
QLang: Qubit Language
(Reference Manual)

Christopher Campbell Clément Canonne Sankalpa Khadka Winnie Narang
Jonathan Wong

October 27, 2014

Contents
1 Introduction 4

2 Lexical conventions 4
2.1 Character set . 4
2.2 Comments . 4
2.3 Identifier (names) . 4
2.4 Keywords . 4
2.5 Constants . 4
2.6 Elementary operations and spacing . 5

3 Objects and types 5
3.1 Objects and lvalues . 5
3.2 Valid types . 5

4 Conversions 5

5 Expressions 6
5.1 Operator Precedence . 6
5.2 Literals . 6
5.3 Primary Expressions . 6

5.3.1 identifier . 6
5.3.2 literals . 6
5.3.3 (expression) . 6
5.3.4 primary-expression(expression-list) . 6
5.3.5 primary-expression[expression-list] . 7
5.3.6 [expression-elementlist] . 7
5.3.7 <expression| . 7
5.3.8 |expression> . 7

5.4 Unary Operators . 7
5.4.1 not expression . 7
5.4.2 re expression . 8

1

5.4.3 im expression . 8
5.4.4 norm expression . 8
5.4.5 isunit expression . 8
5.4.6 trans expression . 8
5.4.7 det expression . 8
5.4.8 adj expression . 8
5.4.9 conj expression . 8
5.4.10 sin expression . 8
5.4.11 cos expression . 9
5.4.12 tan expression . 9

5.5 Binary Operators . 9
5.5.1 expressionˆexpression . 9
5.5.2 expression * expression . 9
5.5.3 expression / expression . 9
5.5.4 expression % expression . 9
5.5.5 expression + expression . 9
5.5.6 expression - expression . 10
5.5.7 expression @ expression . 10
5.5.8 expression eq expression . 10
5.5.9 expression lt expression . 10
5.5.10 expression gt expression . 10
5.5.11 expression leq expression . 10
5.5.12 expression geq expression . 10
5.5.13 expression or expression . 10
5.5.14 expression and expression . 10
5.5.15 expression xor expression . 10

5.6 Assignment Operators . 11
5.6.1 lvalue = expression . 11

6 Declarations 11
6.1 Type Specifiers . 11
6.2 Declarator List . 11
6.3 Meaning of Declarators . 12

7 Statements 12
7.1 Expression statements . 12
7.2 The if-elif-else statement . 13
7.3 The for loop . 13

8 Scope rules 13

9 Constant expressions 14

2

10 Examples 14
10.1 Solving Quantum Computation Problem . 14

10.1.1 Problem1 . 14
10.1.2 Problem 2 . 15
10.1.3 Problem 3 . 15

10.2 Simulation of Quantum Algorithm . 16
10.2.1 Deutsch Jozsa Algorithm . 16
10.2.2 Grover’s Search Algorithm . 17

3

1 Introduction

2 Lexical conventions
There are five kinds of tokens in the language, namely (1) identifiers, (2) keywords, (3) constants,
(4) expression operators, and (5) other separators. At a given point in the parsing, the next token
is chosen as to include the longest possible string of characters forming a token.

2.1 Character set

QLang supports a subset of ASCII; that is, allowed characters are a-zA-Z0-9@#,-_;:()[]{}<>=+/|* ,
as well as tabulations \t, spaces, and line returns \n and \r.

2.2 Comments

Comments start with a # sign, which then extends until the next carriage return. Multiline
comments are not supported.

2.3 Identifier (names)

An identifier is an arbitrarily long sequence of alphabetic and numeric characters, where _ is included
as “alphabetic”. It must start with a lowercase or uppercase letter, i.e. one of a-zA-Z.
The language is case-sensitive: hullabaloo and hullABaLoo are considered as different.

2.4 Keywords

The following identifiers as reserved for keywords: using them as function of variable name will
result in an error at compilation time.

pi e
int float comp rvect cvect mat
true false
if elif else
def for from to by while break
or and xor
not re im norm isunit trans det adj conj sin cos tan exp

2.5 Constants

There are fours sorts of constants in the language, namely integer, float, complex and identifier
constants. The first are comprised of any sequence of integers of the form 0|([1-9][0-9]*) (recall
that integers are non-negative), and have type int. The second are of type float and have the form
R, while the third are of type com and have the form R|R+Ri|Ri where R consists of a (i) sign,
(ii) an integer part followed by (iii) a point, (iv) a decimal part, then (v) either a e or a E followed by
an exponent part, possibly signed. (i) and (v) are optional, and either (ii) or (iv) can be missing as
well. In more detail, R is defined as [+-]{0,1}(((A.B*|.B+)([eE][+-]?B+)?)|A[eE][+-]?B+)
and A =0|([1-9]B*), B =0|[1-9] (that is, R matches a real number such as 2.78e5, 1.5E-1 or
10.25).check this paragraph.

4

Finally, the identifier constants are a subset of the reserved keywords, and include:
e the base of natural logarithm e =

∑∞
k=0

1
k! . Equivalent to exp(1); has type com.

pi the constant π. Has type com.
true represents the Boolean value true. Stored internally as int 1.
false represents the Boolean value false. Stored internally as int 0.

2.6 Elementary operations and spacing

An operation, or language elementary unit, starts from the end of the previous one, and ends
whenever a semicolon is encountered. Whitespace does not play any role, except as separators
between tokens; in particular, indentation is arbitrary.

3 Objects and types

3.1 Objects and lvalues

As in C, “an object is a manipulatable region of storage; an lvalue is an expression referring to an
object.”

3.2 Valid types

The language features 5 elementary types, namely int, float, com, qub, mat. (In particular, column
and row vectors are represented respectively as n× 1 or 1× n matrices.) Is also valid any type that
inductively can be built from an a valid type as follows:
• elementary types are valid;
• an array of a valid type is valid. Arrays have fixed size (that must be declared at compilation

time), and are comprised of elements of a single, fixed valid type;
• a function taking as input a fixed number of elements from (non-necessarily identical) valid

types, and returning a valid type.

4 Conversions
Applying unary or binary operators to some values may cause an implicit conversion of their
operands. In this section, we list the possible conversions, and their expected result – any conversion
not listed here is impossible, and attempting to force it would generate a compilation error.
• int→ float, float→ com, int→ com.
• com→ float: the imaginary part of the complex number is dropped (will generate a warning).
• float→ int: the floating number is rounded towards zero.
• com→ int: equivalent to com→ float→ int.
• com→ mat: the floating number z becomes the 1× 1

[
z
]
(will generate a warning).

• float→ mat: the floating number x becomes the 1× 1 matrix
[
x

]
(will generate a warning).

• int→ mat: the integer a becomes the 1× 1 matrix
[
a

]
(will generate a warning).

5

5 Expressions

5.1 Operator Precedence

Operator Type Operator Associativity
Primary Expressions () [] <| |> Left
Unary not re im norm unit trans det adj conj sin cos tan exp Right
Binary * / % + - @ eq lt gt leq geq or and xor ^ Left (except ^ which is Right)
Assignment = Left

5.2 Literals

Literals are integers, floats, complex numbers, qubits, and matrices, as well as the built-in constants
of the language (e.g. pi). Integers are of type int, floats are of type float, complex numbers are
of type com, qubits are of type qub, and matrices are of type mat. The built-in constants have
pre-determined types described above (e.g. pi is of type float).

The remaining major subsections of this section describe the groups of expression operators,
while the minor subsections describe the individual operators within a group.

5.3 Primary Expressions

5.3.1 identifier

Identifiers are primary expression. All identifiers have an associated type that is given to them upon
declaration (e.g. float ident declares an identifier named ident that is of type float).

5.3.2 literals

Literals are primary expression. They are described above.

5.3.3 (expression)

Parenthesized expressions are primary expressions. The type and value of a parenthesized expression
is the same as the type and value of the expression without parenthesis. Parentheses allow expressions
to be evaluated in a desired precedence. Parenthesized expressions are evaluated relative to each
other starting with the expression that is nested the most deeply and ending with the expression
that is nested the least deeply (i.e. the shallowest).

5.3.4 primary-expression(expression-list)

Primary expressions followed by a parenthesized expression list are primary expressions. Such
primary expressions can be used in the declaration of functions or function calls. The expression list
must consist of one or more expressions separated by commas. If being used in function declarations,
they must be preceded by the correct function declaration syntax and each expression in the
expression list must evaluate to a type followed by an identifier. If being used in function calls each
expression in the expression list must evaluate to an identifier.

6

5.3.5 primary-expression[expression-list]

Primary expressions followed by a bracketed expression list are primary expressions. Such primary
expressions can be used in the declaration of matrices and arrays or to access an element of a matrix
or array. The expression list must consist of one (for matrices and arrays) or two (for matrices)
expressions separated by commas, and must evaluate to int.

5.3.6 [expression-elementlist]

Expression element lists in brackets are primary expressions. Such primary expressions are used to
define matrices and therefore are of type mat. The expression element list must consist of one or
more expressions separated by commas or semi-colons. Commas separate expressions into matrix
columns and colons separate expressions into matrix rows. The expressions must evaluate to the
same type and can be of type int, float, com, or mat. Additionally, the number of expressions in
each row of the matrix must be the same. An example matrix is shown below.

1 i n t a = 3 ;
i n t b = 12 ;

3 mat my_matrix = [0+1, 2 , a : 5−1, 2∗3−1 , 1 2 / 2] ;

5.3.7 <expression|

Expressions with a less than sign on the left and a bar on the right are primary expression. Such
expressions are used to define qubits and therefore are of type qub. The notation is meant to mimic
the "bra-" of "bra-ket" notation and can therefore be thought of as a row vector representation of
the given qubit. Following "bra-ket" notation, the expression must evaluate to an integer literal of
only 0’s and 1’s, which represents the state of the qubit. An example "bra-" qubit is shown below.

1 qub b_qubit = <0100|;

5.3.8 |expression>

Expressions with a bar on the left and a greater than sign on the right are primary expression. All
of the considerations are the same as for <expression|, except that this notation mimics the "ket" of
"bra-ket" notation and can therefore be though of as a column vector representation of the given
qubit. An example "ket-" qubit is shown below.

1 i n t a = 001 ;
qub k_qubit = | a>;

5.4 Unary Operators

5.4.1 not expression

The result is a Boolean indicating the logical not of the expression. The type of the expression must
be int or float. In the expressions, 0 is considered false and all other values are considered true.

7

5.4.2 re expression

The result is the real component of the expression. The type of the expression must be com. The
result has the same type as the expression (it is a complex number with 0 imaginary component).

5.4.3 im expression

The result is the imaginary component of the expression. The type of the expression must be com.
The result has the same type as the expression (it is a complex number with 0 real component).

5.4.4 norm expression

The result is the norm of the expression. The type of the expression must be mat, com, qub or
float. The result has type float, and corresponds to the 2-norm; in the case of com or float, this
coincides with respectively the module and absolute value.

5.4.5 isunit expression

The result is a Boolean indicating if it is true or false that the expression is a unit matrix. The type
of the expression must be mat.

5.4.6 trans expression

The result is the transpose of the expression. The type of the expression must be mat. The result
has the same type as the expression.

5.4.7 det expression

The result is the determinant of the expression. The type of the expression must be mat. The result
has type float if the expression is an integer matrix or float matrix and type com if the expression
is a complex number matrix.

5.4.8 adj expression

The result is the adjoint of the expression. The type of the expression must be mat. The result has
the same type as the expression.

5.4.9 conj expression

The result is the complex conjugate of the expression. The type of the expression must be com or
mat. The result has the same type as the expression.

5.4.10 sin expression

The result is the evaluation of the trigonometric function sine on the expression. The type of the
expression must be int, float, or com. The result has type float if the expression is of type int
or float and type com if the expression is of type com.

8

5.4.11 cos expression

The result is the evaluation of the trigonometric function cosine on the expression. The type of the
expression must be int, float, or com. The result has type float if the expression is of type int
or float and type com if the expression is of type com.

5.4.12 tan expression

The result is the evaluation of the trigonometric function tangent on the expression. The type of the
expression must be int, float, or com. The result has type float if the expression is of type int
or float and type com if the expression is of type com. (If an error occured because of a division by
zero, a runtime exception is raised.)

5.5 Binary Operators

5.5.1 expression ˆexpression

The result is the exponentiation of the first expression by the second expression. The types of the
expression must be of type int, float, or com. If the expressions are of the same type, the result
has the same type as the expressions. Otherwise, if at least one expression is a com, the result is of
type com; if neither expressions are comp, but at least one is float, the result is of type float.

5.5.2 expression * expression

The result is the product of the expressions. The type considerations are the same as they are for
expressionˆexpression

5.5.3 expression / expression

The result is the quotient of the expressions, where the first expression is the dividend and the
second is the divisor. The type considerations are the same as they are for expressionˆexpression.
Integer division is rounded towards 0 and truncated. (If an error occured because of a division by
zero, a runtime exception is raised.)

5.5.4 expression % expression

The result is the remainder of the division of the expressions, where the first expression is the
dividend and the second is the divisor. The sign of the dividend and the divisor are ignored, so the
result returned is always the remainder of the absolute value (or module) of the dividend divided by
the absolute value of the divisor. The type considerations are the same as they are for expressionˆ
expression.

5.5.5 expression + expression

The result is the sum of the expressions. The types of the expressions must be of type int, float,
com, mat or qub. If at least one expression is a com, the result is of type com; if neither expressions
are comp, but at least one is float, the result is of type float. Qubits and matrices are special
and can only be summed with within operands of the same type (and, in the case of matrices,
dimensions).

9

5.5.6 expression - expression

The result is the difference of the first and second expression. The type considerations are the same
as they are for expression + expression.

5.5.7 expression @ expression

The result is the tensor product of the first and second expressions. The expressions must be of
type of mat. The result has the same type as the expression.

5.5.8 expression eq expression

The result is a Boolean indicating if it is true or false that the two expression are structurally
equivalent. The type of the expressions must be the same.

5.5.9 expression lt expression

The result is a Boolean indicating if it is true or false that the first expression is less than the second.
The type of the expressions must be int or float and must be the same.

5.5.10 expression gt expression

The result is a Boolean indicating if it is true or false that the first expression is greater than the
second. The type of the expressions must be int or float and must be the same.

5.5.11 expression leq expression

The result is a Boolean indicating if it is true or false that the first expression is less than or equal
to the second. The type of the expressions must be int or float and must be the same.

5.5.12 expression geq expression

The result is a Boolean indicating if it is true or false that the first expression is greater than or
equal to the second. The type of the expressions must be int or float and must be the same.

5.5.13 expression or expression

The result is a Boolean indicating the logical or of the expressions. The type of the expressions
must be int or float and must be the same. In the expressions, 0 is considered false and all other
values are considered true.

5.5.14 expression and expression

The result is a Boolean indicating the logical and of the expressions. The type considerations are
the same as they are for expression or expression.

5.5.15 expression xor expression

The result is a Boolean indicating the logical xor of the expressions. The type considerations are
the same as they are for expression or expression.

10

5.6 Assignment Operators

Assignment operators have left associativity

5.6.1 lvalue = expression

The result is the assignment of the expression to the lvalue. The lvalue must have been previously
declared. The type of the expression must be of the same that the lvalue was declared as. Recall,
lvalues can be declared as int, float, comp, mat, and qubit.

6 Declarations
Declarations are used within functions to specify how to interpret each identifier. Declarations have
the form

declaration:
type-specifier declarator-list

6.1 Type Specifiers

There are five main type specifiers:
type-specifier:

int
float
com
mat
qub

6.2 Declarator List

The declarator-list consist of either a single declarator, or a series of declarators separated by commas.

declarator-list:
declarator
declarator , declarator-list

A declarator refers to an object with a type determined by the type-specifier in the overall
declaration. Declarators can have the following form

declarator:
identifier
declarator ()
declarator [constant-expression]
(declarator)

11

6.3 Meaning of Declarators

Each declarator that appears in an expression is a call to create an object of the specified type.
Each declarator has one identifier, and it is this identifier that is now associated with the created
object.

If declarator D has the form

D ()

then the contained identifier has the type "function" that is returning an object. This object
has the type which the identifier would have had if the declarator had just been D.

If a declarator has the form

D[constant-expression]
or

D[]

then it is a declarator whose identifier is of type "array". In the first case, the constant- expression
is an expression whose value can be defined at compile time. The type of that constant-expression
is int. In the second case, the constant expression 1 is used.

An array may be constructed from one of the basic types, or from another array.

Parentheses in declarators do not change the the type of contained identifier, but can affect the
relations between the individual components of the declarator.

Not all possible combinations of the above syntax are permitted. There are certain restrictions
such as how array of functions cannot be declared.

7 Statements

7.1 Expression statements

Expression statements are the building blocks of an executable program. As the name suggests,
expression statements are nothing but expressions, delimited by semicolons. Expressions can actually
be declarations, assignments, operations or even function calls. For example,

2 x = a + 3 ;

is a valid expression statement, and so is

2 pr in t (a) ;

12

7.2 The if-elif-else statement

The if-elif-else statement is used for selectively executing statements based on some condi-
tion.Essentially, if the condition following the if keyword is satisfied, the specified statements get
executed.To specify what happens if the condition does not evaluate to true, we have the else
keyword. In case we want to evaluate more than one condition at a time, we also have the elif
keyword. So an if can be followed by any number of elifs, and at most one else block which is the
end of the construct.The statements following the else are executed only if neither of the conditions
specified before that evaluate to true.

2

i f (c ond i t i on) {
4 } e l i f (cond i t i on) {

} e l s e {
6 }

8

Example :
10 i f (x==5) {

p r in t (" x i s 5 ") ;
12 } e l i f (x==3) {

p r in t (" x i s 3 ") ;
14 } e l s e {

p r i n t (" x i s n e i t h e r 5 nor 3 ")
16 }

7.3 The for loop

The for statement is used for executing a set of statements a specified number of times. The
statements within the for loop are executed as long as the value of the variable is within the
specified range. As soon as the value goes out of range, control comes out of the for loop. To ensure
termination, each iteration of the for loop increments/decrements the value of the variable, bringing
it one step closer to the final value that is to be achieved.

By default, increment or decrement is by 1. However, if the desired increment is something other
than one, the by keyword lets you specify that explicitly.

An example of for loop, increment by 2 is as follows:

2 f o r k from 1 to 10 by 2 {
}

8 Scope rules
Name bindings have a block scope. That is to say, the scope of a name binding is limited to a
section of code that is grouped together. That name can only be used to refer to associated entity

13

in that block of code. Blocks of code in QLang are deliminated by the opening curly brace (’{’) at
the start of the block, and the closing curly brace (’}’) at the end of the block.

Within a program, variables may be declared and/or defined in various places. The scope of
each variable is different, depending on where it is declared.There are three primary scope rules.

If a variable is defined at the outset/outer block of a program, it is visible everywhere in the
program.

If a variable is defined as a parameter to a function, or inside a function/block of code, it is
visible only within that function.

Declarations made after a specific declaration are not visible to it, or to any declarations before
it.

For instance, consider the following snippet.
1

i n t x = 5 ;
3

i n t y = x + 10 ; # th i s works
5

i n t z = a + 100 ; # th i s does not
7

i n t a = 200 ;

9 Constant expressions
In order to facilitate efficiency in writing expression, the language introduces various mathematical
constants such as π , e and matrices such Pauli matrices and Hadamard matrices which are frequently
used in quantum computation. The keywords I, X, Y, Z, and H are reserved for this expressions.

I =
[
1 0
0 1

]
X =

[
0 1
1 0

]
Z =

[
1 0
0 −1

]
Y =

[
0 −i
i 0

]
.

The Hadamard gate is defined by the matrix:

H = 1√
2

[
1 1
1 −1

]
.

10 Examples
We present some examples that illustrates the use of Qlang in solving quantum computing problems.

10.1 Solving Quantum Computation Problem

10.1.1 Problem1

Evaluate the following expressions: a. (H ⊗X)|00〉 b. 〈101|000〉 c. 〈01|H ⊗H|01〉

14

2 de f pseudo = eva luate () {

4 # a qu i t type d e c l a r a t i on f o l l ow s d i r a c notat ion
qub mat0 = |00 >;

6

Both X and H are constant with type mat and
8 # @ corresponds to t enso r product .

mat HX = H @ X;
10

pseudo = HX ∗ mat0 ;
12 }

10.1.2 Problem 2

Find the matrix corresponding to the quantum circuit:

Figure 1: Quantum Circuit implementing series of control gates

1 de f c i r cu i tMat = f indMatr ix () {

3 # a l l b a s i s qubit in 2 dimension
qub mat0=|00>;

5 qub mat1=|01>;
qub mat2=|10>;

7 qub mat3=|11>;

9 # con t r o l l e d not matrix
mat CNOT = [1 , 0 , 0 , 0 : 0 , 1 , 0 , 0 : 0 , 0 , 0 , 1 : 0 , 0 , 1 , 0]

11

#con t r o l l e d hadmard matrix
13 mat HNOT = [1/ sq r t (2) ,0 ,0 ,1/ sq r t (2) : 0 , 1 , 0 , 0 : 1 / sq r t (2) ,0 ,1 ,−1/ sq r t (2)

: 0 , 0 , 0 , 0]
#compos it ion o f c on t r o l ga te s

15 mat a l lGat e s = CNOT ∗ HNOT ∗ CNOT

17 # Matrix cor respond ing to the c i r c u i t
c i r cu i tMat =[a l lGat e s ∗mat0 : a l lGat e s ∗mat1 : a l lGat e s ∗mat2 : a l lGat e s ∗mat3]

19

15

}

10.1.3 Problem 3

Consider the circuit and show the probabilities of outcome 0 where |Ψin〉 = |1〉

Figure 2: Quantum Circuit

de f p r obab i l i t y = outcomeZero () {
2

top and bottom qub i t s
4 qub top = |0 >;

qub bottom = |1>;
6

Applying H on top qubit
8 mat output = (H @ I) ∗ (top @ bottom) ;

10 # Contro l l ed Not operator
mat CNOT = [I , [0 , 0 : 0 , 0] : [0 , 0 : 0 , 0] , X] ;

12

Contro l l ed Y operator
14 mat CY = [Y, [0 , 0 : 0 , 0] : [0 , 0 : 0 , 0] , I] ;

16 # Applying Control Operators
output = (CY) ∗(CNOT) ∗output

18

Applying measurement operator on top qubit |0> <0|
20 mat M = (|0>∗<0| @ I)

22 # sta t e a f t e r apply ing measurement operator on top qubit
outcome = M ∗ output ;

24

#probab i l i t y o f outcome
26 p r obab i l i t y = norm(outcome) ;

28 }

16

10.2 Simulation of Quantum Algorithm

10.2.1 Deutsch Jozsa Algorithm

2 de f outcome = deutschJozsa (qub top , mat U) {

4 # in corresponds to the qubit in top r e g i s t e r
input i s the t enso r product o f top r e g i s t e r and bottom r e g i s t e r

6 mat input= top @ |1>;

8 # app l i c a t i o n o f Hadamard gate on both top and bottom inputs
input = (H @ H) ∗ input ;

10

app l i c a t i o n o f U gate on the above r e s u l t
12 input = U ∗ input ;

14 # app l i c a t i o n o f Hadamard gate on the top r e g i s t e r
input = (H @ I) ∗ input ;

16

app l i c a t i o n o f measurement operator on the top r e g i s t e r
18 # top ∗ Adj (top) corresponds to the Measurement operator

20 input=(top∗Adj (top)@ I) ∗ input ;

22 #a f t e r the measurement i s appl ied , check i f the input i s 0 or not
i f (input == 0) {

24 #probab i l i t y o f outcome 0 i s 0
outcome = 0 ;

26 }
e l s e {

28 # probab i l i t y o f outcome 0 i s 1
outcome = 1 ;

30 }
}

10.2.2 Grover’s Search Algorithm

2 de f r e s u l t = grover (qu i t top , i n t x0) {
re tu rns the p r obab i l i t y to f i nd x0 f o r a func t i on f such that f (x0)=1

4 # x0 can be x0=0 ,1 ,? ,2^n−1
th i s i s a s p e c i a l case where n=1

6

qubit in the bottom r e g i s t e r
8 qub bottom = |1>;

10 # tenso r product o f top and bottom qubit
mat input = top @ bottom ;

12

#app l i c a t i o n o f Hadamard

17

Figure 3: Grover Algorithm Circuit

14 input = (H @ H) ∗ input ;

16 #de f i n e S
mat S = [1 ,0 :0 −1]

18

k : number o f time grover operator i s app l i ed
20 # fo r n > 1 k=c e i l ((p i ∗2^(n/2)) /4) ;

i n t k = 1 ;
22

de f i n e O operator such that O| x>|q>=|x>|q mod f (x)> or O| x>=(−1) f (x) | x>
24 # fo r n > 1 O = I (2^(n1+1)) ;

mat O = I ;
26 O(x0+1, x0+1) = −1;

28 # Grover i t e r a t i o n matrix
mat GO = (G∗O)^k ;

30

After app l i c a t i o n o f Grover i t e r a t i o n matrix
32 mat output = GO ∗ input ;

34 r e s u l t = (H @ H) ∗ output ;

36 }

18

	1 Introduction
	2 Lexical conventions
	2.1 Character set
	2.2 Comments
	2.3 Identifier (names)
	2.4 Keywords
	2.5 Constants
	2.6 Elementary operations and spacing

	3 Objects and types
	3.1 Objects and lvalues
	3.2 Valid types

	4 Conversions
	5 Expressions
	5.1 Operator Precedence
	5.2 Literals
	5.3 Primary Expressions
	5.3.1 identifier
	5.3.2 literals
	5.3.3 (expression)
	5.3.4 primary-expression(expression-list)
	5.3.5 primary-expression[expression-list]
	5.3.6 [expression-elementlist]
	5.3.7 <expression|
	5.3.8 |expression>

	5.4 Unary Operators
	5.4.1 not expression
	5.4.2 re expression
	5.4.3 im expression
	5.4.4 norm expression
	5.4.5 isunit expression
	5.4.6 trans expression
	5.4.7 det expression
	5.4.8 adj expression
	5.4.9 conj expression
	5.4.10 sin expression
	5.4.11 cos expression
	5.4.12 tan expression

	5.5 Binary Operators
	5.5.1 expression expression
	5.5.2 expression * expression
	5.5.3 expression / expression
	5.5.4 expression % expression
	5.5.5 expression + expression
	5.5.6 expression - expression
	5.5.7 expression @ expression
	5.5.8 expression eq expression
	5.5.9 expression lt expression
	5.5.10 expression gt expression
	5.5.11 expression leq expression
	5.5.12 expression geq expression
	5.5.13 expression or expression
	5.5.14 expression and expression
	5.5.15 expression xor expression

	5.6 Assignment Operators
	5.6.1 lvalue = expression

	6 Declarations
	6.1 Type Specifiers
	6.2 Declarator List
	6.3 Meaning of Declarators

	7 Statements
	7.1 Expression statements
	7.2 The if-elif-else statement
	7.3 The for loop

	8 Scope rules
	9 Constant expressions
	10 Examples
	10.1 Solving Quantum Computation Problem
	10.1.1 Problem1
	10.1.2 Problem 2
	10.1.3 Problem 3

	10.2 Simulation of Quantum Algorithm
	10.2.1 Deutsch Jozsa Algorithm
	10.2.2 Grover's Search Algorithm

