

Opposing Discrete and Definite heuriStics

Alexandra Medway, Alex Kalicki, Daniel Echickson, Lilly Wang
afm2134, avk2113, dje2125, lfw2114

Philosophy & Motivation

“I see your boundless form everywhere, the countless arms, bellies, mouths, and eyes; Lord of
All, I see no end, or middle or beginning to your totality” - Arjuna to Krishna, Bhagavad-Gita.

As programmers, we are often forced to think and program in terms of definite binaries: 0 or 1,
if-else, do-while, one answer or some finite number of answers. The real world, however, is not
so determinate or discrete. The real world is more fluid. The real world operates on chance and
spectrums of possibility, not on simple binaries. As Arjuna remarks, the problems we seek
solutions to frequently have no apparent temporal beginning, middle, or end. They must instead
be conceived of in their totality. We understand this to be the programmer’s job.

The programmer must take real-world problems - problems that present themselves as neither
obviously discrete nor definite - and come up with solutions that can be computed on machines
that operate within the realm of the discrete and definite. We understand the programmer to be
a translator of sorts, from the uncertainty of the real to the general certainty of the virtual. The
motivation for Odds is to ease this process of translation. We recognize the need to be able to
compute not only on definite values, but also on discrete distributions and continuous ranges of
numbers. In implementing these structures as an essential part of Odds, we hope to create a
programming language that more seamlessly reflects the manner in which problems and
solutions are posed in the real world, that is, the world of fluidity and uncertainty.

Language Description

Odds is a functional programming language that uses C-like syntax. Odds focuses on
mathematical distributions and expresses operations on them in a simple and discrete way.

Distributions support standard operations such as addition and multiplication. In addition to
these simple operations, users have the option of sampling the distribution in order to apply
complex calculations on portions of the data. For example, this will allow the user to create
simulations on ranges of data with a “Monte Carlo” approach. To create and define these
distributions, users apply a density function to the values within a specified domain or range. If
the user does not apply a density function to a range, then the distribution is assumed to be
uniform.

Odds supports a number of data primitives: numbers, strings, and distributions. Once a variable
is declared as one of these primitives, it is immutable. Users are given the option to pass and
apply functions to these various data types.

Because users may want to process multiple items at once, Odds also includes lists as a
collection type. Additionally, this language includes conditionals and looping. However, because
Odds takes a functional approach, loops are discouraged in practice. Lists allow the user to
store any collection of primitives or functions. Functions can be applied to the list in order to
filter, modify, or add to its contents.

Code blocks will consist of variable declarations, expressions, and function calls. It will be the
compiler’s job to determine whether all variables are being used in scope and are being applied
appropriately.

Syntax Overview

Basics

Functions

Functions are considered normal entities in Odds, so they can be assigned to variables in
addition to being passed as arguments or returned from other routines. The func keyword
indicates that a function block is about to follow:

Distributions

The novel portion of our language comes not from the above definitions, which closely mirror C-
like syntax, but from a new type meant to simplify the process of dealing with continuous ranges
of numbers or sequences of integers. To approach this problem, we introduce the new dist data
type. The syntax was designed to approximate math style range syntax, where you declare a
probability distribution to be applied over a domain of numbers.

Code Example

Example of code in Odds, demonstrating calculation of an approximate area of a room.

Example of code in Odds, demonstrating a potential Monte Carlo simulation.1	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1	 Example problem and values for the normal distributions proposed in external article: http://goo.gl/Z1vlG0.	

