
do fifty-two:

An Introductory Programming Language

Sinclair Target
Yichi Liu

Josephine Tirtanata
Jayson K Ng
Yunfei Wang

September 23, 2014

Project Group

Sinclair Target / wst2109 / Language Guru
Yichi Liu / yl3057 / System Integrator
Josephine Tirtanata / jt2706 / System Architect
Jayson K Ng / jkn2121 / Verification & Validation
Yunfei Wang / yw2577 / Manager

Motivation

Card game languages have been a popular choice among past PLT students.
In 2008, one group created a language called PCGSL, for Playing Card Game
Simulation Language. In 2009, another group created a language called AIC,
for All In the Cards. And in 2012, a third group created a language called
Cardigan, which may or may not have been well implemented relative to the
others but certainly has the best name of the three.

Each of these teams tried to simplify the process of programming a card game
by creating a domain-specific language that abstracts away the details common
to all card games. But the problem, as this team sees it, is that these languages
have in most cases hewed too closely to traditional C-style syntax to be useful.
Only people who have already done some programming in a language like C or
Java could learn the language in a reasonable amount of time, yet those same
people are also capable of programming a card game quite easily by themselves,
because programming a card game isnt that difficult. If youre using an object-
oriented language, all you really need is a Card class with an integer for rank

1



and maybe a string for suit. Put some instances of that class in an array and
youre ready to go. The effort that a language like PCGSL or Cardigan might
save is small, and that saved effort is likely going to be offset by the effort re-
quired to learn the language in the first place.

Proposal

We propose a card game language targeted not at proficient programmers but
at people who have never programmed before. For these people, programming
a card game in something like C or Java would be prohibitively difficult, so it
makes sense to give them an alternative language tailored to their inexperience
and to the problem of creating a card game. The time they invest in learning
this language is not time they might otherwise have spent coding, but rather
an opportunity for them to grow more comfortable with the idiosyncrasies of
computer programming. Therefore our language will be first and foremost a
pedagogical tool. It will not try to compete as an easy option for a programmer
who could code a card game in dozens of different ways. It will instead be a way
to introduce students to programming as gently as possible in a familiar domain.

Our goals for the language then are as follows: do fifty-two, as weve chosen
to call it, must be intuitive and high-level, so that students can grasp it without
feelings of frustration or despair. But it must also be sufficiently related to more
traditional programming languages to serve as a good stepping-stone to them.

Specification

do fifty-two is an imperative, procedural, statically typed language. In that
sense, it is like C and its many progeny in the fundamentals of how it works;
a do program consists of a series of statements organized into procedures that
act upon variables. But the syntax of the language attempts to be less cryptic
and more intuitive to the average non-programmer, while simultaneously incor-
porating several elements that make programming card games a breeze.

operators

do includes most of the standard operators found in any programming language,
but changes a few so that their meaning is more obvious, and adds two specific

2



Operator Meaning

+.-. *,/
Standard arithmetic operators. Integer
arithmetic only. Standard precedence.

= != <>>= <=
Standard relational operators,
except that the equivalence operator is = not ==.
Standard precedence.

— & !
Logical operators and the unary NOT
operator. No bitwise operators.

: Assignment operator.
Equivalent to the dot operator in
many languages. Accesses a field within an object.

>><<

Prepend and append operators. Take a Set (see below)
and a Card and either adds the
card to the front or the back of the Set.
If card is null, does nothing.

+ String Concatenation Operator

to card games. In particular, the assignment operator is not an equals sign,
because assignment and tests for equality are distinct concepts in programming,
yet that fact is often lost on beginner programmers who—and quite rightly—get
confused by the equals sign. An added benefit here is that the actual equality
operator can be a single equals sign as opposed to two.

3



Built-in Types

Type Meaning
Number Integer
String String
Boolean Boolean

Card

A data type representing a card. Fields:
Number rank
Number suit
String desc

Set

A data type representing an ordered collection of cards, whether that
collection is supposed to be a deck, hand, or something else. Fields:
Number size
String desc
Card top
Card bottom

Player
A data type representing a player, or possibly a dealer. Fields:
Set hand
String desc

There are really only three primitive types in do, along with a few compos-
ite data types meant to facilitate the creation of card games. There are no
floating-point numbers, because the rules of card games don’ t ever—as far as
we know—call for fractional parts. Each of the composite data types has a field
called desc, which contains a string description of the data it contains. When
an instance of a composite data type is passed as an argument to the output
function (see below), the desc field is what gets printed.

New data types cannot be created, but the existing data types can be extended.
New fields can be added to an existing type like so:

typeName has typeName called variableName

A type extension is global and must not appear inside a function. It means
that all instances of the first data type have a field of the second data type with
the given name. For example,

Player has Number called score

would make the field Player score available throughout a program.

4



Control Flow

Control-flow Statement Meaning
if, else if, else Standard conditional statements.
while, for Standard loop statements.

{ } * N
Simple loop, executes the statement(s)
within the curly braces N times.

{ } until B Conditional loop. Like a negative do-while.
break, continue Standard control statements.

do incorporates most of the common control-flow statements with the excep-
tion of switch. In addition, it incorporates an intuitive shorthand for expressing
simple loops, which can be though of as “multiplying” a series of statements by
a number. The shorthand is redundant, because it could be replaced with a for
loop. But in our experience many algorithms can be expressed using only the
shorthand, so it might be introduced as a simpler form of looping to students
not ready for the intimidating syntax of a for loop, or for the bizarreness that
is zero–based numbering.

Blocks in do are organized according to the indentation rule, like in Python.
Multiline statements can be written by using a backslash. Curly braces are
used only for the shorthand loop syntax discussed above.

Procedure Syntax

In do, functions are called “procedures”. They are not called “functions” for
reasons that will shortly become clear. They might have been called “methods”,
except they are not associated with objects, and they might have been called
“subroutines”, but the term “subroutine” is intimidating and stuffy.

In do, a function is declared like this:

do procedureName with Type parameterName

Additional parameters can be added by using the and keyword. A function
is called like this:

do procedureName with argumentName

Again, arguments can be added by using the and keyword. If a procedure
takes no arguments, the procedure declaration and call consists only of the do
keyword and the procedure name. Procedures do not have to be declared before

5



they are used.

A quick of do is that procedures cannot return a value. This is why they
are not “functions”; they don’ t map input to output. All arguments are passed
by reference, and the procedure must change those arguments if it is to return
anything. Procedures therefore cannot be used as expressions. Conceptually, a
procedure can only do something—it can only act on certain data to produce
a change in state. We believe that this is easier to understand than a function
that can return a value and change its arguments. The alternative would have
been to disallow pass by reference, but then no procedure could return more
than a single value.

do is thus a hyper-imperative language. A do program consists mostly of state-
ments with only a few expressions here and there. For large programs, this
would become a nightmare. But while the programs remain simple, we believe
that using procedures instead of functions is a good thingit better conforms to
the laypersons understanding of programming as “telling the computer to do
things”.

Remaining Keywords and the do Environment

Variable are declared in do according to the following syntax:

new typeName variableName: value

Declared variables are not automatically initialized to anything—you must as-
sign a value to a variable when you declare it. Variables are either local to a
function or global.

The compiler automatically initializes a small set of environmental variables
that define properties of the game being played like the number of players or
whether aces are high. There is also a variable that represents the deck and
one for every participating player. These variables can be reassigned using the
configure keyword, like so:

configure variableName: value

A configure assignment is also global. You cannot have a configure assign-
ment within a function.

Finally, the functions input and output can be called anywhere in a program.
Input reads until a newline character and interprets what it reads according to
the type of its argument, where it then stores the input data. Output takes a
string and prints it to the console.

6



An Example Program: War!

War! is a simple card game often played between children. The rules can be
found here. What follows is an implementation of War! in do that showcases
most of the features of the language.

// war in do
configure playerCount: 2
configure acesHigh: false

new Number warCount: 0

Player has Set called table // player table available

setup:
// deal cards
{ player1 hand << deck top } * (deck size / 2) // loop
{ player2 hand << deck top } * (deck size / 2) // loop

round:
do turn with player: player1
do turn with player: player2
do output with "Player 1 played: " + player1 table top
do output with "Player 2 played: " + player2 table top
do evaluate

turn with Player player:
do output with player + "’s turn."
if (player hand size = 0)

if (player = player1)
do output player + " has lost. Player2 wins!"
do quit

else
do output player + " has lost. Player1 wins!"
do quit

do output with "Play card?"
do input with new String in
if (in = "y")

player hand top >> player table
else

do output with player + " has decided not to play
anymore." // no backslash needed here

do quit

7



evaluate:
if (player1 table top > player2 table top)

do output with "Player 1’s card is higher."
{ player1 hand << player1 table top } \

* player1 table size
{ player1 hand << player2 table top} \

* player2 table size
else if (player1 table top < player2 table top)

do output with "Player 2’s card is higher."
{ player2 hand << player1 table top } \

* player1 table size
{ player2 hand << player2 table top } \

* player2 table size
else

do output with "It’s a tie. That means WAR!"
warCount: warCount + 1

// if a set runs out of cards >> and << won’t do anything
{ player1 hand top >> player1 table } * 4
{ player2 hand top >> player2 table } * 4
do output with "Player 1 and 2 put down 4 cards."
do evaluate

8


