
Sheets Language Reference Manual
Amelia Brunner - arb2196
Gabriel Blanco - gab2135
Ruchir Khaitan - rk2660
Benjamin Barg - bbb2123

1. Introduction
The Graphics Processing Unit (GPU) was invented in 1999 as a single-chip processor that
allowed the CPU to offload graphics-intensive tasks to a separate processor. Unlike the CPU,
which is built to contain only a handful of cores but a lot of cache memory, a GPU has limited
memory but hundreds of cores, which, thanks to very efficient context switching, allows it to
handle thousands of threads concurrently without significantly degrading the performance of the
CPU. In the past, GPUs were seen as a luxury reserved for video processing and computer
gaming. However, because of the advent of larger screen displays and a greater demand for
video, image and signal processing applications, GPUs are quickly becoming more mainstream.

Although we are seeing more and more applications take advantage of the computational
capabilities of the GPU, it is still very difficult to program for the GPU because of the many
different types of GPU architectures and chip specific proprietary software. Sheets empowers
engineers to take a high-level approach to programming on the GPU. With syntax, semantics
and program structure to help programmers run parallelizable algorithms on the GPU, Sheets is
a hardware-portable language that allows users to leverage the GPU's ability to handle large-
vector data operations without needing to worry about hardware specifications. It does so by
compiling down into OpenCL, an open-source programming language that can run on a wide
variety of GPUs.

2. Types
2.1 Primitive Types

Integer Types
These are simply signed (two's complement) integral numbers (fixed precision) whose literals
are sequences of digits. The difference between these types is their size in bytes, which
correspondingly limits the range of numbers they can represent.

int

Signed 32 bit integer type. An integer literal is a sequence of digits that fit within a 32 bit range.

long

Signed 64 bit integer type. An integer literal is a sequence of digits that fit within a 64 bit range.

Floating Point Types
The two types in this category correspond to IEEE single-precision and double precision floating
point numbers, as defined in IEEE 754. s Floating point constants consist of an integer part, a
decimal point, and a fraction part.

float

Single precision floating point type, with a size of 32 bits.

double

Double precision floating point type, with a size of 64 bits.

char

A single character is 1 byte wide, which can be alphanumeric or a form of punctuation, or any
other valid character that is escaped with a backslash '\' (see section 3.3).

Vector/Array Types
Vector/Array types represent multiple instances of primitive types allocated in contiguous
ranges of memory, either on regular machine stack, heap, or in GPU global/local memory. Array
allocation and data transfer between CPU/GPU is handled automatically.

Arrays are zero indexed and can be accessed with the square-bracket notation, so (for example)
array[7] returns the element at index 7 of the variable array .

Arrays can be multi-dimensional, and can be indexed by separating the dimensional index
numbers by commas so 'array[2, 5]' accesses row index 3, column index 5 of the two
dimensional array. Arrays are limited to having at most 3 dimensions in the Sheets language.

Single dimension arrays can be defined as follows:

 <type T> arrayName [size]

This will allocate an empty array of type T with size elements. The size parameter is optional,
and arrays can be initialized as follows:

<type T> arrayName[] = [element, element, element, ...]

If you do give a size parameter, the number of elements within the right value [] must be less
than or equal to the size parameter. If it is less, then the remaining spaces in the array are
initialized to zero.

Multi-dimensional arrays
Multi-dimensional arrays are very similar to single-dimensional arrays/vectors:

<type T> arrayName [num_rows, num_cols]

This allocates an empty 2D array of type T with num_rows rows and num_cols columns for a
total of num_rows * num_cols elements.

Again, the size parameters are optional, and arrays can be initialized as follows:

<type T> arrayName[size1,size2] = [[element, element], [element, element,
element], ...]

Here, all of the subarrays don't have to be the same length, and the array is initialized to be of
dimensions (maximum_subarray_size * number of subarrays) with blank elements again
initialized as zero. Note that this example is of a 2-dimensional aray, but 3-dimensional arrays
are also supported with the same syntax.

Note that Sheets does not support arrays of arbitrary types. The total list of supported array
types are as follows:

int[] - Contiguous array of integers as defined above

long[] - Contiguous array of longs

double[] - Contiguous arrays of doubles

float[] - Contiguous arrays of floats

char[] - Contiguous arrays of chars. Used in the underlying representation of Strings
as well.

2.2 Non-Primitive Types

String - Defined as a wrapper over a character array, with an integer specifying length.
Can be ASCII or Unicode encoded. String literals are defined as a sequence of
characters enclosed by double quotes.

struct - A programmer defined data type consisting of variables of primitive types, and

other structure data types. The size of a struct is large enough to hold all members of the
struct.

A structure is defined with the 'struct' keyword, followed by a name, followed by declarations of
all the variables inside the struct, enclosed within an opening curly-brace '{' and a closing curly
brace '}'.

You can declare an instance of a struct as:

struct <struct_name> <var_name>

This instantiates a struct <struct_name> named <var_name>. You can access elements of a
struct with a dot '.' and then the variable name. For example:

<var_name>.<element_name>

This accesses a variable named <element_name> inside of a struct named <var_name>.

Block - Defined as a struct used for metadata holding input/output information for
functions executed on the GPU. See section 5.1

2.3 Casting
Casting is allowed between:

Any two numbers
doubles/floats to longs/ints lose fractional precision
longs/doubles to ints/floats get truncated
No casting between primitives and non-primitives
chars can be casted to ints/longs/floats/doubles
longs/ints can be casted to chars (preserves least significant 8 bits)

3. Lexical Convections
3.1 Identifiers
Identifiers refer to a variable, function, or function argument. They must begin with alphabetic
character or underscore, but the rest of the identifier can be alphanumeric or underscores.
Capital and lowercase letters are considered distinct. We reject dashes.

3.2 Keywords

if(boolean condition):
execute the following block if the boolean condition is true

elif(boolean expression):
following exactly one if statement and one or more elif statements, execute
the following block if the boolean condition is true and all conditions in the
preceding chain were false

else
following exactly one if statement and zero or more elif statements, execute
the following block if all conditions in said chain were false

while (boolean condition):
execute the loop contents until the boolean condition, evaluated at the start of
each iteration, is false

for loop execution in two formats:
for var in list :

iterate through each item in a list
for (assignment ; boolean condition ; iterative step):

Assign a variable and loop on contents, performing the iterative step at the
end of each loop, until the boolean condition (evaluated at the start of each
iteration) is false

break
Jump out of the current scope and continue execution in the parent scope (invalid
when used outside of a loop). Must be the only expression on its line. Any
symbols following it on its line will be ignored.

continue
Skip forwards to the next iteration of the enclosing loop (invalid when used
outside of a loop). Must be the only expresion on its line. Any symbols following it
on its line will be ignored.

TRUE
Constant "true" (i.e. a char with value '0') for use in boolean expressions.

FALSE
Constant "false" (i.e. a char with a value of '1') for use in boolean expressions.

NULL
Value of an unitialized object.

return expression
In a func block, return expression by value to the caller.

const
Variable identifier that indicates to the compiler that the variable cannot be
modified.

func type identifier (type identifier , type identifier , ...):
Define a standard CPU function taking 0 or more arguments and return a value of
a given type. Tabs and spaces between all components of the expression are
ignored. type may be void .

gfunc
Define a function that will run on the GPU (see section 5, GPU Functions, for a
detailed description of the syntax).

main
Name of the entry-point function. Every Sheets program must have a function
called main . main must return a result of type int .

void
A type keyword used solely in func declaractions indicating that the function
does not return a value.

3.3 Literals

int literals
an unbounded string of numerals without a decimal point with an optional sign
character

float literals
an unbounded string of numerals before and after a decimal point with an option
sign character

For both integer and float literals, maximum representable values are limited by the underlying
system's OpenCL implementation.

char literals
Some characters require escaping because they already have a syntactic meaning
in the language, or because their representation is rejected by Sheets. Character
literals for these characters are expressed by a pair of single quotes surrounding
one of the following expressions:

\' - single quote
\" - double quote, also referred to as a quotation mark
\n - newline
\t - horizontal tab
\\ - backslash

for all other ASCII characters, the literal is expresssed a pair of single quotes
surrounding the character

string literal
A sequence of ASCII characters (excepting those who have corresponding
character literals) and character literals

single dimensional array literal
An opening [followed by comma-delimited float and/or integer literals, followed
by a] . If the array literal contains only float or only integer literals, it will be of the
respective type, but a mix will always be interpreted as a float array (integer literals
will be casted to floats). Whitespace between brackets, commas, and int/float

literals is ignored.
multi-dimensional array literals
An opening '[' followed by a comma delimited series of single or multi-dimensional array
literals, all of the same dimensionality, but not necessarily the same size, followed by a
closing ']'. The literal has dimension 1 + dimension of subarrays, and has size (number of
subarrays * size of largest subarray)

3.4 Punctuation

,
function parameters (see 3.2 Keywordss)
array literal separation (see 3.3 Literals)

[]
array literal declaration (see 3.3 Literals)
array access

()
expression precedence
conditional parameter
function arguments
type casting

:
start of scoped block (if , else , elif , while , for , func , gfunc)

'
character literal declaration

"
string literal declaration

3.5 Comments
It's like threads coming out of a sheet!

 # for inline comments

 #~ for nested comments ~#

 #~
 ~ for long nested
 ~#

In an individual line, all characters after a # are ignored by the compiler unless the # is a part
of a string or character literal that is not itself part of a comment.

All text from #~ to the next ~# is ignored, excepting those occurences of #~ and ~# that
appear in a string literal that is not itseslf part of a comment.

3.6 Operators
Sheets includes basic arithmetic operators for both scalar and array types. Because Sheets'
intended use case is with arrays that are too large to efficiently manipulate on the CPU,
the vector operations will always run on the GPU. If the user wants vectorized operations to
be executed on the CPU, they must use a loop keyword and implement their own operation.

3.6.1 Operator List

 . Access

 * Multiplication :* Vector multiplication
 / Division :/ Vector division
 % Mod :% Vector mod
 + Addition :+ Vector addition
 - Subtraction :- Vector subtraction

 ^ XOR :^ Vector XOR
 & AND :& Vector AND
 | OR :| Vector OR
 ~ NOT :~ Vector NOT
 >> Right shift :>> Vector right shift
 << Left shift :<< Vector left shift

 = Assignment := Vector assignment
 ! Negation :! Vector negation

 == Equivalence :== Vector equivalence
 != Non-equivalence :!= Vector non-equivalence
 < Less than :< Vector less-than
 > Greater than :> Vector greater-than
 <= Less than or equal to :<= Vector less-than-or-equal-to
 >= Greater than or equal to :>= Vector greater-than-or-equal-to

3.6.2 Operator Limitations
An expression may include either scalar or vector operators but not both. This restriction is
intended to force the user to package GPU operations into the largest chunks possible to
minimize the number of times that operations must be sent to and retrieved from the GPU.

Vector operations may be applied in the following orders:

1. array vector_operator array
2. array vector_operator scalar

Any attempt to apply vector operations to arrays of unequal size results in a compiler
error.

For case 1, the result is an array for which the ith entry is equal to:

scalar (ith value of lhs) scalar_operator scalar (ith value of rhs)

For case 2, the result is an array for which the ith entry is equal to:

scalar scalar_operator scalar (ith value of rhs)

3.6.3 Operator Precedence
Within the two groups, order of precedence will be the same as for C. The comparison
operators will be treated the same as in C.

3.7 Whitespace
Symbols that are considered to be whitespace are blank, tab, and newline characters. Blank
characters will be used for token delimination within lines of the program. Additionally, any blank
characters directly following newline characters will be used to block out functions (which is
discussed more in depth in section 4.4: Scope). Tab characters are ignored.

4. Syntax
4.1 Program Structure
A program consists of a main function which can call any other functions within the program
namespace or declared inside the program.

The main function is where the execution of the program begins. If there is no main
function, the compiler will throw an error.
You can declare other functions besides main , however if they are not directly or
indirectly called by main , then the code within them will not be executed.
There are two types of functions: gfuncs and funcs . Both can be called from main,
although how they are executed will be different. The order in which you declare gfuncs
and funcs in your program does not matter.
Sheets is not object oriented, and therefore there are no such things as classes.

4.2 Expressions
Expressions in Sheets can be primary, unary or binary, with precedence being given in that
order, from highest to lowest. The rules of precedence and associativity differ amongst

operators within each category, and so we will explicitly state the cases in which one operator
will bind tighter than another.

4.2.1 Assignment
There are two assignment operators in Sheets, = and := , and syntactically they behave in the
same way. Both are binary operators that are right-binding. The value of the expression on the
right is stored in the variable on the left hand side. The standard assignment operator (=) simply
assigns the value to the left-hand variable, whereas the GPU assignment operator (:=) copies
values from one array to another using parallel processing.

Simple Assignment
a = 2

Parallel Assignment
int[] A = [0,1,2,3,4,5]
int[] B := A

4.2.2 Arithmetic
For arithmetic expressions, you have an operator representing a simple mathematical operation
and then the equivalent vector operation which performs the same arithmetic operation but on
each element of the array. All arithmetic operations are left-associative by default, but that
associativity can be superseded by standard mathematical order of operation: multiplication
and division bind tighter than addition and subtraction, and mod (%) binds tightest of all.

 % Mod :% Vector mod
 * Multiplication :* Vector multiplication
 / Division :/ Vector division
 + Addition :+ Vector addition
 - Subtraction :- Vector subtraction

For vector arithmetic, you get a different type of operation depending on the types of the
operands:

For a vector operation on an array and a scalar (both of the same type), the scalar is applied to
each element in the array via the operator (i.e. A :+ 3 would yeild an array in which each element
was the same as it was in A but with the addition of 3). Note that in this case, the array must be
the left-hand operand and the scalar must be the right-hand operand.

Vector operations on two arrays, which must be of the same type and size, return an array
where the vector operation was performed on each corresponding element in both arrays.

For example:

 int[] A = [0,1,2,3]
 int[] B = [3,2,1,0]

 int[] C = A :* B
 # C has value [0,2,2,0]

If an arithmetic vector operation is called on two scalar values, e.g. 3 :+ 2 , the compiler will
throw a warning but still calculate the operation on the GPU. This is a bad practice, and much
less efficient than simply using a standard operation.

4.2.3 Comparison Operators
Comparisons are binary operators, returning a boolean value based on how the right-hand-side
of the expression compares to the left-hand-side.

 == equivalence :== Vector equivalence
 != non-equivalence :!= Vector non-equivalence
 < less-than :< Vector less-than
 > greater-than :> Vector greater-than
 <= less-than-or-equal-to :<= Vector less-than-or-equal-to
 >= greater-than-or-equal-to :>= Vector greater-than-or-equal-to

Vector less-than (:<), greater-than (:>), less-than-or-equal-to (:<=) and greater-than-or-
equal-to (:>=) all behave similar to the arithmetic vector operations, where the standard version
of the operation is applied element by element and returns an array of booleans. If the two types
are both arrays, then it will compare each element one by one, returning the boolean.

 int[] A = [1,2,3,4,5]
 int[] B = A :< 3

 # B has value of [TRUE,TRUE,FALSE,FALSE]

However, equivalence (:==) and non-equivalence (:!=) behave slightly differently from the rest
of the comparison operators. Array-to-scalar operations behave as you would expect, returning
an array of booleans for the result of the operation, element by element.

However, for array-to-array vector operations, instead of returning an array of booleans, these
only return one char value, which represents the total outcome of the operation (0 for true, 1 for
false). The expression A :== B asks if int[] A contains all the same values as int[] B ,

and returns TRUE if it is the case, FALSE otherwise. This allows a clean and simple way to do
array content comparisons.

4.2.4 Logical
Logical operators test the logical truth of expression.

 && AND :&& Vector Boolean AND
 || OR :|| Vector Boolean OR

AND (&&) and OR (||) compares the boolean values of its two operands. In the case of
shifting, the right-hand operand must be a fixed point number. The vector version simply
performs a given logical operation on every element of the array.

4.2.5 Bitwise
Bitwise operators apply bit operations to the operands on either side of the operators.

 & AND :& Vector AND
 | OR :| Vector OR
 ^ XOR :^ Vector XOR

 >> Right shift :>> Vector right shift
 << Left shift :<< Vector left shift

 ~ NOT :~ Vector NOT

AND (&), OR (|) and XOR (^) are binary operators that apply corresponding bit operations
from the right operand to the left one (i.e. following left associativity). Left shift (<<) and right
shift (>>) are also binary operators, and they apply the a bit-level shift to the contents of left-
hand-side operand.

Not (~) is a unary operator which, as previously stated, takes precedence over binary
operators. It returns a negated version of the operand, where all FALSE values are now TRUE ,
and TRUE values are FALSE .

For all of the corresponding Vecotr operations, the same bit logic is applied to the left-hand
vector operand in the same fashion as the other vector operators.

4.3 Statements
A statement is a complete instruction that can be interpreted by the computer. Unless otherwise
specified, statements are executed sequentially within a function.

4.3.1 Expression statements
Expression statements are the most common type of statement. Because whitespace has
syntactic meaning in Sheets, a statement is ended by a newline (\n). You can ignore a newline
and continue an expression statement on the next line by using the continuation operator (...)
at the end of a line.

Expression statements can include any of the expressions previously covered. The only
exception is that Sheets explicitly does not allow the mixed use of vector and non-vector
operations in the same statement. This is an enforced standard which forces users to write
better parallelizable functions.

4.3.2 Conditional statements
Conditional statements check the truth condition of an expression, and then choose a set of
statements to execute depending on the result. Here is a common implementation of an
if / else conditional statement

 if (expression):
 statement
 elif (expression):
 statement
 else:
 statement

Only the if statement is required, you can choose not to account for other conditions or to
account for any number of additional conditions using elif . The else statements execute
only if none of the preceding conditions returned true.

4.3.3 Loop Statements
while/for

Statements such as while or for allow you to iterate over blocks of code. In the case of
while loops, the controlling expression is checked every time before the execution of the body
of the while loop. for loops have two syntaxes:

The first one has more functionality but is more verbose, that is:

 for (expression1; expression2; expression3):
 ...

Where expression 1 initializes the loop counter (an integer), expression 2 gives the controlling

expression that is checked before every execution of the for loop body, and the third
expression gives the action performed on the counting element after every execution of the loop
-- usually incrementation.

Because of how often we iterate over vectors in Sheets, there is one additional syntax for a for
loop that is much cleaner and easier to write:

 for expression1 in vector:
 ...

Expression 1, similar to in the first syntax, is the declaration of a loop counter. This creates a
loop that iterates from 0 to n-1, where n is the length of the array. This allows you to easily
access the index of every element in the array without having to worry about fencepost errors.

4.3.4 Loop Interruption Statements
There are two statements that allow you to interrupt the execution of statements in the body of
either a for or a while loop. These are break and continue .

The break statement will end the execution of the body of a loop, then exit the loop completely
as if the controlling expression returned FALSE .

The continue statement also ends the execution of the body of a loop, but then returns to the
top of the body to evaluate the controlling expression to see if the loop should continue.

Anything on the line following break or continue will be ignored.

4.3.5 Return Statements
Ends the execution of a function, including the main function. If a function does not have a
return statement at the end, it is assumed to be a void function without a return type. GPU
functions (gfunc) do not return a value, instead they write to a an output block in memory, and
therefore a return statement within the function does not cause the function to return a value;
instead, it just ends the execution of that GPU function at a given statement.

4.3.6 Function Statements
Function statements call a function, returning a value if the function itself has a return type.
Statements that invoke GPU functions will always block until every thread started by the gfunc
has returned.

4.4 Scope
One of the difficulties with working simultaneously in the CPU and GPU domain is that each has
its own private memory which the other cannot access, but can be sent back and forth via a

memory bus. For those reasons, we limit the amount of memory that is shared/transferred
between both domains.

4.4.1 Scope within the GPU
GPU memory hierarchy

Because of the memory limitations we mentioned, gfuncs do not have direct access variables
declared in CPU memory space; this includes global variables. In order to pass data from the
CPU into a gfunc , it has to be passed through the arguments of the function. The only caveat
to this rule is that Sheets will implicitly pass a small set of parameters to the GPU and store
them within the block environmental variable. These include things like block.size ,
block.index and block.input_length .

4.4.2 Scope within the CPU
Variables that are denoted as global can be declared outside of a function and accessed
within any CPU function. "Global" in this case only refers to being global in the CPU memory
space, not within the GPU.

Sheets will use block scoping, such that any variable defined within a given indentation level is
accessible within that level and any level of indentation greater than that level.

5 GPU Functions (gfuncgfunc)
gfunc defines a function that will be run on the GPU. The contents of a gfunc are compiled
into an OpenCL kernel and linked into a Sheets executable via the sheets runtime library.

Our goal for the gfunc keyword is to shield the programmer from writing blatantly
unparallelizable code but to leave enough freedom that the resulting code is at least reasonably
optimal. As such, we enforce the following rules:

Any call to a gfunc is blocking.
gfunc function arguments are immutable.
gfunc function arguments are limited to arrays of equivalent size and scalar types (i.e.
int, long, double, or float), and a gfunc must take at least one array as an argument.
There is no return value from a gfunc ; it will write to a global output array that must be
the same size as the first array of the arguments.
The code within a gfunc performs accesses and writes to the output array through an
environment variable called block (see 5.1 "The block Keyword")
Vector operations as described in sections 3 and 4 cannot be called from within a
gfunc , and doing so will result in a compile error. For example, the following code
would not be accepted by the Sheets compiler:

gfunc gadd(int[] A, int[] B):
 A :+ B

A gfunc is thus declared:

gfunc array_type identifier (array_type identifier , type identifier , ...):

5.1 The blockblock Keyword
In OpenCL, a kernel represents the smallest concurrently-executable chunk into which a
problem may be divided. Through this structure, OpenCL forces programmers to conceive of
their problem as a number (hopefully a large one) of concurrently-executable sub-problems that
work with some subset of the entire input data.

Sheets encouragess the programmer to conceive of their parallelizable problem according to
this "sub-problem" format. To do this, Sheet provides the block keyword as a reference to the
aforementioned "smallest concurrently-executable chunk" of the problem.

block is a struct containing:

block.size
The number of elements referenced by the subproblem. Stored as an unsigned
int .

block.id
The identifier of this instance of the subproblem, used for calculating the indices
of the input array(s) to access.

block.out
An array of size block.size that maps to the writable region of the output array
in the block.

5.2 Calling a gfuncgfunc

A gfunc is called just like a standard func except for an optional argument at the end
indicating the block size for this particular call.

my_gpu_function(arg1, arg2, arg3).[block_size]

If the .[] is omitted, the function is called with a block size of 1. The .[] argument has
several restrictions:

block_size must be a positive integer.
block_size may not exceed the input array size.

block_size must evenly divide the input array size.

6 Standard Library Functions
Sheets will provide some simple library functions to assist with array manipulation and standard
input output operations.

6.1) Vector Operations
The number of vector library functions that we provide in Sheets is limited for a purpose; we
want to encourage our users to take advantage of how easy it is to write operations related to
vectors on their own usinfg gfunc s! That being said, we also want to help our users out with a
few extremely common operations:

reverse() - performs an in-place reversal of an array
length() - returns the dimensionality of the array (number of elements)

Note that these functions will be executed on the GPU.

6.2) File I/O
Sheets will have a few relatively simple I/O functions that take string literals or other variables as
arguments, and perform print/reads either to/from terminals or to a specified file descriptor.
These functions mirror the behavior of comparable functions in standard C libraries.

int open(String) - opens a file specified by the given path, and returns a file
descriptor that can be read from or written to.
void print(int, String) - write the contents of the String buffer specified in the
second argument to the file descriptor specified in the first argument.
void read(int, String) - read from stdin or another file descriptor, as specified in
the first argument, into the String buffer specified in the second argument.
int write(int, array) - write binary (non null terminated arrays), as specified in the
second argument, to the file descriptor specified in the first argument, and return the
number of bytes successfully written. Note that for brevity, we have written 'array' as the
second argument in the function signature, which we are using to represent all possible
array types.

