
A programming language for exploring and creating music

Kevin Chen (kxc2103), Brian Kim (bck2116), Jennifer Lam (jl3953),
Edward Li (el2724)

September 30, 2015

1 Goals and Philosophy

We would like to create a language optimized for exploring and creating
music. The syntax facilitates writing snippets of music, or tracks, as parts
of larger compositions. Standard library functions enable the programmer
to transform these tracks. By using multiple compiler backends, the
language can be compiled into audio (MP3 and MIDI) or sheet music.

Our language revolves around the concept of tracks. A track is a variable
length sequence of chords, each with a list of pitches and a length, plus
metadata such as key signature, tempo, time signature. Tracks are the
building blocks of a composition, because they allow the user to specify a
few snippets of music, and then concatenate, overlay, transform, or
otherwise reuse them while creating a song.

2 Usage

2.1 A Basic Example: Twinkle Twinkle Little Star

To demonstrate the features and syntax of our language, we include an
example program that expresses “Twinkle Twinkle Little Star”:

1 intro = q:[1 1 5 5 6 6] . h:5

2 chorus = Rhythm intro : [4 4 3 3 2 2 1]

3 bridge = Relative 2 chorus

4 twinkle = intro . chorus . bridge . bridge . intro . chorus

5 Render twinkle "twinkle.mp3"

In line 1, the melody and rhythm of the first line of the song are assigned
to intro. Pitches are specified as numbers relative to the key signature —
since we have not specified a key signature, the default of C major will be
used. Therefore, pitch 1 corresponds to C, and 5 corresponds to G. (The
default time signature is 4/4, and the default tempo is 120 bpm.)

The square brackets in lines 1 and 2 are syntactic sugar for the musical list
constructor. The q:[...] applies the quarter note length to each note in
the list, and returns a track. Similarly, h:5 describes a half note of pitch 5.

Our language syntax borrows heavily from OCaml: function calls do not
require parentheses or commas. For example, in line 2, the standard library
function Rhythm takes the argument intro without including C-like

2

parentheses. Rhythm takes a track or list of notes and returns a list of the
notes’ lengths. The colon : is an operator that zips the returned rhythm to
the notes, and returns a track.

In line 3, we demonstrate the use of the standard library function Relative.
It shifts chorus up to a second (1 pitch up), and assigns the returned value
to bridge.

Line 4 creates the song by concatenating the pieces we have made so far.
Concatenating is represented by the PHP-like period operator. You may be
wondering how we concatenated a track and a note in line 1. h:5 actually
creates a track with a single note. Ta-da!

The last line creates an audio file of our song named twinkle.mp3.

3

2.2 Advanced Musical Features

This example incorporates advanced musical features, such as chords,
different octaves, and multiple tracks:

1 // Constants from stdlib

2 /* Nested

3 /* comments */ */

4 STD$key_signature = STD$C_minor

5 STD$time_signature = STD$two_two

6 STD$tempo = 150

7
8 intro = q:@-1[1 1 5 5 6 6] . (q+q/2):5@1 . (q/2):0

9 chorus = Rhythm intro : [4 4 3 3 2 2 1,3,5 0]

10 chorus_harmony = Relative 3 chorus

11 bridge = Relative 2 chorus

12 outtro = Arpeggio q:1

13
14 melody = intro . chorus . bridge . bridge . intro . chorus

15 . outtro

16
17 padding = Rhythm intro : 0

18 harmony = padding . chorus_harmony . Repeat 3 padding

19 . chorus_harmony

20
21 Render (Parallel melody harmony) "twinkle.mp3"

The first three lines demonstrate the syntax of comments. We support
both types of C-style comments (// and /*...*/) and extend the multi-line
comment to allow nesting.

In lines 4–7, we demonstrate how to override the default key signature,
time signature, and tempo. To change the key signature to C-minor, the
programmer re-assigns the value of global variable STD$key_signature,
declared in the standard library, to STD$C_minor (also declared in standard
library). Likewise, STD$time_signature, STD$two_two, and STD$tempo are
also standard library variables.

The last two items of line 8 ((q+q/2):5@1 and (q/2):0) demonstrate how
the user can specify custom note lengths. Because our note constants (q for
quarter notes, h for half, and w for whole) are implemented as floating point
numbers in the standard library, it is possible to perform arithmetic

4

operations on these constants. For example, (q+q/2) is a dotted quarter
note, and (q/2) indicates an eighth note.

Line 9 uses @-1[...] to reduce all the pitches that follow by one octave
from the default (default octave assumes middle A is tuned to 440 Hz).
This syntax is similar to q:[...] from the previous example.

Line 9 also demonstrates syntax to specify a chord, by typing a
comma-separated list of notes: 1,3,5.

Line 17 creates padding, a track of silence that is the same length as intro.
This works because pitch 0 creates a rest. In line 18, this allows us to use
padding to offset our harmony track so that it plays at the right time.
Finally, we play melody and harmony in parallel and write the result to a file.

5

2.3 Turing Complete, Yo

Our language can also be general-purpose: for example, the
implementation of the Relative library function will use if-then and for.

1 fun Relative offset track = (

2 if -1 <= offset and offset <= 1 then track

3 else (

4 direction = do -1 unless offset > 0 inwhichcase 1

5 scale_size = STD$key_signature$size

6 offset_track = {}

7 for chord in track do (

8 offset_tones = {}

9 for i in (Range 0 chord$tones$length) (

10 pitch = chord$tones[i]$pitch + direction * ((offset - 1) % scale_size)

11 octave = chord$tones[i]$octave + direction * ((offset - 1) / scale_size)

12 offset_tones = offset_tones . pitch@octave

13)

14 offset_chord = chord$duration : offset_tones

15 offset_track = offset_track . offset_chord

16)

17)

18)

In line 1, we declare the function using OCaml-like syntax. The function
body has multiple lines, so we must wrap it in parentheses.

This function does not have an explicit return statement — everything in
our language has a return value. Functions, if-then, for, and while all
return the last line executed. Thus, the function returns track (line 2)
when the condition is true and returns offset_track . offset_note

(line 18) otherwise.

Line 4 takes advantage of this feature by setting a variable based on the
result of a conditional. We also introduce an innovative feature of our
language: do–unless–in which case, a fun and exciting version of if-then-else
that really spices up your programs.

Lines 10–11 perform arithmetic on integers representing pitch and octave.
Our language supports + - * / for integers and reals, and % for integers.

6

2.3.1 A note on list construction

Those two lines also use square brackets for list indexing: tones[i]. When
applied to the end of a list name, the square brackets indicate indexing
instead of list construction.

{...} and [...] both construct lists. The difference is that square brackets
[...] indicate that the contents should be interpreted first as musical
notes — this resolves the ambiguity between {1 2 3}, which is a list of
integers, and [1 2 3], a list of musical notes.

7

