
C-Major Language Reference Manual
Stephanie Huang, Andrew O’Reilly, Jonathan Sun, Laura Tang

(syh2115, ajo2115, jys2124, lt2510)

Table of Contents

1. Introduction ... 2

2. Expressions ... 3

3. Data Types ... 4

3.1 Primitive Types... 4

3.2 Non-Primitive/Structural Types .. 4

3.2.1 Array .. 4

3.2.2 Tuple .. 4

3.2.3 Pitch .. 4

3.2.4 Duration .. 4

3.2.5 Note .. 4

3.2.6 Chord .. 4

3.2.7 Phrase .. 5

3.2.8 Score ... 5

4. Operators ... 5

4.1 Assignment Operator = .. 5

4.2 Comparison Operators ... 5

4.3 Arithmetic Operators ... 6

4.4 Repeater Operator - ** ... 8

4.5 Concatenation Operators (+, ++) .. 8

4.6 Layer Operator (^) ... 9

4.7 Operator Associativity and Precedence ... 9

5. Lexical Conventions ... 9

5.1 Comments ... 9

5.2 Identifiers .. 10

5.3 Keywords ... 10

5.4 Constants/Literals .. 10

5.5 Separators ... 11

5.6 White Space ... 11

6. Statements .. 11

6.1 Expression Statements .. 11

6.2 if/else .. 11

6.3 for.. 11

6.4 return expr; ... 12

 2

7. Functions ... 12

7.1 Defining Functions .. 12

7.2 Calling Functions ... 13

7.3 The play Function .. 13

7.4 The compose Function ... 13

8. Compile & Output ... 13

9. Sample Programs .. 14

9.1 Some Standard Library Functions .. 14

9.2 Twinkle Twinkle Little Star / Alphabet Song / Baa Baa Black Sheep 15

9.3 Pachelbel’s Canon .. 16

9.4 Row, Row, Row Your Boat .. 17

9.5 99 Bottles .. 19

1. Introduction

The C-Major programming language provides a Turing-complete method of composing twelve-

tone western music and outputting the results of composition to a playback or score-composing

interface. It provides data types which correspond to the duration and pitch aspects of sound,

as well as structured types which allow a programmer-composer to organize pitches into

sequences and to layer them into chords and phrases, giving them control over the time-

dependent aspects of musical composition as well as its sequential aspects. Users of the

language may also take advantage of familiar programming constructs such as loops and

conditional statements, allowing them to easily repeat pre-composed phrases, reuse previously

composed structures, and conditionally alter the course of a composition based on number of

repetitions or whatever conditions they choose to supply.

C-Major possesses a C-style syntax, consisting of lists of expressions separated by semicolons,

each of which return types that can be operated upon according to the rules of the language.

Programmers may additionally write their own functions to modify pitches or return composed

elements.

The entry point of a program written in C-Major is the compose() function. It may be

implemented in one of two ways:

int compose()

The function thus implemented must return an integer to the operating system. This integer

may indicate application status or some other value depending on the environment in which it is

run. Playback must be initiated by the function implementation.

score compose()

 3

The returned score will be returned and rendered in different ways depending on compile

options. It is most commonly rendered as MIDI, either output to a file or played back

immediately, and may be rendered as sheet music in future implementations.

2. Expressions

An expression is a series of tokens that return a value. They consist of one or more literals and

zero or more operators. Statements are terminated by semicolons. A list of expressions of

variable size make up the body of blocks, which are delimited by braces ({ }). An array of

expressions separated by the comma (,) character may be used to populate an array.

stmt_list → expr; stmt_list | expr

expr_array → expr, expr_array | expr

Basic expressions consist of one or more identifiers (see Lexical Conventions) and zero or more

operators. An identifier may be a literal or a variable.

expr → expr op expr

Declarative expressions consist of a type followed by a variable, which is optionally followed by

the assignment operator (=) followed by a literal. Variables of primitive types are given default

values if no assignment is made in the declaration.

expr → type id | type id = expr

Assignment expressions assign the value returned by an expression to an identifier The type of

value returned by the expression must match the type of the variable represented by the

identifier.

expr → id = expr

Function calls consist of an identifier followed by an open parenthesis, followed by an

expression array. The return value of the expression is the return value of the function.

expr → id(expr_array)

 4

3. Data Types

3.1 Primitive Types

There are two primitive types in C-Major: int and bool.

int: integer type.

bool: boolean type; can be true or false.

3.2 Non-Primitive/Structural Types

3.2.1 Array

An array type has the format t[] where t is a type that specifies the type of all elements of the

array. Thus, all elements of an array of type t[] must themselves have type t. Note that t itself

may be an array type.

Arrays can be initialized as an array literal of type literals:

int[] array = [1,2,3,4,5];

3.2.2 Tuple

A tuple is a finite ordered list of elements within parenthesis separated by commas. Each

element can be its own type.

3.2.3 Pitch

Pitch represents a musical pitch, typically an integer that maps to an index on the piano keys (0-

88). It is stored internally as an integer. The default pitch is 40 (C4).

3.2.4 Duration

A duration is 2-tuple of two integers. It is meant to be associated with a single pitch. The ratio of

the first element to the second element represents the fraction of a whole note the associated

pitch will play. The default duration is (1,4).

3.2.5 Note

A note is a 2-tuple consisting of a pitch and a duration. (pitch, duration)

3.2.6 Chord

A chord is 2-tuple. The first element is an array of pitches, and the second element is a duration

type element. All pitches in the array will be played for the duration specified by the second

element. A default initialization will yield an empty pitches array and a (1,4) duration.

(pitch[], duration)

 5

3.2.7 Phrase

A phrase is an array of chords. This would represent a single line or voice of music in a piece.

Every note will start and end individually; there are no overlaps. A second voice should be

designated with a separate phrase. A default phrase is an empty array.

chord[]

3.2.8 Score

A Score is an array of phrases. Each element points to a single phrase which would represent

the multiple voices of a single piece. A default score is an empty array.

phrase[]

4. Operators

4.1 Assignment Operator =

As previously stated, the assignment operator is denoted by the equals sign - =.

4.2 Comparison Operators

Comparison operators are used to test for equality or inequality between identifiers or literals. A

expression consisting of a comparison operator and two other expressions return a boolean

type. All comparison operators test the value of their identifiers. The return type of each

expression being operated on by comparison operators must be the same, and their return

types must consist of the following:
int

bool

pitch

duration

Production rule Description

expr → expr == expr Evaluates to true if the return values of the expressions in the
production body are equivalent.

expr → expr != expr Evaluates to true if the return values of the expressions in the
production body are not equivalent.

expr → expr > expr Evaluates to true if the expression on the left is greater in return
value than the return value of expression on the right.

expr → expr < expr Evaluate to true if the expression on the right is greater in return
value than the return value of expression on the right.

expr → expr >= expr Evaluates to true if the expression on the left is greater in return
value than the expression on the right, or if the return values of the
expressions are equal.

expr → expr <= expr Evaluates to true if the expression on the right is greater in return
value than the expression on the left, or if the return values of the
expressions are equal.

 6

The inequality of integers is evaluated according to the standard ordering of integers from 1 to

infinity. In evaluations of the inequality of booleans, true is always greater than false. In

evaluations of pitch types, their inequality is evaluated according to their frequency or the

position of their corresponding keys on a piano-- pitches that correspond to keys towards the

right end of the piano are greater than pitches that correspond to keys on the left. The

inequality of durations is evaluated according to their absolute temporal duration, in seconds,

with longer durations being greater than shorter ones.

4.3 Arithmetic Operators

Arithmetic operators are binary operators and consist of addition (+), subtraction (-),

multiplication (*), and division (/). The return type of expressions involving arithmetic operators

depends upon the return type of the expressions in the operation. Addition and subtraction are

commutative.

Operator Symbol Left
expression
type

Right
expression
type

Return value

Addition + int int The sum of the two integers.

pitch int A pitch raised the number of half
steps indicated by the integer.

dur int A duration. The integer is
converted to a duration
fractionally equivalent to 1, with its
top and bottom values equivalent
to the bottom value of the duration
expression. The durations are
then added according to fractional
arithmetic. (1,2) + 1 = (3,2)

dur dur The sum of the two durations
according to fractional arithmetic,
reduced to its least possible
denominator.

Multiplication * int int The product of the two integers.

dur int The product of the fractional value
of the duration and the integer,
reduced to the least possible
denominator. (1,4) * 2 yields (1,2).

dur dur The fractional product of the two
durations. (1,4) * (1,2) yields
(1,8).

Subtraction

-

int

int

The difference between the left
integer and the right integer.

pitch int A pitch lowered by the number of

 7

half steps specified by the integer
expression.

dur int A duration whose length is the the
result of the fractional subtraction
of right integer converted to a
fraction from the fractional value
of the left duration expression. If
the result is negative, the absolute
value is returned. (5,4) - 1 = (1,4)

pitch pitch An integer representing the
difference between the two
pitches, in scale positions.

chord pitch A chord with the right-expression
pitch removed, if it was present.

dur dur A duration whose length is equal
to the fractional subtraction of the
right duration from the left.
(1,2) - (1,4) = (1,4)

note dur A note whose duration is equal to
the subtraction of the right
duration from the duration of the
left note expression.

chord dur A chord whose duration is equal
to the subtraction of the right
duration from the duration of the
left note expression.

Division

/

int

int

A duration whose numerator is
equal to the left integer and
whose denominator is equal to
the right.

dur int A duration whose fraction is equal
to the fractional division of the
fractional component of the left
expression by the integer value of
the right expression.
(1,2) / 2 = (1,4)

note int A note whose duration is equal to
the division of the duration of the
note in the left expression divided
by the integer value of the right
expression, as described above.

chord int A chord whose duration is equal
to the division of the duration of
the chord in the left expression
divided by the integer value of the
right expression, as described
above.

int dur A duration whose fractional

 8

component is equal to the
fractional division of the integer by
the the fractional value of the
duration.
1 / (1,2) = (2,1)

dur dur Fractional division of durations.
(1,2) / (1,4) = (2,1)

note dur A note whose duration is equal to
the fractional division of the left
expression’s duration component
by the right expression’s duration.

chord dur A chord whose duration is equal
to the fractional division of the left
expression’s duration component
by the right expression’s duration.

dur note A note whose duration is equal to
the fractional division of the left
duration by the duration
component of the note in the right
expression.

dur chord A chord whose duration is equal
to the fractional division of the left
duration by the duration
component of the note in the right
expression.

dur chord A chord whose duration is equal
to the fractional division of the left
duration by the duration
component of the note in the right
expression.

4.4 Repeater Operator - **

Supplying an expression or any type followed by the repeater operator (**) and a subsequent

integer yields an array of size equal to the given integer with each element containing the return

value of the expression:

expr → expr ** int

4.5 Concatenation Operators (+, ++)

When used exclusively with notes, chords, phrases, and scores, the + symbol is used as a

concatenation operator. As a result, use of this operator with any of these types results in a

phrase, with the exception of its usage with a score, in which case a score is returned.

 9

expr → expr + expr

The left expression is appended to the beginning of the right. All notes and chords are then

intended to be read and/or played from left to right.

The ++ concatenation operator may be used on any pair of expressions returning the same

type. One or both may be an array whose base type matches the base type of the other. The

result is an array wherein the right expression is appended to the end of the left.

4.6 Layer Operator (^)

The layer operator is used to create musical structures wherein pitches are played

simultaneously. It is a binary operator and its behavior is only defined for the pitch, note, chord,

phrase, and score types.

expr → expr ^ expr

Pitches may only be layered with chords, and in this instance a chord is returned with the pitch

added. In all other cases a score is returned. When rendered, the arguments are synchronized

by their beginning; if one argument has a longer total duration than the other, it continues

playing after the shorter argument has completed. The layer operator is commutative.

4.7 Operator Associativity and Precedence

Arithmetic operators are applied first, in the standard order of *, /, -, +. Boolean operators are

applied next, and possess the same level of associativity as the layer operator. Next is the

phrase concatenation operator, followed by the array concatenation operator.

5. Lexical Conventions

5.1 Comments

Comment syntax is similar to Java. Single line comments are preceded by //. Multiline

comments are enclosed with /* and */. For example:
// Single line comment

/*
 * Multiline
 * comment
 * here
 */

 10

5.2 Identifiers

An identifier names functions and variables and consists of a sequence of alphanumeric

characters and underscores (_) in the set [‘a’-‘z’ ‘A’-’Z’ ‘_’ ‘0’-’9’]. Identifiers are case-

sensitive and must begin with a character within the set [‘_’ ‘a’-’z’ ‘A’-’Z’].

5.3 Keywords

The following keywords are reserved:

chord dur else
false for if
int note null
phrase pitch play
print return score
true void

5.4 Constants/Literals

Integer literals

Integer literals are of type int and are of the form [‘0’-’9’]

Boolean literals

Boolean literals are of type bool and are the values true and false.

Pitch Literals

Pitch literals are of type pitch and are of the form ‘$’ [‘A’-’G’] [‘#’ ‘b’]? [‘0’-’9’]?

The capital letter corresponds to the note name, ‘#’ and ‘b’ denote sharp or flat, and the

integer denotes which octave the note is in. If ‘#’ or ‘b’ is omitted, a natural pitch is

assumed. If an octave integer is omitted, octave 4 is assumed, or the octave of the set

key (see more on setting keys later on). For example, $C4 denotes C in octave 4, or

middle C.

A rest literal is a specific pitch literal that represents a rest. (No pitch.) It is represented

as $R

Duration Literals

A duration literal is of type dur and is a 2-tuple of integers that correspond to note

durations used in music. It is of the form ‘(‘ [‘1’-’9’], [‘1’-’9’]+ ’)’.

For example, a quarter note can be represented as the duration literal (1,4).

Note Literals

A note literal is of type note and is a 2-tuple of pitch and duration of the form ‘(‘ (‘$’ [‘A’-

’G’] [‘#’ ‘b’]? [‘0’-’9’]? | “$R”) ‘,’ ‘(‘ [‘1’-’9’], [‘1’-’9’]+ ’)’ ‘)’

Chord Literals

A chord literal is of type chord and is a 2-tuple of an array of pitches and duration. It is of

the form ‘(‘ ‘[‘ (‘$’ [‘A’-’G’] [‘#’ ‘b’]? [‘0’-’9’]?)* | “$R” ‘]’ ‘,’ ‘(‘ [‘1’-’9’], [‘1’-’9’]+ ’)’ ‘)’

Null Literal

 11

null is a literal of type int that represents 0.

5.5 Separators

Separators separate tokens and expressions. White space is a separator. Other separators are

tokens themselves:
 () { } [] ; , . < >

5.6 White Space

White space consists of the space character, tab character, and newline character. White space

is used to separate tokens and is ignored other than when used to separate tokens. White

space is not required between operators and operands or other separators. Any amount of

white space can be used where one space is required.

6. Statements

6.1 Expression Statements

Any expression can become a statement by terminating it with a semi-colon.

6.2 if/else

An if / else statement has the following structure:
if (expr) {

 stmt_list

}

else if (expr) {

 stmt_list

}

else {

 stmt_list

}

The expression in parentheses must evaluate to true or false. If true, then the if block is

executed. Otherwise, the next else if statement is tested. The else block is executed

when no conditional expression evaluates to true.

6.3 for

A for statement (for loop) has the following structure:

for (asn; expr1; expr2) {

 stmt_list

}

 12

First, asn is evaluated. asn is traditionally an assignment expression. Next, stmt_list is

evaluated if expr1 evaluates to true. expr2 is executed after stmt_list, and the condition

in expr1 is checked again. This repeats until expr1 evaluates to false and the for

statement is exited.

6.4 return expr;

The return statement evaluates expr and returns program control to the function that

called it, and returns the evaluated value of expr into the higher level function. The type

of expr must be the same as declared in the function definition.

7. Functions

7.1 Defining Functions

Function definitions have the form:

type declarator compound-statement

The type specifies the return type. A function can return any type. The declarator in a function

declaration must specify explicitly that the declared identifier has a function type; that is, it must

be of the form

 direct-declarator (expr_array)

The form and its parameters, together with their types, are declared in its parameter type list;

the declaration-list following the function’s declarator must be absent. Each declarator in the

parameter type list must contain an identifier.

A parameter-type-list is a list of expressions separated by commas. The parameters are

understood to be declared just after beginning of the compound statement constituting the

function’s body, and thus the same identifiers must not be redeclared there (although they may,

like other identifiers, be redeclared in inner blocks). An example:
int max(int a, int b) {
 if (a > b) return a;

else return b;
}

Here int is the declaration specifier; max(int a, int b) is the function’s declarator, and { … } is the

block giving the code for the function.

 13

7.2 Calling Functions

A function call is an identifier followed by parentheses containing a possibly empty, comma-

separated list of assignment expressions which constitute the arguments to the function, or an

expression array. The term argument is used for an expression passed by a function call; the

term parameter is used for an input object (or its identifier) received by a function definition, or

described in a function declaration.

In preparing for the call to a function, a copy is made of each argument; all argument-passing is

strictly by value. A function may change the values of its parameter objects, which are copies of

the argument expressions, but these changes cannot affect the values of the arguments. The

types of parameters are explicit and are part of the type of the function - this is the function

prototype. The arguments are converted, as if by assignment, to the types of the corresponding

parameters of the function’s prototype. The number of arguments must be the same as the

number explicitly described parameters. Recursive calls to any function are permitted.

7.3 The play Function

The identifier play is reserved to let the compiler make MIDI calls in Java. Play takes either a

score type expression or phrase type expression. It returns an integer: 0 on success, 1 for

failure.

7.4 The compose Function

Every C-Major program must define the reserved identifier compose. The expression bound to

compose is evaluated and its value is the value of the C-Major program itself. That is, when a C-

Major program is compiled and run, the expression bound to compose is evaluated and the

result is converted to a value of type score or int. If a definition for compose is not included, or

the expression bound to it does not evaluated to score, a compile-time error will occur.

8. Compile & Output

Our compiler will be written in OCaml and will compile .cmaj files into Java. This will be done by

providing an OCaml script engine for the javax.script framework to interpret OCaml code in

Java.

Once interpreted in Java, we will output a MIDI file using Oracle’s MIDI library in the

javax.sound.midi package.

 14

9. Sample Programs

9.1 Some Standard Library Functions

pitch OCT_UP(pitch p) {
 return p + 12;
 /* alternatively return INTERVAL(p, 12); */
}

pitch INTERVAL(pitch p, int interval) {
 return p + interval;
}

/**
 * example of what you’d do if you wanted $do +3 in the context of a major scale.
 * assumes p is in MAJ_SCAL
 */
pitch major_interval(pitch p, int interval) {
 scale_idx = find_pitch_idx(MAJ_SCALE, p);
 return MAJ_SCALE[scale_idx + interval];
}

/* Allows you to set the key */
pitch major_interval(pitch key, pitch p, int interval) {
 SET_KEY(key);
 scale_idx = find_pitch_idx(MAJ_SCALE, p);
 return MAJ_SCALE[scale_idx + interval];
}

/* Given array of pitches (assumed in some specific order), return the index of p in pitch[]

*/
int find_pitch_idx(pitch[] pitches, p) {
 for (i=0;i<pitches.length;i++) {
 if (pitches[i] == p) {
 return i;

}
 else {

return -1; // could throw exception or something.

}
 }

}

/* Assumes the two arrays are the same length */
phrase createPhrase(pitch[] pitches, dur[] rhythm) {
 phrase phr;
 for (int i = 0; i < pitches.length, i++) {
 phr = phr + (pitches[i], rhythm[i]);

}
}

 15

9.2 Twinkle Twinkle Little Star / Alphabet Song / Baa Baa Black

Sheep

import <cmaj_lib.cmaj>;

int compose() {
 SET_KEY($C4); // $C4 is already defined by library; absolute pitch.

pitch high_do = OCT_UP(DO);

 pitch[] pitches_refrain_1 = (DO ** 2) ++ (SOL ** 2) ++ (LA ** 2)
 ++ SOL ++ (FA ** 2) ++ (MI ** 2)
 ++ (RE ** 2) ++ DO;

 pitch[] pitches_refrain_2 = (SOL ** 2) ++ (FA ** 2) ++ (MI ** 2) ++ RE;

 pitch[] pitches = pitches_refrain_1 ++ pitches_refrain_2 ++ pitches_refrain_2

 ++ pitches_refrain_1;

dur quart = (1, 4);

 dur half = (1, 2);

 dur[] rhythm_pattern = (quart ** 6) ++ half;
 dur[] rhythm = (rhythm_pattern ** 6);

 /* Creating the base phrase */
 phrase melody;

for (int i = 0; i < pitches.length; i++) {
 chord note = (pitches[i], rhythm[i]);
 melody = melody ++ note;
 }

 /* Creating a harmonizing line */

pitch[] pitches_third = pitch[pitches.length];
 for (int i = 0; i < pitches_third.length, i++) {
 pitches_third[i] = (majorInterval(pitches[i], 2));

}
 phrase maj_third_harm = createPhrase(pitches_third, rhythm);

 /* Creating second round */
 pitch[] pitches_round2 = $R ++ pitches;
 dur[] rhythm_round2 = (1,4) ++ rhythm;
 phrase round2 = createPhrase(pitches_round2, rhythm_round2);

 score music = melody ^ maj_third_harm ^ round2;
 PLAY(music);
 return 0;
}

 16

9.3 Pachelbel’s Canon

import <cmaj_lib.cmaj>;

int compose() {
 SET_KEY($D2);

 pitch[] bass_line = OCT_UP(DO) ++ SO ++ LA ++ MI ++ FA ++ DO ++ FA ++ SO;

 SET_KEY($D4);
 pitch[] high_line = OCT_UP(MI) ++ OCT_UP(RE) ++ OCT_UP(DO)
 ++ TI ++ LA ++ SO ++ LA ++ TI;

 SET_KEY($D3);

 //$R is a rest
 pitch[] d_arpeg = $R ++ DO ++ MI ++ SO;
 pitch[] fsharp_arpeg_1 = $R ++ DO - 1 ++ MI ++ SO;
 pitch[] b_arpeg = $R ++ OCT_DOWN(LA) ++ DO ++ MI;
 pitch[] fsharp_arpeg = $R ++ MI ++ SO ++ TI;
 pitch[] g_arpeg_1 = $R ++ DO ++ FA ++ LA;
 pitch[] a_arpeg_1 = $R ++ RE ++ SO ++ TI;

 pitch[] mid_line = d_arpeg ++ fsharp_arpeg_1
 ++ b_arpeg ++ fsharp_arpeg
 ++ g_arpeg_1 ++ d_arpeg
 ++ g_arpeg_1 ++ a_arpeg_1;

 dur half = (1,2);
 dur eighth = (1,8);

 phrase low_solo;
 phrase low_hi;
 phrase arps;

 //Build single iteration of each line
 for(int i = 0; i < 8; i++) {
 note low = (bass_line[i], half);
 note hi = (high_line[i], half);

 low_solo = low_solo + low;

 chord c = low ^ hi;
 low_hi = low_hi + c;

 phrase arpeg;
 for(int j = 0; j < 4; j++) {
 note n = (mid_line[i * 4 + j], eighth);
 arpeg = arpeg + n;
 }

 17

 arps = arps + arpeg;
 }

 //Start with bass line
 phrase chord_line = low_solo;

 //Add chords
 for(int i = 0; i < 3; i++) {
 chord_line = chord_line + low_hi;
 }

 //Pad arpeggios with rests so they come in after intro
 note[] rests = ($R, (1,1)) ** 8;
 phrase arp_line;
 for(int i = 0; i < 8; i++) {
 arp_line = arp_line + rests[i];
 }

 //now add two iterations of the arpeggios
 arp_line = arp_line + arps;
 arp_line = arp_line + arps;

 //Now put it all together
 score song = arp_line ^ chord_line;

 PLAY(song);

}

9.4 Row, Row, Row Your Boat

import <c_maj_lib.cmaj>;
int compose() {
 SET_KEY($C4); // $C4 is already defined by library; absolute pitch.
 pitch high_do = OCT_UP(DO);
 pitch[] pitches = (DO ** 3) ++ RE ++ MI

++ MI ++ RE ++ MI ++ FA ++ SOL
 ++ (high_do ** 3) ++ (SOL ** 3)

 18

 ++ (MI ** 3) ++ (DO ** 3)
++ SOL ++ FA ++ MI ++ RE ++ DO;

dur quart = (1, 4);
 dur dot_eighth = (3, 16);
 dur sxtnth = (1, 16);
 dur half = (1, 2);
 dur trip_8 = (1, 12); // could be trip_qrt (1,3)

 // syncopated rhythm (measure 2 & 4)
 dur[] sync_rhythm = dot_eighth ++ sxtnth ++ dot_eighth ++ sxtnth ++ half;
 dur[] rhythm = quart ++ quart ++ dot_eighth ++ sxtnth ++ quart
 ++ sync_rhythm

++ (trip_8 ** 12)
++ sync_rhythm;

 /* Creating the base phrase */
 phrase melody; // initializes to empty list
 // user must always be aware of the indices of pitches and rhythms. should match up.

for (int i = 0; i < pitches.length; i++) {
 chord note = (pitches[i], rhythm[i]);
 melody = melody ++ note;
 }

 /* Creating a harmonizing line */

pitch[] pitches_third = pitch[pitches.length];
 for (int i = 0; i < pitches_third.length, i++) {
 pitches_third[i] = (majorInterval(pitches[i], 2));

}
 phrase maj_third_harm = createPhrase(pitches_third, rhythm);

 /* Creating second round */
 pitch[] pitches_round2 = $R ++ pitches; // $R is a literal for rest
 dur[] rhythm_round2 = (1,4) ++ rhythm; // Attaching quarter-beat to beginning
 phrase round2 = createPhrase(pitches_round2, rhythm_round2); // using library

 score music = melody ^ maj_third_harm ^ round2;
 PLAY(music);
 return 0;
}

 19

9.5 99 Bottles

import <cmaj_lib.cmaj>;

int compose() {
 SET_KEY($G4);

 dur q = (1,4);
 dur h = (1,2);
 dur dot_h = (3,4);

 pitch[] tune = DO**3 ++ OCT_DOWN(SO)**3 ++ DO**3 ++ DO
 ++ RE**3 ++ OCT_DOWN(LA)**3 ++ RE ++ $R
 ++ OCT_DOWN(TI**6 ++ SO**4 ++ SO+1
 ++ SO+2) ++ RE**4;

 dur[] rhythm = q**9 ++ dot_h ++ q**6 ++ dot_h**2
 ++ h ++ q ++ dot_h ++ q**3 ++ dot_h
 ++ q**9 ++ dot_h;

 phrase round = create_phrase(tune, rhythm);
 phrase song;

 // play 99 times
 for (int i = 0; i < 99; i++) {
 song = song + round;
 }

 PLAY(song);
 return 0;
}

