
1

Civ
Michael Nguyen, Prateek Sinha, Yuchen Zeng, and Eli Bogom-Shanon

December 17, 2014

2

Contents

1 Introduction 3

1.1 What is Civ 3

1.2 Motivation 3

1.3 Differences from C 3

2 Language Tutorial 3

2.1 Basics 3

2.2 Keywords and Data Types 3

2.3 Examples 4

2.4 Compiling and Executing Civ 5

3 Language Reference Manual 5

3.1 Preface 5

3.2 Introduction 5

3.3 Lexical Conventions 6

3.4 Types 7

3.5 Objects and lvalues 8

3.6 Expressions 8

3.7 Declarations 10

3.8 Statements 11

3.9 Scope rules 12

3.10 Arrays 12

3.11 Example code 13

4 Project Plan 14

4.1 Planning, Development, and Testing 14

4.2 Style Guide 14

4.3 Project Timeline 15

4.4 Project Log 15

4.5 Software Environment 19

4.6 Roles and Responsibilities 19

5 Architecture 19

6 Testing 20

6.1 Automated Test Script 20

6.2 Test Suite Code 20

6.3 Test Cases 21

6.4 Test Phase 21

7 Lessons Learned 22

8 Appendix 24

8.1 Ocaml 24

8.2 Array Header 55

8.3 Array Code 58

8.4 Test cases 62

3

1 Introduction

1.1 What is Civ

Civ is a new language implemented by the authors as an academic project for

Programming Languages and Translators class (COMS W4115) taught by Prof.

Stephen A. Edwards.

1.2 Motivation

C is one of the most used languages in the world, however it is hard for the

novice programmers to just learn the basic programming concepts given the

myriad number of features and concepts associated with C. Thus for our project

we decided to implement a subset of C which would provide our users an easy

programming environment that enables them to quickly grasp the fundamental

programming concepts such as control structures, data types, functions, etc.

1.3 Differences from C

Dynamic Arrays - All arrays are dynamic by default, all done by backend

malloc. Memory is freed and reallocated automatically.

Automatic Garbage Collection - All mallocs are automatically deallocated at

the exit of a lexical scope. With these two points, memory management can

largely be abstracted away from the user.

No pointers or addresses - Given these two differences, Civ has no usage of

pointers or references, thus providing a level of safety for the beginning user.

2 Language Tutorial

2.1 Basics

Civ is a subset of C which means that it follows the same syntax as that of C

language and it supports multiple features of C.

Civ programs are saved with ".mc" extension. The compiler takes this file and

outputs C code provided there are no syntactical or semantic errors. This

C code then can be saved to an output file and executed through GCC.

2.2 Keywords and Data Types

Civ has the following types:

int - signed integers.

float - signed floats, including scientific notation (e.g. 3.e-15).

char - standard ASCII characters, to include escape characters with ‘\’ .

String - strings are supported, though they immediately get converted to

character arrays.

4

2.3 Examples

Hello World

int main(){

 printf("Hello World!");

 return 0;

}

GCD

int main() {

 int a, b, t, gcd, lcm;

 int x = 4;

 int y = 18;

 a = x;

 b = y;

 while (b != 0) {

 t = b;

 b = a % b;

 a = t;

 }

 gcd = a;

 lcm = (x*y)/gcd;

 printf("Greatest common divisor of %d and %d = %d\n", x, y, gcd);

 printf("Least common multiple of %d and %d = %d\n", x, y, lcm);

 return 0;

}

Dynamic Arrays

/*Short tutorial on multidimensional arrays*/

int main(){

 /*declare an array without an initial size*/

 int a[];

 /*place elements in any cell without worrying about initializing them*/

 a[3] = 42;

 /*multidimensional arrays have the same approach*/

 int m[][][];

 m[1][2][3] = 123;

 return 0;

}

5

/* Functions can return arrays and take arrays as arguments*/

int[] sample(int f[]){

/*if assigning one array to another, make sure to declare the array first*/

int x[];

x = f;

/*x now holds the same contents as f*/

int x[1] = 1;

int z = x[1];

 printf("%d \n", z);

/*make sure to always return a return value of the type you declared in the

function signature*/

return x;

}

2.4 Compiling and Executing Civ

In-order to compile and execute a Civ program the user needs to save the file

with a ".mc" extension within the root directory of where the Civ compiler is

stored, e.g. /home/user/code/civ/test/civprogram.mc From there:

1 ./civ --gcc < \[path or regex\] > output.c

civ takes in a regex or a path, meaning it can compile multiple files at once.

This is a byproduct of its original use as a test suite, but works just as well. This

will compile the output file through gcc and create an executable where the

source code is, e.g.

/home/user/code/civ/test/civprogram.exe

2 From there, just execute the file, e.g.:

./home/user/code/civ/civprogram.exe

3 Language Reference Manual

3.1 Preface

This language reference manual describes the Civ language, developed by,

Michael Nguyen, Prateek Sinha, Yuchen Zeng, and Eli Bogom- Shanon for

Stephen Edwards's Programming Languages and Translators class (W4115).

Given its similarity to the C language, this document closely follows an

organizational precedent set by Brian Kernighan and Dennis Ritchie in their

"The C Programming Language."

3.2 Introduction

Civ is a computer language based on C. However there are a few major

differences between Civ and C. Civ has no explicit usage of pointers in its

syntax. This means that the symbol * is only used in Civ for exponentiation and

multiplication functions. Because there are no explicit pointers, there are also no

explicit

6

 references using the & symbol. Civ also provides dynamically allocated arrays,

whereas in C, native arrays are static in nature. While arrays created

dynamically in C requires explicit calls to memory allocation functions, as well

as the associated free calls, Civ handles memory allocation and garbage

collection automatically. Civ is meant to provide a simplified version of C that

enables a user to quickly grasp fundamental programming concepts, such as

control structures, data types, functions, etc., without having to learn pointer

arithmetic or memory management.

3.3 Lexical Conventions

There are five kinds of tokens: identifiers, keywords, strings, expression

operators, and other separators. In general blanks, tabs, newlines, and comments

as described below are ignored except as they serve to separate tokens. At least

one of these characters is required to separate otherwise adjacent identifiers,

constants, and certain operator-pairs.

Comments Comments are styled after the C multiline comments. A comment

block begins with the characters /* and is terminated with */. Civ does not

provide nested comment support.

/* This is a comment in Civ */

/*

This is a multiline comment in Civ

*/

// Unlike C, this is not a valid comment

Identifiers In Civ, an identifier is an alphanumeric sequence. Upper case and

lower case letters are considered to be different in Civ.

Keywords The following identifiers are reserved for the use as keywords, and

may not be used otherwise:

 int

 float

 char

 true

 false

 string

 if

 else

 for

 while

 break

7

 continue

 return

 void

There are also a few built in functions: printf and maxArrayElement. Printf() is

used in the same manner as the standard I/O function in C. maxArrayElement is

declared as

int maxArrayElement(type array[]);

 Type can be int, char, or float. The function returns the number of elements

between the start of the array and the last element in use - that is, the effective

size of the array in number of elements.

Constants There are several kinds of constants, as follows:

Integer constants An integer constant is a sequence of digits.

Character constants A character constant is 1 character enclosed in single

quotes " ' ". Within a character constant a single quote must be preceded by a

back-slash "\". Certain non-graphic characters, and "\" itself, may be escaped by

preceding them with a '\'.

Floating constants A floating constant consists of an integer part, a decimal

point, a fraction part, an e, and an integer exponent. The integer and fraction

parts both consist of a sequence of digits. Either the integer part or the fraction

part (not both) may be missing; either the decimal point or the e and the

exponent (not both) may be missing.

Strings A string is a sequence of characters surrounded by double quotes

" " ". A string has the type array-of-characters (see below) and refers to an area

of storage initialized with the given characters. The compiler places a null byte

(\0) at the end of each string so that programs which scan the string can find its

end.

3.4 Types

Civ supports three fundamental types of objects: characters, integers, and

floating-point numbers.

Characters (declared, and hereinafter called, char) are chosen from the ASCII

set.

Integers (int) are represented in 16-bit 2's complement notation.

Floating points (float) quantities have magnitude in the range approximately

10±38 or 0; their precision is 24 bits or about seven decimal digits.

Besides the three fundamental types there are classes of derived types

constructed from the fundamental types in the following ways:

Arrays of objects.

Strings arrays of chars.

Functions which return objects of a given type.

Conversions Unlike C, Civ generally does not allow type conversions, either

implicitly or explicitly. The programmer is expected to treat a given object as

the same type for the duration of the object's lifetime.

8

3.5 Objects and lvalues

An object is a manipulatable region of storage; an lvalue is an expression

referring to an object. An obvious example of an lvalue expression is an

identifier.

The name "lvalue" comes from the assignment expression "E1 = E2" in which

the left operand E1 must be an lvalue expression. The discussion of each

operator below indicates whether it expects lvalue operands and whether it

yields an lvalue.

3.6 Expressions

The precedence of expression operators is the same as the order of the major

subsections of this section (highest precedence first). Within each subsection,

the operators have the same precedence. Left- or right-associativity is specified

in each subsection for the operators discussed therein. The precedence and

associativity of all the expression operators is summarized at the end of this

section. Otherwise the order of evaluation of expressions is undefined.

Primary Expressions Primary expressions involving subscripting and function

calls group left to right.

identifier An identifier is a primary expression, provided it has been suitably

declared as discussed below. Its type is specified by its declaration.

constant A decimal or floating constant is a primary expression. Its type is int in

the first case and double in the second.

string A string is a primary expression. Its type is "array of char".

(expression) A parenthesized expression is a primary expression whose type

and value are identical to those of the unadorned expression. The presence of

parentheses does not affect whether the expression is an lvalue.

primary-expression (expression-list) A function call is a primary expression

followed by parentheses containing a possibly empty, comma-separated list of

expressions which constitute the actual arguments to the function. The primary

expression must be of type "function returning . . .", and the result of the

function call is of type ". . . ". In preparing for the call to a function, a copy is

made of each actual parameter; thus, almost all argument-passing in Civ is by

value. However, the array type in Civ is actually passed by pointer in the

compiled target C code. While this is not directly shown to the user, it should be

noted that in Civ, primitive data types are passed by value, while the aggregate

type array is passed

by reference.

Unary Operators Expressions with unary operators group right to left.

- expression The result is the negative of the expression, and has the same

type. The type of the expression must be int or float.

! expression The result of the logical negation operator ! is 1 if the value of the

expression is 0, 0 if the value of the expression is non-zero. The type of the

result is int. This operator is applicable only to ints.

Multiplicative Operators The multiplicative operators *, /, and % group left-to-

right.

expression * expression The binary * operator indicates multiplication. If both

operands are of type int, the result is int; if both are type float, the result is float.

9

If one is int and the other is float, the former is converted to float and float is

returned.

expression / expression The binary / operator indicates division. The same

type considerations as for multiplication apply.

expression % expression The binary % operator yields the remainder from the

division of the first expression by the second. Both operands be int, and the

result is int.

Additive Operators The additive operators + and - group left-to-right.

expression + expression The result is the sum of the expressions. If both

operands are int, the result is int. If both are float, the result is float. If one is int

and one is float, the former is converted to float and the result is float. No other

type combinations are allowed.

expression - expression The result is the difference of the operands. The same

type considerations as for + apply.

Relational operators The relational operators group left-to-right, but this fact is

not very useful; "a < b < c" does not mean what it seems to.

expression < expression

expression > expression

expression <= expression

expression >= expression The operators < (less than), > (greater than), <= (less

than or equal to) and >= (greater than or equal to) all yield 0 if the specified

relation is false and 1 if it is true. Operand conversion is exactly the same as for

the +.

Equality operators

expression == expression

expression != expression The == (equal to) and the != (not equal to) operators

are exactly analogous to the relational operators except for their lower

precedence. (Thus "a<b == c<d" is 1 whenever a<b and c<d have the same

truth-value).

expression && expression The && operator returns 1 if both its operands are

non-zero, 0 otherwise. Unlike &, && guarantees left-to-right evaluation.

The operands need not have the same type, but each must have one of the

fundamental types.

expression || expression The || operator returns 1 if either of its operands is non-

zero, and 0 otherwise. Unlike |, || guarantees left-to-right evaluation.

The operands need not have the same type, but each must have one of the

fundamental types.

Assignment Operators There are a number of assignment operators, all of

which group right-to-left. All require an lvalue as their left operand, and the

type of an assignment expression is that of its left operand. The value is the

value stored in the left operand after the assignment has taken place.

10

3.7 Declarations

Declarations are used within function definitions to specify the interpretation

which C gives to each identifier; they do not necessarily reserve storage

associated with the identifier. Declarations have the form

declaration:

 type-specifier declarator-list;

The declarators in the declarator-list contain the identifiers being declared. The

type-specifier consists of one type-specifier.

Type specifiers The type-specifiers are:

 type-specifier:

 int

 char

 float

 void

A type-specifier must be included in each declaration. The void type can only be

declared as the return type of a function.

Declarators The declarator-list appearing in a declaration is a comma-separated

sequence of declarators.

declarator-list:

declarator

declarator , declarator-list

The specifiers in the declaration indicate the type of the objects to which the

declarators refer. Declarators have the syntax:

declarator:

identifier

declarator ()

declarator [constant-expression]

(declarator)

The grouping in this definition is the same as in expressions

Meaning of Declarators Each declarator is taken to be an assertion that when a

construction of the same form as the declarator appears in an expression, it

yields an object of the indicated type. Each declarator contains exactly one

identifier; it is this identifier that is declared. If an unadorned identifier appears

as a declarator, then it has the type indicated by the specifier heading the

declaration.

 If a declarator has the form

 D ()

then the contained identifier has the type "function returning ...", where ". . . " is

the type which the identifier would have had if the declarator had been simply D.

 D[]

It is valid to use this declarator without a constant expression. Such a declaratory

makes the contained identifier have type "array." If the unadorned declarator

D would specify a nonarray of type ". . .", then the declarator "D[]" yields a 1-

dimensional dynamic array of objects of type ". . .". If the unadorned declarator

D would specify an n-dimensional array with rank i1, i2…., in, then the declarator

"D[in + 1]" yields an (n +1)-dimensional array with rank i1, i2,…., in, in+1.

 An array may be constructed from one of the basic types.

11

 Finally, parentheses in declarators do not alter the type of the contained

identifier except insofar as they alter the binding of the components of the

declarator.

 Not all the possibilities allowed by the syntax above are actually permitted.

The restrictions are as follows: functions may not return functions; there are also

no arrays of functions. Here, Civ is slightly more restrictive than C, as in

C some of these restrictions may be circumvented through use of pointers.

3.8 Statements

Except as indicated, statements are executed in sequence.

Expression statement Most statements are expression statements, which have

the form:

expression ;

Usually expression statements are assignments or function calls.

Compound statement So that several statements can be used where one is

expected, the compound statement is provided:

compound-statement:

 { statement-list }

statement-list:

 statement

 statement statement-list

Conditional statement The two forms of the conditional statement are:

if (expression) statement

if (expression) statement else statement

In both cases the expression is evaluated and if it is non-zero, the first sub-

statement is executed. In the second case, the second sub-statement is executed

if the expression is 0. As usual the "else" ambiguity is resolved by connecting an

else with the last encountered else-less if.

While statement The while statement has the form:

while (expression) statement

The sub-statement is executed repeatedly so long as the value of the expression

remains non-zero. The test takes place before each execution of the statement.

For statement The for statement has the form:

for (expression-1 ; expression-2 ; expression-3) statement

This statement is equivalent to:

expression-1;

while (expression-2) {

 statement

 expression-3 ;

}

Thus the first expression specifies initialization for the loop; the second specifies

a test, made before each iteration, such that the loop is exited when the

expression becomes 0; the third expression typically specifies an incrementation

which is performed after each iteration.

12

Break statement The statement

break ;

causes termination of the smallest enclosing while, do, or for statement; control

passes to the statement following the terminated statement.

Continue statement The statement

continue ;

causes control to pass to the loop-continuation portion of the smallest enclosing

while, do, or for statement; that is to the end of the loop.

Return statement A function returns to its caller by means of the return

statement, which has one of the forms

return ;

return (expression) ;

In the first case no value is returned. In the second case, the value of the

expression is returned to the caller of the function. The expression must evaluate

to the type of the function in which it appears. Flowing off the end of a function

is equivalent to a return with no returned value. There are some exceptions to

this. A return expression cannot of type element-of-array.

return(a[0]);

is not a valid statement in Civ. The value must be assigned outside of the return

statement, then passed in.

3.9 Scope rules

Civ, unlike C, has a strictly lexical scope. Civ is a block-structured language.

The lexical scope of names declared at the head of functions (either as formal

parameters or in the declarations heading the statements constituting the

function itself) is the body of the function. It is an error to re-declare identifiers

already declared in the current context, unless the new declaration specifies the

same type and storage class as already possessed by the identifiers.

3.10 Arrays

Every time an identifier of array type appears in an expression, it is treated as

array-of-(type at declaration). Because of this, arrays are not lvalues. The

subscript operator [] is interpreted in such a way that if E1 is an array and E2 an

integer, then E1[E2] refers to the E2-th member of E1. A consistent rule is

followed in the case of multi-dimensional arrays. If E is an n-dimensional array

of rank I, j, …... , k, then E appearing in an expression evaluates from array-of-

array of (n-1)-dimensional array with rank j , ... ,k to the type held in dimension

k.

13

3.11 Example code

The following code executed a bubblesort on an array of integers. It showcases

the use of the dynamic array datatype in Civ, and shows a brief example of using

the formatted print option, which is modeled after C's own printf().

void bubblesort(int t[]){

 int i,j;

 int n;

 n = maxArrayElement(t) + 1;

 for (i = 1; i < n; i = i + 1){

 for (j = 0; j < n - i - 1; j = j + 1){

 if (t[j] > t[j + 1]){

 int a = t[j];

int b = t[j + 1];

int temp = t[j];

t[j] = t[j + 1];

t[j + 1] = temp;

printf("SWAPPING: %d %d \n",a,b);

 }

 }

 }

return;

}

void main(){

 printf("Bubblesort \n");

 int g[];

 int z;

 for (z = 10; z > 0; z = z - 1){

 g [10 - z] = z;

 }

 for (z = 0; z < 10; z = z + 1){

 int temp = g[z];

 printf("%d ", temp);

 }

 bubblesort(g);

 printf("Sorted! \n");

 for (z = 0; z < 10; z = z + 1){

int temp = g[z];

printf("%d \n", temp);

 }

 return;

 }

14

4 Project Plan

4.1 Planning, Development, and Testing

Planning We started with weekly meetings to discuss the features we wanted to

implement in our language. At the beginning we had the idea of implementing a

distributed language with the target of achieving the functionality of Map

Reduce. However, since none of the team members had in-depth knowledge of

the concept, we realized that it would be very difficult to come up with the

solutions to the problems we would be facing while development thus, we

consulted the instructor and by the end of September we started working

towards the idea of implementing Civ.

 We kept the same schedule, meeting every week on Sunday to discuss and

kept meeting our TA Vaibhav on a regular basis to resolve various issues that

came up while implementing Civ.

Development For development we used Git as our version control system and

checked out work into a remote repository on GitHub. Just by happenstance, we

ended up adopting a wave strategy of implementation, as we weren't sure how to

allocate our workload, and our project leader had medical issues. The first wave

was Mike, who wanted to implement as much of a working language as possible,

even if it meant C to C. He developed the grammar, ast generation, and code

generation the first week of December. Yuchen was the second wave who

implemented the semantic analyzer and the SAST, and Mike worked with him

to merge it into the pipeline. Eli came in as third wave and implemented the core

pieces of our language, with the dynamic arrays and garbage collection during

the last week. During this entire process, everyone was either writing test cases,

building auxiliary tools, or helping any way they can to support the current wave.

Testing A test suite was written about halfway through that allowed rapid

testing and feedback of our code. It supported both expected passing and

expected failing cases to highlight false positives or true negatives, and allowed

quick isolation of where the errors were. This test suite later turned into an

extension of the compiler itself.

4.2 Style Guide

Our overall guiding point was to minimize code redundancy, so both Mike and

Yuchen wrote a lot of auxiliary functions (especially for code generation) that

converted various types into strings or other types depending on the situation.

The grammar was also meant to minimize redundancy, and utilized a lot of

recursion like most grammars do to account for strange cases. In terms of actual

practice, we had the following rules:

 Never ever push to origin master.

 Never ever push unless the test suite runs and things compile. Commits

are fine as stopping points, but there should never be a reason to

rollback.

 Code should be documented, especially at the beginning of newly

introduced functions in OCaml.

 Small changes that don't contribute to a huge portion of the language

can be marked with TODO:

 Everyone owns a stake - Mike owns scanner.mll, parser.mly, and ast.ml,

and Yuchen owns sast.ml, semantic,ml, and ccompilesast.ml.

 When developing features, make both passing and failing test cases,

and put them in the test directory in the appropriate slot.

15

 Tests in a feature should be incremental, i.e. a test for single array

declaration, then nested array, then double nested array, etc.

 Update the README with your contribution at the end of the night,

marking UNTESTED for future testing or for someone else to write

tests.

 When generating C, use camelcase for our library.

 Python should follow PEP8 style guide.

4.3 Project Timeline

Our ideal scenario would have ended up looking something like this:

September - Get a fully fleshed out idea of what our language would look like

and do. This includes writing basic benchmarks for compilation that incorporate

more and more features of the language.

October - Develop and test the scanner and parser. Print out the AST and hand

verify to confirm that it is working as intended. Continue developing the

language in terms of its scope and core features.

November - Half of the team work on pre-emptive code generation, and the

other half on a semantic analyzer. As it is likely code generation will finish first,

have them test/debug/even out the rest of the compiler.

December - Fully integrate the semantic analyzer's SAST with code generation.

At this point, the scanner, parser should be fully tested and complete, and the

code generation should be a easily modified to work with the new SAST as

opposed to the AST. Because it's a bad idea to have four people work on the

same file, some of the people will be working on the documentation and final

report.

4.4 Project Log

September - November We had a lot of talking and very little coding done

through these months. By the end of it, we had a rough idea of the language, but

we had no idea how to go about actually implementing it, especially regarding

dynamic arrays or garbage collection.

December This is where development began.

16

12/16/14
Yuchen/Eli -
* Re-implemented dynamic arrays at the last minute

Prateek -
* Finished slides/presentation and report

12/15/14
Mike -
* Fixed float parsing
* Test suite now fully gcc’s
* Added in continue/break
* Varchaining fully implemented
* Fixed some code generation (For/Call/If/While)

Yuchen/Eli -
* Fully implemented and tested dynamic arrays/garbage collection

12/14/14
Mike -
* Strings are in e.g. char x[] = "test"; -- see SAssign in ast.ml
* String declarations in char x[] = now string * string * string list
* For loop’s last argument is now stmt list as opposed to stmt
* If’s last argument is now stmt list as opposed to stmt
* Escape characters are in treated as chars of max size 2.
* Variable declaration chaining in e.g. int x,y; - see VDecllist in ast.ml
* INCR/DECR added under expressions - Will add a type under EXPR for it later

Yuchen -
* Dynamic Arrays are in
* Add string in sast, semantic and ccompilesast
* Fixed a few test cases

12/13/14
Mike/Yuchen -
* Arrays now have their own ID type
* Arrays can be used to describe formal arguments
* Changed all iliterals into expressions that hopefully get resolved
* Added in GCC to test suite

Yuchen/Eli
* Code Generation of Static/Dynamic Arrays

Eli -
* Added in more testing of the dynamic array header file

12/12/14
Mike -
* Consolidated pipeline
* Fixed all tests cases that use single line comments
* Added more static array test cases
* Added more features to test suite
* Static arrays fully functional
* Dynamic array declarations in

Eli -
* Added set of test cases for dynamic arrays
* Single dynamic array C header up
* Prototype for C automatic garbage collection up

Yuchen -

17

* Consolidated pipeline
* Add ’Printlist’ in sast
* Add semantic checking for static array declaration
* Worked more miracles

Prateek -
* Doubled test cases to ˜100
* Reorganized all test cases into PASS/-feature and FAIL/-feature
folders to test individual features

12/11/14
Eli -
* Split up all test cases into incremental

Yuchen -
* Worked miracles in semantic analyzer
* Add ’Array’ and ’Print’ in sast
* Make the compile using sast work

12/10/14
Mike -
* Redid tester = fully operational pending further features
* I hate recursive data types - can’t figure out how to do array
* Printf now works with (str,args);

Yuchen
* Add return type checking
* Write the function convert program in ast to program in sast and
merge sast into the pipeline

12/9/14
Eli -
* Added more tests cases to account for arrays
* Progress on dynamic arrays and automatic garbage collection

Yuchen -
* Most problems about scope are solved and tested (Scope for ’While’ and ’For’,
scope for global environment, scope for multi functions, scope for formals)
* Add test cases for scope and multi functions

###12/8/14###
Yuchen -
* Problem with ’call’ is solved and tested. Function’s name and type, arguments’
number and types are checked.
* Add semantic checking and ast-sast converting for ’Call’, ’Return’

12/6/14
Mike -
* Nested Arrays are in

Eli -
* Strategy for implementing pointerless C done

Yuchen -
* Worked towards putting SAST between AST -> CCompile

Prateek -
* Rewrote python test script

12/6/14
Yuchen -

18

* Add semantic checking and ast-sast converting for ’While’, ’For’, ’VDecl’
UNTESTED - semantic checking and ast-sast converting for ’While’, ’For’
* Add semantic checking: if there is id confict when initialing new vairable
in both ’VDecl’ and ’NAssign’

12/5/14
Yuchen -
* Added Types.ml, Sast.ml
* UNTESTED - Began work on Semantic; implemented: utility functions for
AST traversal,
scoping environments, equality tests, type checking, type requirements,
environmeny var/func checks

12/4/14
Mike -
* IN PROGRESS - Added in array optionals that come after ID Token
* Adjusted TYPE ID ASSIGN expr to statements. CONSIDER MOVING BACK TO EXPR
FOR CHAINED.
* Global declarations are now ALWAYS TYPE ID ASSIGN LITERAL.
* Arithmetic operations working as expected
* UNTESTED - float literals - currently viewed as strings
* UNTESTED/OPTIONAL - Added break,const,continue,extern,float,static
* UNTESTED - Added increment/decrement, NOT ADDED TO GRAMMAR YET
* More test cases

Eli -
* Created more in-depth test cases

Prateek -
* Added python test script

12/3/14
Mike -
* Var Declaration can occur anywhere, e.g. int x; now works like c99 standard
* All grammar rules accounted for with two conflicts
* Formal arguments take type now
* Print accounted for
* Added three print test cases in tests/ps/
* Global variable INITIALIZATION in (seems useless)
* UNTESTED - Strings added to lexer/parser/compiler
* UNTESTED - Chars added, same as strings

12/2/14
Mike -
* Code generation up and running!
* Basic formatting to do basic C code up.
* UNTESTED - Added print statement to scanner and grammar
* UNTESTED - Differentiated new variable declaration AND assignment
* Removed all old code e.g. bytecode/compile (now ccompile), etc.
* Removed all old test cases and modified Makefile for new environment

12/1/14
Mike -
* Started over from scratch
* Added in type declarations for functions
* Added in variable declaration and assignment of expression
* Added ccompile/ccode.ml to be used for actual compilation
* Microc now has a -C flag that is used for actual ccompile.translate
* Codegeneration has begun - need to adjust formatting and account for type_decl string
formatting
* Mikhail helped

19

4.5 Software Environment

Operating Systems Windows, Linux, Mac OS

Core Language OCaml 4.01.0

Scripting Python 2.7

C Compiler GCC 4.6

4.6 Roles and Responsibilities

Eli Bogom-Shanon - Core Language Designer

Michael Nguyen - Project Lead, Environment/Git Master, Test Suite Developer,

Grammar Developer

Prateek Sinha - Documentation and Test Case maker

Yuchen Zeng - Core Developer, Semantic Analysis and Code Generation

Developer

5 Architecture

Civ uses a textbook setup. The sequence is as follows:

Scanner - The scanner tokenizes an input string into a set of tokens. Any

substring that isn't recognized implies it is not a valid program, so the program is

immediately rejected.

Parser - The parser takes a set of tokens and builds an Abstract Syntax Tree

from it using pre-defined context free grammar.

Semantic Analyzer - The analyzer takes an AST and does semantic checking to

make sure the abstract syntax tree 'makes sense'. In our case, it outputs near-C

equivalent AST.

Code Generator/Compiler - This takes in the checked AST and outputs the

actual C code, using a roughly one to one mapping.

Program Tokens AST

 Semantic Checking

Semantically Checked AST

Code Generation

C Code

20

6 Testing

Testing was one of the most significant part of our project; at every step we

wrote new test cases to ensure that the newly developed parts worked as desired.

The test suite for this project consists of an automated script written in python

and about 100 test cases that we wrote to test different features of our language.

The test suite has a plethora of flags and a helpfile using:

./civ –h

6.1 Automated Test Script

We wrote a python script to automate the process of testing our components.

The script takes a directory of tests and runs each test case inside that directory.

In other words it takes each file compiles them through civ and outputs a C file

which it then runs through GCC. For each test case it specifies whether it failed

or not and if failed it prints out whether it failed at civ or GCC. It also prints out

the first line of each test case which says what the test case was supposed to do.

6.2 Test Suite Code

from subprocess import call, Popen, STDOUT, PIPE
from sys import exit

pt = lambda x,y: print("\033[%sm%s\033[0m" % (30 + x,y)) # Where 0 <= x <= 7

parser = argparse.ArgumentParser(description="Super testing suite for MilliC")
parser.add_argument(’directory’, help="Which test directory to use e.g. ’base’. Use ’.’ for all
tests")
parser.add_argument(’--nomillic’, help=’Disables makefile error messages’,
action="store_true")
parser.add_argument(’--gcc’, help="Does full compile but no running", action="store_true")
parser.add_argument(’--noclean’, help=’Disable cleanup post run’, action="store_true")
parser.add_argument(’--nopass’, help="Disables showing passing test cases",
action=’store_true’)
parser.add_argument(’--showpass’, help="Shows passing test cases", action=’store_true’)
parser.add_argument(’--nofail’, help="Disables showing failing test cases",
action=’store_true’)
parser.add_argument(’--showfail’, help="Shows failing test cases", action=’store_true’)
parser.add_argument(’--suppress’, help="Only shows gcc messages" ,action=’store_true’)
flags = parser.parse_args()
microcpath = os.getcwd() + "/microc"
FAIL,PASS,TOTALTESTS,TESTING = 0,0,0,0
CFAIL, CPASS, CTOTALTESTS, CTESTING = 0,0,0,0

def getTestPaths():
 global TOTALTESTS,TESTING
 allPaths = []

current = os.getcwd()
print(current)
for tup in os.walk(’./tests’):
 for test in tup[2]:
 allPaths.append(current + tup[0][1:] + ’/’ + test)
allPaths = filter(lambda x: x[-2:] == ’mc’, allPaths)
TOTALTESTS = len(allPaths)
allPaths = filter(lambda x: flags.directory in x, allPaths)
TESTING = len(allPaths)
return allPaths

def setup():
show = False if flags.nomillic else True
try:
 c = call([’make’])
 if c != 0:
 pt(1, "Makefile failed: Error Code %s" % c)
 exit()
except Exception as e:

21

 pt(1, "Makefile failed:%s" % e)

def writeC(outfile,code):
 with open(outfile, "w") as f:
 f.write(code)

def test(filepath):
 outfile = filepath[:-3] + ".c"
 outc = filepath[:-3] + ".exe"
 filebase = filepath[:filepath.rfind(’/’) + 1]
 code = open(filepath).read().encode(’ascii’,’ignore’)
 global FAIL,PASS

 try:
 p = Popen([microcpath,’-SC’], stdin = PIPE, stdout = PIPE, stderr = STDOUT)
 out,err = p.communicate(input=code)
 if "error" in out and not flags.nofail:
 pt(1,"%s\n%s" % (filepath,out))

 if flags.showfail and not flags.suppress: pt(3, code)
 FAIL += 1
 return
 elif not flags.nopass:
 pt(2, "%s PASSED" % filepath)
 if flags.showpass and not flags.suppress: pt(5,out)
 PASS += 1
 writeC(outfile,out)

 except Exception as e:
pt(3, "Failed MilliC %s:%s" % (filepath,e))

 if not flags.gcc : return

 try:
 print(outfile)

Popen([’gcc’, "-o" + outc, "-std=c99", "-Iarrays", outfile],stdout=PIPE)
 except Exception as e:

pt(3, "Failed GCC %s:%s" % (filepath,e))

if __name__ == "__main__":
 setup()
 for t in getTestPaths():

test(t)
 if not flags.noclean:

call([’make’,’clean’])
 pt(4,"Testing %s / %s Total" % (TESTING,TOTALTESTS))
 pt(4,"%s FAILED %s PASSED" % (FAIL,PASS))
 pt(4,"%s GCC FAILED %s GCC PASSED" % (CFAIL,CPASS))

6.3 Test Cases

The test cases that we created were classified as Pass and Fail. They were

further classified into features that we were testing like conditional tests, control

tests, etc. In the end the criteria was that all the test cases in pass should compile

successfully in civ and generate a proper C code which upon execution through

GCC gives the expected output. Similarly the cases in Fail were supposed to fail

when compiled through civ for either syntactical errors or semantic errors.

6.4 Test Phase

We had roughly two "phases" for our tests. The first was continually building

the grammar and making sure everything parsed correctly, and once the full

dynamic arrays and garbage collection was in, we started making sure code

generation complied with the GCC C99 standard.

22

7 Lessons Learned

Mike Project leadership: In industry, everyone has a specialization and/or has a

specific role that contributes to a whole. This is why there is a team breakdown

of roles. Do not under any circumstance let it become nebulous with people

having their hands in different aspects of the project. Make everyone an absolute

dictator of their domain, and get everyone to be really aggressive about doing

their work. Keep a work log - it becomes very evident who works and who

doesn't, and the moment deadweight is detected, let the person know, and then

cut them off.

Grammar design: Minimize redundancy, and use lots of self-referential grammar

rules. You don't want to create cases that require one specific rule - it will lead

to scrambling to consider of all the edge cases, and hours spent testing every

single possible configuration.

Testing: Create a full test suite that is modular and takes in configurations. It

will make life a lot easier to test all 50 - 100 test cases in one command line

argument, with different options to display failing case code or running other

UNIX commands on the object code. Minimizing the feedback time from

compilation time shortens the development cycle.

Work allocation and strategy: While the 'thread' idea is a good idea, where you

try to get one small aspect of your code to compile and run, a 'wave' idea worked

out better for us. I was first wave in designing the grammar, AST, and code

generation, and then the 'second' wave moved who worked on the semantic

analyzer and the SAST generation AS I was fixing/upgrading. It allowed both of

us to work at maximum productivity, because I gave him a foundation to start.

The third wave moved in shortly after with him working on the 'centerpiece' of

our language with dynamic arrays and garbage collection. This also means that

peoples' workloads peaks at different places, allowing people with spare time to

work on other issues, like testing and helping each other out. The alternative to

this is everyone sitting around one coder, kind of like pair programming. That

was a terrible strategy we used for the longest time, because it always ended up

in people arguing and bickering over trivial details.

Advice: The earlier you work the faster you realize how painful this project can

be. Get each person to have responsibility for something. Keep a work log to

keep track of who is working and who isn't. Pair programming

is great, but group programming is a waste of time.

Yuchen Semantic Analysis: There are a lot of things to check for semantic even

we have correct AST. We have to traverse the AST using DFS to check the

semantic of each literal, each ID, each expression and each statement.

Unlike the lexical and syntax checking, we need to know the scope, the

environment when we check everything. This should be organized and recorded

carefully from the beginning of the checking process. Things should be thought

clearly before the codes are written down; it is the way that makes the

development process of semantic analysis more efficient.

Coding in Ocaml: Coding in Ocaml is a special experience. It is not like the

language that I was familiar with. We have to do a lot of recursions when coding

in Ocaml. But it also makes the coding experience very interesting. We were not

tediously moving codes from one place to another. Every line of the codes were

thought carefully and a short codes can made what you want. At the beginning,

the coding process is slow. But once I got used to the style of Ocaml coding, the

process got more and more efficient. It was a good training of my thought of

coding.

23

Teamwork: I worked with Mike on the converting of AST to SAST and worked

with Eli on the dynamic arrays and garbage collection. Once Mike made some

changes on parser and AST, I had to follow him to make corresponding changes

in SAST and semantic checking. Eli provided the C methods that could be used

in dynamic arrays and garbage collection, and I should make the generated

codes use these methods in the right way.

Such experience gave me the training of how to work with other people as a

team.

Advice: Think early about how to implement what you want. Make some tests

about the prototype. Try to be clear of what the work will be like when starting

to write codes.

Eli Management and organization are really important to get right. While a

project should be a collaboration, a design major friend once told me he can

always tell when a project was designed by a committee rather than a lead

designer because it is a mix of possibly good ideas all executed poorly.

It is important to find a balance between collaboration and leadership.

Swing too far either way and the project goes south quickly. It is ok to be

flexible about team roles. If it seems like someone is uncomfortable in a certain

role, let them know that they can switch roles. If it seems like someone is unable

to act in their capacity in a certain roll, be proactive in approaching them about

the problem. Letting someone continue to perform a roll in the project that they

are unable to do is a detriment to them as well as to the rest of the team. This is

especially important for the management role, as if the manager is unable to

perform their duties; it may not be clear where other problems in the project lie.

As a second thing, while this is not really a new lesson, it bears repeating that

the early one starts on a project, the better things will turn out.

Especially in testing, there are times where something that you may think is a

tiny bug that will take 10 minutes to fix ends up taking 10 hours.

Testing is a very important and unbelievably time consuming step, and should

be considered a very major portion of the project.

Prateek While working on this project I realized how important various aspects

of working in a team are. Strict time-line, work allocation, proper

communication and team management everything affects the final product.

During the early stages of development we tried to code in group and it didn't

work so well for us. So even though meeting regularly is important it is even

more important to allocate the work properly. I also realized that for a project of

this size it is important that the team members should take initiatives and bring

more and more ideas to the table.

My advice for the future teams would be to start implementation as early as

possible. Ocaml is a difficult language and it takes time to get acquainted with it.

While writing the test cases even though the code blocks are good to test the

overall system, small test cases help you realize where exactly the error is hence

it is better to write incremental test cases.

24

8 Appendix

8.1 Ocaml

./mikec/ast.ml

type op = Add | Sub | Mult | Div | Equal | Neq |

Less | Leq | Greater | Geq | Mod

type elem =

 ElemLiteral of string

 | ElemList of elem list

type expr =

 ILiteral of int

 | Float of string (* TODO: Consider changing

this*)

 | String of string

 | Char of string

 | Id of string

 | Binop of expr * op * expr

 | Call of string * expr list

 | Noexpr

 | Assign of string * expr

 | Array of elem

 | ArrId of string * expr list (* now expr *)

 | DArrId of string * int

 | CheckSize of string

type stmt =

 Block of stmt list

 | Flow of string

 | Expr of expr

 | Print of string

 | Printlist of string * string list

 | Return of expr

 | If of expr * stmt * stmt

 | For of expr * expr * expr * stmt

 | While of expr * stmt

 | VDecl of string * string

 | VDecllist of string * string list

 | NAssign of string * string * expr (* Variable

declaration AND assignment *)

 | Arr of string * string * expr list (* Type,

and ID, and a list of indices *)

 | Braces of string * string * expr list * elem

list (* Type, ID, Indices, Values *)

 | DArr of string * string * int (*Type, ID,

Dimensions *)

 | DBraces of string * string * int * elem list (*

Type, ID, Dimensions, Values*)

 | AAssign of string * string * expr list * expr

(*ID,value position, new value*)

25

 | SAssign of string * string * int * string list

(* String assignment check if int == 1*)

type func_decl = {

 ftype : string;

 typebrackets : int;

 fname : string;

 formals : (string * string * int) list;

 body : stmt list;

 }

type program = (string * string * string) list *

func_decl list

./mikec/sast.ml

open Ast

type variable_decl = string * Types.t

module S = struct

 type symbol_table = {

 parent : symbol_table option;

 mutable variables : variable_decl list

 }

end

type expr_detail =

 ILiteral of int

 | Float of string (* TODO: Consider changing

this*)

 | String of string

 | Char of string

 | Id of variable_decl

 | Binop of expr_detail * Ast.op * expr_detail

 | Call of string * expr_detail list

 | Noexpr

 | Assign of string * expr_detail

 | Array of Ast.elem

 | ArrId of Types.t * string * expr_detail list

 | DArrId of string * int

 | CheckSize of string

type stmt_detail =

 Block of S.symbol_table * stmt_detail list *

variable_decl list

 | Expr of expr_detail * Types.t * bool

 | Print of string

 | Printlist of string * string list

 | Flow of string

 | Return of expr_detail * variable_decl list *

bool

 | If of expr_detail * stmt_detail * stmt_detail

26

 | For of expr_detail * expr_detail * expr_detail

* stmt_detail

 | While of expr_detail * stmt_detail

 | VDecl of Types.t * string

 | VDecllist of Types.t * string list

 | NAssign of Types.t * string * expr_detail (*

Variable declaration AND assignment *)

 | Arr of Types.t * string * expr_detail list (*

Type, and ID, and a list of indices *)

 | Braces of Types.t * string * expr_detail list *

Ast.elem list(* Type, ID, Indices, Values *)

 | DArr of Types.t * string * int (*Type, ID,

Dimensions *)

 | DBraces of Types.t * string * int * elem list

(* Type, ID, Values*)

 | AAssign of Types.t * string * expr_detail list

* expr_detail (*Type, ID,value position, new value*)

 | SAssign of Types.t * string * int * string

list (* String assignment check if int == 1*)

type expression = expr_detail * Types.t

type func_decl_detail = {

 ftype_s : Types.t;

 brackets_s : int;

 fname_s : string;

 formals_s : (Types.t * string * int) list;

 body_s : stmt_detail list;

 }

27

./mikec/ccompilesast.ml

open Sast

module StringMap = Map.Make(String)

(* Symbol table: Information about all the names in

scope *)

type env = {

 function_index : int StringMap.t; (* Index for

each function *)

 global_index : int StringMap.t; (* "Address"

for global variables *)

 local_index : int StringMap.t; (* FP offset

for args, locals *)

 }

(* val enum : int -> 'a list -> (int * 'a) list *)

let rec enum stride n = function

 [] -> []

 | hd::tl -> (n, hd) :: enum stride (n+stride) tl

(* val string_map_pairs StringMap 'a -> (int * 'a)

list -> StringMap 'a *)

let string_map_pairs map pairs =

 List.fold_left (fun m (i, n) -> StringMap.add n i

m) map pairs

let rec print_formal_bracket = function n ->

 match n with

 0 -> ""

 | _ -> "[]" ^ print_formal_bracket (n-1)

let rec print_stars = function n ->

 match n with

 0 -> ""

 | _ -> "*" ^ print_stars (n-1)

let print_formals = function (a,b,c) ->

 let star = match a with

 Types.DArray(_,_) -> " *"

 |_ -> " "

 in

 (Types.output_of_type a) ^star ^ b

let typstr = function (a,b) ->

(Types.output_of_type a) ^ " " ^ b

let typstrstr = function (a,b,c) ->

(Types.output_of_type a) ^ " " ^ b ^ " = " ^ c ^

";"

let strstr = function (a,b) -> a ^ " " ^ b

28

let strstrstr = function (a,b,c) -> a ^ " " ^ b ^ "

= " ^ c ^ ";" (* Currently only for global vars *)

let rec string_of_elem = function elem ->

 match elem with

 Ast.ElemLiteral(e) -> e

 | Ast.ElemList(elist) -> "{" ^

String.concat "," (List.map string_of_elem elist)^

"}"

let print_vars = function vars->

 List.fold_left

 (fun str var ->

 let (id,t) = var in

 str ^ "\n" ^ (Types.string_of_type

t) ^ " "^ id)

 "" vars

let free_array = function array->

 List.fold_left

 (fun str var ->

 let (id,t) = var in

 match t with

 Types.DArray(_,_) ->str ^

"\n//freeArray(" ^ (Types.string_of_type t) ^ " "^

id ^ ")"

 | _ -> str ^ ""

)

 "" array

let rec expr_s =

 let rec string_of_ind = function (slist :

expr_detail list) ->

 match slist with

 [hd] -> "array[" ^ expr_s hd ^ "]."

 | hd::tail -> "array[" ^ expr_s hd ^

"].a->" ^ string_of_ind tail

 in

 function

 ILiteral(l) -> string_of_int l

 | CheckSize(s) -> s

 | String(s) -> s

 | Char(c) -> c

 | Id(v, _) -> v

 | Float(s) -> s

 | Binop(e1, o, e2) -> expr_s e1 ^

 (match o with Ast.Add -> " + " | Ast.Sub ->

" - " | Ast.Mult -> " * " |

 Ast.Div -> " / " | Ast.Equal ->

" == " | Ast.Neq -> " != " |

 Ast.Less -> " < " | Ast.Leq ->

" <= " | Ast.Greater -> " > " |

29

Ast.Geq -> " >= "| Ast.Mod -> " % ") ^ expr_s e2

 | Call(f, es) -> f ^ "(" ^ String.concat ", "

(List.map expr_s (List.rev es)) ^ ")"

 | Assign(v, e) -> v ^ " = " ^ expr_s e

 | Noexpr -> ""

 | ArrId(typ,name,nlist) ->

 let tname = match typ with

 Types.Int -> "i"

 | Types.Float -> "f"

 | Types.Char -> "c"

 in

 name ^ "->" ^ string_of_ind (List.rev nlist)

^ tname

 | DArrId(name,n) -> name (*^ print_formal_bracket

n*)

 | CheckSize(s) -> s

let rec checkArray id ind=

 match ind with

 [hd] -> ""

 | hd::tail ->

 "if (!(" ^ id ^ "->array[" ^

expr_s hd ^ "].a)) {\n" ^

 "Array *temp = initArray(temp);\n"

^

 "insertArray(" ^ id ^ "," ^ expr_s

hd ^ ",temp);\n" ^

 "}\n" ^ checkArray (id ^ "-

>array[" ^ expr_s hd ^ "].a") tail

let rec insertArray id ind=

 match ind with

 [hd] -> id ^ "", expr_s hd

 | hd::tail ->

 insertArray (id ^ "->array[" ^

expr_s hd ^ "].a") tail

let rec stmt_s = function

 Block(symbol_table,ss,unused_vars) -> "{\n"^

(String.concat "\n"

 (List.map (fun s ->

stmt_s s) ss)) ^"\n"

 (*

 ^ "/*Free

Arrays:"

 ^ (free_array

symbol_table.S.variables)

 ^ "\n*/\n" *)

30

 ^ "}"

 | Expr(e,_, sfree) ->

 if (sfree==true) then "tmp = " ^ expr_s

e ^ ";\n" ^

 "stack = pushStack(stack, tmp);\n"

 else expr_s e ^ ";\n"

 | Print(s) -> "printf(" ^ s ^ ");"

 | Printlist(s,l) -> "printf(" ^ s ^ "," ^

String.concat "," l ^ ");"

 | Flow(s) -> s

 | Return(e, vars, is_darr) ->

(*(free_array vars) ^ "\n" ^ *)

 let freestr =

 if (is_darr) then

 "if(ptr != " ^ expr_s e ^

"){\n" ^

 "freeArray(ptr);\n" ^

 "}\n"

 else

 "freeArray(ptr);\n"

 in

 "Array *ptr = NULL;\n" ^

 "while (stackEmpty(stack)==0){\n"^

 "stack = popStack(stack, &ptr);\n"^

 freestr ^

 "}\n"^

 "freeStack(stack);\n"^

 "return" ^ " " ^ expr_s e ^ ";"

 | If(e, s1, s2) -> "if(" ^ expr_s e ^ ")" ^ stmt_s

s1 ^

stmt_s s2

 | For(e1, e2, e3, s) -> "for(" ^ expr_s e1 ^ "; "

^ expr_s e2 ^

 "; " ^ expr_s e3 ^ ") "

^ stmt_s s ^ ""

 | While(e, s) -> "while(" ^ expr_s e ^ ")" ^

stmt_s s

 | VDecl(t,v) -> Types.output_of_type t ^ " " ^ v ^

";"

 | VDecllist(t,vs) -> Types.output_of_type t ^ " "

^ String.concat ", " vs ^ ";"

 | NAssign(t,v,e) -> Types.output_of_type t ^ " " ^

v ^ " = " ^ expr_s e ^ ";"

 | Arr(t,v,l) -> (Types.output_of_type t) ^ " " ^ v

^ "[" ^ String.concat "][" (List.map (fun s->

expr_s s) l) ^ "];"

 | Braces (t, id, ind, elem) ->

Types.output_of_type t ^ " " ^ id ^

 "[" ^ String.concat "][" (List.map (fun s->

expr_s s) ind) ^ "]" ^

 " = {" ^ List.fold_left (fun str elem->

str ^ string_of_elem elem) "" elem ^ "};"

31

 | DBraces (t, id, dim, elem) ->

Types.output_of_type t ^ " " ^ id ^

print_formal_bracket dim ^

 " = " ^ List.fold_left (fun

str elem-> str ^ string_of_elem elem) "" elem ^ ";"

 | AAssign(t,id,ind, e) ->

 let idstr, indstr = insertArray id ind in

 checkArray id ind ^

 "insert" ^ Types.string_of_type t

^ "("^ idstr ^"," ^ indstr ^","^ expr_s e ^");"

 | SAssign(t,id,ind, e) ->

 "char " ^ id ^ "[] = " ^ String.concat

"" e ^ ";"

 | DArr(t,id,dim)->

 "Array *" ^ id ^ " = initArray(" ^

id ^ ");\n" ^

 "stack = pushStack(stack, " ^ id ^

");"

let func_decl_s (f:func_decl_detail) =

 let star = match f.ftype_s with

 Types.DArray(_,_) -> " *"

 |_ -> " "

 in

 (Types.output_of_type f.ftype_s) ^ star

^ f.fname_s ^ "(" ^

 String.concat ", " (List.map print_formals

f.formals_s) ^ "){\n" ^

 "Stack *stack = NULL;\n" ^

 "initStack(stack);\n" ^

 "Array *tmp;\n" ^

 String.concat "\n" (List.map stmt_s f.body_s)

^ "\n}\n"

let program_s (vars, funcs) = "#include

<stdio.h>\n#include \"array.h\"\n\n" ^

 String.concat ", " (List.map

typstrstr vars) ^ "\n" ^

 String.concat "\n" (List.map

func_decl_s funcs)

let translate (globals,functions) =

print_string(program_s (globals,functions))

32

./mikec/semantic.ml

(* Takes in ast.program (see definition) and raises

error if something doesn't add up*)

(* TODO: Parameter length checking - number of

parameter? - done

 * Type checking for variable declarations -

done

 * Type checking for function calls - done

 * Lexical scope checking - done

 * Global scope checking - done

 * Array index checking -

 * Operations checking, e.g. string + int -

done

 * Return type check -

 * Index type check - we could make this a

grammar rule, but a semantic check is fine too

* ID name validation (no crazy characters

though scanner helps)

* Check braces in array actual assignment for

right type/size

 * *)

(* globals consists of string*string*string for

Type/ID/Value *)

(* functions is a list of structs with 4 fields:

 ftype

 fname

 arguments (refer to ast for name)

 body (which is really another program in

itself)

 *)

open Ast

open Sast

open Types

exception Semantic_Error of string

module NameMap = Map.Make(String)

type exception_scope = {

 excep_parent : exception_scope option;

 mutable exceptions : string list

}

type translation_environment = {

 scope:S.symbol_table;

(* symbol table for vars *)

 exception_scope : exception_scope;

 (* sym tab for exceptions *)

 return_type: string * Types.t;

33

 mutable fun_formals: string list;

 (*

 return_type : Types.t;

 in_switch : bool;

 case_labels : Big_int.big_int list ref; (* known

case labels *)

 break_label : label option;

 (* when break makes sense *)

 continue_label : label option;

 (* when continue makes sense *)

 exception_scope : exception_scope;

 (* sym tab for exceptions *)

 labels : label list ref;

 (* labels on statements *)

 forward_gotos : label list ref;

 (* forward goto destinations *)

 *)

}

(* Find variable in current scope ant its parent

scopes *)

let rec find_variable (scope : S.symbol_table) name

=

 try

 List.find (fun (s, _) -> s = name)

scope.S.variables

 with Not_found ->

 match scope.S.parent with

 Some(parent) -> find_variable parent name

 | _ -> raise Not_found

(* Check if the name of variable conflicts with

declared variables in current scope*)

let is_new_variable (scope : S.symbol_table) name =

 (* TODO can global variable be redeclared? *)

 try

 let (_,_) = List.find (fun (s, _) -> s = name)

scope.S.variables in

 raise (Semantic_Error ("'" ^ name ^ "'

already exists"));

 ()

 with Not_found -> ()

let check_unused_var (scope : S.symbol_table) =

 match scope.S.parent with

 | Some(parent) ->

 List.fold_left (fun list var ->

 try

 let (name,_) = var in

 ignore(find_variable

parent name);

 list

34

with Not_found -> var::list)

 [] scope.S.variables

 | _ -> scope.S.variables

let rec clean_vars (formals : string list) (scope :

S.symbol_table) =

 match scope.S.parent with

 | Some(parent) ->

 let vars = scope.S.variables in

 let this_vars =

 List.fold_left (fun list var ->

 let (id,_) = var in

 if (List.mem id formals) then list

else var::list)

 [] vars

 in

 let parent_vars = clean_vars formals

parent in

 List.append this_vars parent_vars

 | _ -> []

(* check if e has type integer *)

let require_integer (env:translation_environment) e

str =

 match e with

 Types.Int -> ()

 | _ -> env.exception_scope.exceptions <-

str::env.exception_scope.exceptions;

 raise (Semantic_Error str)

(* check if t1 and t2 are the same types *)

let rec weak_eq_type t1 t2 =

 match t1,t2 with

 Types.Int,Types.Int -> true

 | Types.Char,Types.Char -> true

 | Types.Float,Types.Float -> true

 | Types.String,Types.String -> true

 | Types.Void, Types.Void -> true

 | Types.Array(t1,dim1), Types.Array(t2,dim2)

->

 (weak_eq_type t1 t2) && (dim1 == dim2)

 | Types.DArray(t1,dim1), Types.DArray(t2,dim2)

->

 (weak_eq_type t1 t2) && (dim1 == dim2)

 | _, _ -> false

let check ((globals: (string * string * string)

list), (functions : Ast.func_decl list)) =

 (* Construct a map of functions' name and

functions' decl *)

 let func_decls : (Ast.func_decl NameMap.t) =

List.fold_left

35

 (fun funcs (fdecl:Ast.func_decl) ->

NameMap.add fdecl.fname fdecl funcs)

 NameMap.empty functions

 in

 (* Expression check and converting *)

 let rec expr (env : translation_environment) =

function

 (* Map the literals from ast to sast *)

 Ast.ILiteral(v) -> Sast.ILiteral(v),

Types.Int

 | Ast.Char(c) -> Sast.Char(c), Types.Char

| Ast.Float(f) -> Sast.Float(f), Types.Float

 | Ast.String(s) -> Sast.String(s),

Types.String

 | Ast.Noexpr -> Sast.Noexpr, Types.Void

 (* An identifier: verify it is in scope and

return its type *)

 | Ast.Id(vname) -> let vdecl = try

 find_variable env.scope vname (*

locate a variable by name *)

 with Not_found ->

 raise (Semantic_Error ("Undeclared

identifier: " ^ vname))

 in

 let (_, typ) = vdecl in (* get the variable’s

type *)

 Sast.Id(vdecl), typ

 | Ast.Array(e) ->

 Sast.Array(e), Types.Void

 | Ast.ArrId(name,expr_list) ->

 let expr_list =

 List.fold_left

 (fun list epr ->

 let e = expr env

epr in

 let (ep, t) = e

in

 require_integer

env t ("Index of array '" ^ name ^ "' is not Int.");

 ep::list

) [] expr_list

 in

 let id = try

 find_variable env.scope name (*

locate a variable by name *)

 with Not_found ->

 raise (Semantic_Error ("Undeclared

array: " ^ name))

 in

 let (_, typ) = id in

 let t =

 match typ with

 Types.Array(t,_) -> t

36

 | Types.DArray(t,_) -> t

 |_ -> typ

 in

 Sast.ArrId(t,name,List.rev

expr_list), t

 | Ast.DArrId(name,n)->

 let id = try

 find_variable env.scope name (*

locate a variable by name *)

 with Not_found ->

 raise (Semantic_Error ("Undeclared

array: " ^ name))

 in

 let (_, typ) = id in

 let t,n1 =

 match typ with

 Types.Array(t,n1) -> t,n1

 | Types.DArray(t,n1) -> t,n1

 |_ -> typ,0

 in

if (n!=n1) then raise (Semantic_Error ("Dimension

of '" ^ name ^ "' is " ^ string_of_int n1 ^ ", but

" ^ string_of_int n ^ " is found."));

 Sast.DArrId(name,n), typ

 | Ast.Binop(e1, op, e2) ->

 let e1 = expr env e1 (* Check left and

right children *)

 and e2 = expr env e2 in

 let ep1, t1 = e1 (* Get the type of

each child *)

 and ep2, t2 = e2 in

 if op <> Ast.Equal && op <> Ast.Neq

then

 (* Most operators require both

left and right to be integer *)

 (require_integer env t1 "Left

operand must be integer";

 require_integer env t2 "Right

operand must be integer")

 else

 if not (weak_eq_type t1 t2) then

 (* Equality operators just require

types to be "close" *)

 (* error ("Type mismatch in

comparison: left is " ^

 Printer.string_of_sast_type t1 ^ "\" right is

\"" ^

 Printer.string_of_sast_type t2 ^ "\"") loc;

*)

37

 raise (Semantic_Error ("Type

mismatch in comparison: left is '" ^

 string_of_type t1 ^ "' right is '" ^

 string_of_type t2 ^ "'"));

 Sast.Binop(ep1, op, ep2), Types.Int (*

Success: result is int *)

 | Ast.Assign(id, ep2) ->

 let e1 = expr env (Ast.Id(id)) in

 let e2 = expr env ep2 in

 let (_, t1) = e1 in

 let (ep2, t2) = e2 in

 if not (weak_eq_type t1 t2) then

 raise (Semantic_Error ("Type

mismatch in assign value: '" ^ id ^ "' is '" ^

 string_of_type t1 ^ "', but '" ^

 string_of_type t2 ^ "' is given."));

 Sast.Assign(id,ep2), t1

 | Ast.CheckSize(s) -> Sast.CheckSize(s),

Types.Int

 | Ast.Call(name, args) ->

 let func =

 try

 NameMap.find name func_decls

 with Not_found -> raise (Semantic_Error

("Cannot find function '" ^ name ^ "'"))

 in

 let

 scope' = { S.parent =

Some(env.scope); S.variables = [] }

 and

exceptions' = { excep_parent =

Some(env.exception_scope); exceptions = [] }

 in

 let

 env' = { env with scope = scope';

exception_scope = exceptions' }

 in

 let make_sast_args sast_args args

formals =

 let e = expr env' args in

 let (ep1, t1) = e in

 let (t2, n2, dim) = formals in

 let t2 =

 match dim

with

 0 ->

Types.type_from_string t2

 | _ ->

Types.DArray(Types.type_from_string t2,dim)

 in

38

 if not (weak_eq_type t1 t2)

then

 raise (Semantic_Error

("Type mismatch in function '" ^ name ^ "':

parameter '"

 ^ n2

^ "' is '" ^ (string_of_type t2) ^ "', but '"

 ^

(string_of_type t1) ^ "' is found."));

 ep1::sast_args

 in

 let sast_args =

 try

 List.fold_left2

make_sast_args [] args func.formals

 with Invalid_argument(_) ->

 raise (Semantic_Error

("Arguments number mismatch in fuction '" ^ name ^

"': "

 ^

string_of_int (List.length func.formals) ^ "

required, but "

 ^

string_of_int (List.length args) ^ " found."));

 in

 let typ = Types.type_from_string

func.ftype in

 let ftype =

 match

func.typebrackets with

 0 -> typ

 | _ ->

Types.DArray(typ,func.typebrackets)

 in

 Sast.Call(name, sast_args), ftype

 in

 (* End of expression check *)

 (* Statment check and converting *)

 let rec stmt env = function

 (* Expression statement: just check the

expression *)

 Ast.Expr(e) ->

 let e1 = expr env e in

 let (ep1,t1) = e1 in

 let sfree = match ep1 with

 Sast.Assign(_,_) ->

 (

 match t1 with

 Types.DArray(_,_) -> true

 |_ -> false

)

 |_->

39

 (match t1 with

 Types.DArray(_,_) -> raise

(Semantic_Error ("Dynamic Array cannot stand

alone.")); false

 |_ -> false

)

 in

 Sast.Expr(ep1,t1,sfree)

 (* If statement: verify the predicate

is integer *)

 | Ast.If(e, s1, s2) ->

 let e = expr env e in (* Check the

predicate *)

 let (ep,t) = e in

 require_integer env t "Predicate of if

must be integer";

 Sast.If(ep, stmt env s1, stmt env s2)

(* Check then, else *)

 | Ast.For(e1,e2,e3,s) ->

 (* TODO type constraint about e1? e2?

e3? *)

 let e1 = expr env e1 in

 let e2 = expr env e2 in

 let e3 = expr env e3 in

 let (ep1,_) = e1 in

 let (ep2,_) = e2 in

 let (ep3,_) = e3 in

 let s = stmt env s in

 Sast.For(ep1,ep2,ep3,s)

 | Ast.While(e, s) ->

 (* TODO type constraint about e? *)

 let e = expr env e in

 let (ep,_) = e in

 let s = stmt env s in

 Sast.While(ep,s)

 (* These codes are in the slides, but I

cannot figure out how they work *)

 (*

 | Ast.VDecl(vdecl) ->

 let decl, (init, _) = check_local vdecl

(* already declared? *)

 in

 (* side-effect: add variable to the

environment *)

 env.scope.S.variables <- decl ::

env.scope.S.variables;

 init (* initialization statements, if

any *)

 *)

40

 (* Initial local variables *)

 | Ast.NAssign(t1,id,ep1) ->

 is_new_variable env.scope id;

 let t1 = Types.type_from_string t1 in

 let e2 = expr env ep1 in

 let (ep2, t2) = e2 in

 (* Should assign the same type as

required *)

 if not (weak_eq_type t1 t2) then

 raise (Semantic_Error ("Type

mismatch in variable declaration: left is '" ^

 string_of_type t1 ^ "' right is '" ^

 string_of_type t2 ^ "'"));

 env.scope.S.variables <- (id,t1) ::

env.scope.S.variables;

 Sast.NAssign(t1,id,ep2)

 | Ast.VDecl(t,id) ->

 is_new_variable env.scope id;

 let t = Types.type_from_string t in

 env.scope.S.variables <- (id,t) ::

env.scope.S.variables;

 Sast.VDecl(t,id)

 (*e.x. int x,y,z;*)

 | Ast.VDecllist(t,ids) ->

 List.map (function i -> is_new_variable

env.scope i) ids;

 let t = Types.type_from_string t in

 List.map (function id ->

env.scope.S.variables <- (id,t) ::

env.scope.S.variables) ids;

 Sast.VDecllist(t,ids)

 (* TODO Should it check the type of s? *)

 | Ast.Print(s) ->

 Sast.Print(s)

 | Ast.Printlist(s,l) ->

 Sast.Printlist(s,l)

 | Ast.Flow(s) -> Sast.Flow(s)

 (* TODO Should not be functions here? *)

 | Ast.Return(e) ->

 let e = expr env e in

 let (ep, t) = e in

 let (fname, return_type) =

env.return_type in

 (match ep with

 Sast.ILiteral(_) | Sast.Float(_)

| Sast.String(_) | Sast.Char(_) | Sast.Id(_) |

Sast.Noexpr | Sast.DArrId(_, _) -> ()

41

 | Sast.ArrId(_, _, _) -> raise

(Semantic_Error ("Return of function '" ^ fname ^

"' cannot be an element of the dynamic array."))

 | _ -> raise (Semantic_Error

("Return of function '" ^ fname ^ "' cannot be an

expression.")));

 if not (weak_eq_type t

return_type) then

 raise (Semantic_Error ("Return

type mismatch: return type of function '" ^

 fname

^ "' is " ^

 string_of_type return_type ^ "', but '" ^

 string_of_type t ^ "' is found."));

 let scope = env.scope in

 let vars_to_clean = clean_vars

env.fun_formals scope in

 let is_darr =

 match return_type with

 Types.DArray(_,_) -> true

 | _ -> false

 in

 Sast.Return(ep,vars_to_clean, is_darr)

 | Ast.Print(s) ->

 Sast.Print(s)

 | Ast.Arr(t,id,expr_list) ->

 is_new_variable env.scope id;

 let elem_t = Types.type_from_string t

in

 let expr_list =

 List.fold_left

 (fun list epr ->

 let e = expr env

epr in

 let (ep, t) = e

in

 require_integer

env t ("Index of array '" ^ id ^ "' is not Int.");

 ep::list

) [] expr_list

 in

 let t =

Types.Array(elem_t,List.length expr_list) in

 env.scope.S.variables <- (id,t) ::

env.scope.S.variables;

 Sast.Arr(t,id,List.rev expr_list)

 | Ast.Braces(t,id,ind,elem)->

 is_new_variable env.scope id;

42

 let elem_t = Types.type_from_string t

in

 let expr_list =

 List.fold_left

 (fun list epr ->

 let e = expr env

epr in

 let (ep, t) = e

in

 require_integer

env t ("Index of array '" ^ id ^ "' is not Int.");

 ep::list

) [] ind

 in

 let t =

Types.Array(elem_t,List.length expr_list) in

 env.scope.S.variables <- (id,t) ::

env.scope.S.variables;

 Sast.Braces(t,id,List.rev

expr_list, elem)

 | Ast.DBraces(t,id,dim,elem)->

 is_new_variable env.scope id;

 let elem_t = Types.type_from_string t

in

 let t = Types.DArray(elem_t,dim)

in

 env.scope.S.variables <- (id,t) ::

env.scope.S.variables;

 Sast.DBraces(t,id,dim, elem)

 (* Dynamic Array *)

 | Ast.DArr(t,id,dim) ->

 is_new_variable env.scope id;

 let t = Types.array_type_from_string t

in

 let t = Types.DArray(t,dim) in

 env.scope.S.variables <- (id,t) ::

env.scope.S.variables;

 Sast.DArr(t,id,dim)

 | Ast.AAssign(t,id,ind,ep) ->

 (*is_new_variable env.scope id;*)

 let e1 = expr env (Ast.Id(id)) in

 let e2 = expr env ep in

 let (_, t1) = e1 in

 let (ep2, t2) = e2 in

 let t1,n1 = match t1 with

 Types.DArray(t,n) -> t,n

 | Types.Array(t,n) -> t,n

 | _-> t1,0

 in

 if not (weak_eq_type t1 t2) then

43

 raise (Semantic_Error ("Type

mismatch in assign value: '" ^ id ^ "' is '" ^

 string_of_type t1 ^ "' array, but '" ^

 string_of_type t2 ^ "' is given."));

 if (n1 != List.length ind) then

 raise (Semantic_Error

("Dimension of '" ^ id ^ "' is " ^ string_of_int n1

^

 ", but " ^

string_of_int (List.length ind) ^ " is found."));

 let expr_list =

 List.fold_left

 (fun list epr ->

 let e = expr env

epr in

 let (ep, t) = e

in

 require_integer

env t ("Index of array '" ^ id ^ "' is not Int.");

 ep::list

) [] ind

 in

 Sast.AAssign(t1,id, expr_list,ep2)

 | Ast.SAssign(t,id,ind,str) ->

 is_new_variable env.scope id;

 let t1 = Types.String in

 Sast.SAssign(t1,id, ind,str)

 | Ast.Block(sl) ->

 (* New scopes: parent is the existing

scope, start out empty *)

 let scope' = { S.parent =

Some(env.scope); S.variables = [] }

 and exceptions' =

 { excep_parent =

Some(env.exception_scope); exceptions = [] }

 in

 (* New environment: same, but with new

symbol tables *)

 let env' = { env with scope = scope';

exception_scope = exceptions' } in

 (* Check all the statements in the block *)

 let sl = List.map (fun s -> stmt env' s)

sl in

 scope'.S.variables <-

 List.rev scope'.S.variables; (*

side-effect *)

44

 let unused_var = check_unused_var

scope' in

 Sast.Block(scope', sl, unused_var) (*

Success: return block with symbols *)

 in

 (* End of statement check *)

 (* Begin of function 'check' *)

 (* Convert global:(string*string*string) to

variable_decl list *)

 let sast_globals = List.fold_left

 (fun varlist global1 ->

 let (t, name, v) = global1

in

 let t =

Types.type_from_string t in

 (t, name, v)::varlist)

 [] globals

 in

 let vars = List.fold_left

 (fun varlist global1 ->

 let (t, name, _) = global1

in

 let t =

Types.type_from_string t in

 (name,t)::varlist)

 [] globals

 in

 let scope' = { S.parent = None; S.variables =

vars }

 and exceptions' = { excep_parent = None;

exceptions = [] }

 and return_type' = ("global",Types.Void)

 and fun_formals' = []

 in

 (* New environment for globals *)

 let env' = { scope = scope';

exception_scope = exceptions';

return_type = return_type';

fun_formals = fun_formals'}

 in

 (*

 let variables : variable_decl list =

List.fold_left

 (fun globals vdecl -> NameMap.add vdecl

(Int(0)) globals) NameMap.empty vars

 in

 *)

45

 (* Convert functions in ast to functions in

sast *)

 let sast_fdecls =

 List.fold_left

 (fun fdecl_list

(fdecl:Ast.func_decl)->

 (* Convert fdecl in ast to

fdecl in sast, perform semantic checking for each

fdecl*)

 (* Convert ftype *)

 let typ = fdecl.ftype in

 let ftype =

 match

fdecl.typebrackets with

 0 ->

Types.type_from_string typ

 | _ ->

Types.DArray(Types.array_type_from_string

typ,fdecl.typebrackets)

 in

 (* Environment for current

function should include globals and formals *)

 let scope_p = { S.parent =

Some(env'.scope); S.variables = [] }

 and exceptions =

{ excep_parent = Some(env'.exception_scope);

exceptions = [] }

 and return_type_p =

(fdecl.fname,ftype)

 in

 let env = { scope = scope_p;

exception_scope = exceptions; return_type =

return_type_p; fun_formals = [] }

 in

 (* Convert formals *)

 let formals' =

List.fold_left

 (fun formal_list

formal->

 let (t, id, dim)

= formal in

 let tt =

 match dim

with

 0 ->

Types.type_from_string t

 | _ ->

Types.DArray(Types.array_type_from_string t,dim)

 in

46

 env.scope.S.variables <- (id,tt) ::

env.scope.S.variables;

 env.fun_formals

<- id::env.fun_formals;

 (tt, id,

dim)::formal_list)

 [] fdecl.formals

 in

 (* Convert body *)

 let body' = List.fold_left

 (fun stmt_list body->

 let stmt_detail =

stmt env body in

 stmt_detail::stmt_list)

 [] fdecl.body

 in

 (* Check Retrun *)

 (let flag = List.fold_left

 (fun flag body ->

 match body with

 Sast.Return(_ ,_,_) ->

true

 |_ -> flag) false

body'

 in

 if(flag==false) then raise

(Semantic_Error ("Function '" ^ fdecl.fname ^ "'

should have a return statement.")));

 let func =

 {

 ftype_s = ftype;

 brackets_s =

fdecl.typebrackets;

 fname_s = fdecl.fname;

 formals_s =List.rev formals';

 body_s =List.rev body';

 } in

 func::fdecl_list

) [] functions

 in

 (List.rev sast_globals, sast_fdecls);

47

./mikec/types.ml

type t =

 Void

 | Int

 | Float

 | Char

 | String

 | Nonetype

 | Struct of string * ((string * t) array) (*

name, fields *)

 | Array of t * int

 (* type,

dimension *)

 | DArray of t * int

 (* type,

dimension *)

 | Exception of string

let rec print_array_bracket = function n ->

 match n with

 0 -> ""

 | _ -> "[]" ^ print_array_bracket (n-1)

let rec string_of_type t1 =

 match t1 with

 Void -> "Void"

 | Int -> "Int"

 | Char -> "Char"

 | String -> "String"

 | Float -> "Float"

 | Struct(name,_) -> "Struct: " ^ name (* TODO

complete struct string*)

 | Array(t_a, num) ->

 (string_of_type t_a) ^

 (print_array_bracket num)

 | DArray(t_a, num) ->

 (string_of_type t_a) ^

 (print_array_bracket num)

 | Exception(s) -> "Exception: " ^ s

 | Nonetype

 | _ -> "Unknown type"

let rec output_of_type t1 =

 match t1 with

 Void -> "void"

 | Int -> "int"

 | Char -> "char"

 | String -> "char[]"

 | Float -> "float"

 (*| Struct(name,_) -> "Struct: " ^ name (*

TODO complete struct string*) *)

 | Array(t_a, _) -> output_of_type t_a

48

 | DArray(t_a, _) -> "Array"

 | Exception(_) -> "exception"

 | Nonetype -> ""

 | _ -> ""

let type_from_string s1 =

 match s1 with

 "void" -> Void

 | "int" -> Int

 | "char" -> Char

 | "String" -> String

 | "float" -> Float

 | _ -> Nonetype

let array_type_from_string s =

 match s with

 "int" -> Int

 | "char" -> Char

 | "float" -> Float

 | _ -> raise (Failure ("Array cannot have

type '" ^ s ^"'"))

./mikec/microc.ml

./mikec/microc.ml

type action = Semantic | SastCompile

let _ =

 let action = if Array.length Sys.argv > 1 then

 List.assoc Sys.argv.(1) [

 ("-s", Semantic);

 ("-SC", SastCompile)]

 else SastCompile in

 let lexbuf = Lexing.from_channel stdin in

 let program = Parser.program Scanner.token lexbuf

in

 match action with

 Semantic -> ignore(Semantic.check program)

 | SastCompile -> Ccompilesast.translate

(Semantic.check program)

./mikec/parser.mly

%{

open Ast

let str_of_c s = Char.escaped s

let explode s =

 let rec exp i l =

 if i < 0

 then l

 else if i > 0 && s.[i-1] = '\\'

49

 then exp (i - 2) (String.concat ""

[str_of_c s.[i-1];str_of_c s.[i]] :: l)

 else exp (i - 1) ((str_of_c s.[i]) :: l) in

 exp (String.length s - 1) []

let string_of_id s = s

%}

%token SEMI LPAREN RPAREN LBRACE RBRACE COMMA LBRAC

RBRAC

%token PLUS MINUS TIMES DIVIDE ASSIGN

%token EQ NEQ LT LEQ GT GEQ MOD

%token RETURN IF ELSE FOR WHILE

%token BREAK CONST CONTINUE EXTERN STATIC DECR INCR

%token STRUCT

%token <string> STR CHR ID FLITERAL TYPE

%token <int> ILITERAL

%token EOF PRINT SIZE

%nonassoc NOELSE

%nonassoc ELSE

%right ASSIGN

%left EQ NEQ

%left LT GT LEQ GEQ

%left PLUS MINUS

%left TIMES DIVIDE

%start program

%type <Ast.program> program

%%

program:

 /* nothing */ { [], [] }

 | program vdecl { ($2 :: fst $1), snd $1 }

 | program fdecl { fst $1, ($2 :: snd $1) }

fdecl:

 TYPE ID LPAREN formals_opt RPAREN LBRACE

stmt_list RBRACE

 {

 {

 ftype = $1;

 typebrackets = 0;

 fname = $2;

 formals = $4;

 body = List.rev $7

 }

 }

 | TYPE fbrackets_list ID LPAREN formals_opt

RPAREN LBRACE stmt_list RBRACE

 {

50

 {

 ftype = $1;

 typebrackets = $2;

 fname = $3;

 formals = $5;

 body = List.rev $8

 }

 }

fbrackets_list:

 LBRAC RBRAC { 1 }

 | LBRAC RBRAC fbrackets_list { 1 + $3 }

/* Note that the following two fall under fdecl */

formals_opt:

 /* nothing */ { [] }

 | formal_list { List.rev $1 }

formal_list:

 formal { [$1] }

 | formal_list COMMA formal { $3 :: $1 }

formal:

 TYPE ID { ($1 ,$2, 0) }

 | TYPE ID dbrackets_list { ($1, $2, $3) }

/* Next two exclusively for file/global scope

declarations */

vdecl_list:

 /* nothing */ { [] }

 | vdecl_list vdecl { $2 :: $1 }

/* Trying to fix this results in error AFTER

compiler is written. Strange. */

vdecl:

 TYPE ID ASSIGN ILITERAL SEMI { ($1, $2,

string_of_int $4) }

 | TYPE ID ASSIGN STR SEMI { ($1, $2, $4) }

 | TYPE ID ASSIGN CHR SEMI { ($1, $2, $4) }

 | TYPE ID ASSIGN FLITERAL SEMI { ($1, $2, $4) }

stmt_list:

 /* nothing */ { [] }

 | stmt_list stmt { $2 :: $1 }

 /* TODO: Could consolidate opt/list pairs */

stmt:

 BREAK SEMI { Flow("break;") }

 | CONTINUE SEMI { Flow("continue;") }

 | expr SEMI { Expr($1) }

 | TYPE ID SEMI { VDecl($1,$2) }

 | TYPE id_list SEMI { VDecllist($1,$2) }

51

 | TYPE ID brackets_list SEMI { Arr($1,$2,

List.rev $3) }

 | TYPE ID brackets_list ASSIGN elem_list_braces

SEMI { Braces($1,$2, $3, $5) }

 | TYPE ID brackets_list ASSIGN expr SEMI

{ AAssign($1, $2, $3, $5) }

 | TYPE ID ASSIGN expr SEMI{ NAssign($1, $2, $4) }

 | TYPE ID dbrackets_list SEMI { DArr($1, $2, $3) }

 | TYPE ID dbrackets_list ASSIGN elem_list_braces

SEMI { DBraces($1,$2,$3,$5) }

 | TYPE ID dbrackets_list ASSIGN strliterals SEMI

{ SAssign($1,$2,$3,explode($5))}

 | ID brackets_list ASSIGN expr SEMI { AAssign("",

$1, $2, $4) }

 | PRINT LPAREN strliterals RPAREN SEMI

{ Print($3) }

 | PRINT LPAREN strliterals COMMA id_list RPAREN

SEMI {Printlist($3,$5)}

 | RETURN expr_opt SEMI { Return($2) }

 | LBRACE stmt_list RBRACE { Block(List.rev $2) }

 | IF LPAREN expr RPAREN stmt %prec NOELSE { If($3,

$5, Block([])) }

 | IF LPAREN expr RPAREN stmt ELSE stmt { If($3,

$5, $7) }

 | FOR LPAREN expr_opt SEMI expr_opt SEMI expr_opt

RPAREN stmt

 { For($3, $5, $7, $9) }

 | WHILE LPAREN expr RPAREN stmt { While($3, $5) }

vdecl_opt:

 /* nothing */ { Noexpr}

 | expr {$1}

expr_opt:

 /* nothing */ { Noexpr }

 | expr { $1 }

dbrackets_list:

 LBRAC RBRAC { 1 }

 | LBRAC RBRAC dbrackets_list { 1 + $3 }

expr:

 literals { $1 }

 | ids { $1 }

 | ID LPAREN actuals_opt RPAREN { Call($1, $3) }

 | LPAREN expr RPAREN { $2 }

 | SIZE LPAREN ID RPAREN

{ CheckSize("maxArrayElement(" ^ string_of_id $3 ^

")") }

 | ID ASSIGN expr { Assign($1, $3) } /* For

chained assignments */

 /* | ID INCR { Id($1) + 1 } */

/* | ID DECR { Id($1) + 1 } */

 | binop { $1 }

52

ids:

 ID { Id($1) }

 | ID dbrackets_list { DArrId($1,$2) }

 | ID brackets_list { ArrId($1, $2) }

binop:

 expr PLUS expr { Binop($1, Add, $3) }

 | expr MINUS expr { Binop($1, Sub, $3) }

 | expr TIMES expr { Binop($1, Mult, $3) }

 | expr DIVIDE expr { Binop($1, Div, $3) }

 | expr EQ expr { Binop($1, Equal, $3) }

 | expr NEQ expr { Binop($1, Neq, $3) }

 | expr LT expr { Binop($1, Less, $3) }

 | expr LEQ expr { Binop($1, Leq, $3) }

 | expr GT expr { Binop($1, Greater, $3) }

 | expr GEQ expr { Binop($1, Geq, $3) }

 | expr MOD expr {Binop($1, Mod, $3)}

literals:

 ILITERAL { ILiteral($1) }

 | FLITERAL { Float($1) }

 | STR { String($1) }

 | CHR { Char($1) }

strliterals:

 ILITERAL {string_of_int $1}

 | FLITERAL { $1 }

 | STR { $1 }

 | CHR { $1 }

id_list:

 ID { [$1] }

 | ID COMMA id_list { $1 :: $3}

actuals_opt:

 /* nothing */ { [] }

 | actuals_list { List.rev $1 }

actuals_list:

 expr { [$1] }

 | actuals_list COMMA expr { $3 :: $1 }

brackets_opt:

 /*Nothing*/ {[]}

 | brackets_list { $1 }

brackets_list:

 LBRAC expr RBRAC { [$2] }

 | brackets_list LBRAC expr RBRAC { $3::$1 }

elem_list_braces:

 LBRACE elem_list RBRACE { $2 }

53

elem_list:

 elem { [$1] }

 | elem COMMA elem_list {$1 :: $3}

elem:

 strliterals { ElemLiteral($1) }

 | LBRACE elem_list RBRACE { ElemList($2) }

./mikec/scanner.mll

{ open Parser }

let symbols = ['!' '@' '#' '$' '%' '^' '&' '*' '('

')' '_' '+' '=' '-' '[' ']'

 '{' '}' '|' '\\' ':' '"' ';' ''' '<'

'>' '?' '.' '/' ' ' '\\' '\"' '\'']

let ascii = (['a'-'z' 'A'-'Z' '0'-'9']|symbols)

let numbers = ['0'-'9']

let alpha = ['a'-'z' 'A'-'Z']

let alphanumeric = (numbers|alpha)

let bool = ('0' | '1' | "false" | "true")

let types = ("int" | "void" |"char" | "float" |

"String")

let float = ['-' '+']? ['0' - '9']* '.' ['0'-'9']+

(['e' 'E'] ['-' '+']? ['0'-'9']+)?

rule token = parse

 [' ' '\t' '\r' '\n'] { token lexbuf } (*

Whitespace *)

| "/*" { comment lexbuf } (* Comments

*)

| '(' { LPAREN }

| ')' { RPAREN }

| '{' { LBRACE }

| '}' { RBRACE }

| '[' { LBRAC }

| ']' { RBRAC }

| ';' { SEMI }

| ',' { COMMA }

| "++" { INCR }

| "--" { DECR }

| '+' { PLUS }

| '-' { MINUS }

| '*' { TIMES }

| '/' { DIVIDE }

| '=' { ASSIGN }

| "==" { EQ }

| "!=" { NEQ }

| '<' { LT }

| "<=" { LEQ }

| ">" { GT }

| ">=" { GEQ }

54

| '%' { MOD }

| "if" { IF }

| "else" { ELSE }

| "for" { FOR }

| "while" { WHILE }

| "return" { RETURN }

| "printf" { PRINT }

| "break" { BREAK }

| "const" { CONST }

| "continue" { CONTINUE }

| "extern" { EXTERN }

| "static" { STATIC }

| "struct" { STRUCT }

| "maxArrayElement" { SIZE }

| types as lxm { TYPE(lxm) }

| ['-' '+']?['0'-'9']+ as lxm

{ ILITERAL(int_of_string lxm) } (*Scans literal

integers*)

| ['a'-'z' 'A'-'Z']['a'-'z' 'A'-'Z' '0'-'9' '_']*

as lxm { ID(lxm) } (*Scans IDs*)

| '"' (ascii)* '"' as lxm { STR(lxm) } (* Strings*)

| '\'' ascii ascii? '\'' as lxm { CHR(lxm) } (*

Chars *)

| float as lxm { FLITERAL(lxm) }

| eof { EOF }

| _ as char { raise (Failure("illegal character " ^

Char.escaped char)) }

and comment = parse

 "*/" { token lexbuf }

| _ { comment lexbuf }

55

8.2 Array Header

./array.h

#ifndef ARRAY_HEADER

#define ARRAY_HEADER

#include <stdlib.h>

#include <stdio.h>

#define initSize 10

typedef struct Array {

 int datatype; //set to 1 if it holds arrays

 union Data {

 int i;

 char c;

 float f;

 struct Array *a;

 } Data;

 union Data *array;

 size_t used;

 size_t size;

} Array;

typedef union Data Data;

void initArray(Array *a) {

 a->array = (Data *)malloc(initSize *

sizeof(Data));

 a->used = 0;

 a->size = initSize;

}

//insert Data type element

void insert(Array *a, int offset, Data element) {

 while (a->size <= offset) {

 a->size *= 2;

 a->array = (Data *)realloc(a->array, a->size *

sizeof(Data));

 a->array[offset] = element;

 }

 if (offset > a->used) {

 a->used = offset;

 }

 a->array[offset] = element;

}

void insertInt(Array *a, int offset, int element){

 Data temp;

 temp.i = element;

 insert(a, offset, temp);

56

}

void insertChar(Array *a, int offset, char

element){

 Data temp;

 temp.c = element;

 insert(a, offset, temp);

}

void insertFloat(Array *a, int offset, float

element){

 Data temp;

 temp.f = element;

 insert(a, offset, temp);

}

void insertArray(Array *a, int offset, Array

*element){

 Data temp;

 temp.a = element;

 insert(a, offset, temp);

 a->datatype = 1;

}

void freeArray(Array *ar) {

 int x;

 if (ar->datatype == 0){

 for(x = 0; x <= ar->used; x++){

 printf("%d\n", x);

 freeArray(ar->array[x].a);

 }

 }

 free(ar->array);

 ar->array = NULL;

 ar->used = ar->size = 0;

}

///////////////////////////////////

// Stack for garbage collection //

///////////////////////////////////

//Stack is implemented as a linked list, where

Stack structs

//are the nodes of the list

typedef struct Stack {

 Array *data;

 struct Stack *next;

} Stack;

//

void initStack(Stack *head){

 head = NULL;

}

57

//Arguments: Stack *head

Stack *pushStack(Stack *head, Array *ptr){

 Stack *temp = (Stack *)malloc(sizeof(Stack));

 temp->data = ptr;

 temp->next = head;

 head = temp;

 return head;

}

//Pass in ptr to Stack head and Array* which will

hold the

//data you are popping. Function returns new Stack

head

Stack* popStack(Stack *head, Array **ptr) {

 Stack* temp = head;

 *ptr = head->data;

 head = head->next;

 free(temp);

 return head;

}

//Checks if the stack is empty

int stackEmpty(Stack *head){

 if(head == NULL)

 return 1;

 else

 return 0;

}

//Frees the whole stack, pass in the head of the

stack

void freeStack(Stack *head) {

 Stack *temp = NULL;

 if(head != NULL){

 do{

 temp = head;

 head = head->next;

 free(temp);

 }

 while (head != NULL);

 }

}

#endif

58

8.3 Array Code

./arrays/present.c

#include <stdio.h>

#include "array.h"

int main(){

Stack *stack = NULL;

initStack(stack);

Array *x = initArray(x);

stack = pushStack(stack, x);

if (!(x->array[0].a)) {

Array *temp = initArray(temp);

insertArray(x,0,temp);

}

insertInt(x->array[0].a,0,5);

Array *y = initArray(y);

stack = pushStack(stack, y);

Array *ptr = NULL;

while (stackEmpty(stack)==0){

stack = popStack(stack, &ptr);

freeArray(ptr);

}

freeStack(stack);

return 0;

}

./arrays/passingarrays.c

#include "array.h"

int main() {

 Array a;

 initArray(&a);

 Array *ptra = &a;

 int x;

 for(x=0; x<10; x++){

 insertInt(ptra, x, x);

 }

 Array *doubleArray(Array *funcArray){

 for(x=0; x < a.size; x++){

 insertInt(funcArray, x, 2*(funcArray-

>array[x].i));

 }

 return funcArray;

 }

59

 /* Array b;

 initArray(&b);

*/ Array *ptrb = NULL;

 ptrb = doubleArray(ptra);

 Stack *head = NULL;

 initStack(head);

 head = pushStack(head, ptra);

 head = pushStack(head, ptrb);

 printf("%d\n", head->data->array[0].i);

 Array *temp = NULL;

 head = popStack(head, &temp);

 printf("%d\n", temp->array[1].i);

 for(x=0; x<10; x++){

 printf("a: %d\n", ptra->array[x].i);

 printf("b: %d\n", ptrb->array[x].i);

 }

}

./arrays/memtest.c

#include "array.h"

#include <stdio.h>

#include <stdlib.h>

int main() {

// Array x, y, z;

 Array *x = initArray(x);

 Array *y = initArray(y);

 printf("Memory of x: %p\n", x);

 printf("Memory of y: %p\n", y);

 printf("Memory of y.array: %p\n", y->array);

 insertArray(x, 0, y);

 printf("Memory of x: %p\n", x);

 printf("Memory of y: %p\n", y);

 printf("Memory of x.array[0].a: %p\n", x-

>array[0].a);

60

 printf("Memory of x.array[0].a->array: %p\n", x-

>array[0].a->array);

 insertInt(x.array[0].a, 0, 10);

 insertArray(x.array[0].a->array[0].a, 0, &z);

}

./arrays/arraytutorial.c

#include "array.h"

#include <stdio.h>

//Array tutorial

int main() {

 //initialize arrays

 Array *x = initArray(x);

 Array *y = initArray(y);

 Array *z = initArray(z);

 Array *inception = initArray(inception);

 Stack *stack = NULL;

 initStack(stack);

 stack = pushStack(stack, x);

 stack = pushStack(stack, y);

 stack = pushStack(stack, z);

 stack = pushStack(stack, y);

 //inserting an integer

 //insertInt(Array *a, int offset, int element)

 insertInt(x, 0, 10);

 //print x.array[0].i means the element in x's

array at offset 0, of type .i (int)

 printf("x[0] holding an int: %d\n", x-

>array[0].i);

 //inserting a char

 //insertChar(Array *a, int offset, char element)

 insertChar(x, 1, 'c');

 //print x.array[1].i means the element in x's

array at offset 1, of type .c (char)

 printf("x[1] holding a char: %c\n", x-

>array[1].c);

 //inserting a float

 //insertChar(Array *a, int offset, float element)

 insertFloat(x, 2, 3.145);

61

 //print x.array[2].i means the element in x's

array at offset 2, of type .f (float)

 printf("x[2] holding a float: %f\n", x-

>array[2].f);

 //inserting an array. This marks the first array

as an array of arrays

 //insertArray(Array *a, int offset, Array

*element)

 insertArray(y, 3, z);

 //now we can add an array to what is effectively

y[3][1], adding another dimension

 //the .a suffix indicates that y.array[3] holds

an array, and we pass that as Array a*

 //If we want to add a third dimension, the syntax

is the same. However, if a dimension holds

 //an array, it can ONLY hold arrays. Otherwise

the freeArray method will leak memory.

 //Semantics check should ensure this.

 //insert array inception into the array in y[3],

offset = 1, so x[3][1] = inception

 insertArray(y->array[3].a, 1, inception);

 //now we can add an int to what is effectively

y[3][1][0]

 //add int 310 to y[3][1][0]

 insertInt(y->array[3].a->array[1].a, 0, 310);

 //print y[3][0][0]

 printf("y[3][1][0] holding an int: %d\n",y-

>array[3].a->array[1].a->array[0].i);

 printf("The size of x is %d\n",

maxArrayElement(x));

 printf("The size of y is %d\n",

maxArrayElement(y));

 printf("The size of z is %d\n",

maxArrayElement(z));

 printf("The size of inception is %d\n",

maxArrayElement(inception));

 //as long as precautions I outlined above are

followed, calling this on the

 //bottom level array will recursively free all

levels of a multidimensional array

 freeArray(x);

 freeArray(y);

 return 0;

}

62

8.4 Test Cases

./tests/defunct/static/5.mc

/* multidimensional array assignment*/

int main(char g){

 int x[2][3] = {{2,3,4},{1,2,3}};

}

./tests/defunct/static/6.mc

/* super multidimensional array*/

int main(char g){

 int x[5][1][52] = {{3},{{3},1,2,3},5};

}

./tests/defunct/static/4.mc

/* Array declaration AND assignment */

int main(int g){

 int x[1] = {1};

 return 5;

}

./tests/defunct/static/3.mc

int main(char g){

 int z[1][2][3];

 return 0;

}

./tests/defunct/static/1.mc

int main(){

 int x[5];

 return 5;

}

./tests/defunct/static/2.mc

int main(char e){

 int g[3][4];

 return 5;

}

./tests/defunct/arrays/5.mc

int main(){

 int a[5];

 a[0] = 0;

 a[1] = 1;

 a[2] = 2;

 a[3] = 3;

 a[4] = 4;

 a[5] = 5;

 a[6] = 6;

 a[7] = 7;

 a[8] = 8;

 a[9] = 9;

 a[10] = 10;

 return 0;

}

./tests/defunct/arrays/6.mc

int main(){

 int a[5][5];

 return 0;

}

63

./tests/defunct/arrays/7.mc

int main(){

 int a[][];

 return 0;

}

./tests/defunct/arrays/4.mc

int main(){

 int a[];

 a[0] = 0;

 a[1] = 1;

 a[2] = 2;

 a[3] = 3;

 a[4] = 4;

 return 0;

}

./tests/defunct/arrays/3.mc

int main(){

 int a[5];

 a[0] = 0;

 a[1] = 1;

 a[2] = 2;

 a[3] = 3;

 a[4] = 4;

 return 0;

}

./tests/defunct/arrays/10.mc

int main() {

 int a[5][5];

 a[0][0] = 00;

 a[0][1] = 01;

 a[0][2] = 02;

 a[0][3] = 03;

 a[0][4] = 04;

 a[6][0] = 60;

 a[6][1] = 61;

 a[6][2] = 62;

 a[6][3] = 63;

 a[6][4] = 64;

 return 0;

}

./tests/defunct/arrays/9.mc

int main() {

 int a[][];

 a[0][0] = 00;

 a[0][1] = 01;

 a[0][2] = 02;

 a[0][3] = 03;

64

 a[0][4] = 04;

 a[1][0] = 10;

 a[1][1] = 11;

 a[1][2] = 12;

 a[1][3] = 13;

 a[1][4] = 14;

 return 0;

}

./tests/defunct/arrays/1.mc

int main(){

 int a[5];

 return 0;

}

./tests/defunct/arrays/2.mc

int main(){

 int a[];

 return 0;

}

./tests/defunct/arrays/8.mc

int main() {

 int a[5][5];

 a[0][0] = 00;

 a[0][1] = 01;

 a[0][2] = 02;

 a[0][3] = 03;

 a[0][4] = 04;

 a[1][0] = 10;

 a[1][1] = 11;

 a[1][2] = 12;

 a[1][3] = 13;

 a[1][4] = 14;

 return 0;

}

./tests/gcd.mc

int main() {

 int a, b, t, gcd, lcm;

 int x = 4;

 int y = 18;

 a = x;

 b = y;

 while (b != 0) {

 t = b;

 b = a % b;

 a = t;

 }

65

 gcd = a;

 lcm = (x*y)/gcd;

 printf("Greatest common divisor of %d and %d

= %d\n", x, y, gcd);

 printf("Least common multiple of %d and %d

= %d\n", x, y, lcm);

 return 0;

}

./tests/multiarray.mc

/*Short tutorial on multidimensional arrays*/

int main(){

 /*declare an array without an initial size*/

 int a[];

 /*place elements in any cell without worrying

about initializing them*/

 a[3] = 42;

 /*multidimensional arrays have the same

approach*/

 int m[][][];

 m[1][2][3] = 123;

return 0;

}

/* Functions can return arrays and take arrays as

arguments*/

int[] sample(int f[]){

 /*if assigning one array to another, make

sure to declare the array first*/

 int x[];

 x = f;

 /*x now holds the same contents as f*/

 int x[1] = 1;

 int z = x[1];

 printf("%d \n", z);

 /*make sure to always return a return value

of the type you declared

 in the function signature*/

 return x;

}

./tests/FAIL/semantic/test-scope-for3.mc

void main(){

 int i = 0;

 int n = 10;

66

 int j = 0;

 for (i = 1; i < n; i = i + 1) {

 char j = 'b';

 }

 return;

}

./tests/FAIL/semantic/test-multi-func1.mc

void main(){

 int a = 0;

 return;

}

void func1(int a){

 a = 0;

 return;

}

./tests/FAIL/semantic/test-scope-block0.mc

void main(){

 int a = 0;

 {

 a = 1;

 }

 return;

}

./tests/FAIL/semantic/test-scope-for0.mc

void main(){

 int i = 0;

 int n = 10;

 int j = 0;

 for (i = 1; i < n; i = i + 1) j = j - 1;

 return;

}

./tests/FAIL/semantic/test-scope-block3.mc

void main(){

 int a = 0;

 {

 char a = 'a';

 }

 a = 'b';

 return;

}

./tests/FAIL/semantic/test-scope-block2.mc

void main(){

 int a = 0;

 {

 char a = 'a';

 }

 a = 1;

 return;

}

67

./tests/FAIL/semantic/test-scope-block1.mc

void main(){

 int a = 0;

 {

 char a = 'a';

 }

 return;

}

./tests/FAIL/semantic/test-func3.mc

void main(){

 int a = 0;

 int b = 0;

 test(a, b);

 return;

}

int test(int c, int d, int e)

{

 return 0;

}

./tests/FAIL/semantic/test-type4.mc

int main(){

 int a = "a";

 return;

}

./tests/FAIL/semantic/test-scope-for2.mc

void main(){

 int i = 0;

 int n = 10;

 int j = 0;

 for (i = 1; i < n; i = i + 1) {

 j = j - 1;

 }

 return;

}

./tests/FAIL/semantic/test-scope-for5.mc

void main(){

 char i = '0';

 char n = '1';

 int j = 0;

 for (i = '0'; i < n; i = i + n) j = j - 1;

 return;

}

./tests/FAIL/semantic/test-type8.mc

char main(){

 char a = 'a';

 int b = 1;

 a = a - b;

 return;

}

./tests/FAIL/semantic/test-multi-func4.mc

int a = 0;

void main(){

 a = 0;

68

 return;

}

void func1(int a){

 a = 'a';

 return;

}

./tests/FAIL/semantic/test-type2.mc

void main(){

 String a = "a";

 return;

}

./tests/FAIL/semantic/test-multi-func2.mc

void main(){

 return;

}

void func1(int a){

 int a = 0;

 return;

}

./tests/FAIL/semantic/test-func4.mc

void main(){

 test(0);

 return;

}

int test()

{

 return 0;

}

./tests/FAIL/semantic/test-return3.mc

int main(){

 return;

}

./tests/FAIL/semantic/test-type3.mc

int main(){

 int a = 'a';

 return;

}

./tests/FAIL/semantic/test-type5.mc

int main(){

 int a = 1;

 char b = 'b';

 a = b;

 return;

}

./tests/FAIL/semantic/test-scope-block5.mc

void main(){

 int a = 0;

 {

69

 int b = 1;

 {

 a = a + b;

 }

 }

 return;

}

./tests/FAIL/semantic/test-func6.mc

int a = 0;

void main(){

 test(a);

 return;

}

int test(char b)

{

 return 0;

}

./tests/FAIL/semantic/test-multi-func0.mc

void main(){

 int a = 0;

 return;

}

void func1(){

 int a = 0;

 return;

}

./tests/FAIL/semantic/test-func0.mc

int main(){

 int a = 0;

 return 0+a;

}

./tests/FAIL/semantic/test-type1.mc

void main(){

 char a = 'a';

 return;

}

./tests/FAIL/semantic/test-multi-func5.mc

int a = 0;

void main(){

 a = 0;

 return;

}

void func1(){

 char a = 'a';

 return;

}

./tests/FAIL/semantic/test-scope-for6.mc

void main(){

70

 int i = 0;

 for (i = 0; i < 10; i = i + 1) int j = i - 1;

 return;

}

./tests/FAIL/semantic/test-return2.mc

void main(){

 return 0;

}

./tests/FAIL/semantic/test-type6.mc

int main(){

 char a = 'a';

 int b = 1;

 a = b;

 return;

}

./tests/FAIL/semantic/test-type0.mc

void main(){

 int a = 1;

 return;

}

./tests/FAIL/semantic/test-return5.mc

int main(){

 char a = 'a';

 return a;

}

./tests/FAIL/semantic/test-scope-for4.mc

void main(){

 int i = 0;

 char n = '1';

 int j = 0;

 for (i = 1; i < n; i = i + 1) j = j - 1;

 return;

}

./tests/FAIL/semantic/test-type7.mc

int main(){

 int a = 1;

 char b = 'b';

 a = a - b;

 return;

}

./tests/FAIL/semantic/test-func5.mc

int a = 0;

void main(){

 test(a);

 return;

}

int test(int b)

{

71

 return 0;

}

./tests/FAIL/semantic/test-multi-func6.mc

int a = 0;

void main(){

 a = 0;

 return;

}

void func1(char a){

 a = 'a';

 return;

}

./tests/FAIL/semantic/test-scope-block4.mc

void main(){

 {

 char a = 'a';

 }

 a = 'b';

 return;

}

./tests/FAIL/semantic/test-return1.mc

void main(){

 return;

}

./tests/FAIL/semantic/test-return4.mc

char main(){

 return 'a';

}

./tests/FAIL/semantic/test-multi-func3.mc

int a = 0;

void main(){

 a = 1;

 return;

}

void func1(){

 a = 2;

 return;

}

./tests/FAIL/semantic/test-func2.mc

void main(){

 int a = 0;

 int b = 0;

 test(a, b);

 return;

}

int test(int c, char d)

{

 return 0;

}

72

./tests/FAIL/semantic/test-func1.mc

void main(){

 int a = 0;

 char b = 'b';

 test(a, b);

 return;

}

int test(int c, char d)

{

 return 0;

}

./tests/FAIL/semantic/test-return0.mc

int main(){

 return 0;

}

./tests/FAIL/semantic/test-scope-for1.mc

void main(){

 char i = '0';

 int n = 10;

 int j = 0;

 for (i = 1; i < n; i = i + 1) j = j - 1;

 return;

}

./tests/PASS/printing/4.mc

int main(int g){

 int a,b,c,d,e,f;

 printf("abcdef",a,b,c,d,e,f);

 return 0;

}

./tests/PASS/printing/3.mc

void main(int g){

int a;

int b;

printf("hi fuck you", a,b);

 return;

}

./tests/PASS/printing/1.mc

int main(){

printf("Hello world!");

 return 0;

}

./tests/PASS/printing/2.mc

int main(){

int a;

printf("test",a);

 return 0;

}

./tests/PASS/programs/getmax.mc

int foo(int g){

 g = g * 2 + 4;

 return g;

}

73

int main(int g){

 printf("Hello world!");

 int x;

 x = 15;

 int y = foo(x);

 printf("%d",y);

 return 0;

}

./tests/PASS/programs/bubblesort2.mc

void bubblesort(int t[]){

 int i,j;

 int n;

 n = maxArrayElement(t) + 1;

 for(i = 1; i < n; i = i + 1){

 for(j = 0; j < n - i - 1; j = j + 1){

 if(t[j] > t[j + 1]){

 int a = t[j];

 int b = t[j + 1];

 int temp = t[j];

 t[j] = t[j + 1];

 t[j + 1] = temp;

 printf("\nSWAPPING: %d %d",a,b);

 }

 }

 }

return;

}

void main(){

 printf("Bubblesort");

 int g[];

 int z;

 for(z = 10; z > 0; z = z - 1){

 g[10 - z] = z;

 }

 for(z = 0; z < 10; z = z + 1){

 int temp = g[z];

 printf("%d ", temp);

 }

 bubblesort(g);

 printf("Sorted! \n");

 for(z = 0; z < 10; z = z + 1){

 int temp = g[z];

 printf("%d ", temp);

 }

 return;

}

./tests/PASS/varchain/1.mc

int main(){

 int a;

 a = 2;

 int b = 3;

 return 0;

74

}

./tests/PASS/varchain/2.mc

void main(){

 int a,b;

 return;

}

./tests/PASS/dynamic/3.mc

int main(){

 int z[][][];

 return 0;

}

./tests/PASS/dynamic/1.mc

int main(){

 int g[];

 return 0;

}

./tests/PASS/dynamic/2.mc

int main(){

 int x[][];

 return 2;

}

./tests/PASS/types/floats/3.mc

void main()

{

 float g = 1.5e-7;

 return;

}

./tests/PASS/types/floats/0.mc

float main(){

 float x;

 return x;

}

./tests/PASS/types/floats/1.mc

void main(){

 float x;

 float y = 2.854;

 return;

}

./tests/PASS/types/floats/2.mc

void main(int chlo)

{

 float x = 3.53e1;

 return;

}

./tests/PASS/types/chars/1.mc

char main(char z){

 char x = 'a';

 return x;

}

./tests/PASS/types/ints/1.mc

int main(int z){

 int a = 51;

 return 0;

}

75

./tests/PASS/types/ints/2.mc

int main(){

 int g = -1123;

 return 0;

}

./tests/PASS/control/if/4.mc

int main(){

 int i = 1;

 if(i == 0) {

 printf("0");

 }

 else if(i==1){

 printf("1");

 }

 else {

 printf("0");

 }

 return 0;

}

./tests/PASS/control/if/3.mc

int main(){

 int i = 1;

 if(i == 0){

 printf("0");

 }

 else {

 printf("1");

 }

 return 0;

}

./tests/PASS/control/if/1.mc

int main(){

 if(1){

 return 0;

 }

 return 1;

}

./tests/PASS/control/if/2.mc

int main(){

 int i = 1;

 if(i == 1){

 printf("1");

 }

 if(i == 0){

 printf("0");

76

 }

return 0;

}

./tests/PASS/control/for/1.mc

int main(){

 int z;

 for(z = 0; z < 10; z = z + 1)

 {

 printf("z");

 }

 return 0;

}

./tests/PASS/control/for/2.mc

int main()

{

 int i;

 int j = 10;

 for(i = 0; i <= j; i = i + 1)

 {

 printf("Hello %d\n", i);

 }

 return 0;

}

./tests/PASS/control/while/3.mc

int main(){

 int x = 0;

 int g = 100;

 while(x < g){

 x = x + 1;

 continue;

}

 return 15;

}

./tests/PASS/control/while/1.mc

int main(){

 int i = 0;

 while(i<10){

 i = i + 1;

 }

 printf("%d", i);

return 0;

}

./tests/PASS/control/while/2.mc

int main(){

 while(1){

 break;

}

 return 1;

}

77

./tests/PASS/control/return/3.mc

char main(){

 int g[];

 return 'c';

}

./tests/PASS/control/return/2.mc

int main(){

 return 1;

}

./tests/PASS/strings/3.mc

void main(char g){

 char z[] = "2.5e";

 return;

}

./tests/PASS/strings/1.mc

int main(){

 char g[] = "Hi fuck you";

 return 0;

}

./tests/PASS/strings/2.mc

void main()

{

 char g[] = "1234";

 return;

}

./tests/PASS/escapechars/1.mc

void main(){

 char g = 'a';

 char x = '0';

 char z = '\t';

 return;

}

./tests/PASS/escapechars/2.mc

void main(){

 char z = '\0';

 return;

}

./tests/PASS/functions/parameters/1.mc

int main(int z, char b){return 0 ;}

./tests/PASS/functions/parameters/2.mc

void main(float z, int x, char g){

return;

}

./tests/PASS/functions/returns/3.mc

float main(int g){

 return 2.5;

}

./tests/PASS/functions/returns/1.mc

int main(){

 return 1;

}

./tests/PASS/functions/returns/2.mc

char main(int g){

 return 'c';

78

}

./tests/PASS/functions/types/3.mc

float main(){

float g;

return g;

}

./tests/PASS/functions/types/1.mc

void main(){return;}

./tests/PASS/functions/types/2.mc

int main(){return 0;}

./tests/PASS/functions/calls/1.mc

void foo(int g){

return;

}

int main(char z){

 foo(5);

 return 5;

}

./tests/PASS/arrays/3.mc

int main(){

 int g[];

 int temp;

 g[0] = 15;

 g[1] = 30;

 temp = g[0];

 int print = g[1];

 printf("%d\n\n\n%d",print,print);

 g[0] = g[1];

 g[1] = temp;

 return 0;

}

./tests/PASS/arrays/1.mc

int main(){

 int x[];

 int y[];

 return 0;

}

./tests/PASS/arrays/2.mc

int main(){

 int x[];

 x[156] = 123;

 return 0;

}

./tests/fib.mc

int decideFib(int t)

{

 int fibs[];

 fibs[0] = 1;

 fibs[1] = 1;

 int i = 1;

79

 while(fibs[i] < t){

 i = i + 1;

 fibs[i] = fibs[i - 2] + fibs[i - 1];

 int g = fibs[i];

 printf(" %d \n",g);

 }

 if(fibs[i] == t){

 return 1;}

 return 0;

}

int main()

{

 int n = 1245235;

 int y = decideFib(n);

 if(y){

 printf("%d is a fibonacci number.\n",n);

 }

 else{

 printf("%d is not a fibonacci number.\n",n);

 }

 return 0;

}

