
Language Reference Manual

A programming language for exploring and creating music

Kevin Chen kxc2103@columbia.edu
Brian Kim bck2116@columbia.edu
Jennifer Lam jl3953@columbia.edu
Edward Li el2724@columbia.edu

October 26, 2015

mailto:kxc2103@columbia.edu
mailto:bck2116@columbia.edu
mailto:jl3953@columbia.edu
mailto:el2724@columbia.edu

Contents

1 Introduction 4

2 Types and Literals 4

2.1 Primitive Types . 4

2.2 Arrays . 5

2.2.1 Empty Arrays . 5

2.2.2 Chords . 5

2.2.3 Musical Array Syntax 6

2.3 User-defined Types . 6

3 Operators and Expressions 7

3.1 Identifiers . 7

3.2 Variables and Assignment . 7

3.3 Arithmetic Operators . 7

3.4 Logical and Relational Operators 8

3.5 Array Operators . 8

3.5.1 Array Access . 8

3.5.2 Array Concatenation 9

3.6 Musical Operators . 9

3.7 Tracks . 9

3.8 Songs . 10

3.9 Comments . 10

4 Control Flow 10

4.1 Conditionals . 10

4.2 For Loop . 11

2

5 Program Structure 11

5.1 Includes . 11

5.2 Functions . 12

5.3 Scoping . 12

5.4 Multi-line Expressions . 13

6 Standard Library 13

6.1 Settings in std . 13

6.2 Time Signature . 14

6.3 Tempo . 14

6.4 Rhythm . 14

6.5 Key Signature . 15

6.6 Function Listing . 15

7 Appendix 16

7.1 Order of Operations . 16

7.2 Toolchain . 17

3

1 Introduction

Digital composers have become powerful tools. Their functionality allows
musicians to experiment with multi-track compositions without the full
power of an orchestra. Additionally, it provides a feedback loop in which
the musicians can immediately hear and refine their latest compositions on
the spot.

Traditional digital composition software center around GUI interfaces that
mimic writing sheet music on paper. This approach makes it easy to
specify exactly what notes the musicians want to see throughout the piece.
However, when there are lots of repeating or similar elements in the piece,
this approach leads to lots of copy-pasting and manual editing.

Our language is designed for phrase by phrase composition, instead of
note-by-note. The language lets users focus on the structure of the phrase,
and gives the users powerful tools to explore many variations of that phrase
through the standard library. By optimizing the manipulation of entire
sequences of notes, we lend composers a powerful abstraction that frees
them from thinking about individual notes.

2 Types and Literals

2.1 Primitive Types

Boolean (bool): May be true or false.

Integer (int): A literal such as 1564 is a 64-bit signed integer.

Floating point (float): A floating point literal has a decimal part 156.4,
or an exponent part 2e-4, or both. These are IEEE 754 double-precision
(64-bit) numbers.

String (string): A sequence of ASCII characters. String literals are
enclosed in double quotes, with special characters escaped with a backslash
\.

"I am an alpaca, and I say \"Pikachu\" all the time.\n"

The supported escape sequences are:

4

\n newline \r carriage return
\t horizontal tab \v vertical tab
\\ backslash \" double quote

Unit (unit): A unit literal is specified as (). The unit literal is the only
value that the unit type has.

Pitch (pitch): Pitches are written as note@octave-offset — both ints. For
example, 3@-1 is the third note of the current key signature, at one octave
below the octave where A is 440 Hz.

2.2 Arrays

Array literals are a sequence of literals enclosed in curly braces. The items
are not separated by commas or semicolons. For example, these are valid
arrays:

{ 1 2 3 }

{ "red" "orange" "yellow" "green" "blue" "violet" }

Arrays are strongly typed — all elements of an array must be of the same
type:

{ 1 2 "three" } // Type error

{ 1 2.0 3.0 } // Type error

2.2.1 Empty Arrays

Some situations require empty arrays, which may cause the type of the
array to be ambiguous. To resolve this, prepend the type name to the array
literal: string{}.

2.2.2 Chords

Syntactic sugar for an array of pitch, also known as a chord, is separating
the pitch literals with commas: 1@1,3@1,5@1. Syntactic sugar for an empty
chord is ~, representing a rest.

5

2.2.3 Musical Array Syntax

Musical array literals are enclosed by square brackets instead of curly
braces. This syntax can only contain chords and durations.

This eliminates ambiguity between pitches and integers: {1 2 3} is
interpreted as an array of int, while [1 2 3] is an array of chord (where
each chord only happens to have one pitch).

It also eliminates the ambiguity between durations and floats: when float
literals appear in musical array literals, they are always interpreted as an
array of duration.

[1 2 3 4 5] // equivalent to {1@0 2@0 3@0 4@0 5@0}

[6,7,8 9 10] // 6,7,8 represents a chord: the notes are played simultaneously

[0.25 1.0 1.5] // a rhythm of quarter note, whole note, dotted whole

2.3 User-defined Types

The type keyword creates a user-defined type, which may consist of
primitive types and other user-defined types. The definition must contain
default values for each member: the type of each member is inferred from
the default values.

type person = {

name = ""

age = 0

favorite_ice_cream_flavors = string{}

}

To create a new instance of a user-defined type, we use init typename.
Member variables are mutable and can be accessed using the $ operator.

friend = init person

friend$name = "Stephen Edwards"

friend$age = 21

friend$favorite_ice_cream_flavors = { "durian", "Taiwanese fish sandwich" }

The keywords beget and bringintobeing are accepted as replacements for
init.

6

3 Operators and Expressions

3.1 Identifiers

Identifiers are sequences of letters, digits, and underscores where the first
character a letter. Additionally, function identifiers must begin with an
uppercase letter, while type and variable identifiers must begin with a
lowercase letter.

Valid function names: Assert, Merge_sort, QuickSort

Valid variable and type names: count, input_file_2, favoriteNumber

Invalid names: _myArray, Run-length-encode, 3rd_item

3.2 Variables and Assignment

The = operator is used to assign the value of an expression to an identifier.
It returns unit — assignment cannot be used as an expression in, say, a
function call. Additionally, assignment is non-associative, so it is a syntax
error to chain assignments.

my_jelly_beans = 1000

my_jelly_beans = my_jelly_beans + 60 // Bought some more jelly beans

i = j = 0 // Syntax error

The first line implicitly declares a new variable, since the identifier
my_jelly_beans has not appeared previously in the program. Thanks to
type inference, we don’t have to specify the type.

To declare a constant, prefix the identifier with the const keyword:

const planets_count = 9

planets_count = 8 // => Compile-time error

3.3 Arithmetic Operators

The arithmetic operators are +, -, *, /, and modulus %.

The unary - operator has the highest precedence, followed by the binary *,
/, and % operators, followed by the binary + and - operators. All arithmetic
operators are left-associative.

7

Although we do not have a separate set of operators for floating-point
arithmetic, arithmetic operators may only be applied to operands of the
same type — there is no automatic promotion of int to float. For
example, 1 + 2.0 is a type error.

3.4 Logical and Relational Operators

Relational operators are <, <=, >, >=, which have the same precedence. The
equality operators == and != are below them in precedence, then &&, then
||.

In equality comparison, primitives are compared by value. Collections and
user-defined types are compared structurally: each member is compared by
value. For example, the following boolean expressions are equivalent:

type stringnum = {

s = "zero"

n = 0

}

a = init stringnum

b = init stringnum

Print_bool a.s == b.s && a.n == b.n // => "true"

Print_bool a == b // => "true"

The negation operator ! inverts true to false and vice versa. Unlike C and
C++, it does not convert non-zero values to zero: negation may only be
applied to bool operands.

3.5 Array Operators

3.5.1 Array Access

Similar to OCaml, the array-identifier.(int-expression) operator access an
element of an array. For example:

arr = { 0 1 2 3 4 }

arr.(2) = 5

Print_int arr.(2) // => 5

8

3.5.2 Array Concatenation

The . binary operator concatenates arrays of the same type. It is
left-associative.

instruments = { "violin" }

instruments = { "piano" } . instruments // => { "piano", "violin" }

favorite_numbers = { 3 9 } . { "twenty-seven" } // Type error

3.6 Musical Operators

Sharp
b Flat - both of the above operators apply to the left side
: zip - takes an array of float (note durations) on the left and an array of
chords on the right, zips the two values together to create a track object. It
can also take a single float or a single chord (or even single int, pitch or
rest), in which case the same value will be used for the entire zipping:

simple_track = [quarter quarter] : [1 2]

steady_track = quarter : [1 2 3 6 7]

repetitive_track = [quarter half half quarter half half] : 1,3,5

another_repetitive = [quarter half half] : 1@1

short_track = quarter : 2

short_rest = quarter : ~

Note that zipping two arrays of different lengths causes a runtime error.

3.7 Tracks

Tracks represent musical phrases. They consist of a sequence of chords, and
their durations. They also contain the key signature, time signature, and
tempo. These values are copied from key_signature, time_signature, tempo
of std when the track object is created. New tracks are created when an
array of chords is zipped with an array of floats (note durations):

my_track = [quarter quarter half] : [5 6 7]

New tracks are also created when two old tracks are concatenated:

new_track = first_track . second_track

Note that concatenating two tracks of different key signature, time
signature, or tempo causes a runtime error.

9

3.8 Songs

A song is an array of array of tracks. An array of tracks represents tracks
to be played sequentially. The array of all these track arrays represents
parts to be played concurrently. A song also contains the volume mix ratios
for each of these tracks. Many standard library functions create and mix
song objects, such as Parallel or Sequential:

my_song = Parallel track_1 track_2

3.9 Comments

Our languages allows single-line comments, multi-line comments, and
nested comments. Everything after //, or between /* */.

// I’m a single line comment.

/* I am a

multiline /* nested */ comment. */

4 Control Flow

All expressions in the language have return types, including control
structures. The return value of a control structure is the last expression
executed.

4.1 Conditionals

There are two forms of conditional expressions in our language:1

if boolean-expression then expression else expression
be expression unless boolean-expression inwhichcase expression

Here’s an example that uses both:
1The be–unless–inwhichcase conditional is a revolutionary new language construct we

are introducing. Because it provides an easy-to-use way for programmers to spice up their
code, we consider it an essential feature of our language.

10

greeting = be "Hello" unless location == "Texas" inwhichcase "Howdy"

if audience_size <= 7 * 1000 * 1000 * 1000 then

Print_string greeting . " world"

else

Print_string greeting . " universe"

Recall that the return type of a control structure in our language is the last
expression executed. This means both outcomes of the condition must be
handled: each if must have an else, and each be must have an
inwhichcase. Conveniently, it also encourages programmers to code more
defensively, leading to better code.2

4.2 For Loop

for identifier in array do expression

The for loop evaluates the expression for each item in the array, with the
identifier assigned to the current array item.

We do not provide break or continue. Algorithms that require these should
be rewritten as tail-recursive functions.

5 Program Structure

5.1 Includes

All programs must begin with includes (if they exist). Includes are
specified in the following format: include module-name.

The include keyword dumps all of the functions and fields from the
module, so access to these values can be done without prepending the
module name. (The standard library is implicitly included at the beginning
of each file.) Additionally, it runs any top-level expressions in that library.

include phonebook

// Now we can use types, variables, and functions from phonebook

sedwards = init person

sedwards$name = "Stephen Edwards"

database = Create_phonebook "My Columbia Friends" { sedwards }

2It also works around the dangling else problem.

11

5.2 Functions

Functions are defined using the fun keyword.3

fun Function-identifier arg-identifier-1 . . . arg-identifier-N = expression

They can be defined anywhere in the top level of the program, and do not
have to be defined before they are called:

fun Sum a b c d = Sum a b + Sum c d

fun Sum a b = a + b

Sum 1 2 3 4 // => 10

Functions are implicitly templated.4 That means types are checked when
the function is called, rather than when it is instantiated. In the example
above, we could’ve passed in four float values instead, since the operator +
is defined on float.

The arguments to a function are always passed by value, including
collections and user-defined types. Mutating an argument does not mutate
the caller or callee’s copy.

5.3 Scoping

Scoping works naturally. The outer-most scope is the whole program.
Function definitions create their own scope, which must be enclosed in
parentheses if the function is multi-lined. Code constructs related to
control flow (conditionals and for loops) will create a local scope as well.

However, there is no implicit declaration within these scopes: if a name is
defined in a higher scope, assigning to that name will mutate the original
variable rather than declaring a new one.

a = 5

b = 6

c = d // Name error: d is not defined yet

if a == 5 then

(a = 6

d = 7)

else

3We chose fun because programs written in our language should be fun!
4We chose this to make implementing type inference easier.

12

a = 4

Print_int a // => 6

c = d // Name error: d is no longer defined

5.4 Multi-line Expressions

The line continuation character is \. Lines are separated by newline or
semicolon. Multiple statements within the scope of a code construct must
be enclosed within parentheses:

x = 6

// Multi-line expression

y = 4 + 5 + \

6 + 7

if x == 5 then

y = 5

else (// Multiple expressions within parentheses

x = 0; z = 7

y = 0

)

6 Standard Library

The standard library allows users to configure their composition settings
and contains functions to modify tracks.

6.1 Settings in std

Every composition needs a key signature, time signature, and tempo. In
our language, we represent these settings as global variables declared in the
standard library: key_signature, time_signature, and tempo.

These setting are applied to tracks at construction, so changing them
affects all future tracks in the song. The defaults are shown below:

// Type that specifies settings of a composition.

key_signature = C_major // Defined in std

time_signature = four_four // Defined in std

tempo = 120

13

6.2 Time Signature

Time signature is represented as a type named time_signature. This type
contains two values corresponding to the upper and lower half of the time
signature. Commonly used time signatures are enumerated as constants in
the standard library:

type time_signature = {

upper = 4

lower = 4

}

four_four = init time_signature // Use defaults

three_four = init time_signature

three_four$upper = 3

three_three = init time_signature

three_three$upper = 3

three_three$lower = 3

// And so on

6.3 Tempo

Tempo is an int signifying the beats per minute. The default value is
120 bpm.

6.4 Rhythm

Commonly used durations are float constants defined in the standard
library for convenience. For example, typing quarter or q is the same as
0.25:
q or quarter 0.25

h or half 0.5

w or whole 1.0

t or triplet 1.0 / 3.0

Using float values for note durations also allows us to specify more
fine-grained durations with the arithmetic operators:

14

q * 1.5 // => Dotted quarter note

[(q + q/2.0) q/2.0 h] // => Syncopated rhythm of 3/8 1/8 1/2 notes

6.5 Key Signature

Up until now, we represented pitches as integers to show their relation to
the base note of the scale. However, to create audio, we have to specify the
mapping between these integers and frequencies (units of hz) in a key
signature.

The key signature lookup table is an array of float. The frequency for an
integer in the musical array corresponds to the value in the key signature
at that index minus one. The Western scales have been mapped in the
standard library as follows:

C_major = [261.63, 293.66, 329.63, 349.23, 392.00, 440.00, 493.88]

C_minor = [261.63, 293.66, 311.13, 349.23, 392.00, 415.30, 466.16]

Pentatonic, Hexatonic and Heptatonic scales are defined in a similar
manner. However, trying to access a note outside of the scale will result in
a runtime error:

key_signature = C_major_pent

pitches = [1, 2, 3, 4, 5, 6, 7] // Runtime error

The pitches 6 and 7 are located outside of the five-note pentatonic scale. If
we wanted to access the next note after 5, we would use notes in the next
octave up:

key_signature = C_major_pent

pitches = [1, 2, 3, 4, 5] . @2[1, 2]

6.6 Function Listing

Render filename song

Creates a WAV file of the song.

Print_string s, Print_int i, Print_float f, Print_bool b, . . .
Prints the argument to standard out.

Exit c

15

Exit the program with the specified exit code. If there is no call to Exit at
the end of the file, Exit 0 is implicitly called.

Scale pitch_a pitch_b

Returns an array of length− 1 chords representing the scale in the current
key signature between pitch_a and pitch_b.

Arpeggio chord

Returns an array of length− 1 chords representing the arpeggio using the
pitches from chord.

Rhythm track

Returns the array of note durations of the track.

Chords track

Returns the array of chords of the track.

Parallel track_a track_b ...

Returns a song object with the tracks aligned in parallel (to be played
concurrently).

Sequential track_a track_b ...

Returns a song object with the tracks aligned in a single sequence (to be
played sequentially).

7 Appendix

7.1 Order of Operations

In order of decreasing precedence:

Operators Description Associativity
! Logical not Unary
- Negation Unary
*, /, % Multiply, Divide, Modulus Left
+, - Add, Subtract Left
<, >, >=, <= Comparison operators Left
==, != Equality operators Left
&& Logical-and Left
|| Logical-or Left
. Concatenation Left
= Assignment None

Use parentheses () to override operator precedence.

16

7.2 Toolchain

The compiler is named nhc. It accepts the following command-line
arguments:

-A Output internal representation (syntax tree)
-c file Compile the specified file
-o file Write output to the specified file
-S Output intermediate language representation (C++)
-v Print verbose debugging information

17

	Introduction
	Types and Literals
	Primitive Types
	Arrays
	Empty Arrays
	Chords
	Musical Array Syntax

	User-defined Types

	Operators and Expressions
	Identifiers
	Variables and Assignment
	Arithmetic Operators
	Logical and Relational Operators
	Array Operators
	Array Access
	Array Concatenation

	Musical Operators
	Tracks
	Songs
	Comments

	Control Flow
	Conditionals
	For Loop

	Program Structure
	Includes
	Functions
	Scoping
	Multi-line Expressions

	Standard Library
	Settings in std
	Time Signature
	Tempo
	Rhythm
	Key Signature
	Function Listing

	Appendix
	Order of Operations
	Toolchain

