
C-Major: A Music Composition Language

O’Reilly, Andrew
ajo2119

Huang, Stephanie
syh2115

Sun, Jonathan
jys2124

Tang, Laura
lt2510

September 30, 2015

1 Introduction

C-Major is an interpreted, functional language for composing music and producing struc-
tured, sequential, and concurrent sound. It is meant to be used by programmers seeking
to compose and sequence simple music to accompany applications or other activities that
occur in a computed context.

2 Motivation

C-Major provides a method of organizing modern western music, which consists of a se-
quence of pitch or frequency values that vary in duration and are often played concurrently.
Since modern popular music consists extensively of reused and repeated components, C-
Major lends itself to the problem of writing or cutting and pasting the same sequence
repeatedly when using conventional notation or audio production software by condensing
pitch sequences into reusable components. It provides an intuitive functional interface by
which composers can create collections of pitch sequences and modify them according to
their desires or the requirements of the composition they are producing.

3 A Simple Deconstruction of Music Composition

A phrase of music consists of several notes strung together. Each note consists of two
major values: pitch and duration. The pitch denotes the frequency of the sound, and the
duration indicates the amount of time the note is sung. Composition can then become two
separate activities: one, a sequence of pitches ignoring rhythm, and two, the underlying
rhythm, ignoring pitches. Combining these two lines of values will yield a complete phrase
of music.

1



4 Lexical Conventions

C-major aims to become a functional programming language with clean and simple syntax
modeled after languages like Python. It features immutable memory, no global variables,
and it has I/O. A typical program is primarily comprised of constant definitions and func-
tions. C-Major files will have the extension .cmaj.

4.1 Comments

Comments will be the same as in C. The characters ‘/*’ introduce a comment, which
terminates with the characters ‘*/’. Comments do not nest, and they do not occur within
string or character literals. Single line comments can be initiated with characters ‘//’.

4.2 Line Structure, Scoping & Delimiting

The end of a logical line is represented by the semicolon token, just like in C. Scoping and
delimiting can be determined by curly brackets, like in C, but optional as long as lines are
syntactically correct.

4.3 Variables - Identifiers

Identifiers behave just like in C or Java, and are used to label functions and objects. An
identifier is composed strictly of upper and lowercase characters, digits, and the underscore
character. Case is significant. Scoping will be modeled after Python scoping.

4.4 Types

The following are the basic types of the language.

1. int, double, boolean

2. array/list

3. string

4. tuple - Tuples behave like tuples in Python

5. pitch - A pitch consists of the dollar sign character followed by a letter, then an
optional integer to specify octave (this denotes frequency).

play $C ;

6. duration - A duration is a tuple of two integers. Corresponding to elementary music
theory, 1st num : 2nd num represents the fraction of a whole note duration.

2



def quar t e r no t e = ( 1 , 4 ) ; // type durat ion
def h a l f n o t e = ( 1 , 2 ) ;

7. note - A note is an object with a pitch and a duration.

4.5 Derived Types

Derived types consist of ordered collections and may be constructed by statically placing a
set of fundamental types into a collection from another collection, or by returning objects
of a given type from a function.

4.6 Operators

Follow standard orders operation (left to right) and mimic AINSI C.

1. Logical negation: !

2. Multiplicative: * / and %

3. Additive: + −

4. Relational: > < >= <=

5. Equality operators: == !=

6. Logical AND OR operators: &&, ||

7. Assignment Expressions: = *= /= %= += -=

4.7 Control Flow

1. Selection statements: if, else

2. Iteration statements: for, while

i f ( a I sVa l id )
doA ( ) ;

i f ( bI sVa l id && cI sVa l i d ) {
doB ( ) ;
doC ( ) ;

}
else

doD ( ) ;
for element in myArr

p r i n t element ;

3



4.8 Functions

Functions follow python convention are intuitive and simple to make and use. Similar to
OCaml, parenthesis for function parameters are optional.

def gcd (a , b) = {
while ( a != b) {

i f ( a > b)
a −= b ;

else
b −= a ;

}
return a ;

}

5 Sample Code

Here is an example of a simple melody one can write with C-Major.

// Twinkle Twinkle

de f qua r t e r no t e = ( 1 , 4 ) ; // type durat ion
de f h a l f n o t e = ( 1 , 2 ) ;
de f rhythm1 = quar t e r no t e ∗4 + h a l f n o t e ;
de f phrase1 = $C∗2 + $G∗2 + $A∗2 + $G;
de f phrase2 = $F∗2 + $E∗2 + $D∗2 + $C ;
de f f u l l p h r a s e = phrase1 + phrase2

+ ( r a i s e phrase2 )∗2 // up above . . l i k e a diamond . .
+ phrase1 + phrase2 ;

de f tw ink l e = mash rhythm1 f u l l p h r a s e ;

play twink l e ;

4


