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1. Introduction 
1.1 Motivation:  
In the modern world, Digital Signal Processing is used in many areas such as 
telecommunications, DJ/Audio mixing, and even in fields such as finance for algorithmic 
trading. Within digital signal processing itself, there are many mathematical operations that 
can be created and defined such as convolution, filtering, time shifting, and more. However, 
implementing this functionality requires the notion of time, because signals exist over a 
period be it discrete or continuous. Currently, there aren’t many languages that simply allow 
users to build and manipulate Signals using a notion of a global time.  
 
Therefore, the main idea behind our language is to provide a simple framework that would 
enable interested parties to write programs that can conveniently manipulate signals. 
Programmers would be able to create signals with relative ease in an environment that allows 
for the straightforward representation and manipulation of signals.  
 
Since this language will be able to manipulate signals it opens up a variety of different 
possibilities.  With the ability to modify signals, the language will be able to support writing 
any DSP function such as Fourier Transforms, basic phase shifting, amplitude/frequency 
modulation, etc.  One possible end user application could be an Electronic music generator. 
Digital signal processing is even relevant when it comes to the financial stock market where 
there are many DSP applications used in essential data modeling and market analysis. 
Therefore, as signal processing is ubiquitous, this language has many applications that can be 
used to create programs for a myriad of industries.  
 
1.2 Language Features:  

• Signal and Array data types for simple Signal creation and manipulation 
• Global time so that one can access a signal at a current time and at a previous time 

by just subtracting from the global time 
• Normal C-like functionality such as binary operations, relational operations, variable 

assignment, global and local scope, functions, basic C data types, etc.  
• Summation functionality using sum keyword (very useful for filters and for digital 

signal processing in general)  
1.3 Keywords:  
Keyword Meaning/Description 
let used to declare a new signal variable 
int data type that represents an integer 

float data type that represents a floating point number 

Signal keyword used to declare a new signal stream 

Array 
data type that represents a list of values which all have the 
same type 

print used to print information to standard out 

to used to specify a range (from a to b) in sum 

bool data type that represents a Boolean value 
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return return a value 
true, false value of a Boolean  

sum is the keyword to denote the summation 
if, else specify if, else conditional statement 
for specify for loop conditional 
while specify while loop conditional 
Stream used to declare signal stream 
Time used to access signal time 
 
1.4 Primitive Data Types:  

integer 
A 32-bit number which represents only whole real numbers. (default Signed, can 
be 

 declared as Unsigned) 
  

float A 32-bit Allows for the representation of numbers with fractional parts. 

bool A single bit data type used for true false statements. 1 for true 0 for false 
 
1.5 Aggregate Data Types:  
Signal used to represent Signal data type, all the values are of type float and 

can be accessed using the time keyword.   
Array standard list style array where all elements are of the same type 

 
1.6 Operators:  
Operator Meaning 
+ Addition 
-  Subtraction 
* Multiplication 
/ Division 
^ Exponential 
= Assign 
> greater than 
>= greater than or equal to 
< less than  
<= less than or equal to  
=  Assignment 
== equals  
!= not equal to  
 
1.7 Control-Flow:  
Control-flow is done by using if-else statements when there is only one iteration. When there 
are multiple iterations for and while loops are used. If-else statements do not necessarily 
require an else.  
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2. Language Tutorial 
 
2.1 Environment Settings:  
To compile and run DSPJockey programs you must have the g++ compiler, which is used 
for compiling C++ programs.  
 
2.2 Building the Compiler/Running Programs:  
Compilation of the DSPJockey compiler requires Ocaml (version 4.0 and above). The 
libraries, ocamllex and ocamlyacc are also required. Type make in the build directory to build 
all the source files.  
 
To run the .dj program, do the following 
 

./run_compiler.sh <name of .dj file> [optional <name of output 
file>] 
 
2.3 Simple Hello World Program:  
Just like C, DSPJockey requires a main function. DSPJockey also does not support void as a 
“return type.”  
 
Here is a simple hello world program.  
 

//hello-world.dj 
int main(){  

print(“hello world”);  
} 

 
The generator will read the DSPJockey code and output C++ code. Here is the output of 
the compiler:  
 

//main.cpp 
#include <iostream>  
#include <fstream> 
#include <iomanip>   
#include <string> 
using namespace std;  

 
 

int main(){  
cout << “hello world” << endl; 
} 

 
Test the program to make sure it prints “hello world.”  
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2.4 Variables and Data Types:  
 
Variables hold values in memory that can be written to or read from. The variable’s data type 
can either be of a primitive data type (String, Boolean, int, float) or an aggregate data type 
(Array and Signal).  
 
2.4.1 Primitive Data Type Variable Declaration:  

int x;  
x = 33;  
float y = 2.33;  
String z = “bye”;  

 
2.4.2 Aggregate Data Types:  
The two aggregate data types, Array and Signal are very important to the language as they are 
used to build and manipulate streams.  They are declared in much the same manner, the only 
difference being that the array’s length must be declared while a signal’s length is guaranteed 
to be 1024. 
 
2.4.2.1 Array:  
To create and initialize an array the let keyword must be used.  
 

let arr =Array[10];  
 
To access an array element, use an index that can range from 0 to the size you declared 
minus 1.  
 
For example if the third element needs to be accessed:  
 

float x = arr[2];  
 
2.4.2.2 Signal:  
Signal is the most important data type in DSPJockey and used to build and manipulate 
signals.  
 
To create and initialize a signal:  
 

let sig = Signal[];  
 
Signal access is based on using “time”. If the user just uses the keyword time, the latest value 
in Signal is accessed.  
 

float y = sig[time];  
 
A value in a signal that is in a previous time can also be accessed by subtracting the discrete 
time (an integer) from time.  
 
 
For example, if one wants to access a value two samples before the current time.  
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float z = sig[time-2];  
 
The advantage to using signal is that when you perform an operation on a signal it happens 
over the whole signal. For example: 
 

sig[time] = sig[time] +1 
 
will increment all the samples in the signal by one.  
 
2.5 Operators:  
DSPJockey uses the same operators as C for arithmetic operators, assignment operators, and 
comparison. To learn more see the Language Reference Manual for more information on 
our different data operators. 
 
2.6 Comments:  
Commenting is identical to C. For multi-line comments begin with /* and then end with */ 
while for single line comments use the // at the beginning of the line or statement.  
 
2.7 Control Flow:  
Control Flow 
Our language has the ability to use the same conditional and looping structure as C and java. 
The if, while and for statements are identical 
 

//else is optional 
if ( boolean_condition ) { 
// some code 
} 
else { 
//more code 
} 
  
//while statement 
while ( boolean_condition ) { 
//some code 
} 
  
//for loop 
for(initialization; boolean_condition; iteration_step){ 
//some code 
} 

 
2.8 Built-in Functions:  
The two built-in functions that DSPJockey provides are print and Sum.  
 
2.8.1 Print: 
The print function is just used for printing to standard out. It is called in the following 
manner 
 

print(5); //prints 5 
print“hello world”; //prints hello world  
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int x = 5; 
print x; // prints 5 

 
2.8.2 Sum: 
The sum function is used for performing a summation operation. It takes in the start and 
end index, which need to be integers and the expression to evaluate it on. Here is how you 
would use it:  
 

sum x = 1 to 3: n+1;  
sum would be equal to (1+1) + (2+1) + (3+1) = 9.  

 
2.9 Functions:  
Function declaration and calling a function is identical to what you would see in C or C++ 
with the exception that there are two different types of functions, normal functions and 
stream functions. Normal functions are used to modify primitive types and arrays, stream 
functions are used to modify signals as well as the other types. Signals can only be created 
and modified in Stream functions 
  

//function declaration 
int function(args){ 
//some code 
} 
 
//stream functions 
stream x(args){ 
//some code 
} 

  
Additionally calling the function is done the same as well 
  

int result = function(float a); 
  
would call function with argument a, which has type float, and store the return value in 
result. Note that we have to explicitly state the type of result. 
 
2.4.8 Comprehensive Examples: 
To view examples where all of the features of the language are combined, refer to Chapter 6, 
which is the test section.  
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3. Language Reference Manual 
 
3.1 Lexical Conventions:  
In DSPJockey, there are different kinds of tokens which include identifies, keywords, 
constants, strings, and comments.  
 
3.1.1 Comments:  
DSPJockey allows for single-line and multi-line comments that are similar to C-style 
commenting. /* introduces the comment and */ ends the comment. The previous notation 
is mainly used for multi-line commenting while for single-line commenting, // can be used 
at the beginning of the line to comment out that whole line.  
 
Example:  
single line comment:  

//this is a single line comment 
 
multiline comment:  

/* this is a  
multiline comment */ 

 
 
3.1.2 Identifiers:  
Identifiers are used to identify variables and functions. Each identifier can contain a 
combination of digits, letters, and the underscore character, although the identifier must start 
with a letter. Letters can be lowercase and/or uppercase ASCII characters. Digits are the 
ASCII characters 0-9. Identifiers in DSPJockey are case sensitive. 
 
3.1.3 Constants:  
Constants in DSPJockey mainly refer to literals that can be a boolean, a float, or an int.  
 
Float constants: These contain of an integer part and a decimal point. It is ok to not have 
the decimal part included but in that case it just makes more logical sense to use int.  
 
Integer constants: simply contain the integer part without any decimal place. If any decimal 
is found in the int type an error will be thrown.  
 
String constants: In DSPJockey, you can also have string constants that consist of a series 
of characters delimited by quotation marks.  
 
3.1.4 Whitespace: 
Whitespace is represented by tab and blank characters in DSPJockey. It is ignored by the 
compiler and is mainly used to separate lexical tokens from each other.  
 
3.1.5 Keywords: 
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Keywords refer to specific identifiers that are used to denote certain types or objects. These 
cannot be overloaded and are reserved for the language only.  
 
Here is the list of keywords in DSPJockey:  
 
Keyword Meaning/Description 
let used to declare a new signal variable 
int data type that represents an integer 

float data type that represents a floating point number 

Signal keyword used to declare a new signal stream 

Array 
data type that represents a list of values which all have the 
same type 

print used to print information to standard out 

to used to specify a range (from a to b) in sum 

bool data type that represents a Boolean value 
return return a value 
true, false value of a Boolean  

sum is the keyword to denote the summation 
if, else specify if, else conditional statement 
for specify for loop conditional 
while specify while loop conditional 
Stream used to declare signal stream 
Time used to access signal time 
 
 
3.1.6 Separators: 
The only separators besides whitespace and new line for lexical analysis in DSPJockey are 
the comment (,) which is used for separating arguments in passed into a function and the 
semicolon (;) which is used for separating statements in a block of code.  
 
 
 The comma character (,) is used to separate tokens in a list or tokens in the arguments to a 
function. 

The semicolon (;) character is used to separate statements in a block of code. 

 
statement 1;  

int lowpass_filter(orig_signal, dt, rc) 
{ /* code */	  	  

}	  
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statement 2; 

 
3.2 Data Types 
 
3.2.1 Basic Types:  
 
DSPJockey has four basic data types Integer, Float, Boolean, and Array. These data types 
can be used without reservation or import of an outside library in any part of a DSPJockey 
Program. These types can also be used to build objects or libraries. Note that integers can be 
compared with floats and vice versa. Floats and integers can also be compared with 
Booleans (0 for false and 1 for true).  

integer A 32-bit number which represents only whole real numbers. (default Signed, can be 
 declared as Unsigned) 
  

float A 32-bit Allows for the representation of numbers with fractional parts. 

Boolean A single bit data type used for true false statements. 1 for true 0 for false 

array A standard list, style array which can be used to collect any of the four previous type 
 of data 
  

 
For array access, use the square-bracket notation ([ ]). For instance, if we have an array x and 
we want to access the fourth element, we would do x[3] (because the elements start at 0).  
 
3.2.2 Built-in Types:  
 
DSPJockey has one special data type called signal, which is used to represent an ongoing 
signal. A signal has many of the same aspects as a standard array, however it differs in 
that it is constantly updated and only allows access to the previous 1024 samples. 
Additionally, the current value of the signal is always stored in the array at index time or 
the current time. Subtracting an integer value from time accesses previous samples. 
Signals can only contain floats.  
 
Signals can be used to do operations that require the notion of time. The whole point of this 
language and the implementation of signal are to exploit it as has the notion of time at 
discrete intervals.  
 

let x = Signal [] ;  
float s1 = signal[time];  
float s2 = signal[time-2];  

 
Note that other types can be built using both primitive and built-in data types. In addition, if 
a function returns a value, its type must be a supported build-in or primitive data type.  
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3.3 Operators: 
 
DSPJockey supports a variety of operators that can be used for binary operator expressions, 
variable assignment, summation functionality, and more. The following is a list of the 
operators.  
 
Operator Meaning 
+ addition 
-  subtraction 
* multiplication 
/ division 
^ exponential 
> greater than 
>= greater than or equal to 
< less than  
<= less than or equal to  
=  assignment 
== equals  
!= not equal to  
 
 
3.4 Expressions: 
 
Expressions can be the following (expr stands for expression).  
 
expr :== 
 
 Integer Literal  
  
 String Literal 
  
 Float Literal 
 
 Boolean Literal  
 
 Id Assign  
 
 Binop Expression 
 
 Function call  
 
 Parentheses Expression 
 
 Summation  
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 Basic Op (Signal or Array Operation)  
 
3.4.1 Integer Literal:  
This just represents a single integer. For example, just the number 5 represents an 
expression. 
 
3.4.2 String Literal: 
This just represents a string constant, which as described before is delimited by quotes. For 
example “Hello world” is an example of a simple string literal.  
 
3.4.3 Float Literal: 
This just represents a single float number. A float doesn’t necessarily have to contain a 
decimal point. For example, 5.5 and 5 are both valid examples for valid floating-point 
numbers.  
 
3.4.4 Boolean Literal: 
This just represents a Boolean type, so either true or false.  
 
3.4.5 Id Assign: 
The following is the syntax tree for Id Assign.  
expr :==  
Id assign_opt :==  
  Id  | Id ASSIGN expr  
 
where the ASSIGN keyword represents the assign operator, = , used for assigning variables.  
 
Essentially, this is used for assigning variables where id represents the identifier for the 
variable and ASSIGN refers to the assignment operator so you have the variable being 
assigned to some sort of expression.  
 
For example int x = 5*5 is an example in which x is the id and 5*5 is the right hand side 
expression.  
 
3.4.6 Binary Operation: 
Binary operation is one in which an operator separates two expressions, one on the left hand 
side, the other on the right hand side. The format is essentially expr op expr. The operator is 
an operator from section 3.4 and it can be used to return a new expression, or to return a 
Boolean comparing the two expressions.  
 
Here is the syntax tree:  
expr :==  
 b_expr:==  
  
   expr PLUS expr  
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  |         expr MINUS expr 
  |         expr TIMES expr 
  |         expr DIVIDE expr 

|         expr EXP expr 
|         expr  EQ  expr 
|         expr NEQ expr 
|         expr LT expr 
|         expr LEQ expr 

  |         expr GT expr 
  |         expr GEQ expr 
 
These expressions can be grouped into the following categories: additive operators, 
multiplicative operators, and relational operators.  
 
3.4.6.1 Additive Operators:  
The first two are additive operators include the addition and subtraction (+ and – 
respectively) operators and they group left to right.  
 
3.4.6.2 Multiplicative Operators:  
The next two are multiplicative operators include the multiply and divide (* and / 
respectively) operators and they group left to right.  
 
Additive and Multiplicative Operators return another expression that is in the form of a 
literal.  
 
Ex. (5*5) + (5/1) = 30  
 
3.4.6.3 Relational Operators:  
These operators group from left to right and return a Boolean type as they are comparing 
the left hand side expression to the right hand side expression. The operators in order are 
less than (<), less than or equal to (<=), greater than (>), and greater than or equal to.  
 
3.4.7 Function Call:  
 
expr:==  
    ID LPAREN actual_opts RPAREN:==  
        ID LPAREN RPAREN | ID LPAREN actuals_list RPAREN :==  
                ID LPAREN RPAREN | ID LPAREN expr RPAREN | ID LPAREN                                          

               actuals_list COMMA expr RPAREN 
 
Looking at the way function call is defined above, it can be seen that a function is identified 
by an id. To call the function it must have left parentheses and right parentheses, (). It is 
optional to put arguments inside the parentheses and if there are multiple arguments, they 
are separated by a comma.  
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The arguments themselves are an expression, which was defined and explained above. The 
copy of the result of each of the expressions is available in the scope of the function block.  
 
The types of the expressions in the argument list must match the types of the implicit 
parameters of the function.  
 
When the function is called, each of the expressions in the actuals_list is evaluated from left 
to right. Control of execution is then given to the function specified by the identifier. A 
function may call itself.  
 
Argument passing is done through pass-by-reference. The result of evaluating the function 
call is the value returned by the function called, where the type of value corresponds to the 
return type of the function.  
 
DSPJockey provides a built in print function.  
 
print(expr): any expression can be printed which includes string literals.  
 
3.4.8 Parentheses Expression:  
This is simply an expression closed in parentheses. Function calls basically use a more 
complex version of this.  
 
expr:== 
 LPAREN expr RPAREN  
 
 
3.4.9 Basic Operation (Array or Signal)  
 
expr:==  
 basic_op :== 
  ID LBRACKET LITERAL RBRACKET assign_opt | ID LBRACKET 
time_expr RBRACKET assign_opt :== 
 

ID LBRACKET LITERAL RBRACKET |  
           ID LBRACKET LITERAL RBRACKET ASSIGN expr |  

ID LBRACKET TIME RBRACKET | 
IDLBRACKET TIME MINUS LITERAL RBRACKET | 

  ID LBRACKET TIME RBRACKET ASSIGN expr | 
  ID LBRACKET TIME MINUS LITERAL RBRACKET ASSIGN expr 
 
Although the syntax tree looks a bit complicated, the overall functionality and usage is 
pretty straightforward. In basic op it can be seen that we have one basic operation 
without time_expr and one with it. time_expr is used for signal while the one without it 
is used for array.  
 
basic_op is basically used to assign a value to a specific slot in an array or at a specific 
time in the signal. For assigning to an array, just use the square-bracket notation (ex. a[3] 
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= 5). The Signal or Array can only have values of the float type.  
 
For signal assignment, the time must be taken into account. The time is part of the 
global scope and so one can either assign a value to the signal at is current time (second 
to last expression) or at a previous time.  
 
So, if one wanted to assign a value to 2 timeslots before the current time one would do 
a[time-3] = 2.  
 
3.5 Declarations:  
 
3.5.1 Basic Type Variable Declaration:  
 
variable :==  
   
 prim ID assign_opt SEMI :== 
  {{  
   typ  
   name 
   exp 
 }}  
     (STRING | INT | FLOAT | BOOL) ID ASSIGN expr SEMI | (STRING | INT | 
FLOAT | BOOL) ID SEMI 
  
As seen by the above syntax tree, a variable of primitive type is declared by first specifying 
the type itself, String, int, float, or Boolean. Next the identifier for the variable is specified 
which is just the name for the variable.  
 
That is followed by two cases. In the first case, the initial value for the variable is set to the 
result of the expression, which must evaluate to the same type as what was used on the left 
hand side. This is followed by a semicolon, which ends the statement.  
 
The second case is just used for declaring variables as it is just the name of the variable 
followed by a semicolon.  
 
Ex. Case 1: int x = 5 
       Case 2: int x; 
 
3.5.2 Signal and Array Declaration:  
  
create_basic :==  
 LET ID ASSIGN basic LBRACKET lit_opt RBRACKET :==  
  LET ID ASSIGN (ARRAY|SIGNAL) LBRACKET RBRACKET  
| LET ID ASSIGN (ARRAY|SIGNAL) LBRACKET LITERAL RBRACKET  
 
The syntax for arrays and signals is straightforward. Using the let keyword followed by the 
identifier for the array or signal and then the assignment operator, state the type (either array 
or signal).  
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This is followed by two cases, one in which there is an integer literal in the square brackets 
and one, which contains nothing in the square brackets.  
 
The literal in the second case is used to specify the size of the array or signal. This initializes 
the array to the size specified and thus space on the stack is allocated for it.  
 
The first case does not initialize the array or signal and does not allocate any space on the 
stack for it.   
 
3.5.3 Function Declaration  
 
fdecl :==  
 prim ID LPAREN formal_opt RPAREN LBRACE stmt_list RBRACE  | 
 STREAM ID LPAREN formal_opt RPAREN LBRACE stmt_list RBRACE  
 
where  
 
prim :==  
 STRING | INT | FLOAT | BOOL  
 
formal_opt :==  
 /* nothing */ | formal_list :==  
/* nothing */ | formal | formal_list COMMA formal  
 
stmt_list :==  
/* nothing */ | stmt_list stmt 
 
The first type of function declaration is used for declaring functions with a return type that 
corresponds to a primitive data type. After the type is specified it is followed by the function 
identifier. Next the parentheses contain the formal options, or parameter list, which can 
either, be nothing or a list of arguments that are each separated by a comma.  
 
A function declaration declares a function that accepts the parameters given by the 
parameter list. The identifiers for these parameters will be available in the function body. In 
addition, the parameter list contains primitive, array, and/or signal declarations.   
 
Following the arguments you have the actual function code, which is contain inside the left 
and right braces. A function will contain a list of statements and hence the stmt_list or 
statement list, which is recursively defined as a list of statements, is contained between the 
left brace and right brace. When the function is called it evaluates the given block.  A 
function cannot be modified after its declaration.  
 
3.6 Statements  
  
stmt :==  
 expression 
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 return statement 
 
 block  
 
 if with else 
 
 if with no else 
 
 variable  
 
 for loop  
 
 while loop 
 
 print 
  

create basic  
	  
sum	  

 
3.6.1 Expression:  
 
A statement can simply be an expression, which was explained above, followed by a 
semicolon. An expression can range from a simple literal to a complex binary operation. 
Note that the value is discarded (unless it’s variable assignment) but the side effects of the 
expression still occur.  
 
3.6.2 Return statement:  
 
stmt :== 
 RETURN expr SEMI  
 
Return statements are used in functions to signify the end of the function by returning a 
value, which has the same data type as specified in the function declaration to the caller of 
the function. The value in this case is the value of the expression.  
 
3.6.3 Block:  
 
stmt :==  
 LBRACE stmt_list RBRACE  
 
A block is used for defining the function body. It contains multiple statements and so when 
a block is executed, each of the statements in the statement list is executed in order. Scoping 
is based on blocks.  Blocks allow for the grouping of multiple statements.  
 
3.6.4 If/Else Conditional statement:  
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stmt :==  
 IF LPAREN expr RPAREN stmt ELSE stmt 
 
The expression inside the parentheses is evaluated and if it is non-zero or true, the first 
statement is executed. If the expression evaluates to zero or false, the second statement is 
executed.  
 
 
3.6.5 If without Else Conditional Statement: 
 
stmt :== 
IF LPAREN expr RPAREN stmt %prec NOELSE  
 
This is the same as before except that there is no else statement so if the expression returns 
0 or false, nothing else is done for this statement and the program moves to the next 
statement.  
 
3.6.6 For Statement: 
 
stmt :==  
 
FOR LPAREN expr_opt SEMI expr_opt SEMI expr_opt RPAREN stmt 
 
expr_opt :==  
/*nothing */ | expr 
 
The for loop has three main parts. The first part is an expression that represents the starting 
index. The second expression is used to specify an expression that specifies the number of 
iterations the for loop should execute (it can either be for a specified number of times or 
until a condition is met). The last expression is used to determine what to do with the index 
at the end of each iteration.  
 
The statement inside the for loop is executed until the second expression returns 0 or false.  
 
3.6.7 While statement: 
 
stmt :== 
 WHILE LPAREN expr RPAREN stmt 
 
This is like the for loop except that the user has to take care of the index (if there is a need 
for one) inside of the while block. The while loop will keep iterating so far as the expression 
returns a value greater than or equal to 1 or true.  
 
3.6.8 Print statement: 
 
stmt :==  
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 PRINT expr SEMI  
 
The print statement is used for printing an expression to standard output. It takes an 
expression and prints the value of that expression to standard out.  
 
3.6.9 Create Basic (Array or Signal):  
 
stmt :==  
   create_basic :==  
     LET ID ASSIGN basic LBRACKET lit_opt RBACKET :==  
         LET ID ASSIGN (ARRAY|SIGNAL) LBRACKET (/*nothing*/ | LITERAL) 
RBRACKET 
 
This statement is used for the creation of arrays and signals. This was already explained 
above but here is a repeat of the explanation.  
 
The syntax for arrays and signals is straightforward. Using the let keyword followed by the 
identifier for the array or signal and then the assignment operator, state the type (either array 
or signal).  
 
This is followed by two cases, one in which there is an integer literal in the square brackets 
and one, which contains nothing in the square brackets.  
 
The literal in the second case is used to specify the size of the array or signal. This initializes 
the array to the size specified and thus space on the stack is allocated for it.  
 
The first case does not initialize the array or signal and does not allocate any space on the 
stack for it.   
	  
3.6.10 Summation 	  
In DSPJockey, one can perform a summation over an expression by defining the 
beginning index, end index, and the expression itself. It is extremely useful when 
working with filter operations such as FIR Filters. 	  
	  
stmt:== 	  

SUM ID ASSIGN LITERAL TO LITERAL COLON expr SEMI 	  
	  
It provides super simple functionality to perform a summation. Here is an example: 	  
	  
sum x = 1 to 3: n+1; 	  
sum would be equal to (1+1) + (2+1) + (3+1) = 9. 	  
	  
 
3.7 Program Structure:  
 
DSPJockey programs exist in a single file. All programs must be written in files with the 
extension “.dj”. Programs must additionally contain a function named main, which is where 
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the program will begin running. A few basic programs are included in the next two sections.  
 
3.8 Scope: 
Variables may be referenced in several different contexts throughout a program, as such 
DSPJockey allows for both global and local scopes. Variables must be assigned before 
they are referenced, for instance 
 

 
 
will not work since y is referenced by x before it is assigned. 
 
A global variable is declared at the beginning of a file and can be referenced and 
updated by any program. For example, 
 

 
 
A local variable is declared somewhere in a function or a loop and is therefore available 
only to the function or loop in which it is declared. For instance, 
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set_i will return 2 since it is using the value of i in its local scope while in the main function 
print i will print 3 since it’s using the i in its scope, which is the main global scope.  
 
Essentially DSPJockey uses block scoping and each nested block creates a new scope. 
Variables of the same id in the new scope supersede the variables of the same id in the 
parent or global scope.  
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4. Project Plan 
4.1 Planning:  
The group used a combination of an iterative and feature-driven software development 
approach. For each step in the process, starting with the scanner, and ending with code 
generation and testing, the group discussed the feature requirements for that step and when 
the deadline was for implementing those features. Progress reports and group meetings were 
scheduled with Professor Edwards. These were especially important when the group was 
stuck at some point and didn’t know how to move on. Dates weren’t fully set from the 
beginning, mainly because the approach was to finish one part at a time as they built off of 
each other. However, as soon as one part was finished, the deadline for the next part was set. 
Meeting times within the group were also set from the beginning to avoid time conflicts.  
 
4.2 Specification Process:  
The initial features were planned during the writing of the Language Reference Manual. 
However, changes to the specification needed to be made consistently, which impeded 
progress as it required having to go back to the parser again. Some of the additional features 
had to be scrapped or modified to comply with the time for the project.  
 
4.3 Development Process:  
The development of the compiler required to follow a certain order, starting from the 
scanner, then going to the parser, followed by the abstract syntax tree, the semantic analyzer, 
and lastly code generation. The iterative approach was that for each step there would be a 
repeated cycle of feature development and testing in small increments to make sure that all 
of the features worked correctly and to avoid having to go back and change a lot at once. 
Each member was not just restricted to working on one part. Coding was often done in pairs 
to allow for collaborative feedback and multiple insights, especially since developing a 
compiler in a Ocaml is an extremely new process.  
 
4.4 Testing Process:  
As described in the development process, testing was done alongside with the feature 
development. So after a few features in say the parser were developed, testing would be done 
to make sure there aren’t shift/reduce conflicts. Regression testing was also done for later 
steps by running the old tests to make sure that all the functionality remained intact.  
 
4.5 Programming Style:  
Two main languages were used in the software development cycle. Ocaml (including 
ocamllex and ocamlyacc) were used for the scanner, parser, ast, and sast. Then for code 
generation C++ was used. For editing the files, the vim editor was unanimously used, mainly 
because everyone was used to vim. Testing scripts were written in bash.  
 
4.5.1 Ocaml Programming Style:  

• for indentation,  four spaces were used   
• for pattern matching, the pipe character was not placed for the first case and was 

only placed for each successive case one space before the next case (i.e. for match 
statements)  
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• leave one line of whitespace between each function  
• one line of whitespace between each let in a function 
• underscore case used for naming functions and variables 

 
4.5.2 C++ Programming Style:  

• use vim indentation (gg=G command)  
• opening curly brace for conditional should be on the same line as the conditional 

statement, ending brace should be one line after the last statement in the block of the 
conditional  

• leave whitespace line between each function call 
• followed normal ANSI-C programming style  

 
4.5.3 Bash/Script Programming Style:  

• hard tab for each statement inside a function  
• each statement begins right at the beginning of the line (no space)  
• whitespace line between things that had its own blocks such as functions, if/else 

conditionals, etc.  
 

4.6 Project Timeline:  
 
Date Milestone 

9/24/14 Project Proposal Completed 

10/27/14 Language Reference Manual Drafted and Submitted 

11/2/14 Scanner completed 

11/10/14 Parser Completed 

11/25/14 AST completed 

12/5/14 SAST and Semantic Analyzer Completed 

12/11/14 Code generation completed 

12/15/14 Final Project Report Completed 

 
4.7 Team Responsibilities:  
 
Team Member  Responsibilities 

Brian Bourn (Project manager) Scanner, Parser, Code Generation 

Vanshil Shah (Language Guru) Scanner, Parser, AST, Semantic Analyzer 

Abhinav Mishra (System Architect) AST, SAST, Semantic Analyzer 

Addisu Petros (Test/Validation) Semantic Analyzer, Code Generation 
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4.8 Development Environment:  
 
4.8.1 Programming Environment:  
Everybody used the vim editor, as it was the most familiar and easy to use.  
 
4.8.2 Version Control System:  
Git was used as the version control system, as once again it was the most familiar. A private, 
shared repository was stored on GitHub for easy, universal access amongst the group 
members. It also allowed for separation of specific parts through branching, which was 
useful for reverting back to master in case something got messed up.  
 
4.8.3 Project Management:  
Asana was used for project management as it includes a calendar for setting deadlines, 
tracking of bugs, and communication without the need for email.  
 
4.8.4 Documentation Environment/Storage of Documents:  
All the important documents such as code samples, the proposal, and the LRM were stored 
on Google Drive in a shared folder. Initially, for creating and editing new documents, 
Google Drive was being used but it was leading to significant formatting issues. Hence, there 
was a transition where documents were being locally written in Microsoft Word and then 
shared via Microsoft OneDrive for editing. The final versions were stored in Google Drive.  
 
4.9 Project Log:  
 
9/10/14 Team finalized  

9/13/14 First team meeting, weekly times decided 

9/20/14 Language Defined 

9/24/14 Proposal Completed 

10/1/14 Specific features of language decided 

10/9/14 Expressions in language decided 

10/15/14 Statements in language decided 

10/24/14 Language Reference Manual drafted 

10/26/14 Development environment created 

11/2/14 Scanner mainly completed 

11/7/14 Tests written, testing phase executed for scanner and parser 

11/10/14 Parser completed 

11/11/14 Begin working on AST-> expression and statements 

11/16/14 Tests written for AST, testing phase for AST begins along with regression 
testing for Scanner and Parser 
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11/25/14 AST completed, string of variable, function, etc. 

11/30/14 Began SAST and Analyzer (two separate files)  

12/2/14 Tests written for Semantic Analyzer, testing phase for Semantic Analyzer 
begins along with regression testing 

12/3/14 Type checking implemented, signal and array functionality added, edits 
made to parser and ast are made to comply with Semantic Analyzer 

12/5/14 Semantic Analyzer completed, include scope checking, variable/function 
checking, etc., testing for Semantic Analyzer also complete 

12/6/14 Code generation begins along with more regression tests 

12/9/14 Tests are written for code generation 

12/11/14 Signal and Array Code generation complete along with the testing of it 

12/16/14 Final Report completed 
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5. System Architecture 
5.1 Architecture Overview:  
 

 
 
The components flow in the following order. The Ocaml libraries, ocamllex and ocamlyacc, 
were used to build the scanner and parser respectively (scanner.mll and parser.mly). The 
code generator is also written in Ocaml in the file, code_generation.ml. The ocamllex and 
ocamlyacc libraries automatically generate the interfaces from the scanner to parser and from 
the parser to the ast.  
 
The semantic analyzer takes in the ast and returns the sast and performs the analysis on the 
sast using the analyzer. Then the code generator takes the sast and converts that to C++ 
code. The types are essentially converted from Ast type to Sast type.  
 
The entry point to the semantic analyzer is in infer_prog at the bottom of the file, which 
takes in the ast and then adds the variable declarations and function declarations to the 
global environment scope. The ast components are then converted to sast components 
where more checking such as type checking and scope-checking are done.  
 
 The entry point to code generation is located in string_of_prog first concatenates all the 
variables and functions into one string an then also takes in each component of the sast and 
converts it to corresponding C++ code.  
 
 
 
 
 

.dj	  /ile	   Scanner	   Parser 	  	  

AST	  Semantic	  
Analyzer/SAST	  

Code	  generation	  
	  

Generated	  C++	  
Code	  
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5.2 Component Interface Interaction:  
 
5.2.1 .dj file (DSPJockey File):  
This is simply the file that contains the code written in the DSPJockey Language.  
 
5.2.2 Scanner (scanner.mll):  
The scanner is written using ocamllex and essentially takes in the .dj source code and 
transforms it into a series of lexical tokens for the parser to interpret. The scanner can also 
detect the presence of invalid characters.  
 
5.2.3 Parser (parser.mly):  
The parser is written using ocamlyacc and takes in the tokens generated by the scanner and 
checks for syntax errors based on the context-free grammars defined in the parser for 
expression, statement, etc. After processing the tokens, the parser then produces the abstract 
syntax tree.  
 
5.2.4 AST (ast.ml):  
The abstract syntax tree defines the relationships between tokens and represents the 
syntactic structure of DSPJockey. The ast types such as variable, statement, expression, and 
primitive data types are defined in the ast.  
 
5.2.5 Semantic Analyzer (sast.ml & analyzer.ml):  
The semantic analyzer will take in the abstract syntax tree and go through the nodes of the 
tree converting the ast types to the annotated sast types so that the types such as expressions 
and statement are evaluated properly. The semantic analyzer also defines the environment of 
a scope, starting with the main global scope. Each scope is represented by a symbol table, 
which contains the variable identifiers and function identifiers. This is used for checking if a 
variable or function already exists in a local or parent scope (for say assignment expression). 
The semantic analyzer is extremely important for making sure things such as variable 
declaration and function calls are valid.  
 
The analyzer file does all the main semantic analysis and converts the ast types to the 
annotated sast types after analysis. The sast file just simply contains those annotated types.  
 
5.2.6 Code Generation (codegen.ml):  
The code generation files takes in the annotated ast (the sast) and converts all those types 
into C++ code. It is essentially the compiler and represents the last step in the process. The 
C++ code can then be run to execute the program that was originally in the .dj file.  
 
5.3 Top-level file (dspjockey.ml):  
This file basically represents the whole diagram from above as it reads from standard in and 
then creates the program from the Parser and Scanner, which is then passed into the ast. 
Then the ast is passed to the sast whose contents are passed to the code generator.  
 
It essentially provides the executable entry point to DSPJockey compiler after compilation 
and distributes the tasks to the individual compiler modules.  
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5.4 File Assignments:  
Team Member  Responsibilities 

Brian Bourn (Project manager) Scanner, Parser, Code Generation 

Vanshil Shah (Language Guru) Scanner, Parser, AST, Semantic Analyzer 

Abhinav Mishra (System Architect) AST, SAST, Semantic Analyzer 

Addisu Petros (Test/Validation) Semantic Analyzer, Code Generation 
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6. Test Plan  
	  
 	  
The big rationale behind our testing implementation was to have a system that would be an 
integral part of our development process and help us accurately translate our ideas into code. 
To this end, we designed our testing suite to check new functionality as well as flush out 
possible edge-case errors. 	  
 	  
6.1 Automation:	  
There was an initial plan to create a script that would run through all the tests but due to 
time and that the building up of the compiler was already handled in the run_compiler.sh, 
there was no creation of a test automation script. 	  
 	  
6.2 Mechanism:	  
Based on the development process, the test plan was broadly categorized into three. They 
are outlined as follows: 	  
 	  
6.2.1 Early stage testing:	  
In the beginning stages of our development process we wanted to insure that our scanner 
and parser were properly written. To this end we relied on ocamllex and ocamlyacc to insure 
that we had no shift/reduce conflicts and that our context free grammar was indeed logical.	  
 	  
6.2.2 Middle stage testing: 	  
 At this stage, our biggest focus was making sure that our DSPJockey code was being read in 
effectively and accurately. We had to make sure that the ast and sast were generating the 
correct tokens.  For this, we added debugging statements in the ast and sast that would print 
out the tokens and types generated from our code. An example is presented below. 	  
 	  
DSPJockey code to create a ramp signal:	  
 	  
stream hello_sig(float val) {	  
            	  
            let sig = Signal[];	  
            sig[time] = (val=val+1.0);	  
            print sig[time];	  
}	  
 	  
int main() {	  
            hello_sig(0.0);	  
}	  
 	  
Debugging print statement from the ast 	  
 	  
([],	  
{ return type = intfname = "main"	  
   formals = []	  
Expr (Call hello_sig [(Float lit: 0..)])]}	  
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{Stream return type = fname = "hello_sig"	  
   formals = [float val]	  
Signal sig -1.,	  
Expr (Signal sig[time - 0] = Id valBinop (Id val) Add (Float lit: 
1..)),	  
Printing: Signal sig[time - 0] = .]})	  
 	  
By examining these outputs, we were able to ascertain that the code was properly type 
checked and tokenized. 	  
 	  
6.2.3 Final stage testing:	  
The primary concern here was to validate the c++ code that was being generated from our 
code generator. For this, we wrote as many test cases as we could until we were satisfied that 
we had a properly functioning code generator. In general, we had multiple test cases to 
validate all the important aspects of our language. These test cases looked at :	  
- Signal creation	  
- Signal access/modification	  
- Signal Printing 	  
- Array creation	  
- Array access/modification	  
- Summation statement evaluation 	  
- Function declaration	  
- Function calling	  
- Type checking	  
- Scope checking	  
- Arithmetic evaluation	  
- Boolean statements evaluation 	  
- For/while loop statement execution	  
- If/else statement execution	  
 	  
6.2.3.1 Examples of representative programs:	  
I) simple program to create a ramp signal (with a buffer size of 1024) and print the values of 
the signal 	  
	  
DSPJockey code: 	  
	  
stream hello_sig(float val) {	  
            	  
            let sig = Signal[];	  
            sig[time] = (val=val+1.0);	  
            print sig[time];	  
}	  
int main() {	  
            hello_sig(0.0);	  
}	  
 	  
Generated C++ code 	  
 	  
#include <iostream>	  
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#include <fstream>	  
#include <iomanip>	  
#include <string>	  
#include "libcirc/circ_buffer.h"	  
using namespace std;	  
 	  
void hello_sig(float val)	  
{	  
            circular_buffer sig;	  
            for (int xz=0; xz<1024; xz++) sig.set_value(val = (val + 
1.));;	  
            for(int ew=0; ew<1024; ew++) cout << sig.value_at(0) 
<<endl;	  
}	  
int main()	  
{	  
            hello_sig(0.);	  
}	  
 	  
 	  
II) Simple program to simulate an FIR filter 	  
	  
DSPJockey code 	  
	  
stream fir_filter() {	  
            	  
            let coef_array= Array[10];	  
            int x =0;	  
            while(x<10){	  
            coef_array[x]=5;	  
            x=x+1;	  
            }	  
 	  
            float val=0.0;	  
            let sig = Signal[];	  
            sig[time]= (val=val+1.0);	  
 	  
            let output_signal = Signal[];	  
            let output_signal[time] = Sum i=0 to 10 : coef_array[i] * 
sig[time-1];	  
            print output_signal[time];	  
 	  
}	  
int main() {	  
            fir_filter();	  
}	  
 	  
 	  
Generated C++ code 	  
 	  
#include <iostream>	  
#include <fstream>	  
#include <iomanip>	  
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#include <string>	  
#include "libcirc/circ_buffer.h"	  
using namespace std;	  
 	  
void fir_filter()	  
{	  
            int coef_array[10];	  
            int x = 0;	  
            while ((x < 10)){	  
            coef_array[x]= 5;	  
            x = (x + 1);	  
            }	  
 	  
            float val = 0.;	  
            circular_buffer sig;	  
            for (int xz=0; xz<1024; xz++) sig.set_value(val = (val + 
1.));;	  
            circular_buffer output_signal;	  
            for(int ew=0; ew<1024; ew++){	  
                        int u=0; 	  
                        for(int i=0; i<10; i++){	  
                                    u+= (coef_array[i] * 
sig.value_at(1));	  
                        } 	  
                        output_signal.set_value(u); 	  
            }	  
            for(int ew=0; ew<1024; ew++) cout << 
output_signal.value_at(0) <<endl;	  
 	  
}	  
int main()	  
{	  
            fir_filter();	  
}	  
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7. Lessons Learned 
 
Brian Bourn (Project Manager):  
I had fun with this project although I thought it was overall one of the most challenging 
things I’ve ever done at Columbia. This project really taught me the value of starting a 
project early and trying to stick to your project milestones.   While our team started early we 
failed to reach each milestone on time.  As Such we ended up with a lot to do at the very 
end, which leads me to my second lesson learned.  The second thing I learned was that it’s a 
great Idea to break up your project in to smaller pieces but it is important to plan the 
execution of the small chunks so that you can move on from where you are. For instance it’s 
not a good Idea to have to last small chunk of your semantic analyzer to be writing program 
functionality.  Overall this program was really fun to write but I wish I had more time to 
write it in. 
 
Vanshil Shah (Language Guru):  
When we were first starting the project, I was completely overwhelmed. I thought there was 
no way that 4 people without any experience in functional programming could create a 
compiler for a digital signal processing language. None of us had ever used Ocaml before 
taking this course and knew next to nothing about it. However, we progressed through the 
class and learned bits and pieces about Ocaml and compilers and eventually started with out 
language implementation. When we first started programming, we had no idea what any of 
the components were doing but now as we have completed the compiler, I feel very 
confident in my Ocaml programming abilities. I think the most important thing I have 
learned from this project is managing complexity and breaking down a big project into 
smaller, more manageable chunks. Once we started programming in smaller chunks, we 
found it much easier to see how everything was connected on a larger scale. Writing this 
compiler also helped me understand Ocaml much better and brought me to the realization 
that you only begin to understand a language when you write actual code in it. My advice to 
future teams is to really try to understand the components of the compiler first and then 
begin by breaking the project into smaller chunks. If you have a clear idea of what chunks 
the compiler needs, you will have a much easier time writing it. The interconnection on 
components is also very important and if you try to understand Ocaml on a deep level, it will 
make your life much easier. That and start earlier! 
 
Abhinav Mishra (System Architect):  
Overall the experience of building your own programming language was pretty interesting 
and enriching. I knew about some of the CS Theory concepts such as DFAs and Context-
free grammars and how they were used for building languages but I never understood how 
that was applied to actually build a programming language. Therefore, in a general sense the 
main thing I learned was the overall process to build a compiler and how the computer 
science concepts around languages connect to the process of building a compiler and 
designing a new language.  
 
The advice I would give to future students in to START EARLY! It’s obviously really tough 
to do with all the other work in other classes but define a strict guideline for how many 
times per week the group should meet and for how many hours and follow that guideline to 
make sure you’re making continual progress on time. Another thing I would suggest is that 
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when you’re implementing the scanner and parser, think way ahead, in terms of time and 
overall functionality with the sast and code generation. It can be extremely annoying to go 
back to the parser and ast again as it impedes the overall progress of the project.  
 
Addisu Petros (Test/Validation):  
Personally, I found this project to be a lot of fun and very rewarding. Not only did I get to 
learn a new language in Ocaml but I also got to learn about how the whole compiler design 
process works. It was very great to see that the scanner and parser, which form the 
foundation of the language, can be so easily implemented using ocamllex and ocamlyacc. It 
was also amazing seeing how the individual parts like the scanner, parser and ast come 
together to form an entire language implementation.  
The one thing I would recommend to other students is to read up on Ocaml a bit before 
starting the project. Trying to learn Ocaml while completing the project is extremely difficult 
and painful to do, especially since work builds up as the semester goes on. It’s also harder to 
learn because in previous classes, we only used imperative languages.  
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8. Appendix  
 
8.1 Ocaml Module Files:  
 
8.1.1 scanner.mll:  
 
(* 
 Brian Bourn, Vanshil Shah 
*) 
{ open Parser } 
 
rule token = parse 
  [' ' '\t' '\r' '\n'] { token lexbuf } (* Whitespace *) 
| "/*"     { comment lexbuf }           (* Comments *) 
| '('      { LPAREN } 
| ')'      { RPAREN } 
| '{'      { LBRACE } 
| '}'      { RBRACE } 
| '['    { LBRACKET } 
| ']'    { RBRACKET } 
| ';'      { SEMI } 
| ','      { COMMA } 
| '+'      { PLUS } 
| '-'      { MINUS } 
| '*'      { TIMES } 
| '/'      { DIVIDE } 
| '^'      { EXP } 
| '='      { ASSIGN } 
| ':'    { COLON } 
| "=="     { EQ } 
| "!="     { NEQ } 
| '<'      { LT } 
| "<="     { LEQ } 
| ">"      { GT } 
| ">="     { GEQ } 
| "if"     { IF } 
| "elseif" { ELSEIF } 
| "else"   { ELSE } 
| "for"    { FOR } 
| "while"  { WHILE } 
| "return" { RETURN } 
| "print"  { PRINT } 
| "int"    { INT } 
| "float"  { FLOAT } 
| "bool"   { BOOL } 
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| "string" { STRING } 
| "let"    { LET } 
| "to"    { TO } 
| "time"   { TIME } 
| "stream" { STREAM } 
| "Array"  { ARRAY } 
| "Signal" { SIGNAL } 
| "Sum"    { SUM } 
| "true"   { BOOLEAN_LIT(true) } 
| "false"  { BOOLEAN_LIT(false) } 
| ['0'-'9']+'.'['0'-'9']+ as lxm { F_LIT(float_of_string 
lxm) } (* To recognize floats, can add exponential *) 
| ['0'-'9']+ as lxm { LITERAL(int_of_string lxm) } 
| ['a'-'z' 'A'-'Z']['a'-'z' 'A'-'Z' '0'-'9' '_']* as lxm { 
ID(lxm) } 
| '"' ([^'"']+ as s) '"' { STRING_LIT(s) } 
| eof { EOF } 
| _ as char { raise (Failure("illegal character " ^ 
Char.escaped char)) } 
 
and comment = parse 
  "*/" { token lexbuf } 
| _    { comment lexbuf } 
 
 
8.1.2 parser.mly:  
 
%{ open Ast %} 
 
%token SEMI LPAREN RPAREN LBRACE RBRACE COMMA COLON 
%token LBRACKET RBRACKET 
%token PLUS MINUS TIMES DIVIDE ASSIGN EXP 
%token EQ NEQ LT LEQ GT GEQ 
%token RETURN IF ELSEIF ELSE FOR WHILE INT FLOAT BOOL 
STRING 
%token ARRAY  
%token SUM TO LET STREAM SIGNAL TIME PRINT 
%token <bool> BOOLEAN_LIT 
%token TIME 
%token <float> F_LIT 
%token <int> LITERAL 
%token <string> ID 
%token <string> STRING_LIT 
%token EOF 
 
%nonassoc NOELSE 
%nonassoc ELSE 
%nonassoc ELSEIF 
%right ASSIGN 



	   37	  

%left EQ NEQ 
%left LT GT LEQ GEQ 
%left PLUS MINUS 
%left TIMES DIVIDE 
%left EXP 
%start program 
%type <Ast.program> program 
 
%% 
 
program: 
   /* nothing */ { [], [] } 
 | program vdecl { ($2 :: fst $1), snd $1 } 
 | program fdecl { fst $1, ($2 :: snd $1) } 
 
fdecl: 
 prim ID LPAREN formals_opt RPAREN LBRACE stmt_list 
RBRACE 
     { { is_stream = false; 
         fname = $2; 
   ret_type = Some($1); 
    formals = $4; 
    body = List.rev $7 } } 
  
   | STREAM ID LPAREN formals_opt RPAREN LBRACE stmt_list 
RBRACE 
     { { is_stream = true; 
         fname = $2; 
   ret_type = None; 
         formals = $4; 
         body = List.rev $7; } } 
 
formals_opt: 
    /* nothing */ { [] } 
  | formal_list   { List.rev $1 } 
 
formal_list: 
    formal                { [$1] } 
  | formal_list COMMA formal { $3 :: $1 } 
 
formal: 
 prim ID 
 { { 
  form_type = $1; 
  form_name = $2; 
 } } 
 
variable: 
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 prim ID assign_opt SEMI 
 { { 
  typ  = $1; 
  name = $2; 
  exp  = $3; 
 } } 
 
vdecl: 
 variable { Variable_Dec($1) } 
 
stmt_list: 
    /* nothing */  { [] } 
  | stmt_list stmt { $2 :: $1 } 
 
stmt: 
    expr SEMI { Expr($1) } 
  | RETURN expr SEMI { Return($2) } 
  | LBRACE stmt_list RBRACE { Block(List.rev $2) } 
  | IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5, 
Block([])) } 
  | variable  { Prim_Assign($1) } 
  | IF LPAREN expr RPAREN stmt ELSE stmt    { If($3, $5, 
$7) } 
  | FOR LPAREN expr_opt SEMI expr_opt SEMI expr_opt RPAREN 
stmt 
     { For($3, $5, $7, $9) } 
  | WHILE LPAREN expr RPAREN stmt { While($3, $5) } 
  | PRINT expr SEMI { Print($2) } 
  | prim ID ASSIGN SUM ID ASSIGN LITERAL TO LITERAL COLON 
expr SEMI  { Sum($2, $5, $7, $9, $11) } 
  | LET ID LBRACKET TIME RBRACKET ASSIGN SUM ID ASSIGN 
LITERAL TO LITERAL COLON expr SEMI  { Basic_Sum($2, $8, 
$10, $12, $14) } 
  | create_basic SEMI { $1 } 
 
create_basic: 
  LET ID ASSIGN basic LBRACKET lit_opt RBRACKET { 
Basic_Dec($2, $4, $6) } 
 
lit_opt: 
 /* nothing */ { -1 } 
  | LITERAL   { $1 } 
 
expr_opt: 
    /* nothing */ { Noexpr } 
  | expr          { $1 } 
 
expr: 
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    LITERAL                  
 { Literal($1) } 
  | STRING_LIT           
 { String_literal($1) } 
  | F_LIT            
 { Float_literal($1) } 
  | BOOLEAN_LIT         
   { Bool_literal($1) } 
  | ID assign_opt           
 { Id($1, $2) } 
  | b_expr                     
 { $1 } 
  | ID LPAREN actuals_opt RPAREN     
 { Call($1, $3) } 
  | LPAREN expr RPAREN         
 { $2 } 
  | basic_op          
 { $1 } 
 
b_expr: 
    expr PLUS   expr         
 { Binop($1, Add,   $3) } 
  | expr MINUS  expr         
 { Binop($1, Sub,   $3) } 
  | expr TIMES  expr         
 { Binop($1, Mult,  $3) } 
  | expr DIVIDE expr         
 { Binop($1, Div,   $3) } 
  | expr EXP    expr         
 { Binop($1, Exp,   $3) } 
  | expr EQ     expr         
 { Binop($1, Equal, $3) } 
  | expr NEQ    expr         
 { Binop($1, Neq,   $3) } 
  | expr LT     expr         
 { Binop($1, Less,  $3) } 
  | expr LEQ    expr         
 { Binop($1, Leq,   $3) } 
  | expr GT     expr         
 { Binop($1, Greater,  $3) } 
  | expr GEQ    expr         
 { Binop($1, Geq,   $3) } 
 
basic_op: 
 ID LBRACKET LITERAL RBRACKET assign_opt    { 
Basic_Op(Array, $1, $3, "!Noid", $5) } 
  | ID LBRACKET ID RBRACKET assign_opt  { 
Basic_Op(Array, $1, -1, $3, $5) } 
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  | ID LBRACKET time_expr RBRACKET assign_opt { 
Basic_Op(Signal, $1, $3, "!Noid", $5) } 
 
time_expr: 
 TIME       { 0 } 
  | TIME MINUS LITERAL    { $3 } 
 
assign_opt: 
 /* nothing */ { Noexpr } 
  | ASSIGN expr   { $2 } 
 
prim: 
    STRING  { String } 
  | INT    { Int } 
  | FLOAT { Float } 
  | BOOL   { Bool } 
 
basic: 
 ARRAY { Array } 
  | SIGNAL { Signal } 
      
actuals_opt: 
    /* nothing */ { [] } 
  | actuals_list  { List.rev $1 } 
 
actuals_list: 
    expr                    { [$1] } 
  | actuals_list COMMA expr { $3 :: $1 } 
 
 
8.1.3 Ast.ml:  
 
type op = Add | Sub | Mult | Div | Exp | Equal | Neq | Less 
| Leq | Greater | Geq 
 
type prim = Int | Float | Bool | String 
 
type basic = Array | Signal 
 
type expr = 
    Literal of int 
  | Id of string * expr 
  | String_literal of string 
  | Float_literal of float 
  | Bool_literal of bool 
  | Binop of expr * op * expr 
  | Call of string * expr list 
  | Basic_Op of basic * string * int * string *  expr 
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  | Noexpr 
 
type variable = { 
    typ  : prim; 
 name :  string; 
    exp  : expr; 
} 
 
type vdecl = 
 Variable_Dec of variable 
 
type stmt = 
    Block of stmt list 
  | Expr of expr 
  | Return of expr 
  | If of expr * stmt * stmt 
  | For of expr * expr * expr * stmt 
  | Prim_Assign of variable 
  | While of expr * stmt 
  | Sum of string * string * int * int * expr 
  | Basic_Dec of string * basic * int 
  | Basic_Sum of string * string * int * int * expr 
  | Print of expr 
 
type formal = 
{ 
 form_type : prim; 
 form_name : string; 
} 
 
type func_decl =  
{ 
    is_stream : bool; 
    fname   : string; 
    ret_type  : prim option; 
    formals  : formal list; 
    body   : stmt list; 
} 
 
type program = vdecl list * func_decl list 
 
(* Low-level AST printing, to help debug the structure.  
These functions are 
   only for debugging (the -r flag) and can be removed. *) 
 
let rec expr_s = function 
   Literal(l) -> "Literal " ^ string_of_int l 
 | Id(s, e) -> "Id " ^ s ^ expr_s e 
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 | Binop(e1, o, e2) -> "Binop (" ^ expr_s e1 ^ ") " ^ 
       (match o with Add -> "Add" | Sub -> "Sub" | Mult -> 
"Mult" | 
             Div -> "Div" | Exp -> "Exp" | Equal -> "Equal" 
| Neq -> "Neq" | 
                     Less -> "Less" | Leq -> "Leq" | 
Greater -> "Greater" | 
                     Geq -> "Geq") ^ " (" ^ expr_s e2 ^ ")" 
 | String_literal(s) -> "String Lit: " ^ s ^ "." 
 | Float_literal(f) -> "Float lit: " ^ string_of_float f ^ 
"." 
 | Bool_literal(b) -> "Bool lit: " ^ string_of_bool b ^ "." 
 | Call(f, es) -> "Call " ^ f ^ " [" ^ 
        String.concat ", " (List.map (fun e -> "(" ^ expr_s 
e ^ ")") es) ^ "]" 
 | Basic_Op(b, s, i, a, e) ->  
   (match b with Signal -> "Signal" | Array -> 
"Array") ^ " " ^ 
   s ^ (match b with Signal -> "[time - " | 
Array -> "[")  
   ^ string_of_int i ^ "] = " ^ expr_s e 
 | Noexpr -> "" 
 
let prim_s = function 
 Int -> "int" 
  | Float -> "float" 
  | String -> "string" 
  | Bool -> "bool" 
 
let string_of_prim = function 
 Int -> "int" 
  | Float -> "float" 
  | String -> "std::string" 
  | Bool -> "bool" 
 
let string_of_type = function 
 Some(x) -> string_of_prim x 
  | _ -> "" 
 
let string_of_basic = function 
 Array -> "Array" 
  | Signal -> "Signal" 
 
let string_of_var var =  
 string_of_prim var.typ ^ " " ^ var.name ^ " " ^ expr_s 
var.exp 
 
let string_of_vdecl = function 
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 Variable_Dec(v) -> string_of_var v 
 
let rec stmt_s = function 
   Block(ss) -> "Block [" ^ String.concat ",\n" 
                             (List.map (fun s -> "(" ^ 
stmt_s s ^ ")") ss) ^ "]" 
 | Expr(e) -> "Expr (" ^ expr_s e ^ ")" 
 | Return(e) -> "Return (" ^ expr_s e ^ ")" 
 | If(e, s1, s2) -> "If (" ^ expr_s e ^ ") (" ^ stmt_s s1 ^ 
") (" ^ 
                                                stmt_s s2 ^ 
")" 
 | For(e1, e2, e3, s) -> "For (" ^ expr_s e1 ^ ") (" ^ 
expr_s e2 ^ 
                            ") (" ^ expr_s e3 ^ ") (" ^ 
stmt_s s ^ ")" 
 | While(e, s) -> "While (" ^ expr_s e ^ ") (" ^ stmt_s s ^ 
")" 
 | Print(s) -> "Printing: " ^ expr_s s ^ "." 
 | Basic_Dec(s, b, i) -> (match b with Signal -> "Signal" | 
Array -> "Array") ^ " " ^ s ^ " " ^ string_of_int i ^ "." 
 | Prim_Assign(v) -> string_of_var v 
 
let string_of_formal forml =  
 string_of_prim forml.form_type ^ " " ^ forml.form_name 
 
let func_decl_s f = 
  "{"  
  ^ (match f.is_stream with true -> "Stream" | false -> "") 
^  
  " return type = " ^ string_of_type f.ret_type ^ "fname = 
\"" ^ f.fname ^ "\"\n   formals = [" ^ 
  String.concat ", " (List.map string_of_formal f.formals) 
^ "]\n" ^ 
  String.concat ",\n" (List.map stmt_s f.body) ^ 
  "]}\n" 
 
 
let program_s (vars, funcs) = "([" ^ String.concat ", " 
(List.map string_of_vdecl vars) ^ "],\n" ^ 
  String.concat "\n" (List.map func_decl_s funcs) ^ ")" 
 
(* "Pretty printed" version of the AST, meant to generate a 
MicroC program 
   from the AST.  These functions are only for pretty-
printing (the -a flag) 
   the AST and can be removed. *) 
let rec string_of_expr = function 
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    Literal(l) -> string_of_int l 
  | Id(s, e) -> s ^ string_of_expr e 
  | Binop(e1, o, e2) -> 
      string_of_expr e1 ^ " " ^ 
      (match o with 
 Add -> "+" | Sub -> "-" | Mult -> "*" | Div -> "/" 
      | Exp -> "^" | Equal -> "==" | Neq -> "!=" 
      | Less -> "<" | Leq -> "<=" | Greater -> ">" | Geq -> 
">=") ^ " " ^ 
      string_of_expr e2 
  | String_literal(s) -> "String Lit: " ^ s ^ "." 
  | Float_literal(f) -> "Float lit: " ^ string_of_float f ^ 
"." 
  | Bool_literal(b) -> "Bool lit: " ^ string_of_bool b ^ 
"." 
  | Call(f, el) -> 
      f ^ "(" ^ String.concat ", " (List.map string_of_expr 
el) ^ ")" 
  | Basic_Op(b, s, i, a, e) ->  
   (match b with Signal -> "Signal" | Array -> 
"Array") ^ " " ^ 
   s ^ (match b with Signal -> "[time - " | 
Array -> "[")  
   ^ string_of_int i ^ "] = " ^ string_of_expr 
e 
  | Noexpr -> "" 
 
let rec string_of_stmt = function 
    Block(stmts) -> 
      "{\n" ^ String.concat "" (List.map string_of_stmt 
stmts) ^ "}\n" 
  | Expr(expr) -> string_of_expr expr ^ ";\n"; 
  | Return(expr) -> "return " ^ string_of_expr expr ^ 
";\n"; 
  | If(e, s, Block([])) -> "if (" ^ string_of_expr e ^ 
")\n" ^ string_of_stmt s 
  | If(e, s1, s2) ->  "if (" ^ string_of_expr e ^ ")\n" ^ 
      string_of_stmt s1 ^ "else\n" ^ string_of_stmt s2 
  | For(e1, e2, e3, s) -> 
      "for (" ^ string_of_expr e1  ^ " ; " ^ string_of_expr 
e2 ^ " ; " ^ 
      string_of_expr e3  ^ ") " ^ string_of_stmt s 
  | While(e, s) -> "while (" ^ string_of_expr e ^ ") " ^ 
string_of_stmt s 
  | Print(s) -> "Printing: " ^ string_of_expr s ^ "." 
  | Basic_Dec(s, b, i) -> (match b with Signal -> "Signal" 
| Array -> "Array") ^ " " ^ s ^ " " ^ string_of_int i ^ "." 
  | Prim_Assign(v) -> string_of_var v 
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let string_of_fdecl fdecl = 
  (match fdecl.is_stream with true -> "Stream" | false -> 
"")^ " type: " 
  ^ string_of_type fdecl.ret_type ^ " "  
  ^fdecl.fname ^ "(" ^ String.concat ", " (List.map 
string_of_formal fdecl.formals) ^ ")\n{\n" ^ 
  String.concat "" (List.map string_of_stmt fdecl.body) ^ 
  "}\n" 
 
let string_of_program (vars, funcs) = 
  String.concat "" (List.map string_of_vdecl vars) ^ "\n" ^ 
  String.concat "\n" (List.map string_of_fdecl funcs) 
 
8.1.4 sast.ml:  
(* 
 Abhinav Mishra, Vanshil Shah 
*) 
type t =  
    Var 
  | Func 
  | String 
  | Int 
  | Float 
  | Bool   
  | Expression 
  | Array (* type, int *) 
  | Signal (* signal of floats *) 
  | No 
 
type i_or_s = 
 Int_ of int 
  | String_ of string 
 
type a_expr =  
 Literal of t * int 
  | String_literal of t * string 
  | Bool_literal of t * bool 
  | Float_literal of t * float 
  | Binop of t * a_expr * Ast.op * a_expr 
  | Id of t * string * a_expr * t 
  | Call of t * string * a_expr list 
  | Basic_Op of t * string * i_or_s * a_expr * t 
  | Noexpr 
 
type a_var = { 
 a_typ  : t; 
 a_name : string; 
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 a_exp  : a_expr; 
} 
 
type a_stream = { 
 str_typ  : t; 
 str_name : string; 
} 
 
type a_variable = 
 Primitive of a_var 
  | Basic of a_stream 
 
type a_stmt = 
    Block of a_stmt list 
  | Expr of t * a_expr 
  | If of a_expr * a_stmt * a_stmt 
  | For of a_expr * a_expr * a_expr * a_stmt 
  | Prim_Assign of t * a_variable 
  | While of a_expr * a_stmt 
  | Print of t * a_expr 
  | Return of a_expr 
  | Basic_Sum of t * string * string * int * int * a_expr 
  | Sum of t * string * string * int * int * a_expr 
  | Basic_Dec of t * string * int (* When creating an 
Array or a signal, we just need the type, the name, and the 
size *) 
 
type a_vdecl =  
 Variable_Dec of t * a_variable 
 
type a_fdecl = 
{ 
 a_is_stream : bool; 
 a_fname  : string; 
 a_ret_type :  t option; 
 a_formals : Ast.formal list; 
 a_locals : a_variable list; 
 a_old_body : Ast.stmt list; 
 a_body  : a_stmt list; 
} 
 
type a_program = a_vdecl list  * a_fdecl list 
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8.1.5 analyzer.ml:  
(* 
 Abhinav Mishra, Addisu Petros, Vanshil Shah 
*) 
 
open Ast 
open Sast 
 
type symbol_table = {  
        parent    : symbol_table option;  
  mutable functions : a_fdecl list; 
     mutable variables : a_variable list;  
} 
 
type translation_environment = { 
 mutable func_return_type : t option; 
     scope : symbol_table;  
} 
 
 
let type_of_expr (ae : Sast.a_expr) : Sast.t =  
 match ae with 
 | Sast.Literal(t, _) -> t 
 | Sast.String_literal(t, _) -> t 
 | Sast.Bool_literal(t, _) -> t 
 | Sast.Float_literal(t, _) -> t 
 | Sast.Binop(t, _, _, _) -> t 
 | Sast.Id(_, _, _, t) -> t 
 | Sast.Call(t, _, _) -> t 
 | Sast.Basic_Op(_, _, _, _, t) -> t 
 | Sast.Noexpr -> Sast.No 
 
let formal_type_conversion = function 
 Ast.Int -> Sast.Int 
  | Ast.Bool -> Sast.Bool 
  | Ast.String -> Sast.String 
  | Ast.Float -> Sast.Float 
  
let basic_type_conversion = function 
 Ast.Signal -> Sast.Signal 
  | Ast.Array  -> Sast.Array 
 
let f_type_conv = function 
 Some(x) -> formal_type_conversion x 
  | _ -> Sast.No 
 
let find_var name var = match var with 
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 Primitive({a_name=n; _}) -> n=name 
  | Basic({str_name=n; _}) -> n=name 
 
let rec find_variable (scope : symbol_table) name =  
    try  
  List.find (find_var name) scope.variables 
    with Not_found -> 
      match scope.parent with  
        Some(parent) -> find_variable parent name  
    | _ -> raise Not_found 
 
let find_function (scope : symbol_table) name =  
 let rec get_global_scope scope = match scope.parent 
with 
  | None -> scope 
  | Some(parent) -> (get_global_scope parent) 
 in 
 let g_scope = get_global_scope scope in 
 try 
  List.find (fun {a_fname=s; _} ->  
     s = name) g_scope.functions 
 with 
 Not_found -> 
  raise Not_found 
 
let add_variable (scope : symbol_table) var =  
 scope.variables <- var :: scope.variables; 
 var 
 
let string_of_binop = function  
     Add -> "Add"  
   | Sub -> "Sub" 
   | Mult -> "Mult"  
   | Div -> "Div"  
   | Exp -> "Exp"  
   | Equal -> "Equal"  
   | Neq -> "Neq"  
   | Less -> "Less"  
   | Leq -> "Leq"  
   | Greater -> "Greater" 
   | Geq -> "Geq"  
 
let types_equal t1 t2 =  
 match t1,t2 with _, _ -> if (t1 = t2) then true else 
false 
 
(*let functioncall env call = *) 
 



	   49	  

let rec expr env = function  
   Ast.Literal(v) -> Sast.Literal(Sast.Int, v) 
 | Ast.String_literal(v) -> 
Sast.String_literal(Sast.String, v) 
 | Ast.Bool_literal(v) -> Sast.Bool_literal(Sast.Bool, v) 
 | Ast.Float_literal(v) -> Sast.Float_literal(Sast.Float, 
v) 
 | Ast.Binop (e1,o,e2) ->  
   (  
 let e1 = expr env e1  
    and e2 = expr env e2 in  
 
 let t1 = type_of_expr e1 in 
 let t2 = type_of_expr e2 in 
 
 match o with 
  (Add | Sub | Mult | Div | Exp) ->  
   if types_equal t1 t2  
    then Sast.Binop(t1, e1, o, e2) 
   else  
    raise(Failure("Binop " ^ 
(string_of_binop o) ^ " have invalid operands.")) 
   
   | (Equal | Neq | Less | Leq | Greater | Geq) -> 
   if (types_equal t1 t2)  
    then Sast.Binop(Sast.Bool, e1, o, e2) 
   else 
    raise(Failure("Binop " ^ 
(string_of_binop o) ^ " have invalid operands.")) 
     ) 
  | Ast.Id(vname, exp) -> ( 
 let vdecl = try 
  find_variable env.scope vname; 
 with Not_found -> 
  print_endline vname; 
  raise(Failure("Variable not found")) 
 in 
 
 let ex = expr env exp in 
 let ex_type = type_of_expr ex in 
 
 let var = match vdecl with 
  Primitive(x) -> x 
   | Basic(_) -> raise(Failure("Referring to signal")) 
 in 
 
 if var.a_typ <> ex_type && ex_type <> Sast.No 
 then  
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  raise(Failure("Assign types don't match")) 
 else 
  print_endline ""; 
  
 match var.a_typ with 
  Sast.Int ->  
   Sast.Id(Sast.Var, vname, ex, Sast.Int) 
   | Sast.Float ->  
   Sast.Id(Sast.Var, vname, ex, Sast.Float) 
   | Sast.Bool -> 
     Sast.Id(Sast.Var, vname, ex, Sast.Bool) 
   | Sast.String -> 
     Sast.Id(Sast.Var, vname, ex, Sast.String) 
   | _ -> 
     raise(Failure("Incorrect variable type")) 
 
 ) 
  | Ast.Call(f_name, exprs) -> 
   let func_found = find_function env.scope f_name in 
 let t_ret_type = func_found.a_ret_type in 
 let formal_types = List.map (fun {form_type=s; _} -> 
formal_type_conversion s) func_found.a_formals in 
 let checked_exprs = List.map (expr env) exprs in 
 let checked_types = List.map type_of_expr 
checked_exprs in 
 
 let rec typesMatch list1 list2 = match list1,list2 
with 
  | [], [] -> true 
  | [], _ -> raise(Failure(" found parameters when 
expecting none ")) 
  | _ , [] -> raise(Failure(" found no parameters 
when expecting parameters")) 
  | _ , _ ->  
   try 
    ( types_equal (List.hd(list1)) 
(List.hd(list2)) ) &&  
     typesMatch (List.tl(list1)) 
(List.tl(list2)) 
   with Failure("hd") -> 
    raise(Failure(" trying List.hd on [] in 
exprCheck:Ast.Call")) 
 in 
 
 let types_same = typesMatch formal_types checked_types 
in 
 
 if types_same 



	   51	  

 then 
  match t_ret_type with 
   Some(ret_val) -> 
    Sast.Call(ret_val, f_name, 
checked_exprs) 
    | None ->  
      Sast.Call(Sast.No, f_name, 
checked_exprs) 
 else 
  raise(Failure("Arg types not same")) 
 
  | Ast.Basic_Op(b_type, name, lit, id, exp) -> 
   (* If we're not in a stream function we can't do this 
kind of op *) 
   if env.func_return_type <> None 
 then 
  raise(Failure("Can't do signal/array ops in 
normal functions")) 
 else 
  (* Lets find the signal first *) 
  let vdecl = try 
   find_variable env.scope name 
  with 
   Not_found -> 
    raise(Failure("Array/Signal not 
found")) 
  in 
 
  let a_type = basic_type_conversion b_type in 
   
  let var = match vdecl with 
   Primitive(_) -> raise(Failure("Basic 
operation on wrong type of variable")) 
    | Basic(x) -> 
     if x.str_typ <> a_type 
   then 
    raise(Failure("Type of signal/array 
incorrect")) 
   else 
    x 
  in 
  ignore (var); 
  (* Evaluate the expression *) 
  let a_exp = expr env exp in 
 
  if id <> "!Noid" 
  then  
   let id_found = try 



	   52	  

    ignore (find_variable env.scope id); 
   with 
    Not_found -> 
     raise(Failure("ID doesn't exist")) 
   in 
   ignore (id_found);  
    
  (* The literal thats in Basic_Op is going to be 
   dependent on the a_type 
 
   if a_type is a signal, then lit=0 means we 
just have t 
         lit>0 means t-
lit 
   if a_type is an array, then lit means 
Array[lit] 
  *) 
   Sast.Basic_Op(a_type, name, String_(id), 
a_exp, Sast.Float) 
  else 
   Sast.Basic_Op(a_type, name, Int_(lit), 
a_exp, Sast.Float) 
   
  | Ast.Noexpr -> 
 Sast.Noexpr 
 
let rec stmt env = function 
 Ast.Block(st_list) -> 
  let sl = List.map (fun s -> stmt env s) st_list 
in 
  Sast.Block(sl) 
  | Ast.Sum(var, lit, i1, i2, ex) -> 
 (* TODO: Make sure that i1 is less than i2 *) 
 let vdecl = try  
     ignore (find_variable env.scope var); 
  raise(Failure("Identifier already exists")) 
 with  
  Not_found ->  ( 
   let new_vdecl = 
Sast.Primitive({a_typ=(Sast.Int); a_name=var; 
a_exp=Sast.Noexpr;}) in 
   ignore (add_variable env.scope new_vdecl); 
  )  
 in 
 vdecl; 
 
 let new_vdecl = Sast.Primitive({a_typ=(Sast.Int); 
a_name=lit; a_exp=Sast.Noexpr;}) in 
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 ignore (add_variable env.scope new_vdecl); 
  
   let exp = expr env ex in 
 
 let t1 = type_of_expr exp in 
 
 Sast.Sum(t1, var, lit, i1, i2, exp) 
 
  | Ast.Basic_Sum(s1, s2, i1, i2, exp) -> 
   let vdecl = try 
  find_variable env.scope s1 
 with 
  Not_found ->  
   raise(Failure("Signal doesn't exit")) 
 in 
 
 let var = match vdecl with 
  Primitive(x) -> raise(Failure("Incorrect variable 
type")) 
   | Basic(x) -> x 
 in 
  
 (* Var is a variable of type a_stream *) 
 if var.str_typ <> Sast.Signal 
 then 
  raise(Failure("Array type doesn't belong here")); 
 
 let new_vdecl = Sast.Primitive({a_typ=(Sast.Float); 
a_name=s2; a_exp=Sast.Noexpr;}) in 
 ignore (add_variable env.scope new_vdecl); 
  
   let ex = expr env exp in 
 
 let t1 = type_of_expr ex in 
 
 Sast.Basic_Sum(t1, var.str_name, s2, i1, i2, ex) 
  | Ast.Return(ex) -> 
  (match env.func_return_type with 
  | None -> raise(Failure("Invalid return 
statement")) 
  | Some(x) -> 
   let exp = expr env ex in 
   let typ = type_of_expr exp in 
   if typ <> x 
   then 
    raise(Failure("Invalid return type")) 
   else 
    Sast.Return(exp) 
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  ) 
  
  | Ast.Expr(exp) -> 
   let ex =  expr env exp in 
 
 Sast.Expr(Sast.Expression, ex) 
 
  | Ast.If(exp, st1, st2) -> 
 let exp1 = expr env exp in 
 let typ = type_of_expr exp1 in 
 
 if typ <> Sast.Bool 
 then 
  raise(Failure("If argument invalid")) 
 else 
  Sast.If(exp1, stmt env st1, stmt env st2) 
 
  | Ast.For(e1, e2, e3, st) -> 
   let exp1 = expr env e1 in 
 let exp2 = expr env e2 in 
 let exp3 = expr env e3 in 
 
 let typ2 = type_of_expr exp2 in 
 
 if typ2 <> Sast.Bool 
 then  
  raise(Failure("For loop incorrect")) 
 else 
  Sast.For(exp1, exp2, exp3, stmt env st) 
 
  | Ast.While(exp, st) -> 
   let ex = expr env exp in 
 
 let typ = type_of_expr ex in 
 
 if typ <> Sast.Bool 
 then 
  raise(Failure("While condition requires boolean 
expression")) 
 else 
  Sast.While(ex, stmt env st) 
 
  | Ast.Prim_Assign(var) ->  
   (* 1. Evaluate the type of rhs expression, make sure 
its the same as prim_type 
  2. Make sure the variable name doesnt exist in 
this scope 
 *) 
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 let vdecl = try  
     ignore (find_variable env.scope var.name); 
  raise(Failure("Identifier already exists")) 
 with  
 Not_found ->  ( 
  (* TODO: add_variable returns the var *) 
  let typ = formal_type_conversion var.typ in 
  let a_expr = expr env var.exp in 
  let type_expr = type_of_expr a_expr in 
 
  if type_expr <> No && typ <> type_expr 
  then 
   raise(Failure("Type of ID doesn't match 
expression")) 
  else ( 
   let new_vdecl = Sast.Primitive({a_typ=(typ); 
a_name=var.name; a_exp=a_expr;}) in 
     ignore (add_variable env.scope new_vdecl); 
   Sast.Prim_Assign(Sast.Var, new_vdecl) 
  ) 
 ) in 
 vdecl 
 
  | Ast.Basic_Dec(name, b_type, l_opt) -> 
 (* If this is not a stream function then we can't work 
with signals*) 
   if env.func_return_type <> None 
 then 
  raise(Failure("Can't declare basic types in 
normal functions")) 
 else 
  let vdecl = try 
   ignore (find_variable env.scope name); 
   raise(Failure("Variable already exists")) 
  with 
   Not_found -> 
    (* Create the signal *) 
    let typ = basic_type_conversion b_type 
in 
 
    if typ = Sast.Array && l_opt = -1 
    then 
     raise(Failure("Need size for 
array")); 
      
    let new_vdecl = 
Sast.Basic({str_typ=typ; str_name=name;}) in 
    ignore (add_variable env.scope 
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new_vdecl); 
    Sast.Basic_Dec(typ, name, l_opt) 
  in 
  vdecl 
  | Ast.Print(exp) -> 
   let exp1 = expr env exp in 
 let typ1 = type_of_expr exp1 in 
 
 Sast.Print(typ1, exp1) 
 
let check_vdecls env = function 
 Ast.Variable_Dec(var) -> 
  let vdecl = try  
   ignore (find_variable env.scope var.name); 
   raise(Failure("Variable already exists")) 
  with  
    | Not_found ->  
   (* TODO: add_variable returns the var *) 
   let typ = formal_type_conversion var.typ in 
   let a_expr = expr env var.exp in 
   let type_expr = type_of_expr a_expr in 
 
   if type_expr <> No && typ <> type_expr 
   then 
    raise(Failure("Type of ID doesn't match 
expression")) 
   else ( 
    let new_vdecl = Primitive({a_typ=(typ); 
a_name=var.name; a_exp=a_expr;}) in 
    ignore (add_variable env.scope 
new_vdecl); 
    Sast.Variable_Dec(Sast.Var, new_vdecl) 
   ) 
  in 
  vdecl 
 
let create_new_env parent_env ret_type = 
 let new_scope = { 
  parent= Some parent_env.scope; 
  functions=[]; 
  variables=[]; 
 } in 
 let new_env = { 
  func_return_type = ret_type; 
  scope = new_scope; 
 } in 
 new_env 
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let get_global_environment = 
 let new_scope = { 
  parent=None; 
  functions=[]; 
  variables=[];  
 } in 
 let new_env = { 
  func_return_type=None; 
  scope=new_scope; 
 } in 
 new_env 
 
let variable_from_formal formal = 
 let new_var = Primitive({a_typ = 
formal_type_conversion formal.form_type; 
a_name=formal.form_name; a_exp=Sast.Noexpr})  in 
 new_var 
 
let add_function globe_env fn = 
 let func_exists = try 
  ignore (find_function globe_env.scope fn.fname); 
  raise(Failure("Function already exists")) 
 with 
  Not_found -> 
   (* Convert the return type from 
    Ast.prim option -> Sast.t option 
   *) 
   let new_ret_type = f_type_conv fn.ret_type 
in 
 
   (* Create temporary body to fill in our 
function *) 
   let new_body = [] in 
   let new_function = 
{a_is_stream=fn.is_stream;  
        a_fname=fn.fname; 
        a_ret_type=(match 
fn.is_stream with 
          
 false -> Some new_ret_type 
            | true 
-> None); 
       
 a_formals=fn.formals; 
        a_locals=[]; 
        a_old_body=fn.body; 
        a_body=new_body;} 
in 
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   (* Add the function to the global scope *) 
   globe_env.scope.functions <- 
new_function::globe_env.scope.functions; 
 
 in 
 func_exists 
 
let string_of_opt = function 
 Some(_) -> print_endline "Has a value" 
  | None -> print_endline "Is stream" 
 
let string_of_variables = function 
 Primitive(x) -> print_endline ("Primitive " ^ 
x.a_name) 
  | Basic(x) -> print_endline ("Stream " ^ x.str_name) 
 
let check_function_bodies globe_env fn = 
 print_endline ("==============Checking function: " ^ 
fn.a_fname ^ "=============="); 
 
 (* Create a new environment *) 
 let f_env = create_new_env globe_env fn.a_ret_type in 
 
 (* Convert all of the formals to variables so that we 
can  
  add them to the scope of the current function 
 *) 
 let vars_from_formals = List.map variable_from_formal 
fn.a_formals in 
 ignore (List.map (add_variable f_env.scope) 
vars_from_formals); 
 
 (* Create new body thats typechecked *) 
 let new_body = List.map (stmt f_env) fn.a_old_body in 
 
 let new_function = {a_fname = fn.a_fname; 
      a_is_stream = fn.a_is_stream; 
      a_ret_type = fn.a_ret_type; 
      a_formals = fn.a_formals; 
      a_locals = 
f_env.scope.variables; 
      a_old_body = []; 
      a_body = new_body; 
 } in 
 print_endline "***Function Locals***"; 
 ignore (List.map string_of_variables 
new_function.a_locals); 
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 print_endline "==============Finished checking 
function=============="; 
 new_function 
 
let string_of_functions fn = 
 print_endline fn.a_fname 
 
let string_of_scope scope = 
 ignore (List.map string_of_variables scope.variables); 
 List.map string_of_functions scope.functions 
  
let print_env env = 
 string_of_scope env.scope 
  
let infer_prog program =  
 let vdecls, fdecls = program in 
 let global_env = get_global_environment in 
 let a_vdecls = List.map (check_vdecls global_env) 
vdecls in 
 ignore (List.map (add_function global_env) fdecls); 
 let a_fdecls = List.map (check_function_bodies 
global_env) global_env.scope.functions in 
  
 print_endline "==============Printing 
Environment=============="; 
 ignore (print_env global_env); 
 print_endline "==============Finished printing 
Environment=============="; 
 
 (a_vdecls, a_fdecls) 
 
 
8.1.6 codegen.ml:  
 
(* 
 Brian Bourn, Addisu Petros 
*) 
open Sast 
 
type str_list ={ 
mutable stream_list : string list; 
} 
 
let __list = { stream_list=[]; } 
 
let add_stream _list name = 
 _list.stream_list <- name :: _list.stream_list; 
 name 
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let find_in_list name = 
 let found = try 
  List.find (fun(s) -> s=name) __list.stream_list 
 with 
  Not_found ->  
   "Not in list" 
 in 
 found 
 
let empty_list _list = 
 _list.stream_list <- [] 
 
let string_of_t = function 
    Sast.Int -> "int" 
  | Sast.Float -> "float" 
  | Sast.String -> "string" 
  | Sast.Bool -> "bool" 
  | _ -> "" 
 
let rec string_of_expr = function 
    Sast.Literal(_, l) -> string_of_int l 
  | Sast.Id(_, s, e, _) -> s ^(match e with Noexpr -> "" | 
_ -> " = " ^  
                        string_of_expr e ^ "") 
  | Sast.Binop(_, e1, o, e2) -> 
      "(" ^ string_of_expr e1 ^ " " ^ 
      (match o with 
 Ast.Add -> "+" | Ast.Sub -> "-" | Ast.Mult -> "*" | 
Ast.Div -> "/" 
      | Ast.Exp -> "^" | Ast.Equal -> "==" | Ast.Neq -> 
"!=" 
      | Ast.Less -> "<" | Ast.Leq -> "<=" | Ast.Greater -> 
">"  
      | Ast.Geq -> ">=")  
      ^ " " ^string_of_expr e2 ^")" 
  | Sast.String_literal(_, s) ->  "\"" ^ s ^ "\""  
  | Sast.Float_literal(_, f) ->  string_of_float f  
  | Sast.Bool_literal(_, b) -> string_of_bool b  
  | Sast.Call(_, f, el) -> 
      f ^ "(" ^ String.concat ", " (List.map string_of_expr 
el) ^ ")" 
  | Sast.Basic_Op(b, s, i, e, j) -> 
  (match b with  
        Signal -> (match e with  
         Sast.Noexpr ->  
    s ^  
    let str = 
     let n = find_in_list s in 
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      if (n = "Not in list") 
      then ( 
         ignore (add_stream 
__list s); 
       ".value_at(" ) 
      else 
       ".peek("  
    in 
    str 
    ^ (match i with 
            Sast.String_(i) -> i 
          | Sast.Int_ (i) -> string_of_int i 
          ) ^")"  
           | _ -> "for (int xz=0; xz<1024; xz++) " ^  
    s ^ 
    let str = 
       ignore (add_stream __list s); 
     ".set_value(" 
    in 
    str 
   ^ string_of_expr e ^ ")" ^ ";" 
        )(*".set_value(" ^ (match e with Sast.Basic_Op 
(_,s,_,_) -> s ^ ".value_at(0)" | _ -> string_of_expr e )^ 
")" *) 
        |  Array -> s ^ "[" ^  
          (match i with  
            Sast.String_ (i)-> i  
            | Sast.Int_(i) -> string_of_int i 
          ) ^ "]" ^ (match e with Sast.Noexpr -> "" | _ -> 
"= " ^ string_of_expr e) 
      ) 
  | Sast.Noexpr -> "" 
 
 
let string_of_var var = match var with 
 Primitive(x) ->  
  string_of_t x.a_typ ^ " " ^ x.a_name ^  
             (match x.a_exp with Noexpr -> ";\n" | _ -> 
" = " ^  
    string_of_expr x.a_exp ^ ";\n") 
  | Basic(_) -> "" 
   
let string_of_vdecl = function 
 Sast.Variable_Dec(_, v) -> string_of_var v 
 
 
let rec string_of_stmt = function 
    Sast.Block(stmts) -> 
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      "{\n" ^ String.concat "" (List.map string_of_stmt 
stmts) ^ "}\n" 
  | Sast.Expr(_, expr) ->  
    empty_list __list;  
  string_of_expr expr ^ ";\n"; 
  | Sast.Return(expr) -> "return " ^ string_of_expr expr ^ 
";\n"; 
  | Sast.If(e, s, Block([])) -> "if (" ^ string_of_expr e ^ 
"){\n" ^ string_of_stmt s^"}\n" 
  | Sast.If(e, s1, s2) ->  "if (" ^ string_of_expr e ^ 
"){\n" ^ 
      string_of_stmt s1 ^ "\n}else{\n" ^ string_of_stmt s2 
^ "}" 
  | Sast.For(e1, e2, e3, s) -> 
      "for (" ^ string_of_expr e1  ^ " ; " ^ string_of_expr 
e2 ^ " ; " ^ 
      string_of_expr e3  ^ "){\n " ^ string_of_stmt s^ 
"\n}" 
  | Sast.While(e, s) -> "while (" ^ string_of_expr e ^ 
"){\n " ^ string_of_stmt s^"}" 
  | Sast.Print(t, s) -> (*"printf(\" "^  
                        (match t with  
                                String -> "%s\", \"" 
^string_of_expr s ^ "\");" 
                              | Int -> "%d\", 
"^string_of_expr s ^ ");" 
                              | Float -> "%f\", 
"^string_of_expr s ^ ");" 
                              (*| Var -> (match s.a_typ 
with  
                                        String -> "%s\", 
"^s.a_name ^ ");" 
                                      | Int -> "%d\", 
"^s.a_name ^ ");" 
                                      | Float -> "%f\", 
"^s.a_name ^ ");" 
                              ) *) 
  
                        )  *)   
   
     empty_list __list;  
     (match t with Sast.Float -> "for(int ew=0; 
ew<1024; ew++) " | _ -> "" ) ^ "cout << " ^  string_of_expr 
s ^  " <<endl;\n" 
  | Sast.Prim_Assign(_, v) -> string_of_var v 
  | Sast.Basic_Dec(t, n, l) -> (match t with Signal -> 
"circular_buffer "^ n ^";\n" 
                                | Array -> "int " ^ n ^ "[" 
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^ string_of_int l ^ "]" ^ ";\n") 
  | Sast.Sum(_,var,s, e1, e2, e3) -> empty_list __list; 
"int " ^ var ^"=0; \n for(int " ^s^"=" ^ string_of_int e1 ^ 
"; " ^s^"<=" ^ string_of_int e2 ^"; " ^s^"++){\n" ^ var 
^"+=" ^ string_of_expr e3 ^ ";\n}" 
  | Sast.Basic_Sum(_,var, s,e1,e2, e3) -> empty_list 
__list;  "for(int ew=0; ew<1024; ew++){\n" ^ "int u=0; \n " 
^ 
     "for(int " ^ s ^ "=" ^ string_of_int e1 ^ "; " ^  s ^ 
"<" ^ string_of_int e2 ^ "; " ^ s ^ "++){\n " ^ "u+= " ^ 
string_of_expr e3 ^ ";\n} \n " ^ 
     var ^ ".set_value(u); \n}" 
 
 
let string_of_a_fdecl fdecl = 
  (match fdecl.a_is_stream with true -> "void " | false ->  
"int " (*string_of_t fdecl.a_ret_type*)) 
  ^fdecl.a_fname ^ "(" ^ String.concat ", " (List.map 
Ast.string_of_formal fdecl.a_formals) ^ ")\n{\n" ^ 
  String.concat "" (List.map string_of_stmt fdecl.a_body) ^ 
  "\n}" 
 
let string_of_prog (vars, funcs) = 
    "#include <iostream>\n#include <fstream>\n#include 
<iomanip>\n#include <string>\n 
     #include \"libcirc/circ_buffer.h\"\nusing namespace 
std;\n"^ 
  String.concat "" (List.map string_of_vdecl vars) ^ "\n" ^ 
  String.concat "\n" (List.map string_of_a_fdecl funcs) 
 
8.1.7 dspjockey.ml:  
 
(* 
 Vanshil Shah 
*) 
type action = Raw | Ast | Sast | Codegen 
 
let string_of_action = function 
 Raw -> "Raw" 
  | Ast -> "Ast" 
  | Sast -> "Sast" 
  | Codegen -> "Codegen" 
let filename = ref "" 
let opts = ref Raw 
 
let speclist = [ 
 ("-r", Arg.Unit (fun _ -> opts := Raw), "Raw"); 
 ("-a", Arg.Unit (fun _ -> opts := Ast), "Ast"); 
 ("-s", Arg.Unit (fun _ -> opts := Sast), "Sast"); 
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    ("-c", Arg.Unit (fun _ -> opts := Codegen), "Codegen"); 
    ("-f", Arg.Set_string filename, "Setting filename"); 
  ] 
 
let usage = "usage: " ^ Sys.argv.(0) ^ " [-r] [-a] [-s] [-
c] [-f <Filename>]" 
 
let () = 
 Arg.parse 
  speclist 
  (fun x -> raise (Arg.Bad ("Bad Argument : " ^ 
x))) 
  usage; 
 
 let in_channel = open_in !filename in 
 let lexbuf = Lexing.from_channel in_channel in 
 let program = Parser.program Scanner.token lexbuf in 
 match !opts with 
  Raw -> print_string (Ast.program_s program)  
 | Ast -> let listing = Ast.program_s program in  
    print_string listing 
 | Sast -> (try  
     ignore (Analyzer.infer_prog 
program); 
     print_endline "Semantic analysis 
complete" 
    with 
     Failure(x) -> print_endline x) 
    |   Codegen -> 
            let main_out = open_out "main.cpp" in 
   let a_program = try  
    Analyzer.infer_prog program  
   with 
    Failure(x) ->  
     print_endline ("Semantic analysis 
failed: " ^ x); 
     ([],[]) 
   in 
   if a_program <> ([],[]) 
   then 
    let listing = Codegen.string_of_prog 
a_program 
                in output_string main_out listing 
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8.2 Circular Buffer C++ Files:  
 
8.2.1 circ_buffer.h:  
 
/** 
 * Addisu Petros 
 * Vanshil Shah 
 */ 
#ifndef __CIRC_BUFFER_H__ 
#define __CIRC_BUFFER_H__ 
 
#define MAX_SIZE 1024 
 
class circular_buffer { 
public: 
 float buffer[MAX_SIZE]; 
 int cur_index; 
 
 circular_buffer(); 
 
 bool empty(); 
 float peek(int offset); 
 float value_at(int offset); 
 void set_value(int value); 
 
 
}; 
 
#endif 
 
8.2.2 circ_buffer.cpp:  
 
/** 
 * Addisu Petros 
 * Vanshil Shah 
 * 
 */ 
#include "circ_buffer.h" 
 
circular_buffer::circular_buffer() { 
 for(int i = 0; i<MAX_SIZE; i++) 
  buffer[i] = 0.0; 
 cur_index = 0; 
} 
 
float circular_buffer::peek(int offset) { 
 if(cur_index-offset < 0){ 
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  return buffer[MAX_SIZE - offset]; 
 } 
 else{ 
  return buffer[(cur_index) -offset]; 
 } 
} 
 
float circular_buffer::value_at(int offset) { 
 float val; 
 if(cur_index-offset < 0){ 
  val=buffer[MAX_SIZE - offset]; 
 } 
 else{ 
  val = buffer[cur_index-offset]; 
 } 
 cur_index++; 
 if(cur_index == MAX_SIZE) { 
  cur_index = 0; 
 } 
 
 return val; 
} 
 
void circular_buffer::set_value(int value) { 
 buffer[(cur_index)] = value; 
 cur_index++; 
 if(cur_index == MAX_SIZE) { 
  cur_index = 0; 
 } 
} 
 
8.3 Compiler Makefile:  
 
OBJS = ast.cmo parser.cmo scanner.cmo analyzer.cmo 
codegen.cmo dspjockey.cmo 
 
TESTS =  
 
TARFILES = Makefile testall.sh scanner.mll parser.mly \ 
 ast.ml analyzer.ml codegen.ml dspjockey.ml \ 
 $(TESTS:%=tests/test-%.mc) \ 
 $(TESTS:%=tests/test-%.out) 
 
dspjockey : $(OBJS) 
 ocamlc -o dspjockey $(OBJS) 
 
.PHONY : test 
test : dspjockey testall.sh 
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 ./testall.sh 
 
scanner.ml : scanner.mll 
 ocamllex scanner.mll 
 
parser.ml parser.mli : parser.mly 
 ocamlyacc parser.mly 
 
%.cmo : %.ml 
 ocamlc -w A -c $< 
 
%.cmi : %.mli 
 ocamlc -w A -c $< 
 
dspjockey.tar.gz : $(TARFILES) 
 cd .. && tar czf dsp_jockey.tar.gz 
$(TARFILES:%=microc/%) 
 
.PHONY : clean 
clean : 
 rm -f dspjockey parser.ml parser.mli scanner.ml 
testall.log output \ 
 *.cmo *.cmi *.out *.diff *.cpp 
 
# Generated by ocamldep *.ml *.mli 
ast.cmo:  
ast.cmx:  
parser.cmo: ast.cmo parser.cmi  
parser.cmx: ast.cmx parser.cmi  
scanner.cmo: parser.cmi  
scanner.cmx: parser.cmx  
parser.cmi: ast.cmo 
codegen.cmo: ast.cmo 
codegen.cmx: ast.cmx  
analyzer.cmo: ast.cmo sast.cmo 
analyzer.cmx: ast.cmx sast.cmx 
 
8.4 run_compiler.sh (for building the compiler):  
# Brian Bourn, Vanshil Shah 
OUTPUT=$(./dspjockey -c -f $1) 
 
#echo $OUTPUT 
 
if [[ $OUTPUT == *"Semantic analysis failed"* ]] 
then 
 exit 
fi 
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if [ $# -ge 2 ] 
then 
 touch $2 
 echo Generating executable $2 
 g++ main.cpp -o $2 -I./libcirc libcirc/circ_buffer.cpp 
else 
 echo Generating executable a.out 
 g++ main.cpp -I./libcirc libcirc/circ_buffer.cpp 
fi 
 
 
8.5 Tests:  
 
8.5.1 Dsp_Hello_World.dj (hello world signal test 1):  
 
stream hello_sig(float val) { 
  
 let sig = Signal[]; 
 sig[time] = (val=val+1.0); 
 print sig[time]; 
} 
 
int main() { 
 hello_sig(0.0); 
} 
 
8.5.2 Dsp_Hello_World2.dj (hello world signal test 2):  
 
stream hello_sig(float val) { 
  
 let sig = Signal[]; 
 sig[time] = sig[time]+1.0; 
 print sig[time]; 
} 
 
int main() { 
 hello_sig(0.0); 
} 
 
8.5.3 binop.dj (binop operator test):  
int x; 
int y; 
float f; 
bool z; 
 
int main() { 
 if(2>1){ 
  print "Hello World"; 
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 } 
} 
 
8.5.4 binop2.dj (binop operator test 2):  
 
int x; 
int y; 
float f; 
bool z; 
 
int main() { 
 if(1>2){ 
  print "Hello World"; 
 }else{ 
  print "Goodbye World"; 
 } 
} 
 
8.5.5 test-arith1.dj (arithmetic test 1):  
int main (){  
 
 int x; 
 x=5; 
 x=6; 
 print x; 
 
 if (x==6){ 
  print "arith2 passed"; 
 } 
 else { 
  print "arith2 failed"; 
 } 
  
} 
 
8.5.5 test-arith2.dj (arithmetic test 2):  
 
int test(int a){ 
 if( 5*5+25 == a) { 
  print "arith3 passed"; 
 } 
 else { 
  print "arith3 failed"; 
 } 
 
} 
int main (){  
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test(50); 
 
} 
 
8.5.6 test-arith3.dj (arithmetic test 3):  
 
int main (){ 
 
print "haha";  
 
} 
 
8.5.7 test-arith4.dj (arithmetic test 4):  
 
float x; 
int test() { 
 x=7; 
 float y=2.0; 
 float z=10.0; 
 
 if( ((x/y) == 3.5)) { 
  print "arith5 passed"; 
 } 
 else{ 
  print "arith5 failed"; 
 } 
 
} 
int main () { 
 test(); 
} 
 
 
8.5.8 test-arith5.dj (arithmetic test 5): 
 
int x; 
int main (){ 
 float y=10.0; 
 for (x=0; x<5; x=x+1){ 
  y=y*10.0; 
 } 
 
 if(y==1000000.0){ 
  print "arith5 passed"; 
 } 
 else { 
  print "airth5 failed"; 
 } 
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} 
 
8.5.9 test-arith6.dj (arithmetic test 6): 
 
int x; 
int main (){ 
 float y=10.0; 
 string f="this is f"; 
 print f; 
 while (x<5) { 
  y=y*10.0; 
  x=x+1; 
 } 
 
 if(y==1000000.0){ 
  print "arith6 passed"; 
 } 
 else { 
  print "airth6 failed"; 
 } 
} 
 
8.5.10 print.dj (print function test):  
 
int x; 
int y; 
float f; 
bool z; 
 
int main() { 
 print "Hello World"; 
} 
 
8.5.11 summation.dj (summation formula test):  
 
int main() 
{ 
 int a = 0; 
 int x = Sum i=0 to 100 : i; 
 print x; 
 
} 
 
8.5.12 test-array.dj:  
 
main(){  
/*int x = 5;*/ 
let sig = Signal[]; 
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let arr = Array[10]; 
} 
 
8.5.13 test-array2.dj (test array 2):  
 
int x; 
int b = 10; 
float z = 10.0; 
int a = 5; 
stream str_func(int a) { 
 int w = 10; 
 let arr = Array[10]; 
} 
 
 
int main() { 
 int r = 5; 
 str_func(10); 
} 
 
8.5.14 test-array3.dj (test array 3):  
 
stream str_func(int a) { 
 int w = 10; 
 let arr = Array[2]; 
 
 arr[0]=5; 
 print arr[0]; 
 
} 
 
 
int main() { 
 str_func(10); 
} 
 
8.5.14 test-array-assign.dj (array assignment test):  
 
main(){  
/*int x = 5;*/ 
let sig = Signal[]; 
sig[time] = 5; 
let arr = Array[10]; 
arr[11] = 5; 
arr[0] = cool; 
 
} 
8.5.15 test-bool.dj (bool test):  



	   73	  

 
bool x; 
bool y = false; 
int test() { 
 x= true; 
 
 print x; 
 print y; 
 print x==y; 
 
} 
 
 
int main() { 
 test(); 
} 
 
8.5.15 test-types1.dj (type test 1): 
 
int main (){ 
 float y=10.0; 
 int x = 10; 
 
 if(y!=x){ 
  print "types1 passed"; 
 } 
 else { 
  print "types1 failed, int should not equal 
float"; 
 } 
} 
 
8.5.16 test-types2.dj (type test 2): 
int main (){ 
 int x=10; 
 string y= "10"; 
 
 if(y!=x){ 
  print "types2 passed"; 
 } 
 else { 
  print "types2 failed, int should not equal 
string"; 
 } 
} 
 
 
8.5.17 test-types3.dj (type test 3):  
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int main (){ 
 int x=10; 
 bool y= true; 
 
 if(y!=x){ 
  print "types2 passed"; 
 } 
 else { 
  print "types2 failed, int should not equal bool"; 
 } 
} 
 
8.5.18 test-signal.dj (signal test): 
 
main(){  
/*int x = 5;*/ 
let sig = Signal[]; 
} 
 
8.5.19 test-sig-assign.dj (signal assign test 1): 
 
int x; 
float z = 10.0; 
int a = 5; 
int b = 10; 
 
stream str_func(int a) { 
 int w = 10; 
 let sig = Signal[]; 
 sig[time] = 100; 
} 
 
int main() { 
 str_func(10); 
} 
 
8.5.20 test-sig-assign2.dj (signal assign test 2): 
main(){  
/*int x = 5;*/ 
let sig = Signal[]; 
sig5[time] = 5; 
} 
 
8.5.21 test-sig-assign3.dj (signal assign test 3): 
int x; 
float z = 10.0; 
int a = 5; 
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int b = 10; 
 
stream str_func(int a) { 
 int w = 10; 
 let sig = Signal[]; 
 let sig2 = Signal[]; 
 sig[time] = 100; 
 sig2[time] = 1.0+sig[time]; 
} 
 
int main() { 
 str_func(10); 
} 
 
8.5.22 test-sig-call.dj (signal call): 
 
main(){  
let sig = Signal[]; 
sig=create_unit_step(10,10); 
} 
 
create_unit_step(amplitude, time){ 
print "haha";  
} 
 
 
8.5.23 multi_func.dj (multi-function):  
 
int x; 
float z = 10.0; 
int a = 5; 
 
int main() { 
 int r = 5; 
} 
 
int b = 10; 
stream str_func(int a) { 
 int w = 10; 
 let arr = Array[10]; 
 let sig = Signal[]; 
} 
 
8.5.24 unit_step.dj (unit_step signal test):  
stream unit_step(float amplitude, float t) { 
  
 let sig2 = Signal[]; 
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 float current = sig2.get_current(); 
 
 if(t<current) { 
  sig2[time]=0; 
 } 
 
 else { 
  sig2[time]=amplitude; 
 } 
 
  
} 
 
 
int main() { 
 unit_step(2.0,5.0); 
} 
 
8.5.25 lowpass_filter.dj (lowpass filter test):  
 
stream lowpass_filter(float dt, float rc) { 
 float alpha = dt/(rc+dt); 
 float val=0.0; 
  
 let sig = Signal[]; 
 sig[time]= (val=val+1.0); 
 let sig2 = Signal[]; 
 
 sig2[time]= alpha * sig[time] + (1.0-alpha) * 
sig2[time-1]; 
  
 print sig2[time];  
 
} 
 
int main() { 
 lowpass_filter(2.0,5.0); 
} 
 
8.5.26 fir_filter.dj (fir filter test):  
 
stream fir_filter() { 
  
 let coef_array= Array[10]; 
 int x =0; 
 while(x<10){ 
 coef_array[x]=5; 
 x=x+1; 
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 } 
 
 float val=0.0; 
 let sig = Signal[]; 
 sig[time]= (val=val+1.0); 
 
 let output_signal = Signal[]; 
 let output_signal[time] = Sum i=0 to 10 : 
coef_array[i] * sig[time-1]; 
 print output_signal[time]; 
 
} 
 
int main() { 
 fir_filter(); 
} 
 


