
GPL
Language Reference Manual

Qingxiang Jia (qj2125)
Peiqian Li (pl2521)

Ephraim Donghyun Park (edp2114)

October 27, 2014

Contents

1 Introduction 4

2 Lexical Conventions 4
2.1 Comments . 4
2.2 Identifiers . 4
2.3 Keywords . 5
2.4 Object Type . 5
2.5 Constants . 5

2.5.1 Integer constants . 5
2.5.2 Character constants . 5
2.5.3 Floating constants . 5
2.5.4 Boolean constants . 6
2.5.5 String constants . 6

3 Expressions 6
3.1 Primary Expressions . 6

3.1.1 identifier . 6
3.1.2 constant . 6
3.1.3 string . 6
3.1.4 node . 6
3.1.5 edge . 7
3.1.6 graph . 7
3.1.7 { expression } . 7
3.1.8 primary-expression [expression] 7

1

3.1.9 primary-expression (expression) 8
3.1.10 object-type . member-of-object-type 8

3.2 Graph Definition Operators 8
3.2.1 node expression – node expression 8
3.2.2 node expression − > node expression 8
3.2.3 node expression −−: node expression node expression ? 8
3.2.4 node expression − >: node expression node expression ? 8
3.2.5 node expression −expression− node expression 8
3.2.6 node expression −expression> node expression 8
3.2.7 node expression −expression− : node expression node

expression ? . 9
3.2.8 node expression −expression>: node expression node

expression ? . 9
3.3 Unary Operators . 9

3.3.1 − expression . 9
3.3.2 ! expression . 9

3.4 Multiplicative Operators . 9
3.4.1 expression * expression 9
3.4.2 expression / expression 9
3.4.3 expression % expression 10

3.5 Additive operators . 10
3.5.1 expression + expression 10
3.5.2 expression - expression 10

3.6 Relational operators . 10
3.6.1 expression < expression 10
3.6.2 expression > expression 10
3.6.3 expression <= expression 10
3.6.4 expression >= expression 10
3.6.5 expression == expression 10
3.6.6 expression ! = expression 10

3.7 Assignment operators . 11
3.7.1 variable = expression 11
3.7.2 variable += expression 11
3.7.3 variable -= expression 11

3.8 Logical operators . 11
3.8.1 boolean-expression && boolean-expression 11
3.8.2 boolean-expression || boolean-expression 11

3.9 boolean-expression ? expression : expression 11

2

4 Declarations 12
4.1 Type specifiers . 12
4.2 Declarators . 12
4.3 Graph declarations . 12
4.4 Function declarations . 13

5 Statements 14
5.1 Expression statement . 14
5.2 Compound statement . 14
5.3 Conditional statement . 14
5.4 While statement . 14
5.5 For statement . 14
5.6 Return statement . 15
5.7 Null statement . 15

6 Scoping 15

3

1 Introduction

Graph is a very powerful data structure that can be used to model a variety
of systems in many fields. Graph is such a fundamental model that people
have developed libraries dedicated to graphs in almost all general-purpose
high-level programming languages. However, implementing graph-related
algorithms in languages like Java or C++, even with the benefit of using
third-party graph libraries, entails manual manipulation of nodes and edges.
This could prove to be error-prone (with pointer manipulations in C++),
tedious (verbose especially in Java), and daunting (to people new to the
programming world).

The Graph Programming Language (GPL) is a domain-specific language
that attempts to remedy these problems. GPL strives to hide most logic
behind graph handling under the hood, so that programmers are able to
focus more on using graphs, instead of implementing them.

The primary goal of GPL is to allow programmers to create, use, and
manipulate graphs in a natural, flexible and intuitive way. All graph-based
algorithms should be easier to implement in GPL, e.g. shortest path, span-
ning tree, strong connectivity. Because all trees are graphs, GPL is auto-
matically suitable for applications involving tree structures, such as priority
queues (min/max heaps), binary search trees, or any kind of hierarchical data
representation.

2 Lexical Conventions

2.1 Comments

Two slashes ”//” introduce one-line comment, which is terminated by the
newline character. For multiline comment, /* is used to start commenting
and */ is used to terminate commenting. Nested commenting is not sup-
ported by the language.

2.2 Identifiers

An identifier consists of a sequence of letters, digits, and the underscore
character; the first character of an identifier cannot be a digit. Upper and
lower case letters are considered different.

4

2.3 Keywords

The following identifiers are reserved by the language to have specific mean-
ings and may not be used otherwise:

boolean break char
continue edge else
float for graph
if int node
return string while

2.4 Object Type

In GPL, graph, edge, node, and string are object types. ”Object” implies
that they are not primitive data types, and they can have member functions
and fields which can be invoked or accessed through the dot operator. Graph,
node, edge, and string are the only four object types in GPL; GPL does not
support user-defined objects, but does support user-defined functions.

2.5 Constants

2.5.1 Integer constants

Integer constants are decimal (base 10). An integer constant is just a se-
quence of digits.

2.5.2 Character constants

A character constant is one or two characters enclosed by single quotes.
Two characters enclosed by single quotes are for escape characters. The
first character must be back-slash, and the second one can be back-slash,
single quote, ’n’, ’r’, ’t’; they represent backslash, single-quote, line-feed,
carriage-return, and tab, respectively. The only valid representation of the
single-quote character is a back-slash followed by a single-quote, enclosed in
two single quotes.

2.5.3 Floating constants

A floating constant consists of an integer part and a fraction part. An op-
tional signed integer exponent can be added at the end. Either the integer
part or the fractional part may be missing, but not both. Likewise, the dec-
imal point or the the exponent part may be missing, but not both. Every
floating constant is taken to be double precision (equivalent to double in
Java).

5

2.5.4 Boolean constants

There are exactly two boolean constants: true and false.

2.5.5 String constants

A string constant is a sequence of characters enclosed by double quotes.
Backslash, double-quote, line-feed, carriage-return, and tab characters need
to be escaped by a preceding back-slash, similar to character constants.

3 Expressions

3.1 Primary Expressions

3.1.1 identifier

An identifier is a unique (in its own scope) name used to identify an entity
in the program. It can be the name of a function, parameter, or variable. A
reserved keyword cannot be used as an identifier.

3.1.2 constant

Constants include strings, characters, numbers (integer, float). The decla-
ration of string is string; the declaration of characters is char; the one for
integer is int; the one for float is float.

3.1.3 string

String is an object type of the language. String is immutable.
String has members:

length this member holds the length of the string
substring(a, b) this member function returns substring starting at index

a and ending at the index b-1

3.1.4 node

Node is an object type of the language. It represents a node in a graph.
Node has members:

6

value this member holds the value of the node and can be
any data type. If this node does not have a value, this
member would be null

adj nodes this member holds the list of nodes that are connected
to this node

3.1.5 edge

Edge is an object type of the language. It connects two nodes.
Edge has members:

weight this member holds the weight of the edge. If it is un-
weighted edge, this member would be null.

node1 if this edge is directed, this node would be the from
node. If this edge is undirected, this would be the node
on one end of the edge.

node2 if this edge is directed, this node would be the to node.
If this edge is undirected, this node would be the node
on another end of the edge.

is directed this member signifies if the edge is directed or undirected

3.1.6 graph

Graph is an object type of the language. It represents a graph which consists
of nodes and edges.

Graph has members:

edges this member is the list of edges in the graph
nodes this member is the list of nodes in the graph
e count this member has the number of edges in the graph
n count this member has the number of nodes in the graph

3.1.7 { expression }

The parenthesized expression is the same as expression. Including an expres-
sion in a pair of parentheses does not imply any precedence of the expression.

3.1.8 primary-expression [expression]

The primary-expression in this part can only be array. The expression can
only be integers within the range of the array. primary-expression [expression
] means to access the expression-th element in the array.

7

3.1.9 primary-expression (expression)

This expression means a functional call, where primary-expression is an iden-
tifier that is a name of a function. The expression in the pair of brackets is
parameter(s) to in the call. It can be single parameter. If there are more
than one parameters, they should be separated by a comma.

3.1.10 object-type . member-of-object-type

object-type expression followed by a dot followed by the name of a member of
object-type is a primary expression. Member of object-type may be variable
or function.

3.2 Graph Definition Operators

3.2.1 node expression – node expression

The – binary operator connects two nodes with unweighted undirected edge.

3.2.2 node expression − > node expression

The − > binary operator connects two nodes with unweighted directed edge.
The direction goes from first node expression to second node expression.

3.2.3 node expression −−: node expression node expression ?

The −−: operator connects first node expression with all the other node
expressions that follow with unweighted undirected edge.

3.2.4 node expression − >: node expression node expression ?

The − >: operator connects first node expression with all the other node
expressions that follow with unweighted directed edge.

3.2.5 node expression −expression− node expression

The −expression− operator connects two nodes with weighted undirected
edge. The weight of the edge equals the expression in the middle.

3.2.6 node expression −expression> node expression

The −expression> operator connects two nodes with weighted directed edge.
The direction goes from first node expression to second node expression. The
weight of the edge equals the expression in the middle.

8

3.2.7 node expression −expression− : node expression node ex-
pression ?

The −expression− : operator connects first node expression with all the other
node expressions what follow with weighted undirected edge. The weight of
the edge equals the expression in the middle.

3.2.8 node expression −expression>: node expression node ex-
pression ?

The −expression>: operator connects first node expression with all the other
node expressions what follow with weighted directed edge. The weight of the
edge equals the expression in the middle.

3.3 Unary Operators

Unary operators are grouped from right to left.

3.3.1 − expression

The − unary operator can be applied to an expression of type int or float,
and results in the negative of the expression.

3.3.2 ! expression

The ! unary operator can only be applied to an expression of boolean type,
and results in the opposite of the truth value of the expression

3.4 Multiplicative Operators

3.4.1 expression * expression

The binary operator * indicates multiplication between expression and ex-
pression. The expression pair can be in the following combinations. 1) int int
2) float float 3) int float 4) float int. In case 2, 3, and 4, all the parameters
will be treated as float.

3.4.2 expression / expression

The binary operator / indicates division between expression and expression.
The expression pair can be in the following combinations. 1) int int 2) float
float 3) int float 4) float int. In case 2, 3, and 4, all the parameters will be
treated as float.

9

3.4.3 expression % expression

The binary % operator outputs the remainder from the division of the first
expression by the second. The expression pair can be in the following com-
binations. 1) int int 2) float float 3) int float 4) float int. In case 2, 3, and 4,
all the parameters will be treated as float.

3.5 Additive operators

3.5.1 expression + expression

The binary + operator outputs the addition of the first expression and the
second expression. The expression pair can be in the following combinations.
1) int int 2) float float 3) int float 4) float int. In case 2, 3, and 4, all the
parameters will be treated as float.

3.5.2 expression - expression

The binary - operator outputs the result of the first expression minus that
of the second expression. The expression pair can be in the following combi-
nations. 1) int int 2) float float 3) int float 4) float int. In case 2, 3, and 4,
all the parameters will be treated as float.

3.6 Relational operators

3.6.1 expression < expression

3.6.2 expression > expression

3.6.3 expression <= expression

3.6.4 expression >= expression

3.6.5 expression == expression

3.6.6 expression ! = expression

The relational operators < (less than), > (greater than), <= (less than or
equal to), >= (greater than or equal to), == (equal to), ! = (not equal to)
all yield boolean true or false. The two expressions being compared must
be of the same type, and they can be int, float, char or string. Characters
are compared by ASCII values; strings are compared lexicographically.

10

3.7 Assignment operators

3.7.1 variable = expression

The binary = operator indicates that the result of the expression on the right
side is stored in the variable on the left. If there is already data stored in
the variable, the data will be replaced. The variable can be any legal type
defined in the language.

3.7.2 variable += expression

The binary += operator indicates that the value of the variable on the right
side will be incremented by the quantity of the result of the expression on
the left side. This operator requires the two expressions to be in the same
numerical type, i.e. either both in int, or both in float.

3.7.3 variable -= expression

The binary -= operator indicates that the value of the variable on the right
side will be decremented by the quantity of the result of the expression on
the left side. This operator requires the two expressions to be in the same
numerical type, i.e. either both in int, or both in float.

3.8 Logical operators

3.8.1 boolean-expression && boolean-expression

3.8.2 boolean-expression || boolean-expression

The logical operators && (and) and || (or) can be applied to two boolean
expressions, and results in the logical AND or OR of the truth values of the
two boolean expressions.

3.9 boolean-expression ? expression : expression

This ternary expression works as follows: the first boolean-expression is eval-
uated and if it is true, the result of the expression is the value of the second
expression, otherwise that of the third expression.

11

4 Declarations

4.1 Type specifiers

The type-specifiers are

type−s p e c i f i e r :
i n t
char
f l o a t
s t r i n g
graph
node
edge
type−s p e c i f i e r []

4.2 Declarators

dec l a ra to r− l i s t :
d e c l a r a t o r
d e c l a r a t o r , de c l a ra to r− l i s t

d e c l a r a t o r :
i d e n t i f i e r
(d e c l a r a t o r)
d e c l a r a t o r ()

4.3 Graph declarations

graph−d e f i n i t i o n :
graph graph−d e c l a r a t o r { graph−body }

graph−d e c l a r a t o r :
i d e n t i f i e r

graph−body
edge−dec l a ra t i on− l i s t

edge−dec l a ra t i on− l i s t
edge−d e c l a r a t i o n ;
edge−d e c l a r a t i o n ; edge−dec l a ra t i on− l i s t

12

edge−d e c l a r a t i o n
node−d e c l a r a t o r −− node−d e c l a r a t o r
node−d e c l a r a t o r −> node−d e c l a r a t o r
node−d e c l a r a t o r −−: node−dec l a ra to r− l i s t
node−d e c l a r a t o r −>: node−dec l a ra to r− l i s t
node−d e c l a r a t o r −expre s s i on− node−d e c l a r a t o r
node−d e c l a r a t o r −expre s s i on> node−d e c l a r a t o r
node−d e c l a r a t o r −expre s s i on −: node−dec l a ra to r− l i s t
node−d e c l a r a t o r −expre s s i on >: node−dec l a ra to r− l i s t

node−dec l a ra to r− l i s t
node−d e c l a r a t o r
node−d e c l a r a t o r node−dec l a ra to r− l i s t

node−d e c l a r a t o r
i d e n t i f i e r

4.4 Function declarations

funct ion−d e f i n i t i o n :
type−s p e c i f i e r funct ion−d e c l a r a t o r funct ion−body

funct ion−d e c l a r a t o r :
d e c l a r a t o r (parameter− l i s t o p t)

parameter− l i s t :
i d e n t i f i e r
i d e n t i f i e r ,

funct ion−body :
type−dec l a ra t i on− l i s t funct ion−statement

type−dec l a ra t i on− l i s t :
type−d e c l a r a t i o n
type−dec l a ra t i on− l i s t

type−d e c l a r a t i o n :
type−s p e c i f i e r dec l a ra to r− l i s t ;

funct ion−statement :

13

{ dec l a ra t i on− l i s t o p t statement− l i s t }

5 Statements

5.1 Expression statement

Expression statement is an expression followed by semicolon.

5.2 Compound statement

The compound statement is a list of statements surrounded by parentheses.

5.3 Conditional statement

There are two types of conditional statements:

• Type 1: if (expression) statement

• Type 2: if (expression) statement else statement

In type 1, if expression is evaluated to be true, the statement will be executed.
In type 2, if expression is evaluated to be true, the first statement will be
executed, otherwise the second statement will be executed.

5.4 While statement

The while statement can be described as: while (expression) statement
As long as the expression is evaluated to be true, the statement will be

executed repeatedly. The expression is evaluated before the execution of
statement.

5.5 For statement

The for statement can be expressed as:
for (expression-1; expression-2; expression-3) statement
expression-1 defines the initialization of the loop. expression-2 is the test

that will be evaluated for truth in each loop. expression-3 defines what to
do after each loop has been executed.

14

5.6 Return statement

Return statement can be described as: return (expression)
The expression can be either a simple expression, which will be evaluated

to a value and then be returned to the calling function. Alternatively, the
expression can be consisted of one or more function calls, then the return
statement will be executed after all function calls have been returned.

5.7 Null statement

A null statement consists a single semicolon. It is useful in a for loop where
one or more of the three expressions is not defined (or unneeded to define).

6 Scoping

There are two rules of scoping. The first rule states that the variables or
functions can be referred only after their declaration. The second rule states
that the variables declared in a function bind closer than the variables de-
clared outside the function. For example, there is a variable named a in a
function, even though, outside the function, there may be a variable a, be-
cause of the stronger binding of the variable declared in the function, if one
refers a in the function, he or she refers to the one declared in the function.

15

