

Programming Language Final Report

StateMap

Oren Finard, Jackson Foley, Alex Peters,

Brian Yamamoto, Zuokun Yu

Fall 2014

1 CONTENTS

2 An Introduction to StateMap ... 4

2.1 StateMap Nodes .. 4

3 Language Tutorial ... 6

3.1 Getting Started ... 6

3.2 Structure of a Program with Hello World! 7

3.3 Multiple States ... 7

3.4 Compiling and Running Programs 9

3.5 Multiple DFAs and Concurrency 9

4 Language Manual .. 13

4.1 Lexical Conventions .. 13

4.1.1 Comments.. 13

4.1.2 Identifiers (Names)... 13

4.1.3 Keywords.. 13

4.1.4 Constants... 13

4.1.5 Strings... 14

4.1.6 Punctuation... 14

4.1.7 Operators... 15

4.1.8 Whitespace.. 16

4.2 Syntax Notation .. 17

4.2.1 Program Structure (Main).. 17

4.2.2 State Blocks.. 17

4.2.3 Sub-DFA... 17

4.2.4 Expressions... 18

4.2.5 Statements.. 19

4.2.6 Scope... 20

4.3 Type ... 22

4.3.1 Type Declaration.. 22

4.3.2 Fundamental TYpes... 22

4.4 Built-in Functions ... 24

4.4.1 Concurrent.. 24

4.4.2 State... 24

4.4.3 Sleep... 25

4.4.4 Print... 25

4.4.5 Input... 25

4.4.6 Conversion Functions.. 25

4.5 Program Execution .. 27

5 Project Plan ... 28

5.1 The plan. .. 28

5.2 Specification. ... 28

5.3 Development. ... 29

5.4 Testing. ... 29

5.5 Programming Style Guide .. 30

5.6 Project Timeline ... 30

5.7 Roles and Responsibilities of Each Team Member 31

5.8 Software Development Environment Used (Tools and Languages) 32

5.9 Project Log .. 32

6 Architectural Design ... 39

6.1 A Diagram of the Major Components of the Translator 39

6.2 Interfaces between the components. 39

6.2.1 Scanner... 39

6.2.2 Parser.. 39

6.2.3 Semantic Check.. 39

6.2.4 Code Generation... 40

6.3 Implementation Responsibilities 40

7 Test Plan .. 42

7.1 Printing the AST ... 42

7.2 Unit Tests ... 42

7.3 Exception Tests .. 44

7.4 Automation ... 45

7.5 Sample Source Language Program and Target Language Program 47

8 Lessons Learned .. 59

8.1 What Oren Finard learned and advice for other teams 59

8.2 What Jackson Foley learned and advice for other teams. 59

8.3 What Alexander Peters learned and advice for other teams. 59

8.4 What Brian Yamamoto learned and advice for other teams. 60

8.5 What Zuokun Yu learned and advice for other teams. 61

9 Appendix ... 63

9.1 Scanner Code (scanner.mll) ... 63

9.2 Parser Code (parser.mly) ... 64

9.3 AST Code (ast.ml) .. 66

9.4 Semantic Check Code (semantic_check.ml) 69

9.5 SAST Code (sast.mli) ... 80

9.6 Code Generator Code (gen_python.ml) 81

9.7 Compiler Code (compiler.ml) .. 88

2 AN INTRODUCTION TO STATEMAP

It has been proven that a PDA (push-down automaton) with two (or

more) stacks can accept any language that a Turing Machine can.

From this theorem comes the programming language, StateMap.

StateMap is a programming language that is organized and

executed in a manner analogous to an Automata diagram, like

those seen for DFA’s or PDA’s. It emphasizes organization of

code into short nodes, which transition to each other until

reaching some end state. It shrinks the gap between paper

diagram and running code to let the programmer go from

algorithmic organization to actual execution quickly and simply.

2.1 STATEMAP NODES

StateMap programs consist of nodes (also known as states), and

within those nodes there are a constant number of operations, as

well as transition statements, which allow for control to leave

the current node and execute on a new node. Aside from

information stored on globally-scoped stacks, no information is

preserved from node to node.

There are two types of nodes: transition nodes, and end nodes.

Transition nodes can include transition statements, which

evaluate expressions, and execute if the expression is true.

All transition nodes must end with a default, catch-all

transition, to ensure that code execution makes its way to an

end node. A return node cannot have any transition statements,

but it can return data, and control, to the caller. All return

nodes must end with a return statement.

Nodes can call sub-automata, which then execute until they reach

an end node. Nodes can also make decisions based on the states

of sibling automata, which run in parallel to them.

A node within an automata is defined by a name, followed by

curly brackets, within which consist of a number of operations

(see ‘operations’ section), with either transition or return

statements included. There is no keyword needed to define a

state as of type ‘end’ or ‘transition’: the language will infer

based on whether the last statement in the node is of type

transition or return.

3 LANGUAGE TUTORIAL

3.1 GETTING STARTED

Before writing any code in StateMap, draw a picture. The essence

of StateMap is the ease in which an existing DFA can be encoded

and run. Therefore, having a DFA diagram representation of your

program on hand while coding in StateMap makes the entire coding

process much easier.

If your program is more complex and requires more than one DFA,

all of these DFAs can be written in one StateMap program, just

as other programming languages can contain multiple functions or

methods in a single file. Along those same lines, each .sm file

must have a main DFA, and all other DFAs must be written above

main. If you wish to write a single DFA StateMap program, it is

up to you whether it should be the main DFA, or if main should

call your DFA. Also, you may realize while writting your program

that parts of your original DFA can be broken off into smaller

sub-DFAs, especially if you do repeated work. All of these

options are possible and easy to implement in StateMap.

At first, we will conentrate on single DFA programs. By the end

of this tutorial, we will show how to write more complex

programs in StateMap (i.e. those requiring multiple DFAs or

concurrently running DFAs), and you can refer to our Language

Reference Manual in section 3 of this report for more detail.

3.2 STRUCTURE OF A PROGRAM WITH HELLO WORLD!

A single DFA StateMap program consists of the declaration of a

void main DFA followed by a series of states, the first of which

must be start. Each of the states are contained within the

braces of the main DFA, and the code for each state is contained

within the braces of the state. Below is an example of the Hello

World program in StateMap:

 void DFA main()

 {

 start

 {

 print("Hello World!");

 return;

 }

 }

This is a single DFA, single state program. When the program

begins, the start state of the main method is run, and this

program prints "Hello World!" to standard out using the built-in

print() function.

3.3 MULTIPLE STATES

The concept of "if" and "while" doesn't exist directly in

StateMap. Instead, we use transitions based on boolean

expressions to new states, where new code can then be excecuted.

Suppose we wanted to print "Hello World!" ten times, whithout

writing ten print statements. This can be done with state

transitions, as shown below:

 void DFA main()

 {

 int count = 0;

 start

 {

 hello <- count < 10;

 finished <- *;

 }

 hello

 {

 print("Hello World!");

 count = count + 1;

 start <- *;

 }

 finished

 {

 return;

 }

 }

The "<-" is used for transition statements and is preceeded by

the name of a user-defined state, and suceeded by a boolean

statement. At a given transition, the program will immediately

go to the given state if the boolean expression is true, and

will continue in its current state otherwise. Also, the * is

used for a default transition. This is always the last

transition listed, and the transition is always followed. These

are required in every state containing transitions in StateMap,

and can be used for debugging with an error state if they are

not needed for your program to function. It is worth mentioning

here that states that contain "return" cannot contain

transitions, and vice-versa.

As a final note for this example, you can declare variables

inside and outside of states. Those declared outside are

considered part of the DFA scope, and can be accessed anywhere

within the DFA in which it was decalred. Those declared inside a

state are part of the state scope, and can only be accessed

withing that state, and are cleared at the end of the state.

3.4 COMPILING AND RUNNING PROGRAMS

After running "make compile" to produce the compiler

exectutable, you can compile your .sm file with the following

command:

$./compiler "name of output file" < "path to your .sm

file"

This will compile your StateMap program and produce python code

called "name of output file".py. You can then run this file

with:

$ python "name of output file".py "command line args"

To supply command line arguments to your program, you add them

after the python command. Please see our reference manual in

section 3 for details on how to do this.

3.5 MULTIPLE DFAS AND CONCURRENCY

The most interesting feature of StateMap is the ability to write

a program that contains multiple DFAs, and have them interact

while running concurrently. This involves using the built-in

concurrent() function, which takes in calls to multiple user

designed DFAs which are built to work alongside eachother. The

following example illistrates this functionality:

 void DFA a()

 {

 start

 {

 print("DFA a: start");

 afinish <- state("b") == "b2";

 start <- *;

 }

 afinish

 {

 print ("DFA a is done.");

 return;

 }

 }

 void DFA b()

 {

 start

 {

 print("DFA b: start");

 b1 <- *;

 }

 b1

 {

 print("DFA b: b1");

 b2 <- *;

 }

 b2

 {

 print("DFA b: b2");

 bfinish <- *;

 }

 bfinish

 {

 print ("DFA b is done.");

 return;

 }

 }

 void DFA main()

 {

 start

 {

 concurrent(a(), b());

 return;

 }

 }

 In this example, there are two DFAs, labeled "a" and "b".

Each of the DFAs have a helpful print statement that prints its

current state as soon as it arrives there. Then, DFA b's

transitions are defined such that it moves through each of its

states unconditionally in order: start -> b1 -> b2 -> bfinish.

DFA a only transitions from its start state when DFA b is in

state b2. This is accompished using the built-in state()

function, which takes in a string name of a DFA and returns a

string which represents the name of the state the given DFA is

currently in. The line above " state("b") == "b2" " is asking

if the DFA labeled "b" is currently in state "b2".

 The output of this program is the following:

 DFA b: start

 DFA a: start

 DFA b: b1

 DFA a: start

 DFA b: b2

 DFA a: start

 DFA b is done.

 DFA a is done.

As you can see, DFA a remains in its start state until DFA b

reaches b2, upon which they both finish.

This concurrency functionality allows you to write a program

consisting of multiple DFAs designed to interact while they are

running. This has great application value in any program seeking

synchronous behavior becuase DFAs that run conccurently make

transitions simultaneously. The most obvious application here is

multiple parts of hardware that are sychronized with a clock,

but many other hardware and software applications exist.

4 LANGUAGE MANUAL

4.1 LEXICAL CONVENTIONS

4.1.1 Comments

Both C and C++ style comments are supported.

Multi-line comments begin with characters /* and end with

characters */. Any characters may appear inside a multi-line

comment except for the string ‘*/’.

Single line comments begin with the characters // and end with a

line terminator.

4.1.2 Identifiers (Names)

An identifier is a sequence of letters, digits, or underscores,

the first of which must be a letter. There is no limit to the

length of an identifier.

4.1.3 Keywords

The following identifiers are keywords and may only be used as

such:

return int float string void DFA main stack start

4.1.4 Constants

There are several types of constants, as follows:

4.1.4.1 Integer Constants

An integer constant consists of one optional minus sign followed

by a sequence of one or more digits. The first digit in an

integer constant cannot be a zero, unless it’s the only digit.

Valid: 42, 0, -13

Invalid: 042, +13, 00, .25

4.1.4.2 Float Constants

A float constant is a 64-bit signed floating point represented

with an optional negative, then either an integer followed by a

decimal and another integer or a decimal followed by an integer.

Valid: .3, 1.34, -2.3

Invalid: 42, 0

4.1.4.3 Boolean Values

While no explicit Boolean constant type is expressed, any empty

value (such as an empty sequence or list) or zero will evaluate

to false. Any other value will be evaluated as true.

4.1.5 Strings

Strings are represented via enclosure with double quotes ‘”’. To

represent the character ‘”’ without closing the string, it must

be preceded with a ‘\’. The empty string is represented with

‘””’, with no characters in between the quotes.

Valid: “hello world”, “ “, “42”, “he told me \”yo\””, “”

Invalid: “He asked “Do you have your towel?””

4.1.6 Punctuation

4.1.6.1 Braces

Braces are used to denote the body of a DFA, or the body of a

state in the DFA. The body of a DFA may contain variable

declarations and state definitions. The body of a state may

contain any number of statements.

4.1.6.2 Parenthesis

An expression may include expressions inside parenthesis.

Parentheses can also indicate a function call, or a list of

parameters for a state.

4.1.6.3 Semicolon

Used to denote the end of a statement.

4.1.6.4 Comma

Used to separate multiple variable names during type assignment

and DFA arguments.

Example: String name, address, profession;

 int DFA count(stack<int> a, int b)

 count(wordCount, num);

4.1.7 Operators

4.1.7.1 Arithmetic

Operator Name

+ Addition and String concatenation

- Subtraction and unary negation

* Multiplication

/ Division

% Modulo

4.1.7.2 Assignment

The assignment operator is ‘=’. This assigns the value of the

right side of the operator to the left side variable.

4.1.7.3 Comparison

Operator Name

== Equality

!= Inequality

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

4.1.7.4 Boolean Evaluation

Operator Name

! Not (Negation)

&& And (Conjunction)

|| Or (Disjunction)

4.1.8 Whitespace

Whitespace is defined as the ASCII space, horizontal tab, new-

line, carriage return, and comments. Whitespace does not affect

the program.

4.2 SYNTAX NOTATION

4.2.1 Program Structure (Main)

Programs are composed of a series of DFAs with a single main DFA

to which command line arguments are passed in the form of a

stack of strings. The main DFA declaration looks like:

 void DFA main(/*args*/) {}

If the number of arguments are known beforehand, they can be

passed to the main DFA like so:

 void DFA main(/*[type] name1, [type] name2, etc*/) {}

Otherwise, rely on a stack of primitives:

 void DFA main(stack<string> args) {}

4.2.2 State Blocks

A DFA consists of state blocks separated via braces. Each state

block may have any number of statements.

 /*NAME*/ {

 /*STMT*/

 }

Every state block must either have a catch-all transition (<-

*;) or a return statement. Every DFA must have a state labeled

“start”, which will act as the first node acting in a DFA.

4.2.3 Sub-DFA

Sub-DFAs (also known as functions) are implemented as a separate

DFA, with their own states and transitions. A single StateMap

program may contain any number of sub-DFAs. If sub-DFAs exist,

the main DFA must be the last DFA declared in the program.

Sub-DFAs follow a similar structure as the main DFA.

 /*TYPE*/ DFA /*NAME*/(/*ARG1*/, /*ARG2*/) {}

Each DFA (including main) must eventually return their type:

 void DFA -> return;

 int DFA -> return [int];

 float DFA -> return [float];

 string DFA -> return [string];

Note that a formal passed into any DFA can’t be of type void or

EOS.

4.2.4 Expressions

Expressions in StateMap are divided into two categories – both

of which return values.

4.2.4.1 Literals and Operators

Any of the constants listed in section 2.4 or strings will

evaluate as expressions. Valid combinations of these constants

and operators defined in 2.7 will also evaluate as expressions.

{Id}

{Id} {Operator} {Id}

4.2.4.2 Method Calls

Method calls that return a value will evaluate as expressions.

{Id}.{Method}({Arguments})

Assume a stack called foo was declared. A valid method call is:

foo.push(“bar”) and will return “bar”.

4.2.5 Statements

The types of statements in StateMap are declaration, assignment,

sub-DFA call, transition, concurrency and return. Declaration

and assignment are the only two types that can be called outside

of a node, i.e. globally in a DFA. Every type of statement must

be terminated by a semicolon.

4.2.5.1 Declaration

A declaration statement consists of a variable type followed by

an id. Multiple declarations can be made in a single line

separated by commas.

 {TYPE}{ID};

 int i;

 stack<double> s, char c, string s;

Note that functions include sub-DFAs. Thus, DFA output may be

assigned to variables.

4.2.5.2 Assignment

An assignment statement is used to set the value of a variable,

which can be done during the declaration of a variable, or later

using the variable's id. Multiple assignment can be made in a

single line separated by commas.

{Type}{Id} = {Expression}

 int i = 4;

 double d = 3.0, string s = "hello";

4.2.5.3 Sub-DFA Call

A sub-DFA call (or a function call) statement is a function call

expression, but also can be used in an assignment statement

taking advantage of the fact that a function call statement has

type of the return type of the function.

DFA1(arg1);

 string s = DFA2(arg2, arg3);

4.2.5.4 Transition

A transition statement consists of a node id, the transition

operator and an expression and is used to denote a transition

from one node to another. The transition occurs if the

expression evaluates to true.

{State}<-*

{State}<-{Expression}

state1 <- foo >= bar;

Transition to a state occurs after evaluating the expression on

the right side of the arrow. The star operator indicates

unconditional transition to the state. Since the transitions are

evaluated in order, the {State}<-* should be the last

transition.

4.2.5.5 Return

A return statement consists of the return keyword followed by an

expression.

 return {expression};

 return i < 4; // returns an int 1

4.2.6 Scope

Scope in StateMap is divided into local and global types. Local

scope is particular to a node where global scope is particular

to a DFA.

A variable declared within the curly braces of a DFA is

accessible anywhere within that DFA, but not in sub-DFAs called

by that DFA. Arguments must be used to pass variables between

DFAs.

A variable declared within the curly braces of a node is only

accessible within that node.

4.3 TYPE

4.3.1 Type Declaration

In StateMap, it is required to explicitly declare type when

declaring a variable or DFA. The type of a variable will not

change during the lifetime of that variable, i.e. StateMap is

statically typed. The type of a DFA denotes the type that is

returned when that DFA is called.

4.3.2 Fundamental TYpes

4.3.2.1 int

A 32-bit integer.

4.3.2.2 Float

A 64-bit signed floating point number including an exponent

portion.

4.3.2.3 string

A sequence of characters.

4.3.2.4 stack

Normally considered a "non-fundamental" data type, but they are

fundamental in StateMap because of their connection to DFAs.

Must be declared with a type as follows:

stack<int> s;

Stacks, on the fundamental level, support the following

operations:

peek - return the item on the top of the stack. Running this

operation on an empty stack return EOS (not a string).

 stop <- stack.peek() == EOS;

pop - remove and return the item on the top of the stack

 s = stack.pop();

push - push a given item in the top of the stack

 string s = “towel”;

stack.push(s)

4.3.2.5 void

While not a type used in variable declaration, DFAs can have

return type void if they do not return anything.

Calling return in a void DFA will return an int of 1, which

allows you to transition on a void sub-DFA call.

4.4 BUILT-IN FUNCTIONS

These are a list of functions included within StateMap.

4.4.1 Concurrent

Concurrent is a function that takes in any number of sub-DFA

calls as arguments. This function will ensure that all sub-DFAs

will make their transitions concurrently to allow for

synchronized stepping through states. Concurrent will return a

stack of strings, where each string represents the output

returned by the DFA. The stack is created using Last-In-First-

Out ordering – popping the top of the stack returns the output

of the last DFA call argument in concurrent(). Only DFA calls

are accepted as arguments. Concurrently-running DFAs can only

return ints, strings, floats, and void.

concurrent(/*sub-DFA call*/, /*sub-DFA call*/, /*sub-DFA

call*/);

 concurrent(clock(halfPeriod), TFF1(), TFF2(), display());

The above example runs a clock DFA (which is given an integer),

two DFAs that each represent a T-Flip-Flop, and a final DFA that

runs a display concurrently.

4.4.2 State

State is a function that takes in a single string argument that

represents the name of a DFA. It returns a string that

represents the name of the state that the argument DFA is

currently in at the moment the function is called. State can

only be called within a DFA running concurrently with the

desired DFA argument.

 state(/*NAME OF DFA*/);

 state(“clock”) == “rising”;

4.4.3 Sleep

Sleep is a function that takes in a single integer argument and

halts the DFA, preventing it from making any further evaluations

for the integer argument in milliseconds.

 sleep(/*integer in milliseconds*/);

sleep(1000);

4.4.4 Print

Print is a function that takes in a single argument of type

String. It prints out the argument in the terminal from which

the program is being called.

 print(/*string to be printed*/);

 print(“Hello Planet!”);

4.4.5 Input

Input is a function that takes in a single argument of type

String. It prints out the argument in the terminal from which

the program is being called (like print()) – however, it then

waits for input from the user until the Enter key is pressed.

Input then passes back the input before the Enter key as a

string as a return value.

 string msg = input(/* string typed in terminal */);

4.4.6 Conversion Functions

Conversion functions allow for conversion between types – it

takes in the constant to be converted and returns the constant

as its new converted type.

The available functions are:

 stof: converts type string to type float

 ftos: converts type float to type string

 stoi: converts type string to type int

 itos: converts type int to type string

For example:

 string a = “3.0”;

 float x = ftos(a);

4.5 PROGRAM EXECUTION

StateMap programs are saved with .sm extension:

To compile, run the following commands:

1) make

2) ./compiler {output name} < {path to .sm file}

3) python {output name}.py {args}

After compiling, programs are run via command line, in the

format:

 python outputName.py {args separated by space}

For example:

 python outputName.py 0 9 2 3

Stacks can be passed in a command line by separation via commas.

No spaces should exist between the elements of a stack:

 python outputName.py a,b,c

 python outputName.py [a,b,c] // is also allowed

To pass in a string as a stack of strings, with each string

consisting as a single character of the string, surround the

string to be passed with “’ (double quotes then single quotes):

 python output.py “’bitbybit’”

will pass the main DFA b,i,t,b,y,b,i,t as a stack.

5 PROJECT PLAN

5.1 THE PLAN.

The planning of the project started simple, and (surprisingly)

did not vary greatly with time. The original idea for StateMap

sprung from the theorem (taught in CS theory) that a Finite

Automata with two or more stacks could (theoretically) compute

and computable problem. This was the kernel that started the

process, and still remains the heart of the language.

There was no over-arching “plan” or specified timeline in our

group- taking a page out of Socrate’s handbook (“The only true

wisdom is knowing you know nothing”) we iteratively set short

term goals for ourselves, guided heavily by our TA, Olivia Byer,

to allow ourselves to respond to unexpected difficulties in the

project. We worked steadily and consistently throughout the

semester, with the bulk of the work being done in the last

month, increasing exponentially throughout the month. This was

not due to timing issues, but rather that the majority of the

work came from fixing issues found through testing. Once the

language generated code, through testing we were able to greatly

adjust, customize, and improve our language.

5.2 SPECIFICATION.

Because StateMap never thematically changed, the first round LRM

covered the majority of the language throughout the project.

The original LRM was written, essentially, by all five members

sitting in a room together, spending 30 minutes going over

everything that we agreed with each other about the language,

and then yelling at each other for an hour about the five things

we all disagreed on.

The original LRM was (obviously) written predictively, and was

meant as a guiding light: this equated to, later in the project,

needing to change specifications, add details, clarify oddities,

and add many notes. This was done mostly through meetings and

an active Facebook group, and at the end, through an email

chain. One member of our group took on the responsibility of

adjusting the LRM at all times.

5.3 DEVELOPMENT.

Everyone warned us about the troubles of developing in a team,

and group dynamics, but development was surprisingly simple.

Right from the beginning, the group set aside time to meet

weekly in addition to meeting with the TA weekly. We ended up

skipping many weeks because the work for the project was either

straightforward, or didn’t need to be discussed with the group.

We rarely missed a TA meeting, and often used the time after the

meeting to sketch out what we would do for the week.

As development got more heavy, who worked on what really fell

into who had time to work. Rather than wait for meeting times,

we just started texting each other to find out who was free to

work. Everyone touched all parts of the project, regardless of

their roles, but the roles definitely helped organize members

into who worked on what at the end, when there was more than

just one thing to do at a time.

5.4 TESTING.

We created an automated testing suite that checked the various

parts of our language. This was set up in the late stages of

the project, primarily once code generation was running.

However, along the was the Tester was also making sure that the

language was running properly at various milestones: testing was

done after finishing the parser, thus breaking the code into a

reduction tree, and then also after finishing the SAST, again

breaking code into a reduction tree. However, these tests were

not automated.

5.5 PROGRAMMING STYLE GUIDE

StateMap is meant to translate DFA diagrams from paper to code

easily and clearly. Statements in the language are meant to be

short and clear. The lack of ‘if’ statements and loops

(instead, we have ‘transition’ statements) forces a very unique

style of programming. The ideal is to create simple nodes, with

a few, easily read and deterministic (read: non-arbitrary) lines

of code. Brevity of node blocks, and clarity of code are

prioritized over length of files, and complexity of overall

design. The number of tools the coder has are significantly

diminished compared to other languages, but the language is

extremely simple to understand, use correctly, and use

powerfully: it does, however, force the programmer to think

through (and often draw out) their program beforehand.

5.6 PROJECT TIMELINE

As mentioned in the planning section, there was no initial

timeline planned, but as we went along we had several soft

deadlines:

Finished By:

 9/15 First Team Meeting

 9/22 Birth of StateMap Idea & Discussion

 9/24 Proposal

 10/6 Scanner

10/13 Parser

10/27 LRM

11/27 Semantic Check

12/14 Code Generation

12/16 Everything Finished

Below is our git commit timeline for our repository:

5.7 ROLES AND RESPONSIBILITIES OF EACH TEAM MEMBER

As was mentioned in the development part of the planning

section, everyone touched all parts of everything. Every member

had a part in making all team decisions (mostly the difficult or

tricky ones), and all other decisions were left to the

implementer. We assigned team roles, but the roles and

responsibilities that people actually fulfilled are as follows:

Alex “Dread Pirate Roberts” Peters = StateMap Code Creator,

Exercising Common Sense, Language Guru

Brian “LoL” Yamamoto = LRM Management, Presentation Coordinator,

Report Organizer, StateMap Code Creator, Language Guru

Jackson “Swag” Foley = Testing and Test Suite Management,

Exercising Uncommon Sense, Verification and Validation

Oren “DopeDopeDope@Dope.com” Finard = Team Mom, Python Guru,

Manager

Zuokon “AlreadyFixedYourProblem” Yu = Semantic Check Master,

Master of Knowing How The Entire Language Works, System

Architect

5.8 SOFTWARE DEVELOPMENT ENVIRONMENT USED (TOOLS AND LANGUAGES)

We used OCaml 4.02 to write the compiler, and compiled the

StateMap language into Python 2.7. Additional tools include the

use of Bash scripts for testing, Git for version control,

OCamllex for the Scanner, and OCamlyacc for the Parser. Also,

Makefiles.

5.9 PROJECT LOG

* Alexander_Peters Made Makefile get rid of all .py files

* Zuokun Yu Variadic output file

* Brian Yamamoto Finalized LRM uploaded, comments made for reg_ex

* Jackson Foley test_all formatting

* Alexander_Peters removed extra gcd and updated gcd

* Jackson Foley Merge branch 'master' into tests

|\

| * Zuokun Yu Fixed scoping issues

| * Alexander_Peters added a concurrency example to be used in the final

report

| * Alexander_Peters added gcd, and an example of gcd that throws an

exception for unknown reason

| * Alexander_Peters Added hello10.sm for report. First transition program,

prints Hello World ten times.

| * Brian Yamamoto Merge branch 'tests'

| |\

| * | Jackson Foley removes test

* | | Jackson Foley Merge branch 'tests' of

https://github.com/jacksonConrad/StateMap into tests

|\ \ \

| |/ /

|/| /

| |/

| * Brian Yamamoto project CYOA runs

| * Brian Yamamoto reg_ex_test accepts only (ab|c*)d*

| * Brian Yamamoto Merge branch 'master' of

https://github.com/jacksonConrad/StateMap into tests

| |\

* | \ Jackson Foley Merge branch 'master' of

https://github.com/jacksonConrad/StateMap into tests

|\ \ \

| |/ /

|/| /

| |/

| * Nero144 fixed input. Needed to use raw_input not input

* | Brian Yamamoto Added simple input test

* | Brian Yamamoto Merge branch 'master' into tests

|\ \

| |/

| * Zuokun Yu string == string no longer returns True

* | Brian Yamamoto Updates to CYOA

|/

* Brian Yamamoto no return statement test

* Brian Yamamoto Merge branch 'tests' of

https://github.com/jacksonConrad/StateMap into tests

|\

| * Jackson Foley Merge branch 'tests' of

https://github.com/jacksonConrad/StateMap into tests

| |\

| * | Jackson Foley adds empty print test, and makes it pass

| * | Zuokun Yu Strings aren't cast to ints anymore

| * | Nero144 Merge branch 'master' of

https://github.com/jacksonConrad/StateMap

| |\ \

| | * | Alexander_Peters fixed buugs in shift_reg

| * | | Nero144 created mad string stack rules to get strings of all kinds

into stacks from the command-line

* | | | Brian Yamamoto Fixed out files again and renamed to no_catch_all

| |_|/

|/| |

* | | Brian Yamamoto fixed out files

* | | Brian Yamamoto Missing return statements and multiple declarations in a

state tests

| |/

|/|

* | Jackson Foley boolean binops now return 1 or 0 instead of True or False

* | Zuokun Yu Changed permissions/Makefile so it can execute

* | Jackson Foley Merge branch 'master' of

https://github.com/jacksonConrad/StateMap

|\ \

| * \ Zuokun Yu Merge branch 'master' of

https://github.com/jacksonConrad/StateMap

| |\ \

| * | | Zuokun Yu Added string + string -> string

* | | | Jackson Foley merges ast_print into tests

|\ \ \ \

| * | | | Jackson Foley removes statemap.ml, replaces it with ast_print.ml.

appropriate changes in Makefile

* | | | | Jackson Foley Merge branch 'master' into tests

|\ \ \ \ \

| |/ / / /

|/| | / /

| | |/ /

| |/| |

| * | | Alexander_Peters Merge branch 'master' of

https://github.com/jacksonconrad/statemap

| |\ \ \

| | |/ /

| | * | Zuokun Yu More cleanup

| | * | Zuokun Yu Cleaning up code

| | |/

| * | Alexander_Peters modified counter.sm to count higher and added a new

(not yet working) source example of a shift register shift_reg.sm

| |/

* | Jackson Foley adds exception testing

* | Jackson Foley moar tests

|/

* Nero144 semantically check that only correctly called DFAs are allowed as

arguments for the concurrent()

* Nero144 added the ability to give stacks in at the command line

* Nero144 added stof fots stoi and input to semantic check. added all but

input to gen_python

* Nero144 enforces that concurrent only ever returns string values

* Nero144 merge commit

|\

| * Zuokun Yu main DFAs must return void. Fixed tests. int->void

* | Nero144 added self._next = None after a return statement to help prevent

an accidental infinite loop

|/

* Jackson Foley Merge branch 'code_gen' of

https://github.com/jacksonConrad/StateMap into code_gen

|\

| * Zuokun Yu Added new test and removed error from Makefile

* | Jackson Foley adds sleep() test and gen_python fixes

* | Jackson Foley fixes code gen for state() function. adds test for state()

|/

* Jackson Foley fixes concurrent test output. fixes args getting passed into

main dfa vs subdfa

* Nero144 fixed the scoping issue of name overshadowing by adding underscores

to dfa/node names and researved words

* Nero144 fixed naming overshadowing issues

* Zuokun Yu Modified contents of output files

* Nero144 some minor changes to gen_python. I actually forget what

* Zuokun Yu Added \n to end of files so colordiff doesn't complain

* Jackson Foley fixes test suite again

* Jackson Foley fixes indentation in test_all

* Jackson Foley fixes test suite output

* Zuokun Yu Removing log.txt

* Zuokun Yu Passing current test suite

* Jackson Foley adds all and test targets to Makefile

* Jackson Foley fixes merge conflicts with tests branch

|\

| * Jackson Foley adds arithmetic, basic_stack, dfa_args, and return_types

tests

| * Jackson Foley Merge branch 'master' into tests

| |\

| | * Brian Yamamoto Merge branch 'master' of

https://github.com/jacksonConrad/StateMap

| | |\

| | * | Brian Yamamoto Added LRM and sample CYOA code

| * | | Jackson Foley adds concurrent test and subdfa_call test

| * | | Jackson Foley improves test_all output, and now generates log.txt

file. adds void_return test

| * | | Jackson Foley Adds test script, test directory with output files.

* | | | Jackson Foley Removes .swp files...ORENgit add --allgit add --all

* | | | Jackson Foley Merge branch 'code_gen' of

https://github.com/jacksonConrad/StateMap into code_gen

|\ \ \ \

| |/ / /

|/| | |

| * | | Nero144 made a more complex example code, and logged a bunch more

issues in Notes

| * | | Nero144 fixed the issue with all locals being seen as dfa scope,

added push pop and peek and they work, and added state to the list of

predefined funcs/dfas

* | | | Jackson Foley adds output.py to .gitignore. moves wordcount.sm to

sample_programs directory

|/ / /

* | | Nero144 just some minor 4am adjustments

* | | Zuokun Yu Rehauled semantic_check

* | | Zuokun Yu Location based scoping

* | | Zuokun Yu Scoping

* | | Nero144 Merge branch 'code_gen' of

https://github.com/jacksonConrad/StateMap into code_gen

|\ \ \

| * | | Zuokun Yu Remove inf. loop in code_gen

| * | | Zuokun Yu More bugs in semantic_check. Correctly propagate envs

* | | | Nero144 fixing stuff with Zuokon

|/ / /

* | | Nero144 merged compiler

|\ \ \

| * | | Zuokun Yu Mutually exclusive return/transition

| * | | zeeKKR Delete output.py

| * | | zeeKKR Delete .compiler.ml.swp

* | | | Nero144 changed compiler stuffs

|/ / /

* | | Nero144 We got Hello World working (commits wont let me use exclemation

marks but imagine a ton of them)

* | | Jackson Foley fixes 10000 bugs in gen_python. Makefile lets us debug.

* | | Jackson Foley Merge branch 'master' into code_gen

|\ \ \

| | |/

| |/|

| * | Alexander_Peters Merge branch 'master' of

https://github.com/jacksonconrad/statemap

| |\ \

| * | | Alexander_Peters commting changes to source code

* | | | Jackson Foley Merge branch 'master' into code_gen

|\ \ \ \

| | |/ /

| |/| |

| * | | Jackson Foley Merge branch 'ast'.

| |\ \ \

| | |/ /

| |/| |

| | * | Jackson Foley removes all occurences of ExprAssign. Assignments are

explicitly stmts

| * | | Alexander_Peters added new Hello World source code, and updated other

source code

| * | | Alexander_Peters removed unary operators INC and DEC

| |/ /

* | | Jackson Foley Merge branch 'code_gen' of

https://github.com/jacksonConrad/StateMap into code_gen

|\ \ \

| * | | Nero144 wrote gen_node_body

| * | | Nero144 some mucking with the code_gen

* | | | Jackson Foley Merge branch 'code_gen' of

https://github.com/jacksonConrad/StateMap into code_gen

|\ \ \ \

| |/ / /

| * | | Nero144 Merge branch 'master' into code_gen

| |\ \ \

| | |/ /

| * | | Nero144 adds sample programs

* | | | Jackson Foley Merge branch 'code_gen' of

https://github.com/jacksonConrad/StateMap into code_gen

|\ \ \ \

| |/ / /

| * | | Nero144 worked on the callDfa and concurrent dfas with jackson

* | | | Jackson Foley Merge branch 'master' into code_gen

|\ \ \ \

| |/ / /

|/| / /

| |/ /

| * | Zuokun Yu More holistic semantic check

* | | Nero144 just some more code gen messing around

* | | Nero144 did some work on the code gen, but it's kind of a mess

* | | Nero144 better way to make dfa calls

* | | Nero144 changed the python template

* | | Jackson Foley starts code gen. fixes program def in sast. adds

hypothetical python representation of our code.

* | | Jackson Foley adds compiler, starts gen_python based off Slang

|/ /

* | Zuokun Yu Actually got rid of Doubles

* | Alexander_Peters Fixed a bug with assignment statement in parser.mly

* | Alexander_Peters Added the ability to assign a value to a variable

outside of a vdecl

|/

* Zuokun Yu semantic_check compiles

* Zuokun Yu Double to float promotion. sast. Making semantic_check compile

* Zuokun Yu More functional semantic_check/add sast

* Nero144 Added dfa as a variable type for the concurrent function to take

dfa's as arguments

* Zuokun Yu Parser properly accepts <> notation for stacks and they're

properly printed in the AST

* Zuokun Yu added void in front of main. Made concurrent a function to match

scanner/parser. Changed & to &&.

* Zuokun Yu Removed main token from scanner. Parser recognizes stack types

* Alexander_Peters Merge branch 'master' of

https://github.com/jacksonconrad/statemap

|\

| * Nero144 added the built-in functions String state(String dfa), Void

print(String str), Void sleep(Int ms), String itos(Int int) to the semantic

check

* | Alexander_Peters edited counter.sm to reflect changes from 12-3 meeting

* | Alexander_Peters Finished counter.sm

* | Alexander_Peters added a start to a new sample program, counter.sm

|/

* Jackson Foley creates sample program directory. adds statemap executable

to .gitignore

* Jackson Foley adds Makefile to compile everything

* Jackson Foley adds string_of_* functions for printing the AST

* Jackson Foley adds printing functions to ast.ml. makefile changed from

ast.mli to ast.ml.

* Jackson Foley Fixes push pop peek parser errors

* Jackson Foley comments out recklessly added lines. adds new scanner tokens

to the top of parser.mly

* Jackson Foley resolves merge conflicts merging master into sast branch

|\

| * Jackson Foley Scanner, Parser, Ast compilesgit add .git add .git add .

| * Jackson Foley removes 'main' from parser, fills in brackets in parser,

adds functionality to ast

* | Nero144 first round semantic check

* | zeeKKR semantic_check v2

* | zeeKKR Added semantic_Check

|/

* Jackson Foley Merge branch 'ast'

|\

| * Alexander_Peters Added first bit of source code wordcount.sm

* | Jackson Foley adds basic Makefile

* | Jackson Foley updates .gitignore

|/

* Jackson Foley merges ast branch into parser

|\

| * zeeKKR Actually add ast.

| * zeeKKR Added ast. Changed parser/scanner to accept double. Simplified

stmt in parser.

* | Jackson Foley removes comment

|/

* Jackson Foley adds statement and node production to the parser. no

shift/reduce errors.

* Jackson Foley fixes quote error in scanner

* Jackson Foley removes reduction rules. no shift/reduce errors here

* Jackson Foley removes superfluous methods from parser

* Jackson Foley initial commit

* Jackson Foley Initial commit

6 ARCHITECTURAL DESIGN

6.1 A DIAGRAM OF THE MAJOR COMPONENTS OF THE TRANSLATOR

6.2 INTERFACES BETWEEN THE COMPONENTS.

6.2.1 Scanner

The scanner tokenizes StateMap’s source code.

6.2.2 Parser

The parser takes the tokens produced by the scanner and produces

an abstract syntax tree (AST).

6.2.3 Semantic Check

The semantic check takes an AST and semantically checks it. Some

untraditional conditions it checks include:

1) A DFA called main exists and its return type is void.

2) Every non-void DFA actually returns something.

3) Every DFA has a node called start.

4) Every node in a DFA either has a transition statement or

returns.

5) If a node doesn’t have a return, it must at least have an

unconditional transition statement.

It also checks traditional conditions such as the existence of a

variable within a specified scope or type consistencies for

assignments. The final output is a semantically checked AST.

6.2.4 Code Generation

The code gen takes the semantic checked program, and translates

it into python. It turns a DFA into a class, and the states

into class methods. It also generates a fair amount of pre-

established pure python code that is used to do built-in

language functions (wrapped as DFAs), as well as set up the

architecture for the main function to run itself (all other

functions are run/managed in python by the DFA that calls them).

6.3 IMPLEMENTATION RESPONSIBILITIES

Even though we all worked on coding the compiler, there were

certain parts that had distinct ownership.

Jackson wrote the test suite.

Brian and Alex wrote the overwhelming majority of the sample

programs.

Zuokun and Oren were responsible for debugging.

7 TEST PLAN

Our test suite consists of three components – unit tests, exception

tests, and AST printing. The unit tests test the smallest building

blocks of our language, providing us assurance that we aren’t breaking

anything as we add additional functionality. The exception tests test

that the semantic check catches things we think shouldn’t be allowed

in our language, and forces us to create verbose error messages when

an exception is thrown.

The unit tests compile and run the test programs, saving the output of

each to a *.output file. It then compares this output the expected

output file. The bare test results are printed to STDIN, while more

verbose error messages are appended to a log.txt file.

The exception tests attempt to compile a malformed program, save the

compiler output to a *.output file, and uses ‘egrep’ to verify that

the compiler output contains an appropriate error message.

7.1 PRINTING THE AST

The first form of testing we developed before could generate Python

code was a script to take in a program and print out the corresponding

AST. This can be compiled and run by typing ‘make ast_print’ and then

‘./ast_print < ./sample_programs/counter.sm’.

7.2 UNIT TESTS

File Functionality Tested

Arithmetic.sm Integer arithmetic

Basic_stack.sm Pop, push, and peek stack

functions

Concurrent.sm Built-in concurrent() function

Dfa_args.sm Ability to pass arguments to

sub-dfas

Hello.sm The simplest program, printing

“Hello World!”

Keywords_as_states.sm Tests that our built-in

functions don’t pollute the

namespace of states

Logic_ops.sm Boolean logic operators

Return_types.sm Verifies a sub-dfa can return

ints, floats, strings, and void

Sleep.sm Built-in sleep() function

Subdfa_as_function_param.sm Tests that calls to sub_dfa’s

are ultimately evaluated as

expressions and can be passed as

a parameter to another sub_dfa

Type_conversions.sm Built in functions for

converting between strings and

other types

Concurrent_return_and_self_lo

op.sm

Popping things off the stack

that concurrent() returns

Empty_print.sm Checks that an empty print

statement prints a newline

Subdfa_call.sm Checks that a subdfa can be

called as a function

Subdfa_state.sm Checks that the state() function

can be called from one subdfa to

check the state that another

subdfa is in

Void_return.sm Checks that the void return type

works properly

7.3 EXCEPTION TESTS

File Functionality Tested

Assign_void.sm Ensures you can’t assign a

function that returns “void”

to a variable.

Duplicate_dfa.sm Verifies you can’t declare

two sub-dfas with the same

name

No_decl.sm Ensures variable declarations

must contain the type

No_start.sm Ensures a DFA must have a

state named ‘start’

Wrong_decl_order.sm Ensures error is thrown if

you call a DFA that isn’t

declared above the one you

call it from

Multi_decl.sm Ensures error is thrown if

you declare a variable more

than once. (i.e. int x = 1;

int x = 2;)

No_catch_all_main.sm Ensures that you must have a

* transition or a return

statement in a state in the

main DFA

No_catch_all_subDFA.sm Ensures that a state in a

subDFA must have a *

transition or a return

statement.

No_return.sm Ensures a subDFA must contain

a return statement

7.4 AUTOMATION

These automated test scripts were used for regression testing. To run

all the tests, in the StateMap directory, run:

 make test

Note: you may have to install colordiff. If you are on a Mac and use

homebrew, run:

 brew install colordiff

Alternatively, open up unit_tests.sh and exception_tests.sh and change

each instance of ‘colordiff’ to ‘diff’.

Unit testing:

This script compiles and runs each test program, saves the output to a

file, and compares the output to the expected output in the

corresponding *.out file.

It prints the test results to the screen, and saves more verbose

output to a log.txt file.

#!/bin/bash

#script used for reg testing

COMPILER="./compiler"

COMPFILE='output.py'

LOGFILE='log.txt'

rm -f "$LOGFILE" &>/dev/null

for TESTFILE in ./tests/*.sm;

do

 echo " TESTING $TESTFILE" | tee -a "$LOGFILE"

 LEN=$((${#TESTFILE}-3))

 OUTFILENAME="${TESTFILE:0:$LEN}.output"

 TESTFILENAME="${TESTFILE:0:$LEN}.out"

 echo "Compiling ... " >> "$LOGFILE"

 ("$COMPILER" < "$TESTFILE") 2>> "$LOGFILE"

 # if compilation succeeds, run output.py.

 if (find output.py &>/dev/null)

 then

 echo "Python runtime output:" >> "$LOGFILE"

 (python "$COMPFILE" > "$OUTFILENAME") 2>> "$LOGFILE"

 echo "Diff:\n" >> "$LOGFILE"

 touch "$OUTFILENAME"

 if (diff "$OUTFILENAME" "$TESTFILENAME" >/dev/null)

 then

 echo 'OK!' | tee -a "$LOGFILE"

 else

 colordiff -y "$OUTFILENAME" "$TESTFILENAME"

 echo "BAD!" | tee -a "$LOGFILE"

 fi

 else

 echo "BAD!\nCompilation of $TESTFILE FAILED" | tee -a

"$LOGFILE"

 fi

 touch output.py

 rm '$COMPFILE' "$OUTFILENAME" &>/dev/null

done

exit 0

Exception testing:

This script compiles each test program, and saves the compiler output

to a file. It then uses ‘egrep’ to check that the phrase in the

corresponding *.out file appears in the compiler output. It prints

the test results to the screen, and saves more verbose output to a

log_fail.txt file.

#!/bin/bash

#script used for reg testing

COMPILER="./compiler"

COMPFILE='output.py'

LOGFILE='log_fail.txt'

rm -f "$LOGFILE" &>/dev/null

for TESTFILE in ./tests/to_fail/*.sm;

do

 echo " TESTING $TESTFILE" | tee -a "$LOGFILE"

 LEN=$((${#TESTFILE}-3))

 OUTFILENAME="${TESTFILE:0:$LEN}.output"

 TESTFILENAME="${TESTFILE:0:$LEN}.out"

 echo "Compiling ... " >> "$LOGFILE"

 ("$COMPILER" < "$TESTFILE") 2> "$OUTFILENAME"

 if (egrep -f "$TESTFILENAME" "$OUTFILENAME" >> "$LOGFILE" 2>&1)

 then

 echo "OK!"

 else

 echo "BAD!"

 colordiff -y "$OUTFILENAME" "$TESTFILENAME" 2>> "$LOGFILE"

 fi

 rm '$COMPFILE' "$OUTFILENAME" &>/dev/null

done

exit 0

7.5 SAMPLE SOURCE LANGUAGE PROGRAM AND TARGET LANGUAGE PROGRAM

StateMap to Python

Counter simulation:

The following example simulates a counter using 2 T flip-flops:

//Synchronous Counter with 3 T-Flip-Flops (0 to 7) and Display

// Prints a number to standard out based on

// states of the TFFs

void DFA display()

{

 start

 {

 print0 <- (state("clock") == "rising"

 && state("TFF1") == "high"

 && state("TFF2") == "high"

 && state("TFF3") ==

"high");

 print1 <- (state("clock") == "rising"

 && state("TFF1") == "start"

 && state("TFF2") == "start"

 && state("TFF3") ==

"start");

 print2 <- (state("clock") == "rising"

 && state("TFF1") == "high"

 && state("TFF2") == "start"

 && state("TFF3") ==

"start");

 print3 <- (state("clock") == "rising"

 && state("TFF1") == "start"

 && state("TFF2") == "high"

 && state("TFF3") ==

"start");

 print4 <- (state("clock") == "rising"

 && state("TFF1") == "high"

 && state("TFF2") == "high"

 && state("TFF3") ==

"start");

 print5 <- (state("clock") == "rising"

 && state("TFF1") == "start"

 && state("TFF2") == "start"

 && state("TFF3") ==

"high");

 print6 <- (state("clock") == "rising"

 && state("TFF1") == "high"

 && state("TFF2") == "start"

 && state("TFF3") ==

"high");

 print7 <- (state("clock") == "rising"

 && state("TFF1") == "start"

 && state("TFF2") == "high"

 && state("TFF3") ==

"high");

 start <- *;

 }

 print0

 {

 print("0");

 start <- *;

 }

 print1

 {

 print("1");

 start <- *;

 }

 print2

 {

 print("2");

 start <- *;

 }

 print3

 {

 print("3");

 start <- *;

 }

 print4

 {

 print("4");

 start <- *;

 }

 print5

 {

 print("5");

 start <- *;

 }

 print6

 {

 print("6");

 start <- *;

 }

 print7

 {

 print("7");

 start <- *;

 }

}

// DFA to represent a clock

// halfPeriod: integer to represent period/2 in ms

void DFA clock(int halfPeriod)

{

 // Start == low

 // Wait halfPeriod ms, then toggle

 start

 {

 sleep(halfPeriod);

 rising <- *;

 }

 // state that triggers a toggle for the TFFs

 rising

 {

 high <- *;

 }

 high

 {

 sleep(halfPeriod);

 start <- *;

 }

}

// 1st T-FlipFlop in counter

// Toggles on every rising clock

void DFA TFF1()

{

 // low output

 start

 {

 high <- (state("clock") == "rising");

 start <- *;

 }

 // high output

 high

 {

 start <- (state("clock") == "rising");

 high <- *;

 }

}

// 2nd T-FlipFlop in counter

// Toggles on every clock only if TFF1 is high

void DFA TFF2()

{

 // low output

 start

 {

 high <-(state("clock") == "rising"

 && state("TFF1") == "high");

 start <- *;

 }

 // high output

 high

 {

 start <-(state("clock") == "rising"

 && state("TFF1") == "high");

 high <- *;

 }

}

// 3rd T-FlipFlop in counter

// Toggles on every clock only if TFF1 AND TTF2 is high

void DFA TFF3()

{

 // low output

 start

 {

 high <-(state("clock") == "rising"

 && state("TFF1") == "high"

 && state("TFF2") == "high");

 start <- *;

 }

 // high output

 high

 {

 start <-(state("clock") == "rising"

 && state("TFF1") == "high"

 && state("TFF2") == "high");

 high <- *;

 }

}

void DFA main()

{

 int halfPeriod = 400;

 start

 {

 print("0");

 concurrent(clock(halfPeriod), TFF1(), TFF2(), TFF3(),

display());

 return;

 }

}

Corresponding Python Code:

#########BEGIN AUTOGENERATED FUNCTIONS ###########

from time import sleep

import sys

_dfa_Dict = dict()

def _node_start():

 #do nothing: just exist as a function for the dfas to initially

 #point to with `dfa._now` so that we can have correct formatting

in

 #state()

 return

def state(dfa):

 return _dfa_Dict[dfa]._now.__name__[6:]

def makeStack(stacktype,string_of_stack):

 if stacktype != str:

 return

map(stacktype,string_of_stack.replace('[','').replace(']','').split(',

'))

 else:

 if "'" not in string_of_stack and '"' not in string_of_stack:

 return map(stacktype, string_of_stack.split(','))

 elif ('"' not in string_of_stack or

 (string_of_stack.find("'") < string_of_stack.find('"') and

 string_of_stack.find("'") != -1)):

 startIndex = string_of_stack.find("'")

 endIndex = string_of_stack.find("'",startIndex+1)

 if endIndex == -1:

 print('RuntimeError:Invalidly formatted string stack')

 sys.exit(1)

 return [element for element in

 string_of_stack[:startIndex].split(',') +

 list(string_of_stack[startIndex+1:endIndex]) +

 makeStack(str,string_of_stack[endIndex+1:])

 if element != '']

 else:

 startIndex = string_of_stack.find('"')

 endIndex = string_of_stack.find('"',startIndex+1)

 if endIndex == -1:

 print('RuntimeError:Invalidly formatted string stack')

 sys.exit(1)

 return [element for element in

 string_of_stack[:startIndex].split(',') +

 [string_of_stack[startIndex+1:endIndex]] +

 makeStack(str,string_of_stack[endIndex+1:])

 if element != '']

def concurrent(*dfasNArgs):

 dfas = [dfa(dfasNArgs[i*2+1]) for i,dfa in

enumerate(dfasNArgs[::2])]

 finishedDfas = set()

 while len(set(dfas) - finishedDfas):

 for dfa in (set(dfas) - finishedDfas):

 dfa.__class__._now()

 for dfa in (set(dfas) - finishedDfas):

 dfa.__class__._now = dfa._next

 finishedDfas = set([dfa for dfa in dfas if dfa._returnVal is

not None])

 return [str(dfa._returnVal) for dfa in dfas]

def callDfa(dfaClass, *args):

 dfaInstance = dfaClass(args)

 while dfaInstance._returnVal is None:

 dfaClass._now()

 dfaClass._now = dfaInstance._next

 return dfaInstance._returnVal

class EOS:

 def __init__(self):

 return

 def __type__(self):

 return 'EOSType'

 def __str__(self):

 return 'EOS'

 def __eq__(self,other):

 return type(self) == type(other)

 def __ne__(self,other):

 return type(self) != type(other)

########END AUTOGENERATED FUNCTIONS ##############

########BEGIN DFA DEFINITIONS ##############

class _main:

 _now = _node_start

 def __init__(self,*args):

 try:

 pass

 except IndexError:

 print('RuntimeError:Too few arguments provided to dfa

"main"')

 sys.exit(1)

 self._returnVal = None

 _main._now = self._node_start

 self._next = None

 self.halfPeriod = 400

 while self._returnVal is None:

 _main._now()

 _main._now = self._next

 return

 def _node_start(self):

 print "0"

 concurrent(_clock, [self.halfPeriod], _TFF1, [], _TFF2, [],

_TFF3, [], _display, [])

 self._returnVal = 1

 self._next = None

_dfa_Dict["main"] = _main

class _TFF3:

 _now = _node_start

 def __init__(self,*args):

 self._returnVal = None

 _TFF3._now = self._node_start

 self._next = None

 return

 def _node_high(self):

 if(int(int(int(state("clock")=="rising") and

int(state("TFF1")=="high")) and int(state("TFF2")=="high"))):

 self._next = self._node_start

 return

 if(1):

 self._next = self._node_high

 return

 def _node_start(self):

 if(int(int(int(state("clock")=="rising") and

int(state("TFF1")=="high")) and int(state("TFF2")=="high"))):

 self._next = self._node_high

 return

 if(1):

 self._next = self._node_start

 return

_dfa_Dict["TFF3"] = _TFF3

class _TFF2:

 _now = _node_start

 def __init__(self,*args):

 self._returnVal = None

 _TFF2._now = self._node_start

 self._next = None

 return

 def _node_high(self):

 if(int(int(state("clock")=="rising") and

int(state("TFF1")=="high"))):

 self._next = self._node_start

 return

 if(1):

 self._next = self._node_high

 return

 def _node_start(self):

 if(int(int(state("clock")=="rising") and

int(state("TFF1")=="high"))):

 self._next = self._node_high

 return

 if(1):

 self._next = self._node_start

 return

_dfa_Dict["TFF2"] = _TFF2

class _TFF1:

 _now = _node_start

 def __init__(self,*args):

 self._returnVal = None

 _TFF1._now = self._node_start

 self._next = None

 return

 def _node_high(self):

 if(int(state("clock")=="rising")):

 self._next = self._node_start

 return

 if(1):

 self._next = self._node_high

 return

 def _node_start(self):

 if(int(state("clock")=="rising")):

 self._next = self._node_high

 return

 if(1):

 self._next = self._node_start

 return

_dfa_Dict["TFF1"] = _TFF1

class _clock:

 _now = _node_start

 def __init__(self,*args):

 self.halfPeriod= args[0][0]

 self._returnVal = None

 _clock._now = self._node_start

 self._next = None

 return

 def _node_high(self):

 sleep(self.halfPeriod*.001)

 if(1):

 self._next = self._node_start

 return

 def _node_rising(self):

 if(1):

 self._next = self._node_high

 return

 def _node_start(self):

 sleep(self.halfPeriod*.001)

 if(1):

 self._next = self._node_rising

 return

_dfa_Dict["clock"] = _clock

class _display:

 _now = _node_start

 def __init__(self,*args):

 self._returnVal = None

 _display._now = self._node_start

 self._next = None

 return

 def _node_print7(self):

 print "7"

 if(1):

 self._next = self._node_start

 return

 def _node_print6(self):

 print "6"

 if(1):

 self._next = self._node_start

 return

 def _node_print5(self):

 print "5"

 if(1):

 self._next = self._node_start

 return

 def _node_print4(self):

 print "4"

 if(1):

 self._next = self._node_start

 return

 def _node_print3(self):

 print "3"

 if(1):

 self._next = self._node_start

 return

 def _node_print2(self):

 print "2"

 if(1):

 self._next = self._node_start

 return

 def _node_print1(self):

 print "1"

 if(1):

 self._next = self._node_start

 return

 def _node_print0(self):

 print "0"

 if(1):

 self._next = self._node_start

 return

 def _node_start(self):

 if(int(int(int(int(state("clock")=="rising") and

int(state("TFF1")=="high")) and int(state("TFF2")=="high")) and

int(state("TFF3")=="high"))):

 self._next = self._node_print0

 return

 if(int(int(int(int(state("clock")=="rising") and

int(state("TFF1")=="start")) and int(state("TFF2")=="start")) and

int(state("TFF3")=="start"))):

 self._next = self._node_print1

 return

 if(int(int(int(int(state("clock")=="rising") and

int(state("TFF1")=="high")) and int(state("TFF2")=="start")) and

int(state("TFF3")=="start"))):

 self._next = self._node_print2

 return

 if(int(int(int(int(state("clock")=="rising") and

int(state("TFF1")=="start")) and int(state("TFF2")=="high")) and

int(state("TFF3")=="start"))):

 self._next = self._node_print3

 return

 if(int(int(int(int(state("clock")=="rising") and

int(state("TFF1")=="high")) and int(state("TFF2")=="high")) and

int(state("TFF3")=="start"))):

 self._next = self._node_print4

 return

 if(int(int(int(int(state("clock")=="rising") and

int(state("TFF1")=="start")) and int(state("TFF2")=="start")) and

int(state("TFF3")=="high"))):

 self._next = self._node_print5

 return

 if(int(int(int(int(state("clock")=="rising") and

int(state("TFF1")=="high")) and int(state("TFF2")=="start")) and

int(state("TFF3")=="high"))):

 self._next = self._node_print6

 return

 if(int(int(int(int(state("clock")=="rising") and

int(state("TFF1")=="start")) and int(state("TFF2")=="high")) and

int(state("TFF3")=="high"))):

 self._next = self._node_print7

 return

 if(1):

 self._next = self._node_start

 return

_dfa_Dict["display"] = _display

#######END DFA DEFINITIONS #############

if __name__ == '__main__':

 _main(sys.argv[1:] if len(sys.argv) else [])

8 LESSONS LEARNED

8.1 WHAT OREN FINARD LEARNED AND ADVICE FOR OTHER TEAMS

Big takeaway? Do whatever you have to do to get to code

generation. Things make sense when you start trying to generate

code.

Get good teammates, and get smart teammates. And start early,

and work consistently. It's really not that bad. Just don't

leave it all to the last second. But don't do that with

anything.

8.2 WHAT JACKSON FOLEY LEARNED AND ADVICE FOR OTHER TEAMS.

Testing catalyzes productivity — begin testing as soon as

possible. You can start as soon as you have a scanner. Always

git pull, and check out a new branch before you start working on

a new feature. Git stash is your best friend. Figuring out

OCAML will save you far more time than trying to copy the code

from previous projects and generalize it to your

language. Writing verbose error messages in the semantic check,

and figuring out how to use the OCAML debugger saves hours.

8.3 WHAT ALEXANDER PETERS LEARNED AND ADVICE FOR OTHER TEAMS.

This project really hit home the idea of creating something as a

group. I've worked on group projects in research and in lab

before, but never anything on this scale. With a project this

large, but also this detailed, it is so important to keep

constant communication between the group. Tools like group

emails, group meetings and git were essential for us in arriving

at the end result. This is different from projects I have worked

on before because usually they can be modular and the work can

be divided easily. While work delegation was also present here,

the idea that everyone could do their individual part and then

it all comes together at the end would be ridiculous with this

project. Everyone's progress was constantly dependent on the

progress of everyone else in the group, and because of that, I

learned how to understand and build upon other people's work in

a way I have never done before.

My advice to future teams would be to hold your LRM to very high

standards. It is written early on in the class for a very good

reason. The LRM represents a guide for what is and isn't allowed

in your language. The first draft should be agreed upon, written

and understood by the entire group. From this point on, it

should be followed to the tee. This will keep your group on the

same page as you move throughout the semester and multiple

portions of the project are being written simultaneously.

However, there is an interesting dichotomy here because the LRM

will absolutely change. Therefore, the LRM should be taken as

gospel up until the point where a change is needed. Then, this

change should be made in the master copy of the LRM immediately,

and the change should be communicated to the entire group

immediately. Following this advice will ensure that the "vision"

of your language is smooth across your entire group.

8.4 WHAT BRIAN YAMAMOTO LEARNED AND ADVICE FOR OTHER TEAMS.

Always find ways to contribute, even if it’s not code. Subdivide

tasks into pairs for maximum efficiency and time the weekly

group meetings to occur shortly before and shortly after the

weekly meetings with the TA to prepare questions and delegate

tasks immediately after.

Create a Facebook group for the project – notifications will be

swiftly communicated and you can even have some sort of version

control on files posted there. Rely on someone experienced with

Git to immediately create a repo and lay down ground rules on

merging; learn how to use branches. Keep a version log for the

LRM and have one person maintain it as soon as any changes are

made within the language (changes will happen).

Be friends with your group – feel comfortable with admitting a

lack of familiarity with certain sections of the project so that

other team members know to explain it. Really soon into the

semester the strengths and weaknesses of various members will be

apparent – don’t attempt to divide the tasks to enforce that

everyone contribute equally to a module.

This is the first project on which I really had to collaborate

with others – it is both an illuminating and essential

experience.

8.5 WHAT ZUOKUN YU LEARNED AND ADVICE FOR OTHER TEAMS.

What I learned:

1) Design work, on any scale, is difficult. As we were

clarifying our language, we thought of many possible solutions

for a particular problem. However, finding an optimal solution

is non-trivial because a great way to solve a particular problem

might not be best for the system as a whole. In other words, a

greedy approach to problem solving isn’t sufficient.

2) Programming in pairs is awesome. I was most productive when

working with someone else. Making choices was usually painless

and having different angles on a problem was valuable. We tried

working in larger groups as well (3+), but that wasn’t nearly as

effective. It was harder to come to a consensus and harder to

bring everyone on the same page.

Advice for other teams:

Test periodically, as parts of the compiler are written, on

actual programs. This is also great because it ensures syntactic

consistency early on. We had problems with artificial progress.

Since our code compiled, we thought we were done with the

various parts of the compiler. However, we ended up changing

many components at the end while squashing bugs.

9 APPENDIX

9.1 SCANNER CODE (SCANNER.MLL)

{ open Parser }

rule token =

 parse [' ' '\t' '\r' '\n'] { token lexbuf } (* Whitespace *)

| "/*" { comment lexbuf } (* Multi-line comment *)

| "//" { singleComment lexbuf } (* Single-line comments *)

| '(' { LPAREN }

| ')' { RPAREN }

| '{' { LBRACE }

| '}' { RBRACE }

| ';' { SEMI }

| ':' { COLON }

| ',' { COMMA }

| '.' { DOT }

| '+' { PLUS }

| '-' { MINUS }

| '*' { STAR }

| '/' { DIVIDE }

| '%' { MOD }

| '=' { ASSIGN }

| "==" { EQ }

| '!' { NOT }

| "!=" { NEQ }

| "&&" { AND }

| "||" { OR }

| '<' { LT }

| "<-" { TRANS }

| "<=" { LEQ }

| '>' { GT }

| ">=" { GEQ }

| "return" { RETURN }

| "int" { INT }

| "float" { FLOAT }

| "string" { STRING }

| "void" { VOID }

| "DFA" { DFA }

| "stack" { STACK }

| "pop" { POP }

| "peek" { PEEK }

| "push" { PUSH }

| "EOS" { EOS }

| ['0'-'9']+ as lxm { INT_LITERAL(int_of_string lxm) }

| ['a'-'z' 'A'-'Z']['a'-'z' 'A'-'Z' '0'-'9' '_']* as lxm { ID(lxm) }

| '"' (('\\' _ | [^'"'])* as lxm) '"'{ STRING_LITERAL(lxm) }

| ((['0'-'9']+('.'['0'-'9']*|('.'?['0'-'9']*'e'('+'|'-')?))['0'-'9']*)

|

(['0'-'9']*('.'['0'-'9']*|('.'?['0'-'9']*'e'('+'|'-')?))['0'-'9']+))

 as lxm { FLOAT_LITERAL(float_of_string lxm) }

| eof { EOF }

| _ as char { raise (Failure("illegal character " ^ Char.escaped

char)) }

and comment = parse

 "*/" { token lexbuf }

| _ { comment lexbuf }

and singleComment = parse

 '\n' { token lexbuf }

| _ { singleComment lexbuf }

9.2 PARSER CODE (PARSER.MLY)

%{ open Ast %}

%token SEMI LPAREN RPAREN LBRACE RBRACE COMMA RBRAC LBRAC COLON DOT

%token PLUS MINUS STAR DIVIDE ASSIGN STAR PUSH POP PEEK

%token NOT

%token EQ NEQ LT LEQ GT GEQ OR AND MOD

%token RETURN TRANS

%token DFA STACK

%token <int> INT_LITERAL

%token <string> STRING_LITERAL TYPE ID

%token <float> FLOAT_LITERAL

%token EOF EOS

%token MAIN

%token STRING INT VOID FLOAT

%right ASSIGN

%left OR

%left AND

%right NOT

%left EQ NEQ LT GT LEQ GEQ

%left PLUS MINUS

%left STAR DIVIDE MOD

%right UMINUS

%left PUSH POP PEEK

%nonassoc LPAREN RPAREN LBRAC RBRAC

%start program

%type <Ast.program> program

%%

program:

 {[]}

 | dfa_decl program { $1 :: $2 }

var_type:

 INT {Int}

 |STRING {String}

 |FLOAT {Float}

 |VOID {Void}

ret_type:

 var_type {Datatype($1)} |

 STACK LT var_type GT {Stacktype(Datatype($3))}

dfa_decl:

 ret_type DFA ID LPAREN formals_opt RPAREN LBRACE vdecl_list

node_list RBRACE

 { { return = $1;

 dfa_name = Ident($3);

 formals = $5;

 var_body = $8;

 node_body = $9}}

vdecl_list:

 {[]}

 | vdecl vdecl_list { $1 :: $2 }

vdecl:

 var_type ID SEMI { VarDecl(Datatype($1), Ident($2)) }

 | var_type ID ASSIGN expr SEMI { VarAssignDecl(Datatype($1),

Ident($2), ExprVal($4))}

 | STACK LT var_type GT ID SEMI { VarDecl(Stacktype(Datatype($3)),

Ident($5)) }

node_list:

 {[]}

 | node node_list { $1 :: $2 }

node:

 ID LBRACE stmt_list RBRACE { Node(Ident($1), $3) }

stmt_list:

 {[]}

 | stmt stmt_list { $1 :: $2 }

/* TODO: add method calls */

stmt:

 RETURN expr SEMI {Return($2)}

 | ID TRANS expr SEMI {Transition(Ident($1),$3)}

 | ID TRANS STAR SEMI {Transition(Ident($1),IntLit(1))} /*Star

evaluates to IntLit 1 because that's True in StateMap*/

 | vdecl {Declaration($1)}

 | ID ASSIGN expr SEMI { Assign(Ident($1), $3) } /*Assignment post-

declaration*/

 | expr SEMI {Expr($1)}

 | RETURN SEMI {Return(IntLit(1))}

formals_opt:

 {[]} /*nothing*/

 | formal_list { List.rev $1}

formal_list:

 param { [$1] }

 | formal_list COMMA param { $3 :: $1}

param:

 var_type ID { Formal(Datatype($1),Ident($2)) }

 | STACK LT var_type GT ID { Formal(Stacktype(Datatype($3)),

Ident($5)) }

expr_list:

 {[]}

 | expr COMMA expr_list { $1 :: $3 }

 | expr { [$1] }

expr:

 INT_LITERAL { IntLit($1) }

 | STRING_LITERAL { StringLit($1) }

 | FLOAT_LITERAL { FloatLit($1) }

 | ID { Variable(Ident($1)) }

 | EOS { EosLit }

 | expr PLUS expr { Binop($1, Add, $3) }

 | expr MINUS expr { Binop($1, Sub, $3) }

 | expr STAR expr { Binop($1, Mult, $3) }

 | expr DIVIDE expr { Binop($1, Div, $3) }

 | expr EQ expr { Binop($1, Equal, $3) }

 | expr NEQ expr { Binop($1, Neq, $3) }

 | expr LT expr { Binop($1, Lt, $3) }

 | expr LEQ expr { Binop($1, Leq, $3) }

 | expr GT expr { Binop($1, Gt,$3)}

 | expr GEQ expr { Binop($1, Geq, $3) }

 | expr MOD expr { Binop($1, Mod, $3) }

 | expr AND expr { Binop($1, And, $3) }

 | expr OR expr { Binop($1, Or , $3) }

 | MINUS expr %prec UMINUS { Unop(Neg, $2) }

 | NOT expr { Unop(Not, $2) }

 | LPAREN expr RPAREN { $2 }

 | ID DOT POP LPAREN RPAREN { Pop(Ident($1)) }

 | ID DOT PUSH LPAREN expr RPAREN { Push(Ident($1), $5) }

 | ID DOT PEEK LPAREN RPAREN { Peek(Ident($1)) }

 | ID LPAREN expr_list RPAREN {Call(Ident($1), $3) (*call a sub

dfa*)}

9.3 AST CODE (AST.ML)

type var_type = Int | String | Stack | Float | Void | Eos

type binop = Add | Sub | Mult | Div | Mod | Equal | Neq | And | Or| Lt

| Leq | Gt | Geq

type unop = Not | Neg

type ident =

 Ident of string

type datatype =

 Datatype of var_type |

 Stacktype of datatype|

 Eostype of var_type

type expr =

 IntLit of int |

 StringLit of string |

 FloatLit of float |

 EosLit |

 Variable of ident |

 Unop of unop * expr |

 Binop of expr * binop * expr |

 Call of ident * expr list |

 Push of ident * expr |

 Pop of ident |

 Peek of ident

type value =

 ExprVal of expr

and decl =

 VarDecl of datatype * ident |

 VarAssignDecl of datatype * ident * value

type stmt =

 Block of stmt list |

 Expr of expr |

 Declaration of decl |

 Assign of ident * expr |

 Transition of ident * expr |

 Return of expr

type formal =

 Formal of datatype * ident

type node =

 Node of ident * stmt list

type dfa_decl = {

 return : datatype;

 dfa_name: ident;

 formals : formal list;

 var_body : decl list;

 node_body : node list;

}

type program = dfa_decl list

(* "Pretty printed" version of the AST, meant to generate a MicroC

program

 from the AST. These functions are only for pretty-printing (the -a

flag)

 the AST and can be removed. *)

let string_of_ident = function

 Ident(l) -> l

let rec string_of_expr = function

 IntLit(l) -> string_of_int l

 | StringLit(l) -> l

 | FloatLit(l) -> string_of_float l

 | Variable(id) -> string_of_ident id

 | Unop(o, e) ->

 string_of_expr e ^ " " ^

 (match o with

 Not -> "!" |

 Neg -> "-")

 | Binop(e1, o, e2) ->

 string_of_expr e1 ^ " " ^

 (match o with

 Add -> "+" | Sub -> "-" | Mult -> "*" | Div -> "/"

 | Equal -> "==" | Neq -> "!=" | Mod -> "%"

 | Lt -> "<" | Leq -> "<=" | Gt -> ">" | Geq -> ">=" | And ->

"&&" | Or -> "||") ^ " " ^

 string_of_expr e2

 | Call(id, e_list) -> string_of_ident id ^ " " ^

 "(" ^ String.concat ", " (List.map string_of_expr e_list) ^ ")"

 | Push(id, e) -> string_of_ident id ^ " " ^ string_of_expr e

 | Pop(id) -> string_of_ident id

 | Peek(id) -> string_of_ident id

 | EosLit -> "EOSLIT"

let rec string_of_datatype = function

 Datatype(vartype) ->

 (match vartype with

 Int -> "int" | String -> "String" | Stack -> "Stack" | Float ->

"Float"

 | Void -> "Void" | Eos -> "Eos"

)

 | Stacktype(datatype) -> "Stack<" ^ string_of_datatype datatype ^

">"

 | Eostype(_) -> "EOS"

let string_of_decl = function

 VarDecl(dt, id) -> string_of_datatype dt ^ " " ^ string_of_ident

id

 | VarAssignDecl(dt,id,value) -> string_of_datatype dt ^ " " ^

string_of_ident id

 ^ " = " ^ (match value with

 ExprVal(e) -> string_of_expr e)

let rec string_of_stmt = function

 Block(stmts) ->

 "{\n" ^ String.concat "" (List.map string_of_stmt stmts) ^ "}\n"

 | Expr(expr) -> string_of_expr expr ^ ";\n";

 | Return(expr) -> "return " ^ string_of_expr expr ^ ";\n";

 | Assign(id, expr) -> string_of_ident id ^ " = " ^ string_of_expr

expr ^

 ";\n"

 | Declaration(decl) -> string_of_decl decl

 | Transition(id, expr) -> string_of_ident id ^ " <- (" ^

string_of_expr expr ^ ")"

let string_of_node = function

 Node(id, stmtlist) -> string_of_ident id ^ " {\n" ^

 String.concat "\n" (List.map string_of_stmt stmtlist) ^ "\n}"

let string_of_formal = function

 Formal(dt, id) -> string_of_datatype dt ^ " " ^ string_of_ident id

let string_of_dfadecl dfadecl =

 string_of_datatype dfadecl.return ^ " " ^ string_of_ident

dfadecl.dfa_name ^ "(" ^ String.concat ", " (List.map string_of_formal

dfadecl.formals) ^ ")\n{\n" ^

 String.concat "" (List.map string_of_decl dfadecl.var_body) ^

 String.concat "" (List.map string_of_node dfadecl.node_body) ^

 "}\n"

let string_of_program (program) =

 String.concat "" (List.map string_of_dfadecl program)

9.4 SEMANTIC CHECK CODE (SEMANTIC_CHECK.ML)

open Ast

open Sast

open Printf

exception Error of string

type symbol_table = {

 parent: symbol_table option;

 variables: (ident * datatype * value option) list;

}

type dfa_table = {

 dfas: (datatype * ident * formal list * sstmt list * snode list)

list

}

type translation_environment = {

 return_type: datatype;

 return_seen: bool;

 location: string; (*Where we are. DFA/Node*)

 node_scope: symbol_table;

 dfa_lookup: dfa_table; (*Table of all DFAs*)

}

let get_ident_name ident = match ident with

 Ident(n) -> n

let find_dfa (dfa_lookup: dfa_table) name =

 List.find (fun (_,s,_,_,_) -> s=name) dfa_lookup.dfas

let basic_math t1 t2 = match (t1, t2) with

 (Float, Int) -> (Float, true)

 | (Int, Float) -> (Float, true)

 | (Int, Int) -> (Int, true)

 | (Float, Float) -> (Int, true)

 | (String, String) -> (String, true)

 | (_,_) -> (Int, false)

let relational_logic t1 t2 = match (t1, t2) with

 (Int,Int) -> (Int,true)

 | (Float,Float) -> (Int,true)

 | (Int,Float) -> (Int,true)

 | (Float,Int) -> (Int,true)

 | (_,_) -> (Int, false)

let equal_logic t1 t2 = match(t1,t2) with

 (Int,Int) -> (Int,true)

 | (Float,Float) -> (Int,true)

 | (Int,Float) -> (Int,true)

 | (Float,Int) -> (Int,true)

 | (String,String) -> (Int,true)

 | (_,_) -> (Int,false)

let rec get_type_from_datatype = function

 Datatype(t)->t

 | Stacktype(ty) -> get_type_from_datatype ty

 | Eostype(t) -> Void

let get_binop_return_value op typ1 typ2 =

 let t1 = get_type_from_datatype typ1 and t2 = get_type_from_datatype

typ2 in

 let (t, valid) =

 match op with

 Add -> basic_math t1 t2

 | Sub -> basic_math t1 t2

 | Mult -> basic_math t1 t2

 | Div -> basic_math t1 t2

 | Mod -> basic_math t1 t2

 | Equal -> equal_logic t1 t2

 | Neq -> equal_logic t1 t2

 | Lt -> relational_logic t1 t2

 | Leq -> relational_logic t1 t2

 | Gt -> relational_logic t1 t2

 | Geq -> relational_logic t1 t2

 | And -> relational_logic t1 t2

 | Or -> relational_logic t1 t2

 in (Datatype(t), valid)

let get_name_type_from_formal env = function

 Formal(datatype,ident) -> (ident,datatype,None)

let update_variable env (name, datatype, value) =

 let ((_,_,_), location) =

 try (fun node_scope -> ((List.find (fun (s,_,_) -> s=name)

node_scope),1)) env.node_scope.variables

 with

 Not_found ->

 try

 let globalScope = match env.node_scope.parent with

 Some scope -> scope

 | None -> raise(Error("No Global Scope"))

 in

 (fun node_scope -> ((List.find (fun (s,_,_) -> s=name)

 node_scope),2)) globalScope.variables

 with Not_found -> raise(Error("Not Found exception in

update_variable"))in

 let new_envf =

 match location with

 1 -> (*Node variables*)

 let new_vars = List.map (fun (n, t, v) -> if(n=name) then

(name, datatype, value) else (n, t, v)) env.node_scope.variables in

 let new_sym_table = {parent = env.node_scope.parent;

variables = new_vars;} in

 let new_env = {env with node_scope = new_sym_table} in

 new_env

 | 2 -> (*DFA variables*)

 let globalScope = match env.node_scope.parent with

 Some scope -> scope

 | None -> raise(Error("No Global Scope2"))

 in

 let new_vars = List.map (fun (n, t, v) -> if(n=name) then

(name,

 datatype, value) else (n, t, v)) globalScope.variables in

 let new_dfa_sym_table = {parent = None; variables =

new_vars;} in

 let new_node_scope = {env.node_scope with parent =

Some(new_dfa_sym_table);} in

 let new_env = {env with node_scope = new_node_scope} in

 new_env

 | _ -> raise(Error("Undefined scope"))

 in new_envf

let find_variable env name =

 try List.find (fun(s,_,_) -> s = name) env.node_scope.variables

 with Not_found ->

 let globalScope = (match env.node_scope.parent with

 Some scope -> scope

 |None -> raise(Error("No Global Scope3")))

 in List.find(fun (s,_,_) -> s=name) globalScope.variables

let find_local_variable env name =

 List.find (fun (s,_,_) -> s=name) env.node_scope.variables

let rec check_expr env e = match e with

 IntLit(i) ->Datatype(Int)

 | FloatLit(f) -> Datatype(Float)

 | StringLit(s) -> Datatype(String)

 | EosLit -> Eostype(Eos)

 | Variable(v) ->

 let (_,s_type,_) = try find_variable env v with

 Not_found ->

 raise (Error("Undeclared Identifier ")) in s_type

 | Unop(u, e) ->

 let t = check_expr env e in

 (match u with

 _ -> if t = Datatype(Int) then t else if t =

Datatype(Float) then t

 else

 raise (Error("Cannot perform operation on

")))

 | Binop(e1, b, e2) ->

 let t1 = check_expr env e1 and t2 = check_expr env e2 in

 let (t, valid) = get_binop_return_value b t1 t2 in

 if valid || e1 = EosLit || e2 = EosLit

 then t else raise(Error("Incompatible types with binary

operator"));

 | Push(id, e) -> let (_,t1,_) = (find_variable env id) and t2 =

 check_expr env e

 in (if not (t1 = Stacktype(t2)) then (raise (Error("Mismatch in

types for

 assignment")))); t2

 | Pop(id) -> let (_,t1,_) = (find_variable env id) in t1

 | Peek(id) -> let (_,t1,_) = (find_variable env id) in t1

 | Call(Ident("concurrent"), e_list) ->

 let dfaArgsList = List.filter(function

 Call(_,_) -> false

 | _ -> true) e_list

 in

 if dfaArgsList != [] then raise(Error("Not all arguments

passed to

 concurrent are dfas")) else Stacktype(Datatype(String))

 | Call(id, e) -> try (let (dfa_ret, dfa_name, dfa_args,

dfa_var_body, dfa_node_body) = find_dfa

 env.dfa_lookup id in

 let el_tys = List.map (fun exp -> check_expr env exp)

e in

 let fn_tys = List.map (fun dfa_arg-> let (_,ty,_) =

 get_name_type_from_formal env dfa_arg in ty)

dfa_args in

 if (

 id = Ident("print") ||

 id = Ident("concurrent") ||

 id = Ident("itos") ||

 id = Ident("stoi") ||

 id = Ident("ftos") ||

 id = Ident("stof") ||

 id = Ident("sleep") ||

 id = Ident("input") ||

 id = Ident("state")

)

 then dfa_ret

 else

 if not (el_tys = fn_tys) then

 raise (Error("Mismatching types in function

call")) else

 dfa_ret)

 with Not_found ->

 raise (Error("Undeclared Function: " ^ get_ident_name

id))

let get_node_scope env name =

 if env.location = "dfa" then DFAScope

 else

 try (let (_,_,_) = List.find (fun (s,_,_) -> s=name)

env.node_scope.variables in NodeScope)

 with Not_found -> let globalScope = (match env.node_scope.parent

with

 Some scope -> scope

 |None -> raise(Error("No Global Scope4")))

 in try (let (_,_,_) = List.find(fun (s,_,_) -> s=name)

globalScope.variables in DFAScope)

 with Not_found -> raise(Error("get_node_scope is failing"))

let rec get_sexpr env e = match e with

 IntLit(i) -> SIntLit(i, Datatype(Int))

 | FloatLit(d) -> SFloatLit(d,Datatype(Float))

 | StringLit(s) -> SStringLit(s,Datatype(String))

 | Variable(id) -> SVariable(SIdent(id, get_node_scope env id),

check_expr env e)

 | Unop(u,ex) -> SUnop(u, get_sexpr env ex, check_expr env e)

 | Binop(e1,b,e2) -> SBinop(get_sexpr env e1,b, get_sexpr env

e2,check_expr env e)

 | Call(id, ex_list) -> let s_ex_list = List.map(fun exp ->

get_sexpr env

 exp) ex_list in SCall(SIdent(id,StateScope),s_ex_list,

check_expr env e)

 | Push(id, ex) -> SPush(SIdent(id, get_node_scope env id),

 get_sexpr env ex,check_expr env e)

 | Pop(id) -> SPop(SIdent(id, get_node_scope env id), check_expr

env e)

 | Peek(id) -> SPeek(SIdent(id, get_node_scope env id),

check_expr env e)

 | EosLit -> SEosLit

let get_sval env = function

 ExprVal(expr) -> SExprVal(get_sexpr env expr)

let get_datatype_from_val env = function

 ExprVal(expr) -> check_expr env expr

let get_sdecl env decl =

 let scope = match env.node_scope.parent with

 Some(_) -> NodeScope

 |None -> DFAScope

 in match decl with

 VarDecl(datatype, ident) -> (SVarDecl(datatype, SIdent(ident,

scope)), env)

 | VarAssignDecl(datatype, ident, value) ->

 let sv = get_sval env value in

 (SVarAssignDecl(datatype, SIdent(ident, scope), sv), env)

let get_name_type_from_decl decl = match decl with

 VarDecl(datatype, ident) -> (ident, datatype)

 | VarAssignDecl(datatype,ident,value) -> (ident,datatype)

let get_name_type_val_from_decl decl = match decl with

 VarDecl(datatype, ident) -> (ident, datatype, None)

 | VarAssignDecl(datatype, ident, value) -> (ident, datatype,

Some(value))

let get_name_type_from_var env = function

 VarDecl(datatype,ident) -> (ident,datatype,None)

 | VarAssignDecl(datatype,ident,value) ->

(ident,datatype,Some(value))

let add_to_var_table env name t v =

 let new_vars = (name,t, v)::env.node_scope.variables in

 let new_sym_table = {parent = env.node_scope.parent; variables =

new_vars;} in

 let new_env = {env with node_scope = new_sym_table} in

 new_env

let check_assignments type1 type2 = match (type1, type2) with

 (Int, Int) -> true

 |(Float, Float) -> true

 |(Int, Float) -> true

 |(Float, Int) -> true

 |(String, String) -> true

 |(_,_) -> false

let match_var_type env v t =

 let(name,ty,value) = find_variable env v in

 if(t<>ty) then false else true

let check_final_env env =

 (if(false = env.return_seen && env.return_type <> Datatype(Void))

then

 raise (Error("Missing Return Statement")));

 true

(* Default Table and Environment Initializations *)

let empty_table_initialization = {parent=None; variables =[];}

let empty_dfa_table_initialization = {

 dfas=[

 (*The state() function to get states of concurrently running

dfas*)

 (Datatype(String), Ident("state"),

 [Formal(Datatype(String),Ident("dfa"))],[], []);

 (*The built-in print function (only prints strings)*)

 (Datatype(Void), Ident("print"),

 [Formal(Datatype(String),Ident("str"))],[], []);

 (*The built-in sleep function*)

 (Datatype(Void), Ident("sleep"),

[Formal(Datatype(Int),Ident("ms"))],[],

 []);

 (*The built-in int-to-string conversion function*)

 (Datatype(String), Ident("itos"),

 [Formal(Datatype(Int),Ident("int"))],[], []);

 (*The built-in string-to-int conversion function*)

 (Datatype(Int), Ident("stoi"),

 [Formal(Datatype(String),Ident("str"))],[],[]);

 (*The built-in float-to-string converstion function*)

 (Datatype(String), Ident("ftos"),

 [Formal(Datatype(Float),Ident("float"))],[],[]);

 (*The built-in string-to-float converstion function*)

 (Datatype(Float), Ident("stof"),

 [Formal(Datatype(String),Ident("str"))],[],[]);

 (*The built-in get-user-input function*)

 (Datatype(String), Ident("input"),[],[],[]);

 (*The built-in 'get state' function for concurrently running dfas

*)

 (Datatype(String), Ident("state"),

 [Formal(Datatype(String),Ident("dfa"))],[],[]);

 (*The built-in concurrent string*)

 (Stacktype(Datatype(String)), Ident("concurrent"), [] ,[], [])

(*how to

 check formals*)

]}

let empty_environment = {return_type = Datatype(Void); return_seen =

false;

 location="in_dfa"; node_scope = {empty_table_initialization with

parent =

 Some(empty_table_initialization)}; dfa_lookup =

empty_dfa_table_initialization}

let find_global_variable env name =

 let globalScope = match env.node_scope.parent with

 Some scope -> scope

 | None -> raise (Error("No global scope")) in

 try List.find (fun (s,_,_) -> s=name) globalScope.variables

 with Not_found -> raise (Error("error in find_global_variable"))

let rec check_stmt env stmt = match stmt with

 | Block(stmt_list) ->

 let new_env=env in

 let getter(env,acc) s =

 let (st, ne) = check_stmt env s in

 (ne, st::acc) in

 let (ls,st) = List.fold_left(fun e s ->

 getter e s) (new_env,[]) stmt_list in

 let revst = List.rev st in

 (SBlock(revst),ls)

 | Expr(e) ->

 let _ = check_expr env e in

 (SSExpr(get_sexpr env e),env)

 | Return(e) ->

 let type1=check_expr env e in

 if env.return_type <> Datatype(Void) && type1 <>

env.return_type then

 raise (Error("Incompatible Return Type"));

 let new_env = {env with return_seen=true} in

 (SReturn(get_sexpr env e), new_env)

 | Ast.Declaration(decl) ->

 let (name, ty) = get_name_type_from_decl decl in

 let ((_,dt,_),found) = try (fun f -> ((f env name),true))

find_local_variable with

 Not_found ->

 ((name,ty,None),false) in

 let ret = if(found=false) then

 match decl with

 VarDecl(_,_) ->

 let (sdecl,_) = get_sdecl env decl in

 let (n, t, v) = get_name_type_val_from_decl decl

in

 let new_env = add_to_var_table env n t v in

 (SDeclaration(sdecl), new_env)

 | VarAssignDecl(dt, id, value) ->

 let t1 = get_type_from_datatype(dt) and t2 =

get_type_from_datatype(get_datatype_from_val env value) in

 if(t1=t2) then

 let (sdecl,_) = get_sdecl env decl in

 let (n, t, v) = get_name_type_val_from_decl

decl in

 let new_env = add_to_var_table env n t v in

 (SDeclaration(sdecl), new_env)

 else raise (Error("Type mismatch"))

 else

 raise (Error("Multiple declarations")) in ret

 | Ast.Assign(ident, expr) ->

 let (_, dt, _) = try find_variable env ident with Not_found ->

raise (Error("Uninitialized variable")) in

 let t1 = get_type_from_datatype dt

 and t2 = get_type_from_datatype(check_expr env expr) in

 if(not(t1=t2)) then

 raise (Error("Mismatched type assignments"));

 let sexpr = get_sexpr env expr in

 let new_env = update_variable env

(ident,dt,Some((ExprVal(expr)))) in

 (SAssign(SIdent(ident, get_node_scope env ident), sexpr),

new_env)

 | Transition(idState,ex) ->

 let t=get_type_from_datatype(check_expr env ex) in

 if not(t=Int) then

 raise(Error("Improper Transition Expression Datatype"))

else

 (STransition(SIdent(idState, StateScope), get_sexpr env ex),

env)

let get_sstmt_list env stmt_list =

 List.fold_left (fun (sstmt_list,env) stmt ->

 let (sstmt, new_env) = check_stmt env stmt in

 (sstmt::sstmt_list, new_env)) ([],env) stmt_list

let get_svar_list env var_list =

 List.fold_left (fun (svar_list,env) var ->

 let stmt = match var with

 decl -> Ast.Declaration(var)

 in

 let (svar, new_env) = check_stmt env stmt in

 (svar::svar_list, new_env)) ([],env) var_list

let get_snode_body env node_list =

 List.fold_left (fun (snode_list, dfa_env) raw_node ->

 let node_sym_tab = {parent = Some(dfa_env.node_scope); variables

= [];} in

 let node_env = {dfa_env with node_scope = node_sym_tab;} in

 match raw_node with

 Node((Ident(name), node_stmt_list)) ->

 let transCatchAllList = List.filter(function

 Transition(_,IntLit(1)) -> true

 | _ -> false) node_stmt_list in

 let transList = List.filter(function

 Transition(_,_) -> true

 | _ -> false) node_stmt_list in

 let retList = List.filter (function

 Return(_) -> true

 | _ -> false) node_stmt_list in

 if retList != [] && transList != [] then

 raise(Error("Return statements and Transitions are

 mutually exclusive"))

 else

 let block =

 let node_block = Block(node_stmt_list) in

 let (snode_block, new_node_env) = check_stmt

node_env node_block in

 let new_dfa_node_scope = (match

new_node_env.node_scope.parent

 with

 Some(scope) -> scope

 | None-> raise(Error("Snode check returns no dfa

scope")))

 in

 let new_dfa_env = {dfa_env with node_scope =

 new_dfa_node_scope; return_seen =

new_node_env.return_seen} in

 (SNode(SIdent(Ident(name), NodeScope),

snode_block)::snode_list,

 new_dfa_env) in

 if retList == [] then

 if transCatchAllList != [] then

 block

 else raise(Error("No catch all"))

 else

 block

) ([],env) node_list

let add_dfa env sdfa_decl =

 let dfa_table = env.dfa_lookup in

 let old_dfas = dfa_table.dfas in

 match sdfa_decl with

 SDfa_Decl(sdfastr, datatype) ->

 let dfa_name = sdfastr.sdfaname in

 let dfa_type = get_type_from_datatype sdfastr.sreturn in

 let dfa_formals = sdfastr.sformals in

 let dfa_var_body = sdfastr.svar_body in

 let dfa_node_body = sdfastr.snode_body in

 let new_dfas = (Datatype(dfa_type), dfa_name, dfa_formals,

 dfa_var_body, dfa_node_body)::old_dfas in

 let new_dfa_lookup = {dfas = new_dfas} in

 let final_env = {env with dfa_lookup = new_dfa_lookup} in

 final_env

let check_for_start node_list =

 let allNodes = List.fold_left (fun (name_list) raw_node ->

 match raw_node with

 Node((Ident(name), node_stmt_list)) ->

 name::name_list) ([]) node_list

 in if List.mem "start" allNodes = false then raise(Error("No start

state in

 node"))

let transition_check node_list =

 let allNodes = List.fold_left (fun (name_list) raw_node ->

 match raw_node with

 Node((Ident(name), node_stmt_list)) ->

 name::name_list) ([]) node_list

 in let statements = List.map (fun raw_node ->

 match raw_node with

 Node((Ident(name), node_stmt_list)) ->

 List.map (fun x -> x) node_stmt_list) node_list

 in let flat = List.flatten statements

 in let states = List.fold_left (fun (states_list) stmt ->

 match stmt with

 Transition(Ident(id), ex) ->

 id::states_list

 | _ -> []) ([]) flat

 in List.map (fun id -> try (List.mem id allNodes) with Not_found ->

 raise(Error("Invalid state transition"))) states

let check_dfa env dfa_declaration =

 try(let (_,_,_,_,_) = find_dfa env.dfa_lookup

dfa_declaration.dfa_name in

 raise(Error("DFA already declared"))) with

 Not_found ->

 let dfaFormals = List.fold_left(fun a vs ->

(get_name_type_from_formal env vs)::a)[] dfa_declaration.formals in

 let dfa_env = {return_type = dfa_declaration.return; return_seen

= false;

 location = "dfa"; node_scope = {parent = None; variables =

dfaFormals;};

 dfa_lookup = env.dfa_lookup} in

 let _ = check_for_start dfa_declaration.node_body in

 let _ = transition_check dfa_declaration.node_body in

 let (global_var_decls, penultimate_env) = get_svar_list dfa_env

 dfa_declaration.var_body in

 let location_change_env = {penultimate_env with location =

"node"} in

 let (checked_node_body, final_env) = get_snode_body

location_change_env

 dfa_declaration.node_body in

 let _ =check_final_env final_env in

 let sdfadecl = ({sreturn = dfa_declaration.return; sdfaname =

 dfa_declaration.dfa_name; sformals =

dfa_declaration.formals; svar_body =

 global_var_decls; snode_body = checked_node_body}) in

 (SDfa_Decl(sdfadecl,dfa_declaration.return), env)

let initialize_dfas env dfa_list =

 let (typed_dfa,last_env) = List.fold_left

 (fun (sdfadecl_list,env) dfa-> let (sdfadecl, _) = check_dfa

env dfa in

 let final_env = add_dfa env

sdfadecl in

 (sdfadecl::sdfadecl_list,

final_env))

 ([],env) dfa_list in

(typed_dfa,last_env)

let check_main env str =

 let id = Ident(str) in

 let (dt, _, _, _, _) = try(find_dfa env.dfa_lookup id)

 with Not_found -> raise(Error("Need DFA called main")) in

 if dt <> Datatype(Void) then

 raise(Error("main DFA needs void return type"))

let check_program program =

 let dfas = program in

 let env = empty_environment in

 let (typed_dfas, new_env) = initialize_dfas env dfas in

 let (_) = check_main new_env "main" in

 Prog(typed_dfas)

9.5 SAST CODE (SAST.MLI)

open Ast

type scope =

 NodeScope

 | DFAScope

 | StateScope

type sident =

 SIdent of ident * scope

type sval =

 SExprVal of sexpr

and sexpr =

 SIntLit of int * datatype

 | SFloatLit of float * datatype

 | SStringLit of string * datatype

 | SVariable of sident * datatype

 | SUnop of unop * sexpr * datatype

 | SBinop of sexpr * binop * sexpr * datatype

 | SCall of sident * sexpr list * datatype

 | SPeek of sident * datatype

 | SPop of sident * datatype

 | SPush of sident * sexpr * datatype

 | SEosLit

type sdecl =

 SVarDecl of datatype * sident

 | SVarAssignDecl of datatype * sident * sval

type sstmt =

 SBlock of sstmt list

 | SSExpr of sexpr

 | SReturn of sexpr

 | SDeclaration of sdecl

 | SAssign of sident * sexpr

 | STransition of sident * sexpr

type snode =

 SNode of sident * sstmt

type sdfastr = {

 sreturn: datatype;

 sdfaname : ident;

 sformals : formal list;

 svar_body : sstmt list;

 snode_body: snode list;

}

type sdfa_decl =

 SDfa_Decl of sdfastr * datatype

type sprogram =

 Prog of sdfa_decl list

9.6 CODE GENERATOR CODE (GEN_PYTHON.ML)

open Ast

open Sast

open Printf

exception Error of string

let py_start =

"#########BEGIN AUTOGENERATED FUNCTIONS ###########

from time import sleep

import sys

_dfa_Dict = dict()

def _node_start():

 #do nothing: just exist as a function for the dfas to initially

 #point to with `dfa._now` so that we can have correct formatting

in

 #state()

 return

def state(dfa):

 return _dfa_Dict[dfa]._now.__name__[6:]

def makeStack(stacktype,string_of_stack):

 if stacktype != str:

 return

map(stacktype,string_of_stack.replace('[','').replace(']','').split(',

'))

 else:

 if \"'\" not in string_of_stack and '\"' not in

string_of_stack:

 return map(stacktype, string_of_stack.split(','))

 elif ('\"' not in string_of_stack or

 (string_of_stack.find(\"'\") < string_of_stack.find('\"')

and

 string_of_stack.find(\"'\") != -1)):

 startIndex = string_of_stack.find(\"'\")

 endIndex = string_of_stack.find(\"'\",startIndex+1)

 if endIndex == -1:

 print('RuntimeError:Invalidly formatted string stack')

 sys.exit(1)

 return [element for element in

 string_of_stack[:startIndex].split(',') +

 list(string_of_stack[startIndex+1:endIndex]) +

 makeStack(str,string_of_stack[endIndex+1:])

 if element != '']

 else:

 startIndex = string_of_stack.find('\"')

 endIndex = string_of_stack.find('\"',startIndex+1)

 if endIndex == -1:

 print('RuntimeError:Invalidly formatted string stack')

 sys.exit(1)

 return [element for element in

 string_of_stack[:startIndex].split(',') +

 [string_of_stack[startIndex+1:endIndex]] +

 makeStack(str,string_of_stack[endIndex+1:])

 if element != '']

def concurrent(*dfasNArgs):

 dfas = [dfa(dfasNArgs[i*2+1]) for i,dfa in

enumerate(dfasNArgs[::2])]

 finishedDfas = set()

 while len(set(dfas) - finishedDfas):

 for dfa in (set(dfas) - finishedDfas):

 dfa.__class__._now()

 for dfa in (set(dfas) - finishedDfas):

 dfa.__class__._now = dfa._next

 finishedDfas = set([dfa for dfa in dfas if dfa._returnVal is

not None])

 return [str(dfa._returnVal) for dfa in dfas]

def callDfa(dfaClass, *args):

 dfaInstance = dfaClass(args)

 while dfaInstance._returnVal is None:

 dfaClass._now()

 dfaClass._now = dfaInstance._next

 return dfaInstance._returnVal

class EOS:

 def __init__(self):

 return

 def __type__(self):

 return 'EOSType'

 def __str__(self):

 return 'EOS'

 def __eq__(self,other):

 return type(self) == type(other)

 def __ne__(self,other):

 return type(self) != type(other)

########END AUTOGENERATED FUNCTIONS ##############

########BEGIN DFA DEFINITIONS ##############

"

let py_end =

"

#######END DFA DEFINITIONS #############

if __name__ == '__main__':

 _main(sys.argv[1:] if len(sys.argv) else [])

"

let print = "print"

let def = "def"

let return = "return"

let gen_id = function

 Ident(id) -> id

let gen_sid = function

 SIdent(id,dt) -> id

let rec gen_tabs n = match n with

 0 -> ""

 |1 -> "\t"

 | _ -> "\t"^gen_tabs (n-1)

let get_sident_name = function

 SIdent(id,scope) -> match scope with

 NodeScope -> "" ^ gen_id id

 |DFAScope -> "self." ^ gen_id id

 |StateScope -> "" ^ gen_id id

let gen_unop = function

 Neg -> "-"

| Not -> "not "

let gen_binop = function

 Add -> "+"

| Sub -> "-"

| Mult -> "*"

| Div -> "/"

| Equal -> "=="

| Neq -> "!="

| Lt -> "<"

| Leq -> "<="

| Gt -> ">"

| Geq -> ">="

| Mod -> "%"

| And -> " and "

| Or -> " or "

let gen_var_type = function

 Int -> "int"

 |Float -> "float"

 |String -> "str"

 |Eos -> "type(EOS())"

 |Void -> "Void"

 |Stack -> "Stack"

let gen_formal formal = match formal with

 Formal(datatype, id) -> gen_id id

let rec gen_sexpr sexpr = match sexpr with

 SIntLit(i, d) -> string_of_int i

| SFloatLit(f, d) -> string_of_float f

| SStringLit(s, d) -> "\"" ^ s ^ "\""

| SVariable(sident, d) -> get_sident_name sident

| SUnop(unop, sexpr, d) -> gen_unop unop ^ "(" ^ gen_sexpr sexpr ^ ")"

| SBinop(sexpr1, binop, sexpr2, d) ->

 (match d with

 Datatype(String) ->

 (match binop with

 Add -> "(" ^ gen_sexpr sexpr1 ^ gen_binop binop ^ gen_sexpr

sexpr2

 ^ ")"

 | _ -> "int(" ^ gen_sexpr sexpr1 ^ gen_binop binop ^ gen_sexpr

sexpr2 ^ ")")

 | _ -> "int(" ^ gen_sexpr sexpr1 ^ gen_binop binop ^ gen_sexpr

sexpr2 ^ ")")

| SPeek(sident,dt) -> let stackName = get_sident_name sident in

 "(" ^ stackName ^ "[0] if len(" ^ stackName ^") else EOS())"

| SPop(sident,dt) -> let stackName = get_sident_name sident in

 "(" ^ stackName ^ ".pop(0) if len(" ^ stackName ^ ") else EOS())"

| SPush(sident,sexpr,dt) -> let stackName = get_sident_name sident in

 stackName ^ ".insert(0," ^ gen_sexpr sexpr ^ ")"

| SEosLit -> "EOS()"

| SCall(sident, sexpr_list, d) -> match gen_id (gen_sid sident) with

 "print" -> "print " ^ gen_sexpr_list sexpr_list

 | "state" -> "state(" ^ gen_sexpr_list sexpr_list ^ ")"

 | "sleep" -> "sleep(" ^ gen_sexpr_list sexpr_list ^ "*.001)"

 | "itos" -> "str(" ^ gen_sexpr_list sexpr_list ^ ")"

 | "ftos" -> "str(" ^ gen_sexpr_list sexpr_list ^ ")"

 | "stof" -> "float(" ^ gen_sexpr_list sexpr_list ^ ")"

 | "stoi" -> "int(" ^ gen_sexpr_list sexpr_list ^ ")"

 | "input" -> "raw_input(" ^ gen_sexpr_list sexpr_list ^ ")"

 | "concurrent" -> "concurrent(" ^ gen_concurrency_list sexpr_list

^")"

 | _ -> let dfaname = get_sident_name sident in

 "callDfa(_" ^ dfaname ^ "," ^ gen_sexpr_list sexpr_list ^ ")"

and gen_sstmt sstmt tabs = match sstmt with

 SBlock(sstmt_list) -> gen_sstmt_list sstmt_list tabs

| SSExpr(sexpr) -> gen_tabs tabs ^ gen_sexpr sexpr ^ "\n"

| SReturn(sexpr) -> gen_tabs tabs ^ "self._returnVal = " ^ gen_sexpr

sexpr ^ "\n" ^

 gen_tabs tabs ^ "self._next = None\n"

| SDeclaration(sdecl) -> (match sdecl with

 SVarDecl(dt,sident) -> (match dt with

 Stacktype(_) -> gen_tabs tabs ^ get_sident_name sident ^ "=

list()\n"

 |Datatype(_) -> gen_tabs tabs ^ get_sident_name sident ^ "=

None\n"

 |Eostype(_) -> "type(EOS())")

 |SVarAssignDecl(dt,sident,SExprVal(sval)) -> gen_tabs tabs ^

 get_sident_name sident ^ " = " ^ gen_sexpr

sval ^ "\n")

| SAssign(sident, sexpr) -> gen_tabs tabs ^ get_sident_name sident ^ "

= " ^

 gen_sexpr sexpr ^ "\n"

| STransition(sident, sexpr) -> gen_tabs tabs ^ "if(" ^ gen_sexpr

sexpr ^ "):\n" ^

 gen_tabs (tabs+1) ^ "self._next = self._node_" ^ get_sident_name

sident ^ "\n" ^

 gen_tabs (tabs+1) ^ "return\n"

and gen_sdecl decl = match decl with

 SVarDecl(datatype, sident) -> "# Variable declared without

assignment: " ^ get_sident_name sident ^ "\n"

| SVarAssignDecl(datatype, sident, value) -> get_sident_name sident ^

" = " ^ gen_svalue value ^ "\n"

and gen_svalue value = match value with

 SExprVal(sexpr) -> gen_sexpr sexpr

and gen_formal_list formal_list = match formal_list with

 [] -> ""

| h::[] -> gen_formal h

| h::t -> gen_formal h ^ ", " ^ gen_formal_list t

and gen_sstmt_list sstmt_list tabs = match sstmt_list with

 [] -> ""

| h::[] -> gen_sstmt h tabs

| h::t -> gen_sstmt h tabs ^ gen_sstmt_list t tabs

and gen_sexpr_list sexpr_list = match sexpr_list with

 [] -> ""

| h::[] -> gen_sexpr h

| h::t -> gen_sexpr h ^ ", " ^ gen_sexpr_list t

and gen_concurrent_dfa sexpr = match sexpr with

SCall(sident,sexpr_list,d) -> "_" ^ get_sident_name sident ^ ", [" ^

 gen_sexpr_list sexpr_list ^ "]"

| _ -> ""

and gen_concurrency_list sexpr_list = match sexpr_list with

 [] -> ""

| h::[] -> gen_concurrent_dfa h

| h::t -> gen_concurrent_dfa h ^ ", " ^ gen_concurrency_list t

let rec gen_node_list snode_body = match snode_body with

 [] -> ""

 | SNode(sident,snode_block)::rst -> gen_tabs 1 ^ "def _node_" ^

gen_id (gen_sid sident) ^ "(self):\n" ^

 gen_sstmt snode_block 2 ^ gen_node_list rst

let rec get_type_from_datatype = function

 Datatype(t) -> t

 | Stacktype(ty) -> get_type_from_datatype ty

 | Eostype(e) -> e

let gen_formal_typeCast dt id = match dt with

 Stacktype(Stacktype(_)) -> raise(Error("Cannot have a formal of

Stacks of Stacks"))

 |Stacktype(Eostype(_)) -> raise(Error("Cannot have a formal of

Stacks of EOS"))

 |Stacktype(Datatype(Eos)) -> raise(Error("Cannot have a formal of

Stacks of EOS"))

 |Stacktype(Datatype(Void)) -> raise(Error("Cannot have a formal of

Stacks of Void"))

 |Stacktype(Datatype(vartype)) -> "makeStack(" ^ gen_var_type

vartype ^ ","

 | _ -> match get_type_from_datatype dt with

 Int -> "int("

 |Float -> "float("

 |String -> "("

 |Void -> raise(Error("A formal cannot be of type Void"))

 |Eos -> raise(Error("A formal cannot be of type Eos"))

 |Stack -> raise(Error("A formal cannot be of type Stack"))

let rec gen_unpacked_formal_list sformals index tabs = match sformals

with

 [] -> ""

 |Formal(dt,id)::rst -> gen_tabs tabs ^ "self." ^ gen_id id ^

 "= args[0][" ^ string_of_int index ^ "]\n" ^

 gen_unpacked_formal_list rst(index + 1) tabs

let rec gen_unpacked_main_formal_list sformals index tabs = match

sformals with

 [] -> ""

 |Formal(dt,id)::rst ->

 gen_tabs tabs ^ "self." ^ gen_id id ^ "=" ^

gen_formal_typeCast dt id ^

 "args[0][" ^ string_of_int index ^ "])\n" ^

gen_unpacked_main_formal_list rst (index+1) tabs

let get_main_dfa_str name = match name with

 "main" -> gen_tabs 2 ^ "while self._returnVal is None:\n" ^ gen_tabs

3 ^

 "_main._now()\n" ^ gen_tabs 3 ^ "_main._now = self._next\n"

 | _ -> ""

let gen_sdfa_str sdfa_str =

 "class _" ^ gen_id sdfa_str.sdfaname ^ ":\n" ^

 gen_tabs 1 ^ "_now = _node_start\n" ^

 gen_tabs 1 ^ "def __init__(self,*args):\n" ^

 let protectedIndexArgs = match gen_id sdfa_str.sdfaname with

 "main" ->

 gen_tabs 2 ^ "try:\n" ^

 gen_unpacked_main_formal_list sdfa_str.sformals 0 3 ^

 gen_tabs 3 ^ "pass\n" ^

 gen_tabs 2 ^ "except IndexError:\n" ^

 gen_tabs 3 ^ "print('RuntimeError:Too few arguments

provided to dfa \"main\"')\n" ^

 gen_tabs 3 ^ "sys.exit(1)\n"

 | _ -> gen_unpacked_formal_list sdfa_str.sformals 0 2

 in protectedIndexArgs ^

 gen_tabs 2 ^ "self._returnVal = None\n" ^

 gen_tabs 2 ^ "_" ^ (gen_id sdfa_str.sdfaname) ^ "._now =

self._node_start\n" ^

 gen_tabs 2 ^ "self._next = None\n" ^

 gen_sstmt_list sdfa_str.svar_body 2 ^

 get_main_dfa_str (gen_id sdfa_str.sdfaname) ^ gen_tabs 2 ^

"return\n" ^

 gen_node_list sdfa_str.snode_body ^ "\n" ^

 "_dfa_Dict[\"" ^ gen_id sdfa_str.sdfaname ^ "\"] = _" ^gen_id

sdfa_str.sdfaname ^ "\n"

let gen_sdfa_decl = function

 SDfa_Decl(sdfa_str, dt) -> gen_sdfa_str sdfa_str

let gen_sdfa_decl_list sdfa_decl_list =

 String.concat "\n" (List.map gen_sdfa_decl sdfa_decl_list)

let gen_program = function

 Prog(sdfa_decl_list) -> py_start ^ gen_sdfa_decl_list sdfa_decl_list

^ py_end

9.7 COMPILER CODE (COMPILER.ML)

open Semantic_check

open Gen_python

open Sys

let _ =

 let lexbuf = Lexing.from_channel stdin in

 let ast = Parser.program Scanner.token lexbuf in

 let sast = Semantic_check.check_program ast in

 let code = gen_program sast in

 let output = open_out (Sys.argv.(1) ^ ".py") in

 output_string output code

9.7.1

9.8 SOURCE CODE

//Synchronous Counter with 3 T-Flip-Flops (0 to 7) and Display

// Prints a number to standard out based on

// states of the TFFs

void DFA display()

{

 start

 {

 print0 <- (state("clock") == "rising"

 && state("TFF1") == "high"

 && state("TFF2") == "high"

 && state("TFF3") == "high");

 print1 <- (state("clock") == "rising"

 && state("TFF1") == "start"

 && state("TFF2") == "start"

 && state("TFF3") == "start");

 print2 <- (state("clock") == "rising"

 && state("TFF1") == "high"

 && state("TFF2") == "start"

 && state("TFF3") == "start");

 print3 <- (state("clock") == "rising"

 && state("TFF1") == "start"

 && state("TFF2") == "high"

 && state("TFF3") == "start");

 print4 <- (state("clock") == "rising"

 && state("TFF1") == "high"

 && state("TFF2") == "high"

 && state("TFF3") == "start");

 print5 <- (state("clock") == "rising"

 && state("TFF1") == "start"

 && state("TFF2") == "start"

 && state("TFF3") == "high");

 print6 <- (state("clock") == "rising"

 && state("TFF1") == "high"

 && state("TFF2") == "start"

 && state("TFF3") == "high");

 print7 <- (state("clock") == "rising"

 && state("TFF1") == "start"

 && state("TFF2") == "high"

 && state("TFF3") == "high");

 start <- *;

 }

 print0

 {

 print("0");

 start <- *;

 }

 print1

 {

 print("1");

 start <- *;

 }

 print2

 {

 print("2");

 start <- *;

 }

 print3

 {

 print("3");

 start <- *;

 }

 print4

 {

 print("4");

 start <- *;

 }

 print5

 {

 print("5");

 start <- *;

 }

 print6

 {

 print("6");

 start <- *;

 }

 print7

 {

 print("7");

 start <- *;

 }

}

// DFA to represent a clock

// halfPeriod: integer to represent period/2 in ms

void DFA clock(int halfPeriod)

{

 // Start == low

 // Wait halfPeriod ms, then toggle

 start

 {

 sleep(halfPeriod);

 rising <- *;

 }

 // state that triggers a toggle for the TFFs

 rising

 {

 high <- *;

 }

 high

 {

 sleep(halfPeriod);

 start <- *;

 }

}

// 1st T-FlipFlop in counter

// Toggles on every rising clock

void DFA TFF1()

{

 // low output

 start

 {

 high <- (state("clock") == "rising");

 start <- *;

 }

 // high output

 high

 {

 start <- (state("clock") == "rising");

 high <- *;

 }

}

// 2nd T-FlipFlop in counter

// Toggles on every clock only if TFF1 is high

void DFA TFF2()

{

 // low output

 start

 {

 high <-(state("clock") == "rising"

 && state("TFF1") == "high");

 start <- *;

 }

 // high output

 high

 {

 start <-(state("clock") == "rising"

 && state("TFF1") == "high");

 high <- *;

 }

}

// 3rd T-FlipFlop in counter

// Toggles on every clock only if TFF1 AND TTF2 is high

void DFA TFF3()

{

 // low output

 start

 {

 high <-(state("clock") == "rising"

 && state("TFF1") == "high"

 && state("TFF2") == "high");

 start <- *;

 }

 // high output

 high

 {

 start <-(state("clock") == "rising"

 && state("TFF1") == "high"

 && state("TFF2") == "high");

 high <- *;

 }

}

void DFA main()

{

 int halfPeriod = 400;

 start

 {

 print("0");

 concurrent(clock(halfPeriod), TFF1(), TFF2(), TFF3(),

display());

 return;

 }

}

// Run with two command line integers separated by commas

// python output.py 9,3

void DFA main(stack<string> args)

{

 int a = stoi(args.pop());

 int b = stoi(args.pop());

 start

 {

 s1 <- a > b;

 s2 <- a < b;

 s3 <- *;

 }

 s1

 {

 a = a - b;

 start <- *;

 }

 s2

 {

 b = b - a;

 start <- *;

 }

 s3

 {

 print (itos(a));

 return;

 }

}

void DFA main()

{

 start

 {

 print("Hello World!");

 return;

 }

}

void DFA main(stack<string> args)

{

 int count = 0;

 start

 {

 hello <- count < 10;

 finished <- *;

 }

 hello

 {

 print("Hello World!");

 count = count + 1;

 start <- *;

 }

 finished

 {

 return;

 }

}

void DFA main()

{

 string setGroup = "";

 string choice = "";

 start

 {

 print("Welcome to the first Choose Your Own Adventure written in

the StateMap language ever! \nTo indicate your choices, simply hit the

corresponding number and the enter key.");

 input("1) Start your adventure.\n");

 wakeUp <- *;

 }

 wakeUp

 {

 print("\nOnly the first day of school and you're already

struggling with the question: Should I stay or should I go?\n");

 print("It's 3:30 PM and you're lying in bed. The sun gleams

through the room-wide window placed directly over the bedpost onto your

eyes, causing you to uncomfortably roll onto the floor. Your prior

Circuits class has placed you in a deep stupor near impossible to

shake.\n");

 print("As you trudge towards the bathroom, you think to yourself -

Surely going to that PLT class in this state would be a waste. I wouldn't

retain anything. Lectures will be posted online anyway. My friends will

have notes. No one else goes. He won't take attendance. Class

participation isn't graded.\n");

 print("Furthermore, during the last days of summer, you were just

a few games away from hitting Platinum tier in the PC game League of

Legends. The end of the season approaches and Kenny has been laughing at

you for not hitting Platinum sooner than Lee.\n");

 print("What will you do?:\n");

 print("1) Go to PLT anyway.");

 print("2) Play League and strive for Platinum!");

 choice = input("\n");

 firstClass <- choice == "1";

 hahLoser <- choice == "2";

 print("Type 1 or 2 for your choices.");

 wakeUp <- *;

 }

 hahLoser

 {

 print("\nYou decided that enough is enough and you need to do the

responsible thing. Staying in Gold tier while Lee is in Platinum simply

won't do.\n");

 print("You skipped the very first day of PLT to play League of

Legends. Unfortunately every one of the games you played somehow had an

incredibly fed Master Yi killing your entire team. Furthermore, you ended

up dropping PLT, which turned out to be a required course. For shame.\n");

 print("You live life in regret, wondering about what could've

been.\n");

 input("The end.\n");

 returnNode <- *;

 }

 firstClass

 {

 print("\nYou decided that it's probably a bad idea to skip the

first day to play League. Platinum can wait.\n");

 print("A curtain of heat brush against your face as you walk into

the large square room of Mudd 535. It just hit 4 o'clock and class is

supposed to start in ten minutes. The room is overflowing with students -

you can see piles of students conglomerating in the back where the seats

are closest and even more bursting out through the doors on the side into

the hallways.\n");

 print("You notice that despite the shortage of places to sit, a

left-handed seat at the front remains unclaimed. This chair wasn't near

the front; it WAS at the front, almost touching the Instructor desk. You

would literally be staring up the instructor's nostrils if he lectured

there. Sitting here would certainly make you the class pariah.\n");

 print("You also notice an open seat in the very back corner. While

you don't know the exact path needed to reach that seat, you're certain

that it'll involve physically climbing over the hoards of students around

there.\n");

 print("As you wrestle with your decision, you feel the oppressive

heat bear down on you. The air thickens, and you struggle to take a

breath. Weakened, you notice that several students are sitting on large

window-sills. One of the open windows has an open window-sill, and you can

practically feel the wind blowing through the wide frame on your

face.\n");

 print("You choose to:");

 print("1) Make your way to the back of the room");

 print("2) Sit on the window-sill");

 print("3) Sit in the very front.");

 choice = input("\n");

 kickingItInTheFrontSeat <- choice == "3";

 sittingInTheBackSeat <- choice == "1";

 defenestration <- choice == "2";

 print("Type 1, 2, or 3 to indicate your response.\n");

 firstClass <- *;

 }

 defenestration

 {

 print("\nYou hastily make your way to the window-sill. Perching

yourself onto the jutting shelf, you feel refreshed by the cool winds

blowing through the large opening. Stretching back and leaning on the

frame, you yawn and wait for class to start.\n");

 print("On 4:09 PM, a man with blazing eyes charges into the room,

gripping a netbook. His sudden approach startles you and you attempt to

straighten up from your eased position. In doing so, you managed to slip

and fall out of the window. As the ground rises up to meet you, you think

to yourself: That's one way to drop out of school.\n");

 input("The end.\n");

 returnNode <- *;

 }

 sittingInTheBackSeat

 {

 print("\nYou claw your way towards the seat in the back, needing

to step on the desks of several students along the way, much to their

distate. As soon as you make it there, you immediately regret your

decision. The air back here is noticeably more dense, and you note that

the students around you seem dazed and unfocused. The desks here are of an

older make, with scrawlings from past bored students who have graduated

years ago.\n");

 print("Class hasn't even started yet and you feel a heavy weight

pulling your eyelids down. The room is bustling with conversation, but

most of it is loaded in the middle and front. If you stayed here for an

entire lecture, you'd surely go comatose.\n");

 print("The sound of quick footsteps made their way towards the

back, and you look up to see a tall figure laying something down on the

desk at front. While it's difficult to see much from your location, you

pick out a green shirt tucked into khaki slacks and glasses. For a moment,

you cease thinking about oven analogies and focus on the newcomer.\n");

 print("\"Okay, so I'm Stephen Edwards. This is Programming

Languages and Translators - COMS 4115, all that good stuff. Fall 2014.

You've figured that stuff out. My goal today is to convince you all not to

take this class because obviously there are far too many of you ...\"

Light chuckles and murmurs of agreement follow this statement, especially

from the people attempting to see the speaker through the doors leading

into the hallways.\n");

 print("\"... Final project presentations are due during the finals

week ... there's going to be a huge final project report due December 17th

...\" Already you're beginning to feel uncomfortable about this class. You

dread public speaking. You dread massive, final reports.\n");

 print("He continued, \"So, the main thing you're going to do in

this class, assuming that you don't drop it like I want you to, is a

semester long TEAM project. This is a team programming project. Now, the

team part of it is easily the worst, most difficult aspect of all of it,

but just to make it more difficult, I'm going to make you design and

implement your own language and a compiler for it ... you're going to have

to work with other human beings. This really sucks.\"\n");

 print("At this point, you're strongly considering packing up and

leaving. You don't know anyone in this class and stepping on people's desk

did not make a great first impression on your prospective classmates. As

you sit through the rest of the lecture and attempt to focus on Professor

Edwards' words through your rising panic, you've come to a decision.\n");

 print("You've decided to:");

 print("1) Stay in the course and tough it out.");

 print("2) Drop out of the course.");

 choice = input("\n");

 dropkicked <- choice == "2";

 randomGroup <- choice == "1";

 print("Type 1 or 2 to indicate your choice.\n");

 sittingInTheBackSeat <- *;

 }

 randomGroup

 {

 setGroup = "bad";

 print("Class finishes, and you decide to leave to grab a bite.

While waiting in line at Hamilton Deli, you make the firm decision that

you'll stay in this class - after all, you have a very uncertain feeling

that this might be a required course.");

 print("Days pass and your attendance in class gradually falls. It

just happens that PLT occurs when you NEED to eat and take an afternoon

nap - it also helps that the lectures are posted in video form online

later. However, you realize that you need to join a group and you still

don't know anyone in class. You message the TA and she pairs you with

other students who appear to also be skipping class and thus do not know

anyone.");

 print("More weeks pass and an email was sent out, reminding you

that your language proposal is due soon. Wait. Language proposal?");

 print("You quickly attempt to arrange a meeting with your group.

However, due to conflicting schedules, you all decide to talk via emails.

After a few weak arguments, the group came to a consensus on a

language.");

 print("What language do you guys decide on?");

 print("1) The Whitespace Language. Dude, it'll be awesome. You

only need two keys.");

 print("2) Lava, which is kinda like Java, but better!");

 choice = input("\n");

 whiteSpace <- choice == "1";

 Lava <- choice == "2";

 print("Type 1 or 2 to indicate your choice.");

 randomGroup <- *;

 }

 kickingItInTheFrontSeat

 {

 print("\nYou inch your way to the front seat. As you place your

items on the desk and prepare to sit, you hear someone behind you ask

\"Dude, do you want to move more back? We can make some space. I wouldn't

want to cramp the professor's style.\"");

 print("Your angel took the form of a young man with large eyes and

a scraggly beard. He looked at you and you felt like an ant being examined

by a magnifying glass held by an entire committee of entomologists. You

express your thanks and slide your seat slightly back.");

 print("Footsteps resounded across the hallway and a giant of a man

marched into the room. Severity embodies Professor Stephen Edwards - a man

with steely eyes, a hard nose, and a brow set rigid by intelligence.

Without looking at the student masses flooding the room, he strides to the

desk, and sets down a small network. Conversation continued near the back,

but the front immediately was silenced as they waited for the first words

of the class.");

 print("Finished with setting his mic and slides, he spoke: \"Okay,

so I'm Stephen Edwards. This is Programming Languages and Translators -

COMS 4115, all that good stuff. Fall 2014. You've figured that stuff out.

My goal today is to convince you all not to take this class because

obviously there are far too many of you ...\" Light chuckles and murmurs

of agreement follow this statement, especially from the people attempting

to see the speaker through the doors leading into the hallways.\n");

 print("He continued, \"So, the main thing you're going to do in

this class, assuming that you don't drop it like I want you to, is a

semester long TEAM project. This is a team programming project. Now, the

team part of it is easily the worst, most difficult aspect of all of it,

but just to make it more difficult, I'm going to make you design and

implement your own language and a compiler for it ... you're going to have

to work with other human beings. This really sucks.\"\n");

 print("You disagree - you haven't had many opportunities to work

with a team on a large programming project and have been wanting

experience in it. And the idea of creating your own working language

excites you - you can't even fathom how such a thing is possible with your

current knowledge.");

 print("He continues lecturing, and hunger sets in. You realize

that this class occurs right around the time you have lunch - you won't

have a chance before due to your work-study. A fleeting desire to free up

this time slot crosses your mind, but you quickly wave it away. Focusing

on the lecture helps - Professor Edwards slips in occasional dry jokes and

frequent jabs at Java. All you really know is Java.");

 print("The class eventually finishes and students began to pool

around the front desk. You stand up and stretch, picturing biting into a

Hungry Man sandwich from Hamilton Deli with great detail. Before you

leave, you hear the student from before laughing. The thought of

introducing yourself to him occurs to you - after all, not knowing anyone

in a class centered around a massive group project only hurts you.");

 print("You make a choice to:");

 print("1) Leave and sign up for a later class so that you won't

die from hunger.");

 print("2) Ignore your hunger and introduce yourself to the

student.");

 print("3) Leave and order a Hungry Man from Hamilton Deli.");

 choice = input("\n");

 dropkicked <- choice == "1";

 randomGroup <- choice == "3";

 goodGroup <- choice == "2";

 print("Type 1, 2, or 3 to indicate your choice.");

 kickingItInTheFrontSeat <- *;

 }

 dropkicked

 {

 print("You drop the class and decided to sign up for another class

later in the evening. The class doesn't matter, as this CYOA story is

centered around PLT, and you've ended that line.");

 print("You leave Columbia, a unhireable disgrace.");

 input("The end.");

 returnNode <- *;

 }

 goodGroup

 {

 setGroup = "good";

 print("You quickly make friends with the helpful student. Luckily,

he had three friends set in the group and they were considering adding one

more person. You immediately accept his offer to join the group.");

 print("After the very next class, your newfound friends decided to

stay back and discuss a bit about potential language ideas. Concepts were

tossed back and forth and pondered, and one language eventually rose to

the top of consideration.");

 print("The language you decide on is:");

 print("1) Lava. It's not gonna be Java, we promise. It'll be

better!");

 print("2) Hey, DFAs are dope and there's a lot you can do with

them. What about a DFA simulating language?");

 choice = input("\n");

 Lava <- choice == "1";

 StateMap <- choice == "2";

 print("Type 1 or 2 to indicate your choice.");

 goodGroup <- *;

 }

 whiteSpace

 {

 print("You attempt to make the Whitespace language. It didn't go

past the proposal state. The TAs and other students laughed you out of

Mudd.");

 input("The end.");

 returnNode <- *;

 }

 Lava

 {

 print("After some thought, your group decides on the Lava

language. It's going to be a general purpose computer programming language

that is concurrent, class-based, object-oriented, and specifically

designed to have as few implementation dependencies as possible. It is

intended to let application developers \"write once, run anywhere\"

(WORA), meaning that code that runs on one platform does not need to be

recompiled to run on another! Lava applications are typically compiled to

bytecode that can run on any Lava virtual machine (LVM) regardless of

computer architecture.");

 print("After a few weeks of meetings in person in the computer

science lounge, an argument over leadership arises. You realize after

working with this group for a while that you're probably the best suited

to take this project to completion. However, another student in the group

seems to want the leadership position.");

 print("What do you do?");

 print("1) Attempt to obtain leadership.");

 print("2) Give up the position of leadership.");

 choice = input("\n");

 attemptCoup <- choice == "1";

 forgetProject <- ((setGroup == "bad") && (choice == "2"));

 okaaay <- ((setGroup == "good") && (choice == "2"));

 print("Type 1, 2, or 3 to indicate your choice.");

 Lava <- *;

 }

 StateMap

 {

 print("You pick a great language. You guys work hard and create a

final report that rivals the one listed in the directory hosting a folder

called sample_programs that holds this CYOA.");

 input("Hit enter to continue.");

 goodEnding <- *;

 }

 goodEnding

 {

 print("During the presentation, Professor Edwards only seemed

unimpressed rather than disgusted. Your class performance was a triumph

and you walk away, an individual carved by trial and cast in victory.");

 input("The end.");

 returnNode <- *;

 }

 forgetProject

 {

 print("You decided to give up the leadership position.");

 print("The meetings occurred less and less frequently, and soon

you even stop watching the lectures online. By the time of the first

midterm, you realize that you've missed two of three homeworks required in

the semester, and your entire group forgot about the group project.");

 print("You drop the class.");

 input("The end.");

 returnNode <- *;

 }

 attemptCoup

 {

 print("You attempt to wrest control of leadership.");

 print("Do you:");

 print("1) Attempt diplomacy?");

 print("2) Attempt intimidation?");

 choice = input("\n");

 defenestration <- choice == "2";

 notOkay <- choice == "1";

 print("Type 1 or 2 to indicate your choice.");

 attemptCoup <- *;

 }

 defenestration

 {

 print("You get forcibly thrown out a window by the entire group.

As you fall, you note that this situation feels a bit familiar ...");

 input("The end.");

 returnNode <- *;

 }

 notOkay

 {

 print("You became the leader and attempt to pull the group

together as hard as you can. Another student notes your efforts and does

her best to contribute, but in the end, the project was too big for two

students. For some reason, the project wasn't very well received, and you

take your anger out in your discussion about the other students' role in

the final report - which YOU have to put together.");

 input("The end.");

 returnNode <- *;

 }

 okaaay

 {

 print("Your team managed to pull something out but there was a

crucial error with the language itself. It's a Java copy. Professor

Edwards tosses you out of a window.");

 input("The end.");

 returnNode <- *;

 }

 returnNode

 {

 return;

 }

}

/* A StateMap DFA that accepts the

reg ex (ab|c*)d* */

void DFA main(stack<string> args) {

 int accepted = 1; /* acceptance

 state if reach end of stack*/

 start {

 string s = args.peek();

 stateOne <- s == "a";

 stateTwo <- s == "c";

 stateThree <- s == "d";

 accept <- s == EOS;

 notAccept <- *;

 }

 stateOne {

 accepted = 0;

 args.pop();

 string s = args.peek();

 stateFour <- s == "b";

 notAccept <- *;

 }

 stateTwo {

 accepted = 1;

 args.pop();

 string s = args.peek();

 stateThree <- s == "d";

 stateTwo <- s == "c";

 accept <- s == EOS;

 notAccept <- *;

 }

 stateThree {

 accepted = 1;

 args.pop();

 string s = args.peek();

 stateThree <- s == "d";

 accept <- s == EOS;

 notAccept <- *;

 }

 stateFour {

 accepted = 1;

 args.pop();

 string s = args.peek();

 stateThree <- s == "d";

 accept <- s == EOS;

 notAccept <- *;

 }

 notAccept {

 print("Not accepted by the DFA");

 return;

 }

 accept {

 print("Accepted by the DFA.");

 return;

 }

}

//4-bit SIPO Shift Register

// Data input given as a command line argument of 0s and 1s separted by

commas.

// Will accept any reasonably lengthed input.

void DFA dataIn(stack<string> data)

{

 int counter = 0;

 //Read state

 start

 {

 counter = 0;

 low <- data.peek() == EOS;

 string currData = data.pop();

 high <- currData == "1";

 low <- currData == "0";

 error <- *;

 }

 //high and low states to represent the current data input

 // counter is used for synchronicity

 high

 {

 start <- counter == 1;

 counter = counter + 1;

 high <- *;

 }

 low

 {

 start <- counter == 1;

 counter = counter + 1;

 low <- *;

 }

 error

 {

 print("invalid input");

 return;

 }

}

// DFA to represent a clock

// halfPeriod: integer to represent period/2 in ms

void DFA clock(int halfPeriod)

{

 // Start == low

 // Wait halfPeriod ms, then toggle

 start

 {

 sleep(halfPeriod);

 rising <- *;

 }

 // state that triggers a catch for the DFFs

 rising

 {

 high <- *;

 }

 high

 {

 sleep(halfPeriod);

 start <- *;

 }

}

// 1st T-FlipFlop in Shift Register

// Catches data on every rising clock

void DFA DFF1()

{

 // low output

 start

 {

 high <- (state("clock") == "rising"

 && state("dataIn") == "high");

 start <- *;

 }

 // high output

 high

 {

 start <- (state("clock") == "rising"

 && state("dataIn") == "low");

 high <- *;

 }

}

// 2nd T-FlipFlop in Shift Register

// Catches DFF1 on every rising clock

void DFA DFF2()

{

 // low output

 start

 {

 high <- (state("clock") == "rising"

 && state("DFF1") == "high");

 start <- *;

 }

 // high output

 high

 {

 start <- (state("clock") == "rising"

 && state("DFF1") == "start");

 high <- *;

 }

}

// 3rd T-FlipFlop in Shift Register

// Catches DFF2 on every rising clock

void DFA DFF3()

{

 // low output

 start

 {

 high <- (state("clock") == "rising"

 && state("DFF2") == "high");

 start <- *;

 }

 // high output

 high

 {

 start <- (state("clock") == "rising"

 && state("DFF2") == "start");

 high <- *;

 }

}

// 4th T-FlipFlop in Shift Register

// Catches DFF3 on every rising clock

void DFA DFF4()

{

 // low output

 start

 {

 high <- (state("clock") == "rising"

 && state("DFF3") == "high");

 start <- *;

 }

 // high output

 high

 {

 start <- (state("clock") == "rising"

 && state("DFF3") == "start");

 high <- *;

 }

}

// display DFA to read and print out the current state of

// the shift register

void DFA display()

{

 int d = 0;

 int b1 = 0;

 int b2 = 0;

 int b3 = 0;

 int b4 = 0;

 start

 {

 read <- *;

 }

 read

 {

 d = state("dataIn") == "high";

 b1 = state("DFF1") == "high";

 b2 = state("DFF2") == "high";

 b3 = state("DFF3") == "high";

 b4 = state("DFF4") == "high";

 print <- *;

 }

 print

 {

 print ("Current parallel output: " + itos(b1) + itos(b2) +

itos(b3) + itos(b4));

 print ("About to read in a bit of " + itos(d));

 print ();

 start <- *;

 }

}

void DFA main(stack<string> args)

{

 int halfPeriod = 1000;

 start

 {

 concurrent(clock(halfPeriod), dataIn(args), DFF1(), DFF2(),

DFF3(), DFF4(), display());

 return;

 }

}

DFA main (stack<string> main)

{

 Map<string, int> wordCount;

 start

 {

 print <- main.isEmpty;

 new <- !wordCount.contains(main.peek);

 increment <- *;

 }

 new

 {

 wordCount.put(main.pop, 1);

 start <- *;

 }

 increment

 {

 string word = main.pop;

 wordCount.put(word, ++wordCount.get(word));

 start <- *;

 }

 print

 {

 printMap(wordCount);

 }

}

void DFA printMap(Map<string, int> map)

{

 Stack<string> words;

 start

 {

 words = map.keyStack;

 done <- words.isEmpty;

 printEntry <- *;

 }

 printEntry

 {

 string word = words.pop;

 print(word + " " + map.get(word) + "\n;

 start <- *;

 }

 done

 {}

}

void DFA a()

{

 start

 {

 print("DFA a: start");

 afinish <- state("b") == "b2";

 start <- *;

 }

 afinish

 {

 print ("DFA a is done.");

 return;

 }

}

void DFA b()

{

 start

 {

 print("DFA b: start");

 b1 <- *;

 }

 b1

 {

 print("DFA b: b1");

 b2 <- *;

 }

 b2

 {

 print("DFA b: b2");

 bfinish <- *;

 }

 bfinish

 {

 print ("DFA b is done.");

 return;

 }

}

void DFA main()

{

 start

 {

 concurrent(a(), b());

 return;

 }

}

void DFA main(int lol, double gg, stack<string> huh, string welp) {

 int a;

 string b;

 stack<int> c;

 double d;

 void e;

 whee {

 return 5;

 }

 wowza {

 ayo <- *;

 int kldsa;

 ayo2 <- kldsa + ladkasl == 5;

 main2(kldsa, c);

 }

 start {

 Concurrent(clock(), yo(), yoyo());

 }

}

void DFA main2(string foo, int bar) {

 void a;

 string br0;

}

