JME Language Proposal

Daniel Gordon COMS W4115

Introduction and Goals

JME (pronounced jay+me) is a lightweight language that allows programmers to
easily perform statistic computations on tabular data as part of data analysis. The
language is designed to perform calculations and operations on primitive data
structures like a vector or matrix, as well as a higher-level structure like a map. The
language syntax of JME somewhat resembles javascript, however the semantics are
that of a functional language. JME is designed as a scripting tool for single time
analysis of a data set. JME contains native capability to scan data from an external
file and make the data available as map objects. However the external file must
conform to a strict style definition. JME has several commonly used statistical
measures built in (such as mean, median, mode...) but will allow the user to express
any number of statistical analysis algorithms through the creation of functions.

A goal of JME is to analyze data sets in which each row represents a single entity and
the columns of data are individual attributes of that entity. For example below is a
table of NFL Quarterbacks and their stats for the 2013 season:

Name Comp Att Yds TD Int
Peyton 450 659 5477 55 10
Manning

Drew 446 650 5162 39 12
Brees

Andy 363 586 4293 33 20
Dalton

Phillip 378 544 4478 32 11
Rivers

Tony 342 535 3828 31 10
Romo

A goal of a JME script might be to sort the players (rows) based on the number of
TDs (column attribute). Another, more complex goal of a JME script might be to
calculate the Passer Rating of each player (a numeric result based on an algorithm
computation using data attributes Comp, Att, TD, and Int) and sort the players based
on this previously undefined statistic.

Primitive Data Types
For simplicity JME will support a small number of primitive data types:
* int, float, boolean, and String

Data Structures: Vectors and Matrices

JME primarily operates on data structures. The simplest structure is a numeric
vector consisting of a single list of numbers. To initialize a vector of 5 numbers in
JME we use the protected word “struct” and might look something like this:

var x = struct(1, 2, 3,4, 5);

In this case the vector is initialized with integers 1-5 and assigned to the variable x.
The statement is ended with the semicolon character.

We can perform simple arithmetic operations on the vector, in which each element
of the vector is transformed:

vary =x*2;

The variable y now represents a vector containing the numbers 2, 4, 6, 8, 10. We can
also compute the mean of vector y by passing it to the statistical function:

mean(y) == 6 == sum(y)/len(y)
The mean function is equivalent to the sum of vector y divided by the length of
vectory.

Finally we can access individual elements of a vector using subscript:
y [0];
> returns 2
Matrices are defined similarly to vectors but use the curly brace character to define
each row in the matrix:
var z = struct({1,2,3},

{4,5,6},

{7,8,9});
Accessing individual elements of a matrix is also similar using subscript:

Z[1][2];

>returns 6

Commonly accepted vector and matrix operations, such as multiplication by a scalar
or matrix addition and subtraction (assuming same dimensions) can be expressed in
JME using standard arithmetic statements:

var x = struct(1,2,3);
xX*2;
>returns a new vector: (2, 4, 6)

Other operations like transpose, dot or cross product can be achieved through the
creation of functions.

Data Structures: Map

JME also supports a higher-level data structure of a map consisting of multiple key-
value pairs. The key must always be a string but the value can be any of the
primitive data types such as an int, or a String, or even a data structure like a vector.

The syntax of initializing a map with a row of data from the QB example above might
look like this:

var manning = map(“comp”=450, “att”"=659, “yds”"=5477, “td”"=55, int="10",
“name”="Peyton Maning”;

One of the advantages of using a map is that you can use the key attributes to access
individual elements of the map:

var touchdowns = manning@”"td”;

>returns 55

Unlike vectors and matrices, map elements cannot be transformed using basic
arithmetic expressions such as multiplication by a scalar:

var z = Manning * 8;

throws an invalid expression error

Functions

JME has a few built in functions for common statistical algorithms and allows users
to define their own functions. Functions can be defined with zero or more
parameters but must always return something. Functions are defined with the
restricted word “function” and curly braces to mark the beginning and end. A
function implementing the Passer Rating statistic in the above example would look
something like this where the parameter player is a map:

function passerRating (player) {
var a = (player@comp/player@att - .3) * 5;
var b = (player@yds / player@att -3) *.25;
var c = (player@td / player@att) * 20;
vard = 2.375 - (player@int/player@att * 25);
return ((a+b +c+d)/6) * 100;

passerRating(manning);
>returns 115.11

In the above example the manning map is passed as a parameter to the passer rating
function.

Logical Controls

JME will support logical control with if/else statements. Else statements will be
optional and elseif will also be supported. The a syntax would look like the
following:

if(<boolean expression>) {
<statement>

} else if (<boolean expression>) {
<statement>

Jelse{
<statement>

}

Looping
JME supports both for and while looping structures. While loops will operate on an
expression with the following syntax:

while(<boolean expression>) {
<statement>

}

Forloops are provided as a convenience and can only be used against a data
structure. The simplest example is iterating over the individual elements of a vector:

var x = struct(1, 2, 3,4,5);
var total = 0;
for(elementin x) {

total += element;
}
print total;
> outputs 15

Caveats and Limitations

The focus of the language will be creating a solid foundation for performing
operations on vector and matrix structures. Supporting the map data structure as
outlined may be a little ambitious and might be de-scoped from the language.
Likewise supporting the read-in of an external file might also be too ambitious for
this project and may be de-scoped.

