
COMS 4115: Proposal
Caleb Babatunde, Avi Chad-Friedman, Alan McNaney, Evan O'Connor

UNIs: cba2117, ajc2212, apm2144, eco2116

Edwards

Accelerator

1

Accelerator COMS 4115 (Edwards)

Contents

Why R and OpenACC? 3

What is the Language? 3

Basic Syntax 3

Code Examples 5

Page 2 of 6

Accelerator COMS 4115 (Edwards)

Why R and OpenACC?

Large scale data is collected continuously from the internet and other sources by businesses, research
organizations, and government agencies. This data can necessitate databases with records numbering into
the hundreds of millions. This presents the very real challenge of e�ciently and meaningfully interpreting
that collected data. For instance, how do we sort it? CPUs are designed for general processing, and as
such can carry out sorting and analysis on large scale data but are not specialized to this demanding and
increasingly frequent task. What hardware resources are readily available and well suited to the task of large
scale data manipulation?

Many hardware architectures already contain a large-scale parallel processing hardware device which is
overlooked for the purpose of data analysis - the Graphics Processing Unit. The laptop on which this proposal
is being written has 384 graphical shading cores clocked to 1029 MHz, and 128 ALUs in its GPU alone.1

For reference, this constitutes a mid-level Nvidia GPU. If we can leverage the pure parallel processing power
already available within a system's GPU, we can make large scale matrix manipulation and the application
of statistical methods to large scale data sets more e�cient than would be possible with a traditional CPU.

R is a widely used statistical programming language, and over the last year has greatly increased in
popularity. R has no native ability to access the parallel processing resources within a GPU. Cray, CAPS,
Nvidia, and PGI have recently come together to create OpenACC - a cross platform API built on top of the
C language which allows access to the large scale parallel processing power of GPUs and other processing
hardware. Our intention is to allow access to the raw power of the GPU from the already familiar and easy
to use context of R syntax, improving performance in large-scale matrix mathematics and statistical analysis
of large datasets by leveraging the large scale parallelism available in OpenACC.

Notes
1
http://www.notebookcheck.net/NVIDIA-GeForce-840M.105681.0.html

What is the Language?

Accelerator consists of a subset of the syntax of the R language. We will implement basic mathematical
operators for vectors and matrices, boolean operators, if-elseif-else structures, for and while loops, and im-
perative functions. Our compiler will translate this subset of R to OpenACC enabled C containing compiler
directives to accelerate matrix mathematics operators. Accelerator will implement functions, specifically
porting commonly used statistical analysis functions from R such as mean, median, and standard deviation
into OpenACC C, again taking advantage of compiler directives to parallelize calculation and provide per-
formance increases. This will allow programmers and researchers familiar with R to write programs using
R syntax and still gain the performance improvements made possible via OpenACC compiler directives.
Additionally, Accelerator will add type safety to its subset of R syntax.

Basic Syntax

Listing 1: Accelerator’s syntax is a subset of R

hello world
print("Hello World")

recursive gcd
gcd <- function(a,b) ifelse (b==0, a, gcd(b, a %% b))

Page 3 of 6

Accelerator COMS 4115 (Edwards) Basic Syntax (continued)

arithmetic operators
1 + 2
3 - 2
2 * 3
6 / 2

powers
2 ˆ 3

modulus
3 %% 2

integer division
5 %/% 2

logical operators
1 < 2
2 > 1
2 <= 2
2 >= 2
2 == 2
2 != 1

T, F = True, False
!TRUE
!T
T | F
T & F
isTRUE(T)

Variable Assignment
x <- 10
y <- TRUE
z <- "string"

looping structures
for (i in 1:50){

print(i)
}

i <- 0
while(i < 10){

print(i)
i <- i + 1

}

vector creation
v1 <- c(1,2,3,4)

Not Available Value (equiv to Null)
a <- c(1,3,NA,9)

range
v2 <- c(5:10)
v2 = 5 6 7 8 9 10

vector scalar operators: * / + -
v1 <- v1 + 1
v1 = 2 3 4 5

Page 4 of 6

Accelerator COMS 4115 (Edwards) Basic Syntax (continued)

vector operators: * / + -
v1 <- v1 + v1
v1 = 4 6 8 10

vector comparison for total equality
v1 == v1 # returns TRUE

vector comparison, piece by piece comparison
v1 == c(1,2,9,9) # returns TRUE, TRUE, FALSE, FALSE

vector comparison with <, >, <=, >=
v1 < c(0,2,9,9) # returns TRUE FALSE TRUE TRUE

passing vectors as arguments to functions
sin(a) # applies sin() function

cross product
v1 <- c(1,2)
v2 <- c(2,3)
A <- crossprod(v1, v2)

transpose v1
v1 <- t(v1)

A= [,1] [,2]
[1,] 2 4
[2,] 3 6

Accelerator is type safe, unlike R
x <- "1"
x + 4 # returns an error

Code Examples

Listing 2: Handling matrix multiplication in Accelerator

Matrix Mainpulation

matrix creation
A = matrix(c(1,2,3,4), nrows=2, ncols=2)

populates matrix by columns
A = [,1] [,2]
[1,] 1 2
[2,] 3 4

B = matrix(c(1,2,3,4), nrows=2, ncols=3)

matrix multiplication
C <- A %*% B

C = [,1] [,2] [,3]
[1,] 7 15 23
[2,] 10 22 34

Page 5 of 6

Accelerator COMS 4115 (Edwards) Code Examples (continued)

Listing 3: Matrix multiplication translated into OpenACC Accelerated C

/* OpenACC_Matrix.h */

struct Matrix {
unsigned int cols;
unsigned int rows;
double** data;

};

/* OpenACC_Matrix.c */

#include <stdio.h>
#include <stdlib.h>
#include "openACC-examples.h"

struct Matrix *matrix_mult(struct Matrix *A, struct Matrix *B) {

struct Matrix *C = (struct Matrix*)malloc(sizeof(struct Matrix));
C->rows = A->rows;
C->cols = B->cols;
//allocate memory for an array of pointers to rows
C->data = (double **)malloc(C->rows * sizeof(double *));
int i,j,k,sum;

#pragma acc data copyin (A, B) copyout (C)
{
#pragma acc loop independent vector
for(i = 0; i < C->rows; i++) {

//allocate memory for each row
C->data[i] = (double *) malloc(C->cols * sizeof(double));
#pragma acc loop independent vector
for(j = 0; j < C->cols; j++) {

sum = 0;
#pragma acc loop independent vector
for(k = 0; k < A->cols; k++) {

sum += A->data[i][k] * B->data[k][j];
}
C->data[i][j] = sum;

}
}
}
return C;

}

Page 6 of 6

