

Dice
David Watkins | Emily Chen | Khaled Atef | Phillip Schiffrin

djw2146 | ec2805 | kaa2168 | pjs2186

Manager | System Architect | Testing | Language Guru

September 30th, 2015

1 DESCRIPTION

 Dice is a distributed systems language which optimizes the execution of data intensive algorithms

by distributing work over multiple systems. Dice simplifies the distribution process by allowing users to

simply specify a block of code and the data on which to execute, and the Dice compiler handles parsing,

distributing, and re-collecting the data from the code, which is passed back to the user. This model allows

for implementation of more complex structures as well, such as embedding multiple blocks of code, each

of which iterates on the data passed back by the function or by only distributing until a certain condition

is met. Our target users have access to multiple servers on which they wish to perform data-intensive

computing tasks in parallel; they are already familiar with the principles of parallel programming and

prefer a tool that is more lightweight than Hadoop is.

2 MOTIVATION

 Allowing a programmer to design one’s application such that it could be distributed amongst

multiple workers is enticing in an age of increasing data velocity and of embarrassingly parallel

computing tasks that can leverage commodity and cloud computing. It is even more relevant when one

considers the potential ramifications of utilizing wasted computation time on idle phones, computers, and

servers.

 The most established systems for distributed computing are Google's implementation of the

MapReduce programming paradigm and Hadoop, an open source implementation. Both systems are

designed for low latency by using data locality; they both apply functions at the location in which the data

is stored rather than send the data over the network. To enable this, both systems rely heavily on a

distributed file system (Google's on GFS and Hadoop on HDFS). Implementing a distributed file system

is beyond the scope of this course, which emphasizes programming language and compiler design. For

this reason, we eschew data locality optimization in our distribution protocol. Dice will distribute both

data and instructions to workers via a proprietary data transfer protocol. It will support data ingestion

from the local filesystem and potentially MongoDB, a widely used web scale database. MongoDB

provides a database operation that runs map-reduce on computations on results of MongoDB-distributed

queries. We aim to address the main shortcoming of its built-in map-reduce utility by allowing flexible

numbers of workers despite limited sources of data.

We will dice up the code for you!

 Dice draws inspiration from pubCrawl (Fall 2013 PLT language). Dice will iterate on pubCrawl

compiling designated portions of the source code into LLVM bytecode which will then be distributed to

various workers. LLVM’s versatility will allow the programmer to harness machines powered with

different CPU ISAs, such as Acorn RISC Machine (ARM) and Intel/AMD’s x86-64, which collectively

power a majority of phones and computers, while ignoring the underlying implementation on each CPU

architecture.

3 SUMMARY OF GOALS

- Create a simple, intuitive language that allows a developer to write code to be distributed amongst

several machines simultaneously

- Design the language such that the developer does not need to know how worker machines are

monitored or how the data and code are distributed

- Use our language to implement data parallel algorithms (such as distributed merge sort) and brute

force hashing applications (such as bitcoin mining) more concisely than what is possible with C

or Java

- Design and build an application that will accept incoming requests on worker machines that the

host will communicate with

- Develop experience working with LLVM by compiling the distributed portions of Dice code to

LLVM Bytecode / Intermediate Representation (IR)

4 DOMAIN FEATURES

- Syntax to designate portions of code to be distributed

- Flexible array structures that behave as lists or arrays, depending on optimization

- Easily access data from database or local text files and operate on them

- Ensure data is shared correctly amongst worker computers

- Use LLVM to allow the code to be cross-platform

- Add verification functions to allow the programmer to affirm workers are doing work properly

5 LANGUAGE DESIGN

 Dice will allow for an easier distribution of code across multiple computers. We want to remove

the responsibility of figuring out how to distribute information and code across multiple computers and

instead let the coder simply define the functions that need to be distributed and provide some logic to how

the code should be distributed. Initially, Dice will utilize programmer-provided IP addresses of the

distributed machines to be used. Dice will also provide an optimized distribution algorithm for properly

sharing code and information amongst multiple computers. All of the distributed code will be compiled to

LLVM bytecode and then shared amongst the machines. LLVM bytecode will allow the programmer to

utilize ARM-based processors on mobile phones in the distribution cluster.

6 CODE SYNTAX

6.1 PRIMITIVE DATA TYPES
Type Description

int,

double,

float,

char,

long

Typical primitive data types. Equivalent to C++ type structure

Array Designated by C style []. See below for Array related syntax and functions

void Refers to a function with no return value

bool bool is an enum with three potential values: true, false, null

null A reference can be pointed to nothing via null

char[] Strings in this language follow the same convention as C

6.2 KEYWORDS
Keyword Description Optional?

distribute Distributes a function or operation over some iterated input.

Follows this syntax:

[verified] distribute <function> over <input array> [until <bool

condition>] [withrange <double value>] [into <new array>]

[singlevalue]

No

verified Tells the compiler that the function should be run with the output

of each result check against a programmer defined verify function

Yes

over Defines an array structure that the function must operate on for

each element

No

until Defines a stop condition for the distribution call. This allows

distribute to work as if it were a while-loop

Yes

into Defines a name for the new array that all data from the distribute

call will be put into

Yes

withrange Defines the size of buckets that will be inputted into the function.

This will be a double value such as 0.1 to indicate each bucket

will be roughly 10% of the original array and each function should

operate on that bucket (see merge-sort example below)

Yes

range When the withrange option is used, range can specify to a

specific section of an array. (see merge-sort example below)

Yes

index When withrange is omitted, this is used to indicate the current

position in the array. When withrange is included, this indicates

the current buckets in the array.

Yes

block Defines a function that will be distributed amongst multiple

workers

No

verify Defines a function to check that a block has provided the correct

ouput

Yes

main Defines a method that will be called when the program is run No

(<type>)

<var>

Typecasting is allowed in the language and it is specified using

the same syntax as C or Java

(* *) Designates comments

6.3 ARRAY PRIMITIVES
Keyword Description

int[] a = new int[]; This is the syntax for defining an empty array. An array

defined this way has flexible length. To get a rigid

structure, pass an integer into the array constructor

a.append(<item>) Appends an item to the end of the array

a.prepend(<item>) Prepends an item to the beginning of the array

a.length Provides the length of the array

a.map(<function>(params)) Calls a function with the associated parameters on each

item of the array

a.intoBuckets(<double>) Separates an array into discreate buckets each with a

proportion equal to the double provided. The double is

0 < 𝑑𝑜𝑢𝑏𝑙𝑒 ≤ 1

a.pop Returns the first element of the array and removes it

a.peek Show the first element of the array

a.split(<delimiter>) Splits the array into an array of array on some char[]

delimiter

6.4 I/O
Function Description

print(<char[]>) Prints a string to console. Can be a string literal.

read(<char[]>) Reads in a file located at the passed parameter and

returns a char[] with the data in that file

write(<array>, <char[]>) Write the contents of an array into memory

7 CODE EXAMPLES

7.1 EXAMPLE USING DISTRIBUTED ISPRIME

block bool isPrime(int val) {

 int p;

 if (!(val & 1) || val < 2) return val == 2;

 (* comparing p*p <= n can overflow *)

 for (p = 3; p <= val/p; p += 2)

 if (!(val % p)) return 0;

 return 1;

}

verify bool isPrime(int val, int otherVal) {

 int temp = isPrime(val);

 if(temp == otherVal)

 return true;

 else

 return false;

}

void main() {

 char[] numbers = read(‘primelist.txt’);

 char[] numberList = numbers.split(‘\n’);

 char[] newNumberList;

 verified distribute isPrime(val:numberList[index])

 over numberList (*until index >= numberList.length*)

 into newNumberList;

 newNumberList.map(print);

}

7.2 EXAMPLE USING DISTRIBUTED HELLO WORLD

block void HelloWorld(int val) {

 print(“hello world\n”);

}

void main() {

 int[] arr = new int[300];

 //This will print out

 distribute HelloWorld over arr;

}

7.3 EXAMPLE USING DISTRIBUTED MERGE SORT

block void merge (int[] a, int n, int m) {

 int i, j, k;

 int x[] = new int[n];

 for (i = 0, j = m, k = 0; k < n; k++) {

 int val = 0;

 if(j == n)

 val = a[i++];

 else if(i == m)

 val = a[j++];

 else if(a[j] < a[i])

 val = a[j++];

 else

 val = a[i++];

 x[k] = val;

 }

 for (i = 0; i < n; i++) {

 a[i] = x[i];

 }

}

block void merge_sort (int[] a, n) {

 if (n < 2)

 return;

 int m = a.length / 2;

 merge_sort(a, m);

 merge_sort(a + m, n - m);

 merge(a, n, m);

 return a;

}

void merge(int[][] a) {

 int[] final = new int[];

 bool hasMore = true;

 while(hasMore) {

 hasMore = false;

 int minVal = null;

 for(int i = 0; i < a.length; i++) {

 if(a[i].length > 0) {

 hasMore = true;

 if(minVal == null or a[i].peek() < minVal) {

 minVal = a[i];

 a[i].pop();

 }

 }

 }

 final.append(minVal);

 }

}

void main () {

 int a[] = {4, 65, 2, -31, 0, 99, 2, 83, 782, 1};

 distribute merge_sort(a[range], a[range].length)
 over a

 withrange 0.1

 into partially_sorted;

 a.intoBuckets(0.1).map(merge).map(print);

 return 0;

}

