int_treemake(21, NULL),
 NULL)),
 void_treemake(
 char_treemake('\n', NULL),
 NULL),
 NULL));
 return 0;
}
	

Program output:
Testing iterative gcd with 65 and 195
65
Testing recursive gcd with 14 and 21
7
	

Lessons Learned
	
Jacob Graff

Our project could have benefitted from a more complete model of our translator
from the beginning - before any code was written. We wrote our scanner, parser, and ast
without a clear goal of where we would end up, which I think caused our final code to be
somewhat complicated to meet with older expectations (for example, the import
preprocessor could have been made part of the original lexer/parser).

One thing that our language specifically would have benefitted from would be
building from the idea of trees from the ground up; that is to say, write our parser to
process trees specifically, and from there develop the concept of trees to write
programs. Instead, our parser was originally built to process imperative programming,
and the building of trees is not perfect, both in terms of syntax and in terms of
representation. For this reason, I think that for our program, the “Hello world”
requirement may not have been the best approach (although I think that in general, it is
a good intermediate step and seems like a good requirement for the PLT class). Had we
focused more on our tree structure and less on the programming language aspect, we
could have had a more robust tree implementation.

In terms of group dynamics, we could have benefitted from more regularly
scheduled group meetings. It is difficult to plan meetings for four people on the fly, and
so a more strict regularly scheduled time to meet might have been better.

Our coding definitely benefitted a lot from the use of git. Different, somewhat
incompatible pieces of code can be developed simultaneously, through the use of
branches, and a long commit history is very helpful for figuring out how code was
developed. In addition, our messaging platform, Slack, allows github integration. This is
helpful because we get messages after each commit, so we knew when any given task
for the project was completed.

Overall, this was a very interesting project, and for the first time for any of us
writing a compiler I think it went well. I am now confident that I can do well in whatever
future compiler related classes or tasks I may undertake.

Finally, one decision I made, taking CS Theory concurrently with PLT, was very
helpful. I was learning the theory in CS Theory a few classes before learning a practical
application of the theory in PLT, and this meant that it was usually fresh on my mind.
Furthermore, it reinforced the idea that theory was very useful, and helped me better
retain the ideas.
	
Shruti Kulkarni
 Overall I am rather pleased with how our team handled the project. Our group
dynamics worked out pretty well for the most part. We took seriously Prof. Stephen
Edwards’ warning that we must start early on our project, and that we should make sure
to hold ourselves and each other accountable for our work. That said, there is definitely
room for improvement, and we shall certainly benefit from learning from what we could
have done better as well as what we did right. We cooperated fairly well as a group, and

we aimed to communicate well also. But perhaps our communication could have
improved, particularly around hectic periods (such as midterm exams week) and
holidays when we weren’t all available at the usual times. Fortunately, even when
communication was temporarily delayed or disrupted, eventually we all got back in touch
and ensured that we stayed on track with our work throughout. While we trieWe used
Slack and Google for online communication, in addition to mobile phones (text and voice
calls), and I think that worked rather well for us. We used Git for version control and that
was very helpful.

Personally, it would have been helpful to review Computer Science Theory more
thoroughly prior to and while taking this class (Programming Languages and Translators,
abbreviated PLT), as it had been a while since I had taken the class and studied the
subject by the time I had enrolled in this class. The material is directly relevant to our
coursework as Computer Science Theory covered the theoretical foundation and this
programming language project covered the practical application of it. At least one of our
teammates was actually enrolled in Computer Science Theory concurrently and found it
quite helpful, and I would recommend to other students who aim to take this class,
and/or to engage in a project such as this (writing a programming language) to study
and/or review Computer Science Theory concurrently with or immediately before doing
so.
	
Luis ‘Bert’ Ramirez
 This project was very new for everyone on my team and although I believe we
worked well together, there were a number of improvements we could have made. The
segmenting of roles worked out well and we used all available technologies to improve
our workflow, such as git and Slack messaging. However, the fragmented structure
made some development difficult and I believe we could have benefitted from more
meetings. Regardless, a git-tracked text document tracking the progress worked well for
communicating language changes. This way, the new language additions were brought
to my attention quickly so I could design tests.
 The testing was a much larger responsibility than I realized. Unit tests are necessary to
isolate problems quickly but this was my first encounter with designing them. It proved to
be challenging but the rapid communication of our online services helped me stay on top
of all the additions. I now realize the challenges of low level programming, which is
something I had a hard time understanding before taking on this project.
 Overall, this project was something very new and not something I would have
attempted at any point outside of class. It really took me out of my comfort zone but I got
a deeper understanding of why languages are designed the way they are, and I also
learned the importance of early, iterative testing.
	
Justin Walters

It was not until the final two weeks when everything was coming together that I
realized how strange and lacking our language is. The root node of a tree is only
accessible by builtin operators and the print function, trees are incredibly difficult to
modify, and applying a function to every node or leaf is much harder than it should be.
We succeeded in designing and compiling a language that works, but it is strange.

In the first weeks, we brainstormed as a group some of the things that should
and should not be included and we built it incrementally. However, we never sat down
and checked for consistency more methodically, which I see now is something I should
have taken lead on as Language Guru. If we had done this regularly, we could have

greatly improved the language. Instead, we only looked to see if something made sense
as we implemented it, when it was already intertwined with everything that preceded it.

We started early as repeatedly advised, so it never felt like we weren’t going to
finish in time. However, our meetings went well at the beginning, but it was harder to get
everyone together as the semester went on. We used Slack so there was some
communication throughout the week, but more regular meetings would have been
helpful. When we did have meetings, we all should have all had an idea of what to
discuss. As it was, the meetings were either short because we didn’t remember what we
needed to talk about, or went longer than necessary because we weren’t focused. We
really should have had an agenda before hand.

Overall, I am pleased with our process and our results. We did the main things
we wanted to do and compromised intelligently.
	
	
	

Code Listing
	
==> ast.ml <==
type vtype =
 Int | Char | Double | Bool | String | Any
	
type expr =
 Tree of expr * expr list
| IntLit of string
| ChrLit of string
| FltLit of string
| StrLit of string
| GetBranch of expr * expr
| Void
| FunCall of string * expr
| Eq of expr * expr
| Neq of expr * expr
| Lt of expr * expr
| Leq of expr * expr
| Gt of expr * expr
| Geq of expr * expr
| Add of expr * expr
| Minus of expr * expr
| Mul of expr * expr
| Div of expr * expr
| Mod of expr * expr
| Cast of vtype * expr
| GetWidth of expr
| Id of string
	
type stmt =
 While of expr * stmt
| If of expr * stmt
| IfElse of expr * stmt * stmt
| FuncDec of string * vtype * string * stmt
| VarDec of vtype * string * expr
| Assn of string * expr

| Expr of expr
| Return of expr
| Seq of stmt list
	
type program = stmt list
	
let string_of_vtype = function
 Int -> "int"
| Char -> "char"
| Double -> "double"
| Bool -> "bool"
| String -> "string"
| Any -> "any"
	
let rec string_of_expr = function
 Tree(e,l) -> string_of_expr e ^ " {{ " ^
 String.concat ", " (List.map string_of_expr l) ^ "}}"
| IntLit(s) -> s
| ChrLit(s) -> s
| FltLit(s) -> s
| StrLit(s) -> s
| GetBranch(e1,e2) -> string_of_expr e1 ^ "." ^ string_of_expr e2
| GetWidth(e1) -> string_of_expr e1
| Void -> "void"
| FunCall(s,e) -> s ^ "(" ^ string_of_expr e ^ ")"
| Eq(e1, e2) -> string_of_expr e1 ^ "==" ^ string_of_expr e2
| Neq(e1, e2) -> string_of_expr e1 ^ "!=" ^ string_of_expr e2
| Lt(e1, e2) -> string_of_expr e1 ^ "<" ^ string_of_expr e2
| Leq(e1, e2) -> string_of_expr e1 ^ "<=" ^ string_of_expr e2
| Gt(e1, e2) -> string_of_expr e1 ^ ">" ^ string_of_expr e2
| Geq(e1, e2) -> string_of_expr e1 ^ ">=" ^ string_of_expr e2
| Add(e1, e2) -> string_of_expr e1 ^ "+" ^ string_of_expr e2
| Minus(e1, e2) -> string_of_expr e1 ^ "-" ^ string_of_expr e2
| Mul(e1, e2) -> string_of_expr e1 ^ "*" ^ string_of_expr e2
| Div(e1, e2) -> string_of_expr e1 ^ "/" ^ string_of_expr e2
| Mod(e1, e2) -> string_of_expr e1 ^ "%" ^ string_of_expr e2
| Cast(vt,e) -> string_of_vtype vt ^ " to " ^ string_of_expr e
| Id(s) -> s
	
(* mixing c-like and pltree-like syntax. not on purpose *)
let rec string_of_stmt = function
 While(e,s) -> "While(" ^ string_of_expr e ^ ") {" ^ string_of_stmt s ^ "}"
| If(e,s) -> "If(" ^ string_of_expr e ^ ") {" ^ string_of_stmt s ^ "}"
| IfElse(e,s1,s2) -> "If(" ^ string_of_expr e ^ ") {" ^ string_of_stmt s1 ^ "} Else {" ^ string_of_stmt s2 ^ "}"
| FuncDec(s,vt,vn,l) -> s ^ "[" ^ string_of_stmt l ^ "]"
| VarDec(v,s,e) -> s ^ " = " ^ string_of_expr e
| Assn(s,e) -> s ^ " = " ^ string_of_expr e
| Expr(e) -> string_of_expr e
| Return(e) -> "Return(" ^ string_of_expr e ^ ")"
| Seq(l) -> String.concat ", " (List.map string_of_stmt l)
	
let string_of_program stmts =
 String.concat " " (List.map string_of_stmt stmts)
	

==> compile.ml <==
open Ast
	
module StringMap = Map.Make(String)
	
type env = {
 functions: Sast.vtype StringMap.t;
 globals: (Sast.expr * Sast.vtype) StringMap.t;
 locals: (Sast.expr * Sast.vtype) StringMap.t;
 statements: string StringMap.t;
}
	
(* prints the variables of an environment. For debugging. Could print funcs *)
let print_maps env =
 let printtf = (fun key (expr,t) -> Printf.printf "%s -> " key;
 print_endline (Sast.string_of_expr expr ^ " of " ^ Sast.string_of_vtype t)) in
 let printvals = (fun key value -> printtf key value) in
 print_string "globals:";
 StringMap.iter printvals env.globals;
 print_string "\nlocals:";
 StringMap.iter printvals env.locals; print_string "\n"
let avt_to_svt = function
 Ast.Int -> Sast.Int
| Ast.Double -> Sast.Double
| Ast.String -> Sast.String
| Ast.Char -> Sast.Char
| Ast.Any -> Sast.Any
| Ast.Bool -> Sast.Bool
let matching t1 t2 = t1 == t2 || t1 == Sast.Any || t2 == Sast.Any
let translate prog =
 let rec add_all m = function
 [] -> m
 | (name,vtype)::tl -> add_all (StringMap.add name vtype m) tl in
 let builtins = add_all StringMap.empty [("put_t",Sast.Any)] in
	
 let empty_env = {
 functions = builtins;
 globals = StringMap.empty;
 locals = StringMap.empty;
 statements = StringMap.empty } in
	
 (* If there is a key in both maps, keeps value from first arg *)
 let merge_maps =
 let f = (fun k xopt yopt -> match xopt, yopt with Some x, _ -> xopt
 | None, yo -> yopt) in StringMap.merge f in
	
 (* Extracts vardecs from a list of Sast.stmts *)
 let rec get_vars_list = function
 Sast.Seq([]) -> []
 | Sast.Seq(hd::tl) -> (match hd with Sast.VarDec(_,_,_) ->
 let l = Sast.Seq(tl) in hd::get_vars_list l
 | _ -> get_vars_list(Sast.Seq(tl)))
 | _ -> [] in
	

 let rec get_rets_list = function
 Sast.Seq([]) -> []
 | Sast.Seq(hd::tl) -> (match hd with Sast.Return(_,t) ->
 let l = Sast.Seq(tl) in t::get_rets_list l
 | Sast.While(_,seq,_) -> let l = Sast.Seq(tl) in
 List.concat [get_rets_list seq; get_rets_list l]
 | Sast.If(_,seq,_) -> let l = Sast.Seq(tl) in
 List.concat [get_rets_list seq; get_rets_list l]
 | Sast.IfElse(_,seq,seq2,_) -> let l = Sast.Seq(tl) in
 List.concat [get_rets_list seq; get_rets_list seq2; get_rets_list l]
 | _ -> get_rets_list(Sast.Seq(tl)))
 | _ -> [] in
	
 let ret_types seq = let typeL = get_rets_list seq in let head = List.hd typeL in
 List.for_all (fun t -> matching t head) typeL in
	
 (* environment -> Ast.expr -> (Sast.expr, Sast.vtype) *)
 let rec expr env = function
 Tree(e,l) -> let l = List.map (fun e -> let (e,_) = expr env e in e) l in
 let (e,t) = expr env e in Sast.Tree(e,l), t
 | IntLit(s) -> Sast.IntLit(s), Sast.Int
 | ChrLit(s) -> Sast.ChrLit(s), Sast.Char
 | FltLit(s) -> Sast.FltLit(s), Sast.Double
 | StrLit(s) -> Sast.StrLit(s), Sast.String
 | Void -> Sast.Void, Sast.Any
 | GetBranch(e1,e2) ->
 let (se2,st) = expr env e2 in (match st with Sast.Int ->
 let (se1,t) = expr env e1 in Sast.GetBranch(se1,se2), t
 | _ -> raise(Failure("Can only access branches with an int")))
 | GetWidth(e1) ->
 let (se1, st) = expr env e1 in Sast.GetWidth(se1), st
 | FunCall(s,e) -> if StringMap.mem s env.functions then
 let vt = StringMap.find s env.functions in
 let (e,t) = expr env e in if (vt == Sast.Any || t == vt) then Sast.FunCall(s,e), Sast.Any
 else raise(Failure(s ^ " expects an argument of type " ^
 Sast.string_of_vtype vt ^ ", not " ^ Sast.string_of_vtype t))
 else raise(Failure(s ^ " does not exist or is not visible"))
 | Eq(e1, e2) -> let (e1,t1) = expr env e1 in let (e2,t2) = expr env e2 in
 if (matching t1 t2) then Sast.Eq(e1,e2), Sast.Bool else
 let type_string = Sast.string_of_vtype t1 ^ " == " ^ Sast.string_of_vtype t2 in
 raise (Failure("Different types: " ^ type_string))
 | Neq(e1, e2) -> let (e1,t1) = expr env e1 in let (e2,t2) = expr env e2 in
 if (matching t1 t2) then Sast.Neq(e1,e2), Sast.Bool else
 let type_string = Sast.string_of_vtype t1 ^ " != " ^ Sast.string_of_vtype t2 in
 raise (Failure("Different types: " ^ type_string))
 | Lt(e1, e2) -> let (e1,t1) = expr env e1 in let (e2,t2) = expr env e2 in
 if (matching t1 t2) then Sast.Lt(e1,e2), Sast.Bool else raise (Failure("Different types"))
 | Leq(e1, e2) -> let (e1,t1) = expr env e1 in let (e2,t2) = expr env e2 in
 if (matching t1 t2) then Sast.Leq(e1,e2), Sast.Bool else raise (Failure("Different types"))
 | Gt(e1, e2) -> let (e1,t1) = expr env e1 in let (e2,t2) = expr env e2 in
 if (matching t1 t2) then Sast.Gt(e1,e2), Sast.Bool else raise (Failure("Different types"))
 | Geq(e1, e2) -> let (e1,t1) = expr env e1 in let (e2,t2) = expr env e2 in
 if (matching t1 t2) then Sast.Geq(e1,e2), Sast.Bool else raise (Failure("Different types"))
	
 (* Allow arithmetic on chars? *)

 | Add(e1, e2) -> let (e1,t1) = expr env e1 in let (e2,t2) = expr env e2 in
 if (matching t1 t2) then match t1 with Sast.Int | Sast.Any | Sast.Double -> Sast.Add(e1,e2), t1
 | _ -> raise(Failure("Addition operands must be of type int or double"))
 else let type_string = Sast.string_of_vtype t1 ^ " + " ^ Sast.string_of_vtype t2 in
 raise (Failure("Different types: " ^ type_string))
 | Minus(e1, e2) -> let (e1,t1) = expr env e1 in let (e2,t2) = expr env e2 in
 if (matching t1 t2) then match t1 with Sast.Int | Sast.Any | Sast.Double -> Sast.Minus(e1,e2), t1
 | _ -> raise(Failure("Subtraction operands must be of type int or double"))
 else let type_string = Sast.string_of_vtype t1 ^ " - " ^ Sast.string_of_vtype t2 in
 raise (Failure("Different types: " ^ type_string))
 | Mul(e1, e2) -> let (e1,t1) = expr env e1 in let (e2,t2) = expr env e2 in
 if (matching t1 t2) then match t1 with Sast.Int | Sast.Any | Sast.Double -> Sast.Mul(e1,e2), t1
 | _ -> raise(Failure("Multiplication operands must be of type int or double"))
 else let type_string = Sast.string_of_vtype t1 ^ " * " ^ Sast.string_of_vtype t2 in
 raise (Failure("Different types: " ^ type_string))
 | Div(e1, e2) -> let (e1,t1) = expr env e1 in let (e2,t2) = expr env e2 in
 if (matching t1 t2) then match t1 with Sast.Int | Sast.Any | Sast.Double -> Sast.Div(e1,e2), t1
 | _ -> raise(Failure("Divison operands must be of type int or double"))
 else raise (Failure("Different types"))
 | Mod(e1, e2) -> let (e1,t1) = expr env e1 in let (e2,t2) = expr env e2 in
 if (matching t1 t2) then match t1 with Sast.Int | Sast.Any | Sast.Double -> Sast.Mod(e1,e2), t1
 | _ -> raise(Failure("Mod operands must be of type int or double"))
 else raise (Failure("Different types"))
 | Cast(vt, e) -> let (e,_) = expr env e in let vt = avt_to_svt vt in
 Sast.Cast(vt, e), vt
 | Id(s) -> if StringMap.mem s env.locals then
 let (e1, e2) = StringMap.find s env.locals in (Sast.Id(s), e2)
 else if StringMap.mem s env.globals then
 let (e1, e2) = StringMap.find s env.globals in (Sast.Id(s), e2)
 else raise(Failure(s ^ " does not exist or is not visible")) in
	
 (* environment -> Ast.stmt -> (environment, Sast.stmt) *)
 let rec transform_stmt env = function
 (* Change Ast stuff to Sast and keep track of vars new to this scope *)
 While(e,seq) -> env, let (e,t) = expr env e in
 if t = Sast.Bool then let locs = merge_maps env.locals env.globals in
 let env = {env with globals=locs; locals=StringMap.empty} in
 let (_,s) = transform_stmt env seq in let vars = get_vars_list s in
 Sast.While(e,s,vars)
 else raise(Failure("While predicates must be of type bool"))
 | If(e,seq) -> env, let (e,t) = expr env e in
 if t = Sast.Bool then let locs = merge_maps env.locals env.globals in
 let env = {env with globals=locs; locals=StringMap.empty} in
 let (_,s) = transform_stmt env seq in let vars = get_vars_list s in
 Sast.If(e,s,vars)
 else raise(Failure("If predicates must be of type bool"))
 | IfElse(e,seq,seq2) -> env, let (e,t) = expr env e in
 if t = Sast.Bool then let locs = merge_maps env.locals env.globals in
 let env = {env with globals=locs; locals=StringMap.empty} in
 let (_,s) = transform_stmt env seq in let vars = get_vars_list s in
 let (_,s2) = transform_stmt env seq2 in let vars2 = get_vars_list s2 in
 let allvars = List.concat [vars ; vars2] in
 Sast.IfElse(e,s,s2,allvars)
 else raise(Failure("If predicates must be of type bool"))
 | FuncDec(s, vt, vn, seq) -> let sexp = (match vt with
 Int -> Sast.IntLit("0"), Sast.Int

 | Char -> Sast.ChrLit("0"), Sast.Char
 | Double -> Sast.FltLit("0.0"), Sast.Double
 | String -> Sast.StrLit("0"), Sast.String
 | Any -> Sast.IntLit("0"), Sast.Any
 | Bool -> Sast.IntLit("0"), Sast.Any) in
 if StringMap.mem s env.functions then raise(Failure(s ^ " is already declared"))
 else let locs = StringMap.add vn sexp StringMap.empty in
 let svt (_, vt) = vt in
 let funcs = StringMap.add s (svt sexp) env.functions in
 let newenv = {env with globals=StringMap.empty; locals=locs; functions=funcs} in
 let (_,seq) = transform_stmt newenv seq in let vars = get_vars_list seq in
 let sameRetTs = ret_types seq in if sameRetTs then {env with functions=funcs},
 Sast.FuncDec(s, (svt sexp), vn, seq,vars) else
 raise(Failure(s ^ " must have consistent return types")) (* TODO *)
 | VarDec(vt,s,e) -> if StringMap.mem s env.locals then
 raise (Failure (s ^ " is already declared")) else let (r,t) = expr env e in
 let locs = StringMap.add s (r,avt_to_svt vt) env.locals in {env with locals=locs},
 Sast.VarDec(avt_to_svt vt,s,r)
 | Assn(s,e) -> let (eSast,tSast) = if StringMap.mem s env.locals then
 StringMap.find s env.locals else if StringMap.mem s env.globals then
 StringMap.find s env.globals else raise (Failure(s ^
 " has not been declared"))
 in let (r,t) = expr env e in if tSast = t then
 let locs = StringMap.add s (r,t) env.locals in
 {env with locals=locs}, Sast.Assn(s, r) else
 raise(Failure(s ^ " is defined as " ^ Sast.string_of_vtype tSast ^
 ", not " ^ Sast.string_of_vtype t))
	
 | Expr(e) -> env, let (e,_) = expr env e in Sast.Expr(e)
 | Return(e) -> env, let (e,t) = expr env e in Sast.Return(e,t)
 | Seq(l) -> let (env,l) = map_stmts env l in env, Sast.Seq(List.rev l) and
	
 (* environment -> Ast.stmt list -> (environment, Sast.stmt list) *)
 (* Maps ast stmts to sast stmts, passing environment along *)
 map_stmts env stmts =
 List.fold_left (fun (env, m) stmt ->
 let (e,s) = transform_stmt env stmt in
 let mapped = s::m in e, mapped) (env, []) stmts in
	
 let (env, transformed) = map_stmts empty_env prog in
	
 (* print_maps env; *)
	
 List.rev transformed
	
==> iast.ml <==
type import = Open of string | Other of char | String of string
	
type program = import list
	
==> pltree.ml <==
type action = Ast | Compile
	

let _ =
 if Array.length Sys.argv > 2 then
 let infile = Sys.argv.(1) in
 let outfile = Sys.argv.(2) in
 let tempfile = infile ^ ".tmp" in
 Imports.check_imports infile tempfile;
 let out = open_out outfile in
 let lexbuf = Lexing.from_channel (open_in tempfile) in
 let program = Parser.program Scanner.token lexbuf in
 Execute.execute_prog (Compile.translate program) out
 else raise(Failure("Must provide input and output file"))
(*
 let action = if Array.length Sys.argv > 1 then
 List.assoc Sys.argv.(1) [("-a", Ast);
 ("-c", Compile)]
 else Compile in
 let lexbuf = Lexing.from_channel stdin in
 let program = Parser.program Scanner.token lexbuf in
 match action with
 Ast -> let listing = Ast.string_of_program program
 in print_endline listing
 (* | Bytecode -> let listing =
 Bytecode.string_of_prog (Compile.translate program)
 in print_endline listing *)
 | Compile -> Execute.execute_prog (Compile.translate program)
*)
	
==> read_tree.ml <==
	
	
	
	
	
	
	

let _ =
 let lexbuf = Lexing.from_channel stdin in
 let program = Parser.program Scanner.token lexbuf in
 let result = eval program in
 print_endline result;
	
==> stubs.ml <==
let tree_c =
"
typedef enum {INT, CHAR, DOUBLE, BOOL, VOID, TREE} data_type;
	
union data_u {
 int i;
 char c;
 double d;
 struct tree *t;
};

	
struct tree {
 data_type type;
 union data_u data;
 int width;
 int refcount;
 struct List *children;
};
	
void put_t (struct tree *t);
	
struct tree *get_width_t(struct tree *t);
	
void init_tree (struct tree *root);
	
void free_tree(struct tree *t);
	
struct tree* inc_refcount(struct tree *t);
struct tree* dec_refcount(struct tree *t);
	
int equal(struct tree *lhs, struct tree *rhs);
int nequal(struct tree *lhs, struct tree *rhs);
int lt(struct tree *lhs, struct tree *rhs);
int gt(struct tree *lhs, struct tree *rhs);
int lte(struct tree *lhs, struct tree *rhs);
int gte(struct tree *lhs, struct tree *rhs);
	
struct tree *sub(struct tree *lhs, struct tree *rhs);
struct tree *add(struct tree *lhs, struct tree *rhs);
struct tree *mult(struct tree *lhs, struct tree *rhs);
struct tree *divd(struct tree *lhs, struct tree *rhs);
struct tree *mod(struct tree *lhs, struct tree *rhs);
	
struct tree *int_treemake(int i_data, struct tree *child, ...);
struct tree *char_treemake(char c_data, struct tree *child, ...);
struct tree *double_treemake(double d_data, struct tree *child, ...);
struct tree *tree_treemake(struct tree *t_data, struct tree *child, ...);
struct tree *void_treemake(struct tree *child, ...);
	
struct tree *treemake(data_type type, union data_u data, struct tree *child, va_list args);
int add_sibling (struct tree *root, struct tree *sibling, int n);
int add_child (struct tree *root, struct tree *child);
void set_type (struct tree *root, data_type type);
data_type get_type(struct tree *root);
struct tree *get_ith_sibling(struct tree *root, int i);
struct tree *get_branch_t(struct tree *root, struct tree *branch);
struct tree *get_branch(struct tree *root, int branch);
	

void put_t(struct tree *str) {
	
 switch(str->type) {
 case CHAR:

 putchar(str->data.c);
 break;
 case INT:
 printf(\"%d\", str->data.i);
 break;
 case DOUBLE:
 printf(\"%f\", str->data.d);
 break;
 case TREE:
 put_t(str->data.t);
 break;
 default:
 break;
 }
}
	
struct tree *get_width_t(struct tree *t) {
 return int_treemake(t->width, NULL);
}
	

int equal(struct tree *lhs, struct tree *rhs) {
	
 int retval;
 inc_refcount(lhs);
 inc_refcount(rhs);
	
 if (lhs->type != rhs->type) {
 retval = 0;
 } else {
 switch(lhs->type) {
 case CHAR:
 retval = lhs->data.c == rhs->data.c;
 break;
 case INT:
 retval = lhs->data.i == rhs->data.i;
 break;
 case DOUBLE:
 retval = lhs->data.d == rhs->data.d;
 break;
 default:
 retval = 0;
 }
 }
	
 dec_refcount(rhs);
 dec_refcount(lhs);
 return retval;
}
	
int nequal(struct tree *lhs, struct tree *rhs) {
 return !equal(lhs, rhs);
}
int lt(struct tree *lhs, struct tree *rhs) {

 int retval;
 inc_refcount(lhs);
 inc_refcount(rhs);
	
 if (lhs->type != rhs->type) {
 fprintf(stderr, \"TYPE MISMATCH!\\n\");
 retval = 0;
 } else {
 switch(lhs->type) {
 case CHAR:
 retval = lhs->data.c < rhs->data.c;
 break;
 case INT:
 retval = lhs->data.i < rhs->data.i;
 break;
 case DOUBLE:
 retval = lhs->data.d < rhs->data.d;
 break;
 default:
 retval = 0;
 }
 }
	
 dec_refcount(rhs);
 dec_refcount(lhs);
 return retval;
}
int gt(struct tree *lhs, struct tree *rhs) {
 int retval;
 inc_refcount(lhs);
 inc_refcount(rhs);
	
 if (lhs->type != rhs->type) {
 retval = 0;
 } else {
 switch(lhs->type) {
 case CHAR:
 retval = lhs->data.c > rhs->data.c;
 break;
 case INT:
 retval = lhs->data.i > rhs->data.i;
 break;
 case DOUBLE:
 retval = lhs->data.d > rhs->data.d;
 break;
 default:
 retval = 0;
 }
 }
	
 dec_refcount(rhs);
 dec_refcount(lhs);
 return retval;
}
int lte(struct tree *lhs, struct tree *rhs) {

 return gt(rhs, lhs);
}
int gte(struct tree *lhs, struct tree *rhs) {
 return lt(rhs, lhs);
}
void dec_refcount_child(void *child) {
 dec_refcount((struct tree *)child);
}
	
void free_tree(struct tree *t) {
 if (t == NULL) {
 return;
 }
	
 traverse_list(t->children, dec_refcount_child);
 free_list(t->children);
 if (t->type == TREE) {
 dec_refcount(t->data.t);
 }
 free(t);
}
	
	

struct tree* inc_refcount(struct tree *t) {
 if (t) {
 t->refcount++;
 }
	
 return t;
}
	
struct tree *dec_refcount(struct tree *t) {
 if (t) {
 if (--(t->refcount) <= 0) {
 free_tree(t);
 t = NULL;
 }
 }
	
 return t;
}
	
struct tree *sub(struct tree *lhs, struct tree *rhs) {
 struct tree *retval;
	
 inc_refcount(lhs);
 inc_refcount(rhs);
	
 if (lhs->type != rhs->type) {
 retval = NULL;
 } else {
 switch (lhs->type) {
 case CHAR:

 retval = char_treemake(lhs->data.c - rhs->data.c, NULL);
 break;
 case INT:
 retval = int_treemake(lhs->data.i - rhs->data.i, NULL);
 break;
 case DOUBLE:
 retval = double_treemake(lhs->data.d - rhs->data.d, NULL);
 break;
 default:
 retval = NULL;
 }
 }
	
 dec_refcount(rhs);
 dec_refcount(lhs);
	
 return retval;
}
struct tree *add(struct tree *lhs, struct tree *rhs) {
 struct tree *retval;
	
 inc_refcount(lhs);
 inc_refcount(rhs);
	
 if (lhs->type != rhs->type) {
 retval = NULL;
 } else {
 switch (lhs->type) {
 case CHAR:
 retval = char_treemake(lhs->data.c + rhs->data.c, NULL);
 break;
 case INT:
 retval = int_treemake(lhs->data.i + rhs->data.i, NULL);
 break;
 case DOUBLE:
 retval = double_treemake(lhs->data.d + rhs->data.d, NULL);
 break;
 default:
 retval = NULL;
 }
 }
	
 dec_refcount(rhs);
 dec_refcount(lhs);
	
 return retval;
}
	
struct tree *mult(struct tree *lhs, struct tree *rhs) {
 struct tree *retval;
	
 inc_refcount(lhs);
 inc_refcount(rhs);
	

 if (lhs->type != rhs->type) {
 retval = NULL;
 } else {
 switch (lhs->type) {
 case CHAR:
 retval = char_treemake(lhs->data.c * rhs->data.c, NULL);
 break;
 case INT:
 retval = int_treemake(lhs->data.i * rhs->data.i, NULL);
 break;
 case DOUBLE:
 retval = double_treemake(lhs->data.d * rhs->data.d, NULL);
 break;
 default:
 retval = NULL;
 }
 }
	
 dec_refcount(rhs);
 dec_refcount(lhs);
	
 return retval;
	
}
	
struct tree *divd(struct tree *lhs, struct tree *rhs) {
 struct tree *retval;
	
 inc_refcount(lhs);
 inc_refcount(rhs);
	
 if (lhs->type != rhs->type) {
 retval = NULL;
 } else {
 switch (lhs->type) {
 case CHAR:
 retval = char_treemake(lhs->data.c / rhs->data.c, NULL);
 break;
 case INT:
 retval = int_treemake(lhs->data.i / rhs->data.i, NULL);
 break;
 case DOUBLE:
 retval = double_treemake(lhs->data.d / rhs->data.d, NULL);
 break;
 default:
 retval = NULL;
 }
 }
	
 dec_refcount(rhs);
 dec_refcount(lhs);
	
 return retval;
}

	
struct tree *mod(struct tree *lhs, struct tree *rhs) {
 struct tree *retval;
	
 inc_refcount(lhs);
 inc_refcount(rhs);
	
 if (lhs->type != rhs->type) {
 retval = NULL;
 } else {
 switch (lhs->type) {
 case CHAR:
 retval = char_treemake(lhs->data.c % rhs->data.c, NULL);
 break;
 case INT:
 retval = int_treemake(lhs->data.i % rhs->data.i, NULL);
 break;
 default:
 retval = NULL;
 }
 }
	
 dec_refcount(rhs);
 dec_refcount(lhs);
	
 return retval;
}
void init_tree(struct tree *root) {
 root->children = malloc(sizeof(struct List));
 root->type = VOID;
 root->width = 0;
 root->refcount = 0;
 init_list(root->children);
}
	
struct tree *int_treemake(int i_data, struct tree *child, ...) {
 va_list args;
 union data_u data;
 struct tree *root;
	
 va_start(args, child);
 data.i = i_data;
 root = treemake(INT, data, child, args);
 va_end(args);
	

 return root;
}

	
struct tree *char_treemake(char c_data, struct tree *child, ...) {
 va_list args;
 union data_u data;
 struct tree *root;

	
 va_start(args, child);
 data.c = c_data;
 root = treemake(CHAR, data, child, args);
 va_end(args);
	
 return root;
}
	

struct tree *double_treemake(double d_data, struct tree *child, ...) {
 va_list args;
 union data_u data;
 struct tree *root;
	
 va_start(args, child);
 data.d = d_data;
 root = treemake(DOUBLE, data, child, args);
 va_end(args);
	
 return root;
}
	
struct tree *tree_treemake(struct tree *t_data, struct tree *child, ...) {
 va_list args;
 union data_u data;
 struct tree *root;
	
 va_start(args, child);
 data.t = t_data;
 root = treemake(TREE, data, child, args);
 va_end(args);
	
 return root;
}
	
struct tree *void_treemake(struct tree *child, ...) {
	
 va_list args;
 struct tree *root;
 union data_u data;
	
 data.t = NULL;
	
 va_start(args, child);
 root = treemake(VOID, data, child, args);
 va_end(args);
	
 return root;
}
	
struct tree *treemake(data_type type, union data_u data, struct tree *child, va_list args) {
 struct tree *root = malloc(sizeof(struct tree));

	
 init_tree(root);
 root->type = type;
 root->data = data;
	

 while (child != NULL) {
 add_child(root, child);
 inc_refcount(child);
 child = va_arg(args, struct tree *);
 }
	
 return root;
}
	
int add_child (struct tree *root, struct tree *child) {
 if (root == NULL) {
 return -1;
 }
 inc_refcount(child);
 append(root->children, child);
 root->width += 1;
 return root->width;
}
	
void set_type (struct tree *root, data_type t) {
 root->type = t;
}
	
data_type get_type(struct tree *t) {
 return t->type;
}
	
struct tree *get_branch_t(struct tree *root, struct tree *branch) {
 struct tree *child;
 inc_refcount(branch);
 child = (struct tree *)get_branch(root, branch->data.i);
 dec_refcount(branch);
 return child;
}
	

struct tree *get_branch(struct tree *root, int branch) {
 return (struct tree *)get(root->children, branch);
}
"
	
let ll_c =
"
	
struct List {
 struct node *head;
 struct node *tail;
};

	
struct node {
 void *data;
 struct node *next;
};
	
void init_list(struct List *list);
	
void traverse_list(struct List *list, void (*f)(void *));
	
void free_list(struct List *list);
	
void *get(struct List *list, int i);
	
void append(struct List *list, void *data);
	
void init_list(struct List *list) {
 list->head = NULL;
 list->tail = NULL;
}
	
void *get(struct List *list, int n) {
 int i = 0;
 struct node *curr;
	
 curr = list->head;
	
 while (i < n && curr != NULL) {
 curr = curr->next;
 i++;
 }
	
 return curr->data;
}
	
	
	

void traverse_list(struct List *list, void (*f)(void *))
{
 //Start at the beginning
 struct node *curr = list->head;
	
 //Iterate until we get to the end of the list
 while (curr != NULL)
 {
 f(curr->data);

 //Move to next node
 curr = curr->next;
 }
}

	

void free_list(struct List *list) {
 while (list->head != NULL) {
 struct node *curr = list->head;
 struct node *next = curr->next;
 free(curr);
 list->head = next;
 }
 free(list);
}
	
	

void append(struct List *list, void *data) {
 struct node *curr;
 struct node *new;
	
 curr = list->tail;
	
 if (curr == NULL) {
 curr = malloc(sizeof(struct node));
 curr->next = NULL;
 curr->data = data;
 list->head = curr;
 list->tail = curr;
 } else {
 new = malloc(sizeof(struct node));
	
 new->data = data;

 new->next = NULL;
	
 curr->next = new;
	
 list->tail = new;
 }
}
"
==> cast.ml <==
type vtype =
 Int | Char | Double | Bool | String | Any
	
type expr =
 Tree of expr * expr list
| IntLit of string
| ChrLit of string
| FltLit of string
| StrLit of string
| GetBranch of expr * expr
| GetWidth of expr
| Void
| FunCall of string * expr
| Eq of expr * expr

| Neq of expr * expr
| Lt of expr * expr
| Leq of expr * expr
| Gt of expr * expr
| Geq of expr * expr
| Add of expr * expr
| Minus of expr * expr
| Mul of expr * expr
| Div of expr * expr
| Mod of expr * expr
| Cast of vtype * expr
| Id of string
	
type stmt =
 While of expr * stmt * stmt list
| If of expr * stmt * stmt list
| IfElse of expr * stmt * stmt * stmt list
| FuncDec of string * vtype * string * stmt * stmt list
| VarDec of vtype * string * expr
| Assn of string * expr
| Expr of expr
| Return of expr
| Seq of stmt list
	
type program = stmt list
	
let string_of_vtype = function
 Int -> "int"
| Char -> "char"
| Double -> "double"
| Bool -> "bool"
| String -> "string"
| Any -> "any"
	
let rec string_tab n v = if n == 0 then v else string_tab (n-1) ("\t" ^ v)
	
let rec tree_list_from_string =
 function s ->
 let len = String.length s in
 if (len > 0) then
 Tree(ChrLit("'" ^ (Char.escaped (String.get s 0)) ^ "'") , [])::
 tree_list_from_string (String.sub s 1 (len - 1))
 else
 []
	
let rec gen_c_expr =
 let rec gen_c_tree_list = function n -> function
 hd::tl -> "" ^ (gen_c_expr n hd) ^ ", \n" ^ string_tab n (gen_c_tree_list n tl)
 | [] -> ""
 in
 function n ->
 function
 FunCall(x, y) -> ("" ^ x ^ "(\n" ^ string_tab (n + 1) (gen_c_expr (n+1) y) ^ ")")
| Tree(IntLit(x), children) ->
 "int_treemake(" ^ x ^ ", " ^

 if List.length children == 0 then
 "NULL)"
 else
 "\n" ^ string_tab (n+1) (gen_c_tree_list (n+1) children ^ "NULL)")
| Tree(ChrLit(x), children) ->
 "char_treemake(" ^ x ^ ", " ^
 if List.length children == 0 then
 "NULL)"
 else
 "\n" ^ string_tab (n+1) (gen_c_tree_list (n+1) children ^ "NULL)")
| Tree(FltLit(x), children) ->
 "double_treemake(" ^ x ^ ", " ^
 if List.length children == 0 then
 "NULL)"
 else
 "\n" ^ string_tab (n+1) (gen_c_tree_list (n+1) children ^ "NULL)")
| Tree(Void, children) ->
 "void_treemake(" ^
 if List.length children == 0 then
 "NULL)"
 else
 "\n" ^ string_tab (n+1) (gen_c_tree_list (n+1) children ^ "NULL)")
| Tree(StrLit(x), []) -> "void_treemake(\n" ^
 string_tab (n+1) (gen_c_tree_list (n+1) (tree_list_from_string x) ^ "NULL)")
| Tree(expr, children) ->
 "tree_treemake(" ^ gen_c_expr n expr ^ ", " ^
 if List.length children == 0 then
 "NULL)"
 else
 "\n" ^ string_tab (n+1) (gen_c_tree_list (n+1) children ^ "NULL)")
| GetBranch(tree, expr) -> "get_branch_t(" ^ gen_c_expr n tree ^ ", " ^ gen_c_expr n expr ^ ")"
| GetWidth(tree) -> "get_width_t(" ^ gen_c_expr n tree ^ ")"
| Eq(v1, v2) -> ("equal(" ^ gen_c_expr n v1 ^ ", " ^ gen_c_expr n v2 ^ ")")
| Neq(v1, v2) -> ("nequal(" ^ gen_c_expr n v1 ^ ", " ^ gen_c_expr n v2 ^ ")")
| Lt(v1, v2) -> ("lt(" ^ gen_c_expr n v1 ^ ", " ^ gen_c_expr n v2 ^ ")")
| Leq(v1, v2) -> ("lte(" ^ gen_c_expr n v1 ^ ", " ^ gen_c_expr n v2 ^ ")")
| Gt(v1, v2) -> ("gt(" ^ gen_c_expr n v1 ^ ", " ^ gen_c_expr n v2 ^ ")")
| Geq(v1, v2) -> ("gte(" ^ gen_c_expr n v1 ^ ", " ^ gen_c_expr n v2 ^ ")")
| Add(v1, v2) -> ("add(" ^ gen_c_expr n v1 ^ ", " ^ gen_c_expr n v2 ^ ")")
| Minus(v1, v2) -> ("sub(" ^ gen_c_expr n v1 ^ ", " ^ gen_c_expr n v2 ^ ")")
| Mul(v1, v2) -> ("mult(" ^ gen_c_expr n v1 ^ ", " ^ gen_c_expr n v2 ^ ")")
| Div(v1, v2) -> ("divd(" ^ gen_c_expr n v1 ^ ", " ^ gen_c_expr n v2 ^ ")")
| Mod(v1, v2) -> ("mod(" ^ gen_c_expr n v1 ^ ", " ^ gen_c_expr n v2 ^ ")")
| Cast(vt,e) -> ("cast(" ^ string_of_vtype vt ^ ", " ^ gen_c_expr n e ^ ")")
| Id(v1) -> "" ^ v1
| IntLit(x) -> x
| ChrLit(x) -> x
| FltLit(x) -> x
| StrLit(x) -> x
| Void -> ""
	
let rec gen_c = function n -> function
 While(x, y, l) -> string_tab n ("while ("^(gen_c_expr n x) ^ ") { \n" ^ (gen_c (n+1) y) ^ "\n" ^ string_tab
n "}")
| If(x, y, l) -> string_tab n ("if ("^(gen_c_expr n x) ^ ") { \n" ^ (gen_c (n+1) y) ^ "\n" ^ string_tab n "}")
| IfElse(x, s1,s2, l) ->

 string_tab n ("if ("^(gen_c_expr n x) ^ ") { \n" ^ (gen_c (n+1) s1) ^ "\n" ^ string_tab n "} else
{\n"
 ^ (gen_c (n+1) s2) ^ "\n" ^ string_tab n "}")
| VarDec(v1, v2, v3) -> string_tab n ("struct tree * " ^ v2 ^ " = " ^ gen_c_expr n v3 ^ "; inc_refcount(" ^
v2 ^ ");")
| FuncDec(str, vt, vn, stmt, l) -> "" (*str ^ "(){\n" ^ gen_c (n + 1) stmt ^ "} " *)
| Assn(v1, v2) -> string_tab n ("" ^ v1 ^ " = " ^ gen_c_expr n v2 ^ "; inc_refcount(" ^ v1 ^ ");")
| Expr(v1) -> string_tab n (gen_c_expr n v1)
| Return(v1) -> string_tab n ("return " ^ gen_c_expr n v1 ^ ";")
| Seq(v1) -> let rec gen_c_seq = function
 hd::tl -> gen_c n hd ^ ";\n" ^ gen_c_seq tl
 | [] -> "" in
 gen_c_seq v1
	
let rec eval_expr = function n ->
 let rec eval_tree_list = function n -> function
 hd::tl -> eval_expr n hd ^ "::\n" ^ string_tab (n) (eval_tree_list n tl)
 | [] -> "[]"
 in
 function
 FunCall(x, y) -> ("FunCall(" ^ x ^ ", \n" ^ string_tab (n+1) ((eval_expr (n+1) y) ^ ")"))
| Tree(StrLit(x), []) -> "Tree(Void, \n" ^ string_tab (n+1) (eval_tree_list (n+1) (tree_list_from_string x) ^
")")
| Tree(expr, children) ->
 "Tree(" ^ eval_expr n expr ^
 if List.length children == 0 then
 ", [])"
 else
 ", \n" ^ string_tab (n+1) (eval_tree_list (n+1) children ^ ")")
| GetBranch(tree, expr) -> "" (* TODO *)
| GetWidth(tree) -> ""
| Eq(v1, v2) -> ("Eq(" ^ eval_expr n v1 ^ ", " ^ eval_expr n v2 ^ ")")
| Neq(v1, v2) -> ("Neq(" ^ eval_expr n v1 ^ ", " ^ eval_expr n v2 ^ ")")
| Lt(v1, v2) -> ("Lt(" ^ eval_expr n v1 ^ ", " ^ eval_expr n v2 ^ ")")
| Leq(v1, v2) -> ("Leq(" ^ eval_expr n v1 ^ ", " ^ eval_expr n v2 ^ ")")
| Gt(v1, v2) -> ("Gt(" ^ eval_expr n v1 ^ ", " ^ eval_expr n v2 ^ ")")
| Geq(v1, v2) -> ("Geq(" ^ eval_expr n v1 ^ ", " ^ eval_expr n v2 ^ ")")
| Add(v1, v2) -> ("Add(" ^ eval_expr n v1 ^ ", " ^ eval_expr n v2 ^ ")")
| Minus(v1, v2) -> ("Minus(" ^ eval_expr n v1 ^ ", " ^ eval_expr n v2 ^ ")")
| Mul(v1, v2) -> ("Mul(" ^ eval_expr n v1 ^ ", " ^ eval_expr n v2 ^ ")")
| Div(v1, v2) -> ("Div(" ^ eval_expr n v1 ^ ", " ^ eval_expr n v2 ^ ")")
| Mod(v1, v2) -> ("Mod(" ^ eval_expr n v1 ^ ", " ^ eval_expr n v2 ^ ")")
| Cast(vt,e) -> ("Cast(" ^ string_of_vtype vt ^ ", " ^ eval_expr n e ^ ")")
| Id(v1) -> "Id(" ^ v1 ^ ")"
| IntLit(x) -> x
| ChrLit(x) -> x
| FltLit(x) -> x
| StrLit(x) -> x
| Void -> "Void"
	
let rec eval = function n -> function
 While(x, y, l) -> string_tab n ("While("^(eval_expr n x) ^ ",\n" ^ (eval (n+1) y) ^ "\n" ^ string_tab n ")")
| If(x, y, l) -> string_tab n ("If("^(eval_expr n x) ^ ",\n" ^ (eval (n+1) y) ^ "\n" ^ string_tab n ")")
| IfElse(x, s1, s2, l) -> string_tab n ("IfElse("^(eval_expr n x) ^ ",\n" ^
 (eval (n+1) s1) ^ "\n" ^ string_tab n ")\n" ^

 (eval (n+1) s2) ^ "\n" ^ string_tab n ")")
| VarDec(v1, v2, v3) -> string_tab n ("VarDec(" ^ v2 ^ ", " ^ eval_expr n v3 ^ ")")
| FuncDec(str, vt, vn, stmt, l) -> "" (* TODO *)
| Assn(v1, v2) -> string_tab n ("Assn(" ^ v1 ^ ", " ^ eval_expr n v2 ^ ")")
| Expr(v1) -> string_tab n (eval_expr n v1)
| Return(v1) -> string_tab n ("Return(" ^ eval_expr n v1 ^ ")")
| Seq(v1) -> let rec eval_seq = function
 hd::tl -> eval n hd ^ "\n" ^ eval_seq tl
 | [] -> "" in
 eval_seq v1
let rec eval_prog = function
 hd::tl -> "" ^ eval 0 hd ^ "\n" ^ eval_prog tl
| [] -> ""
	

let rec gen_c_prog = function
 hd::tl -> "" ^ gen_c 1 hd ^ ";\n" ^ gen_c_prog tl
| [] -> ""
	

let rec gen_c_funcs = function
 FuncDec(str, vt, vn, stmt, l)::tl -> "struct tree *" ^ str ^ "(struct tree *" ^ vn ^ "){" ^
 "inc_refcount(" ^ vn ^ ");\n" ^ gen_c 1 stmt ^ "return NULL;}\n" ^ gen_c_funcs tl
| _::tl -> gen_c_funcs tl
| [] -> ""
	
let headers =
 "#include <stdio.h>\n#include <stdlib.h>\n" ^
 "#include <stdio.h>\n" ^
 "#include <stdlib.h>\n" ^
 "#include <string.h>\n" ^
 "#include <stdarg.h>\n"
	
let string_of_program stmts =
 "int main(int argc, char **argv) {\n" ^
 gen_c_prog stmts ^
 "\treturn 0;\n}"
	
==> execute.ml <==
open Sast
	
type prog_els = { variables: Cast.stmt list;
 functions: Cast.stmt list;
 all_statements: Cast.stmt list; }
	
(* turns S-ast to C-ast*)
let c_vtype = function s_vt -> (match s_vt with
 Sast.Int -> Cast.Int
| Sast.Char -> Cast.Char
| Sast.Double -> Cast.Double
| Sast.Bool -> Cast.Bool
| Sast.String -> Cast.String
| Sast.Any -> Cast.Any)
let transform prog =

 let rec expr = function
 Tree(e,l) -> let l = List.map (fun e -> expr e) l in Cast.Tree(expr e,l)
 | IntLit(s) -> Cast.IntLit(s)
 | ChrLit(s) -> Cast.ChrLit(s)
 | FltLit(s) -> Cast.FltLit(s)
 | StrLit(s) -> Cast.StrLit(s)
 | GetBranch(e1,e2) -> Cast.GetBranch(expr e1, expr e2)
 | GetWidth(e1) -> Cast.GetWidth(expr e1)
 | Void -> Cast.Void
 | FunCall(s,e) -> Cast.FunCall(s, expr e)
 | Eq(e1,e2) -> Cast.Eq(expr e1,expr e2)
 | Neq(e1,e2) -> Cast.Neq(expr e1,expr e2)
 | Lt(e1,e2) -> Cast.Lt(expr e1,expr e2)
 | Leq(e1,e2) -> Cast.Leq(expr e1,expr e2)
 | Gt(e1,e2) -> Cast.Gt(expr e1,expr e2)
 | Geq(e1,e2) -> Cast.Geq(expr e1,expr e2)
 | Add(e1,e2) -> Cast.Add(expr e1,expr e2)
 | Minus(e1,e2) -> Cast.Minus(expr e1,expr e2)
 | Mul(e1,e2) -> Cast.Mul(expr e1,expr e2)
 | Div(e1,e2) -> Cast.Div(expr e1,expr e2)
 | Mod(e1,e2) -> Cast.Mod(expr e1,expr e2)
 | Cast(t,e) -> Cast.Cast(c_vtype t, expr e)
 | Id(s) -> Cast.Id(s) in
	
 let rec stmt = function
 While(e,s,l) -> let l = List.map (fun e -> stmt e) l in
 Cast.While(expr e, stmt s, l)
 | If(e,s,l) -> let l = List.map (fun e -> stmt e) l in
 Cast.If(expr e, stmt s, l)
 | IfElse(e,s,s2,l) -> let l = List.map (fun e -> stmt e) l in
 Cast.IfElse(expr e, stmt s, stmt s2, l)
 | FuncDec(s, vt, vn, seq,l) -> let l = List.map (fun e -> stmt e) l in
 Cast.FuncDec(s, (c_vtype vt), vn, stmt seq, l)
 | VarDec(t,s,e) -> Cast.VarDec((c_vtype t),s,expr e)
 | Assn(s,e) -> Cast.Assn(s,expr e)
 | Expr(e) -> Cast.Expr(expr e)
 | Return(e,t) -> Cast.Return(expr e)
 | Seq(l) -> let l = List.map (fun s -> stmt s) l in
 Cast.Seq(l) in
	
 (* Get all funcs and top-level vars *)
 let vars = Sast.get_vars_list prog in
 let funcs = Sast.get_funcs_list prog in {
 variables = List.map (fun v -> stmt v) vars;
 functions = List.map (fun f -> stmt f) funcs;
 all_statements = List.map (fun s -> stmt s) prog; }
	
(* Use the string_of funcs in cast.ml to make C file *)
let execute_prog prog outfile = let pe = transform prog in
 Printf.fprintf outfile "%s"
 (
 Cast.headers ^ "\n" ^
 Stubs.ll_c ^ "\n" ^
 Stubs.tree_c ^ "\n" ^
 Cast.gen_c_funcs pe.functions ^

 Cast.string_of_program pe.all_statements)
	
==> imports.ml <==
open Printf
	
let stdlibdir = "/usr/local/bin/pltree_std/"
	
let rec lex_file filename outfile opened_list =
 let lexbuf = Lexing.from_channel (
 try open_in filename with
 e -> open_in (Filename.concat stdlibdir filename)
) in
 let program = Iparser.program Iscanner.token lexbuf in
 let rec print_program =
 function outfile ->
 function l ->
 function
 Iast.Open(s)::tl -> if List.exists (function a -> s = a) l then (
 print_program outfile l tl
) else (
 print_program outfile (lex_file s outfile (s::l)) tl
)
 | Iast.Other(c)::tl -> fprintf outfile "%c" c; print_program outfile l tl
 | Iast.String(s)::tl -> fprintf outfile "%s" ("\"" ^ s ^ "\""); print_program outfile l tl
 | [] -> l in
 print_program outfile opened_list program

	
let check_imports infilename outfilename =
 let out = open_out outfilename in
 ignore (lex_file infilename out []); close_out out
	
==> read.ml <==
open Ast
	
let rec eval = function
 Var(var, expr) -> let v1 = eval var and v2 = eval expr in
 print_endline (v1 ^ v2)
 | Dec(func_dec, expr) -> let v1 = eval func_dec and v2 = eval expr in
 print_endline (v1 ^ v2)
 | Call(func_call, expr) -> let v1 = eval func_call and v2 = eval expr in
 print_endline (v1 ^ v2)
 | Asn(asn, expr) -> let v1 = eval asn and v2 = eval expr in
 print_endline (v1 ^ v2)
 | Lit(literal) -> literal
 | Binop(e1, op, e2) ->
 let v1 = eval e1 and v2 = eval e2 in
 match op with
 Add -> v1 + v2
 | Sub -> v1 - v2
 | Mul -> v1 * v2
 | Div -> v1 / v2
	
let _ =

 let lexbuf = Lexing.from_channel stdin in
 let expr = Parser.expr Scanner.token lexbuf in
 let result = eval expr in
 print_endline (string_of_int result ^ " ")
 (* concatenate with space to remove ^D output *)
	
==> sast.ml <==
type vtype =
 Int | Char | Double | Bool | String | Any
	
type expr =
 Tree of expr * expr list
| IntLit of string
| ChrLit of string
| FltLit of string
| StrLit of string
| GetBranch of expr * expr
| GetWidth of expr
| Void
| FunCall of string * expr
| Eq of expr * expr
| Neq of expr * expr
| Lt of expr * expr
| Leq of expr * expr
| Gt of expr * expr
| Geq of expr * expr
| Add of expr * expr
| Minus of expr * expr
| Mul of expr * expr
| Div of expr * expr
| Mod of expr * expr
| Cast of vtype * expr
| Id of string
	
type stmt =
 While of expr * stmt * stmt list
| If of expr * stmt * stmt list
| IfElse of expr * stmt * stmt * stmt list
| FuncDec of string * vtype * string * stmt * stmt list
| VarDec of vtype * string * expr
| Assn of string * expr
| Expr of expr
| Return of expr * vtype
| Seq of stmt list
	
type program = stmt list
	
let rec get_vars_list = function
 [] -> []
 | hd::tl -> match hd with VarDec(_,_,_) -> hd::get_vars_list tl
 | _ -> get_vars_list tl
	
let rec get_funcs_list = function
 [] -> []

 | hd::tl -> match hd with FuncDec(_,_,_,Seq(l),_) -> List.concat
 [get_funcs_list l; hd::get_funcs_list tl]
 | While(_,Seq(l),_) -> List.concat
 [get_funcs_list l; get_funcs_list tl]
 | If(_,Seq(l),_) -> List.concat
 [get_funcs_list l; get_funcs_list tl]
 | IfElse(_,Seq(l),Seq(l2),_) -> List.concat
 [get_funcs_list l; get_funcs_list l2; get_funcs_list tl]
 |_ -> get_funcs_list tl
	
let string_of_vtype = function
 Int -> "int"
| Char -> "char"
| Double -> "double"
| Bool -> "bool"
| String -> "string"
| Any -> "any"
	
let rec string_of_expr = function
 Tree(e,l) -> string_of_expr e ^ if List.length l > 0 then" {{ " ^
 String.concat ", " (List.map string_of_expr l) ^ "}}" else "{{}}"
| IntLit(s) -> s
| ChrLit(s) -> s
| FltLit(s) -> s
| StrLit(s) -> s
| GetBranch(e1,e2) -> string_of_expr e1 ^ "." ^ string_of_expr e2
| GetWidth(e1) -> string_of_expr e1
| Void -> "void"
| FunCall(s,e) -> s ^ "(" ^ string_of_expr e ^ ")"
| Eq(e1, e2) -> string_of_expr e1 ^ " == " ^ string_of_expr e2
| Neq(e1, e2) -> string_of_expr e1 ^ " != " ^ string_of_expr e2
| Lt(e1, e2) -> string_of_expr e1 ^ " < " ^ string_of_expr e2
| Leq(e1, e2) -> string_of_expr e1 ^ " <= " ^ string_of_expr e2
| Gt(e1, e2) -> string_of_expr e1 ^ " > " ^ string_of_expr e2
| Geq(e1, e2) -> string_of_expr e1 ^ " >= " ^ string_of_expr e2
| Add(e1, e2) -> string_of_expr e1 ^ " + " ^ string_of_expr e2
| Minus(e1, e2) -> string_of_expr e1 ^ " - " ^ string_of_expr e2
| Mul(e1, e2) -> string_of_expr e1 ^ " * " ^ string_of_expr e2
| Div(e1, e2) -> string_of_expr e1 ^ " / " ^ string_of_expr e2
| Mod(e1, e2) -> string_of_expr e1 ^ " % " ^ string_of_expr e2
| Cast(t1,e) -> string_of_vtype t1 ^ " from " ^ string_of_expr e
| Id(s) -> s
	
let rec string_of_stmt = function
 While(e,s,l) -> string_of_expr e ^ " " ^ string_of_stmt s
| If(e,s,l) -> string_of_expr e ^ " " ^ string_of_stmt s
| IfElse(e,s,s2,l) -> string_of_expr e ^ " " ^ string_of_stmt s ^ " " ^ string_of_stmt s2
| FuncDec(str,vt,vn,stmt,l) -> str ^ "[" ^ string_of_stmt stmt ^ "] "
| VarDec(t,s,e) -> s ^ " " ^ string_of_expr e
| Assn(s,e) -> s ^ " = " ^ string_of_expr e
| Expr(e) -> string_of_expr e
| Return(e,t) -> "return:(" ^ string_of_expr e ^ ")";
| Seq(l) -> String.concat ", " (List.map string_of_stmt l)
	
let string_of_program stmts =

 String.concat " " (List.map string_of_stmt stmts)
	

	

