
1

Language Reference Manual
BuckCal

Date: October 27, 2014

Team

Ahmad Maruf (aim2122)

Lan Yang (ly2331)

Lingyuan He (lh2710)

mxeng Wang (mw2972)

Prachi Shukla (ps2829)

Programming Language and Translator

COMS W4115 (Fall ‘14)
Prof. Stephen Edwards

2

Table of Contents

1. Preface
2. Lexical Component

2.1. Keyword
2.2. Identifier
2.3 Literal
2.4 Data Unit
2.5 Separator
2.6 Operator
2.7 Newlines, Whitespaces and Tabs

3. Data Type
3.1. Primitive Data Type
3.2. Matrix
3.3. Data Type Conversion

4. Expression
4.1. Variable Declaration
4.2. Variable Scope
4.3. Variable Assignment
4.4. Variable Comparison
4.5. Arithmetic Operation
4.6. String Operation
4.7.Operator Precedence

5. Statement
5.1. Conditional Statement
5.2. Loop Statement

5.1.1. Counting Loop
5.1.2. Conditional Loop

5.3. Break and Continue Statement
5.3.1. Break Statement
5.3.2. Continue statement

5.4. disp Statement
6. Function

6.1. Function Declarations
6.2. Function Definition
6.3. Calling Function
6.4. Built-in functions

7. Matrix Operation
7.1. Type of matrix
7.2. Matrix definition
7.3. Matrix accessing
7.4. Unit setting
7.5. Other operations with unit

3

8. Sample Program
8.1. Hello-world style
8.2. Matrix operation

Appendix A. BuckCal Library Function List

1. Preface

This reference manual describes BuckCal, a matrix manipulation
language for calculating expenses.

BuckCal has full support for mathematical matrix operations and
is optimized for spreadsheet calculations. With enhanced matrix
operations and data type support, programmer can make budget, record
expenses, and add numbers with different units without worrying
about unit conversion. BuckCal source code file have .bc suffix.
Programs are translated into R scripts for excutation.

2. Lexical Component

2.1. Keyword
Keywords are reserved for language processing, and they

cannot be used for identifier or other purposes.
All keywords:

if then else elif fi for in do rof disp
break continue not and or def fed return
int double bool string mat true false import

2.2. Identifier
An identifier is used to name a variable or function, it

could be any combination of lower case letters (a to z), number
(0-9) or underscore (_), except that the first letter must be a
lower case character (a to z). An identifier cannot be an exact
match with one of the reserved keywords.
Examples of valid identifiers:

i
matrix01

 food_day2
col_name

Examples of invalid identifiers:
Var (upper case letter)
0number (number as the first letter)
an int (with space)
*str (invalid character)

4

2.3. Literal
A literal is used to express a constant value. It can be

a numeric value (integer or floating point), a string
(including one-character string), a numeric value with
supported unit, or a matrix.

Examples:
 12 (integer)
 1.2 (floating point - double)
 true (boolean)
 ‘hello’ (string, single character is also a
string)
 1.5mile (a numeric value with unit)
 {1, 2; 3, 4} (a matrix)

Note that a string must be quoted by single quote; double

quote is not accepted. And a literal of numeric value with unit
can only be used in matrix.

2.4. Data Unit
In a matrix in BuckCal, each column can specify a single

data unit, it could be any one of the following basic
categories:

● (mass and weight) lb, oz, kg, g
● (distance) ft, m, km, mile
● (area) ft2, m2, km2, mile2
● (capacity and volume) ml, l, quart, gallon

The point of only including a small number of built-in
units is to provide convenient access to everyday data, as it
is the main usage of BuckCal. Currency, as a special case, is
supposed to be without a unit in BuckCal, simply because it
adds up significant overhead to support all the currencies.

Supported data units can be converted to one another, as
long as the original and new units are in the same category and
both are defined (compatible). Programmer can also mix up
different compatible units when doing calculations, which will
be automatically converted in the background if they are
compatible. Otherwise, a compiler error will be raised. More
details about operation with unit are in section 7.

2.5. Seperator
There are several letters served as separators:

● Semicolon - ‘;’: separates each statement, and also each
row in a matrix definition.

5

● Comma - ‘,’: separates arguments in a function argument
list, also separates two same-row data members in a
matrix definition.

● Curly bracket - ‘{}’: separates matrix content with other
lexical components, i.e., left curly bracket marks the
start of a matrix content, while the right square bracket
marks the end.

● Parenthesis - ‘()’: used to modify operator precedence,
and to wrap the argument list of a function.

Example 1:

mat ax : {1, 2; 3, 4};
This is a 2 x 2 matrix definition. Inside the brackets is

the content in the matrix row, where a comma separates two
number in a same row, and a semicolon separates two rows.
Finally, a semicolon marks the end of this statement.

Example 2:
 int i: (2 + 3) * 4;

This is an integer assignment with a pair of parenthesis
to modify operator precedence. In this case, i will be 20
(addition followed by multiplication), instead of 14 when there
is no parenthesis (multiplication followed by addition).

2.6. Operator
There are six (6) operators in symbol form in BuckCal:

● Plus - ‘+’
mathematical addition for numeric values, concatenation
for strings, one-on-one addition for numeric elements in
matrix

● Minus - ‘-’
Mathematical substraction for numeric values, one-on-one
substraction for numeric elements in matrix

● Multiply - ‘*’
Mathematical multiply for numeric values, one-on-one
multiplication for numeric elements in matrix

● Divide - ‘/’
Mathematical division for numeric values, one-on-one
division for numeric elements in matrix

● Equal mark - ‘=’
Used only for content comparison, output a boolean value,
usually used with if statement (e.g. i = 2)

● Colon - ‘:’
Used for variable assignment and initialization (e.g. int
c: 3)

6

● Square bracket - ‘[]’
Matrix subscripting. Input row and column number (which
is counted from 1) separated by comma (‘,’), and use 0 to
represent all. (e.g. budget[0,1] select first column)

Specifically, below are the mathematic operators (+ - * /)

and examples of their usage:

 + - * /

double op
double

1.0+2.1=3.1 1.0-2.1=-1.1 1.0*2.1=2.1 2.1/1.0=2.1

int op
int

1+2=3 1-2=-1 1*2=2 1/2=0

string op
string

’s’+’u’->’su’ N/A N/A N/A

matrix op
{int|
double}

{1, 2; 3, 4}
+
1
=
{2, 3; 4, 5}

{1, 2; 3, 4}
-
1
=
{0, 1;
 2, 3}

{1, 2; 3, 4}
*
1.2
=
{1.2, 2.4;
 3.6, 4.8}

{1, 2; 3, 4}
/
2.0
=
{1.5, 1.0;
 1.5, 2.0}

matrix op
matrix

{1, 2; 3, 4}
+
{1, 2; 3, 4}
=
{2, 4; 6, 8}

{1, 2; 3, 4}
-
{1, 2; 3, 4}
=
{0, 0; 0, 0}

{1, 2; 3, 4}
*
{1, 2; 3, 4}
=
{1, 4;
 9, 16}

{1, 2; 3, 4}
/
{1, 2; 3, 4}
=
{1, 1;
 1, 1}

 Additionally, there are three operators that are written
as words, all of which are for logical operation:

● not: e.g. not A, the expression is the negation of
A.

● and: e.g. A and B, the expression is true if both A
and B are true.

● or: e.g. A or B, the expression is true if either A,
B, or both, are true.

Details on operators and operation can be found in

section 4 (‘Expression’).

2.7. Newlines, Whitespaces and Tabs
In BuckCal, newlines, whitespaces and tabs are only used

to split lexical components, especially identifiers and
literals. There is no required alignment of spacing style.

7

However, for the consideration of readability, in

addition to separate all lexical components by whitespaces (as
it is normally done), it is recommended as a good practice to
only write one statement per line, and use tabs properly in a
control structure or in a function to indent and align the
code. Examples and more about coding style are illustrated in
Section 7 (‘Sample Programs’).

3. Data Type

In BuckCal, these are primitive data types: number (integer and
floating point number), string, and boolean. Data with same
primitive data type can be composed into a matrix. Besides, number
in matrix can have unit.

3.1. Primitive Data Type
● int

 The int data type can hold 32-bit integer values in the
range of -2,147,483,648 to 2,147,483,647

● double
The double type represents fractional numbers. Its

minimum value is 2.2250738585072014e-308, and its maximum value
is 1.7976931348623157e+308. The floating-point data type is
signed.

● string
A string represents a collection of characters. BuckCal

does not support a built-in “character” type, therefore, a
character, a literal, and a long series of characters are all
referred to be a string. Strings are constant and immutable;
their values cannot be changed after they are created. Buckcal
uses the UTF-8 representation for all string characters,
variables and literals (Refer to the definition of the U+n
notation in the Unicode Standard.
<http://www.unicode.org/resources/utf8.html>.

● boolean
The boolean data type (bool) has only two possible

values: true and false. Use this data type for simple flags

that track true/false conditions. This data type represents one

bit of information, but its "size" isn’t something that's

precisely defined.

8

3.2. Matrix

A matrix (mat) is a data collection type, which can store

data of a single primitive data type. That means a matrix can

be an int-matrix, double-matrix or string-matrix. Noticeably,

there is no generic matrix or boolean-matrix. A matrix is

composed of rows and columns. Rows and columns have names. By

default, row names are “r1”, “r2”, … , and column names “c1”,

“c2”, … . A number-matrix can have only one unit per column. To

declare a matrix, it is required to specify the type of it, for

example:

double mat: m;

This declares an empty matrix m that will store double.

3.3. Data Type Conversion
Sort of built-in functions are provided support data type

conversion. The function naming convention is:

newtype : newtype_of_oldtype(oldtype X);

The conventions we support are:
 int <-> double

[int|double] <-> string

[int mat|double mat] <-> string mat

Detail list of functions are in Appendix A. Note that int

(mat) and double (mat) can be converted implicitly. So there

are no int-double conversion functions.

9

4. Expression

4.1. Variable Declaration
All variables must be declared with its data type before

used. The initial value is optional; but if there is one, it
must be an expression resulting in the same type with variable.

Grammar:
datatype identifier [: initial value]

Samples are as follows:
int a : 1 + 2;
double d : 2.0;
string c : “This is a string”;
bool b;

If variables are declared without initial value, their
default values are as follows.

int a; # a = 0
double d; # d = 0.0
string s; # s = “”
bool b; # b = false

To create a non-empty matrix, “{}” is needed. Columns are
separated with a comma, and rows are separated with a
semicolon. All rows must have the same number of elements.
Example:

mat m: {1, 2; 4, 5};
 Matrix variable declared without initial value is empty:

 mat m; # m = {}

4.2. Variable Scope
There are two levels of scope: top and function. A “top

variable” is a variable with top scope, “function variable”
with function scope.

A variable defined within a function has a function scope.
It can only be referenced with in the function where it is
defined. Top variables are defined out of function.

Scopes are isolated from each other: a variable defined in
top variable cannot be referenced with in a function. If a
function variable has the same name as a top variable, it is
treated as a different variable and has no connect with the top
one.

4.3. Variable Assignment
The assignment operator “:” stores the value of its right

operand in the variable specified by its left operand. The left

10

operand (commonly referred to as the “left value”) cannot be a
literal or constant value.

The left and right operand should be of the same type. The
only exceptions:

● Integer and double can be assigned to each other. Only
the integer part of a double will be assigned to an int.
Example:
(double b : 1.2; int a;)
a : b; # a = 1

● Double with unit can be assigned to double and integer.
The unit part is ignored in assignment, so this case is
equivalent to assign a double to a double/integer.

4.4. Variable Comparation
Comparison operators can be used to compare primitive

variable pairs of the same type. The result of comparison is a
boolean: true or false.

● “=” test if the two variables equal. “!=” returns the
opposite.

● “<” test if the left operand is less than right operand.
“>=” returns the opposite.

● “>” test if the left operand is greater than right
operand. “>=” returns the opposite.

● String is compared by dictionary order. For boolean, true
is greater than false.

4.5. Arithmetic Operation
For int and double, addition (+), subtraction(-),

multiplication (*), and division(/) are supported, as well as
negation(-).

If int and double are mixed, int are converted to double
first.

4.6. String Operation
● Concatenation: use operator “+” to join two strings and

return a new string. Example:
string a : “b”+”c”
we get a as “bc”

● Slicing: use function slice() to get a substring out of a
string. Example:

 string a : “ABCDEFGH”
 slice(a, range(1, 4));
 we get “ABCD”
 slice(a, {1, 2, 4, 6});
 we get “ABDF”

11

4.7. Operator Precedence
 Rules of precedence ensure when dealing with multiple

operators, codes can be concise and simple while not having
ambiguity. A simple example of precedence is a: b + c * d. This
expression means that the result of c multiplying with d is
added to b, and then the addition result is assigned to a.
 In BuckCal, most operators are left-associated, some
special cases would be stated later. The order of highest
precedence to lowest precedence follows as the list below.
Sometimes, two or more operators have the same precedence.

● Parenthesis “()”
● Function calls, matrix subscripting
● Unary negative
● Multiplication, division expressions
● Addition and subtraction expressions
● Greater-than, less-than, greater-than-or-equal-to, and

less-than-or-equal-to expressions
● Equal-to and not-equal-to expressions
● Logical NOT expressions
● Logical AND expressions
● Logical OR expressions
● Assignment expressions

5. Statement

Statements are implemented to cause actions and control
flow within your programs.

5.1. Conditional Statement
The if-then-else-fi statement is used to conditionally

execute part of the program, based on the truth value of a
given expression. Here is the general form of an if-else-fi
statement:

if bool-expr then

statement1;
else

statement2;
fi

If bool-expr evaluates to true, then only statement1 is

executed. However, if bool-expr evaluates to false, then only
statement2 is executed. The else clause is optional.
Here is an actual example:
if b < 0 then

12

disp 0;
else
 disp b;
fi

The if-then-elif-then-else-fi statement is used to

cascade the conditional execution of the program. Here is the
general form of an if-elif-else-fi statement:

if bool-expr1 then
 statement1;
elif bool-expr2 then

statement2;
elif bool-expr3 then

statement3;
else
 statement4;
fi

Just like in if-then-else-fi, the else clause is optional

here. Here is an actual example:
 if b = 0 then
 disp “b is 0”;
 elif b = 1 then
 disp “b is 1”;
 fi

5.2. Loop Statement

5.2.1. Counting Loop
The counting loop statement iterates over a vector -

a pre-defined collection of values. It is compact and
easy to read. Here is an example:

int r;
for r in {1; 2; 3; 4; 5} do
 #do something
rof

In the above example, ‘r’ traverses through 1 to 5.
Instructions are executed per r.

As a more useful example, the following code
traverse the rows in a matrix, with the help of built-in
function range() and rows():

suppose mat b is defined before

13

int r;
for r in range(1, rows(b)) do

#do something to b[r, 0]
rof

5.2.2. Conditional Loop
The conditional loop iterate until the given

condition becomes false. This is suitable for cases where
the condition itself can change in the loop. Here is the
general form:

for bool-expr do
 # do something
rof
The loop stops when the bool-expression returns

false.

5.3. Break and Continue Statement

5.3.1. Break Statement
The break statement can be used to terminate a for loop.
Here is an example:
for r in range(1, 5) do
if r > 4 then
 break ;
else
#do something
fi
rof

The above example exits the for loop by executing the
break statement when it finds r > 4.

5.3.2. Continue statement
The continue statement can be used in loops to

terminate an iteration of the loop and begin the next
iteration. Here is an example:
for r in range(1, 5) do

if r < 2 then
 continue;
else

#do something
fi

rof

The above example exits the iteration when it finds
r < 2 and jumps to the next iteration.

14

5.4. disp Statement
The keyword disp can print any variable (including literal) and
expression with a return value. The format is:

disp expr;
This will print the value of expression to stdout, in a pre-
defined pretty style.

6. Function

The function is a fundamental modular in BuckCal. A function is
usually designed to perform a specific task, and its name often
reflects that task.

BuckCal provide some built-in functions. Users can also define
their own functions.

6.1. Function Declarations
 A function declaration is to specify a function's return
value type, the name of function, and a list of types of
arguments. Here is the general form:
 [type] identifier(argument-list);
 Examples of function declaration:

 helper(int x);
 mat range(int, int);
 int cols(mat);

 The declaration begins with the return value type. If the
function returns nothing, then type is omitted. After that is
the function name (e.g. “range”). The list of argument is
between a pair of parentheses. Note that the names of formal
variables are optional. In fact, the names (if any) are
ignored, and only types take effect. Finally it ends with a
semicolon (“;”).

Function declaration can only be in the top level.

6.2. Function Definition
A function definition begins with a keyword def and a

declaration-similar part, which specifies the name of the
function, the argument list, and its return type. The
difference is argument list contains <type, identifier> pairs,
where the name of formal variables are must.

Keywords do and def wrap the function body. In the
function body is the declarations of local variables, and a
list of expressions and statements that determine what the
function does. Note that all variable declarations must appear
before any expressions and statements.

Here is the general form:
def [type] identifier(argument-list) do

15

 function-body
fed
A function definition cannot appear in another function’s

definition. That means it only exists in top-level code.
Recursion is allowed - a function can call it self in
definition.

6.3. Function Overloading
As is in C++, BuckCal allow functions have the same name,

as long as the number or types of arguments are not identical.
For example, some library functions are overloaded:
int cols(int mat);
int cols(double mat);
int cols(string mat);
The above three functions have the same name, same number

of argument, but type of arguments are different. Thus the
overloading is valid.

Note that overloading by difference in return value type
is not acceptable. That means user cannot define two functions
almost identical except in return value type.

6.4. Function Call
 BuckCal built-in functions can be called anywhere,

anytime in a program. User-defined function must be defined
first with a Function Definition before ready for calling.
Alternatively, user can write a Function Declaration before
invoking, but the function has to be implemented somewhere
else.

By default, BuckCal pass arguments by value. Specially,
mat (int mat, double mat, string mat) are passed by reference.

A type-call pattern for user-defined function is declared
it in the source file where it is invoked, but defined
somewhere else. Specially, BuckCal provide some library
functions, user can just include the declarations and then use
them.

6.5. Using Function in Other Files
To use functions defined in another source, a special

import command can be helpful. The general form is :
 import source-file-name
For example, to use functions defined in func.bc:
 import func
Then all functions in func.bc is available after import

command.

16

6.6. Built-in functions
See Appendix A.

7. Matrix Operation

Because of the complexity of matrix definition and
operation, here is a chapter especially for matrix.

7.1. Type of matrix
Accroding to the type of its elements, a matrix should be

one of the three sub-types: int mat, double mat, and string
mat. There is no “bool mat” type, which is meaningless. mat of
different sub-types are mostly similar.

7.2. Matrix definition
Matrix definition is much the same as other variable’s

definition. Here is an example: define an int mat named ax:
int mat ax : {1, 2, 3; 4, 5, 6; 7, 8, 9};

User will get a matrix ax like this:
1 2 3
4 5 6
7 8 9

Define a string mat:
string mat sx : {‘ab’, ‘cd’; ‘ef’, ‘gh’};

User will get a matrix sx like this:
‘ab’ ‘cd’
‘ef’ ‘gh’

A useful library function (in fact is a set of overloaded
functions) can initialize or re-initialize a matrix by column:
 double mat ax;

init_mat_col(ax, {‘a’, ‘b’, ‘c’});
ax becomes a 0*3 matrix, whose column names are ‘a’ ‘b’ ‘c’.
And initialize by row and column numbers:
 string mat sx;
 init_mat_col(sx, 5, 3);
sx becomes a 5*3 matrix.

7.3. Matrix accessing
 Operator [row, col] is for accessing a sub-matrix of a

matrix. row and col can be int or int mat, as usual. Note that
counting and indexing begins with 1 in BuckCal. So 0 refers to
all rows/ columns.
read element(s):

double a : ax[1, 2]; # we get a = 2
disp ax[1, 0]; # we get the 1st row of A.

17

disp ax[0, range(1,2)]; # we get the first 2 columns of
A.

write element(s):
ax[1, 2] : 4.0; # set (1st row, 2nd column) of A to 4.0
ax[1, 2] : {4.0}; # set (1st row, 2nd column) of A to 4.0
ax[1, 0] : range(1, (cols A));
set 1st row of A as 1, 2,...
Note that matrix can also be accessed by column/row names.

In this case, row and col can be string or string mat. A string
of row/column name is equivalent to an int of row/column
number.

 As a special case of matrix, vector can be accessed with
operator [index], since vector is a one-dimension structure. As
in mat, index can be an int/int mat or string/string mat.

7.4. Unit setting
By default, elements in matrix don’t have units. There a

two approaches to assign unit.
● Explicitly: The colunit function can set the unit for

every column in a matrix. For example:
colunit(mx, {‘lb’, ‘ft’});.

set unit for all two columns of mx. That implies cols(mx)
= 2; if not, a error generated.

colunit(mx[0, 2], {‘ft’});
set the unit of 2nd column of mx. Specificlly, the
following case is equavalent to previous one.

colunit(mx[1, 2], {‘ft’});
The row index is ignored.

To unset the column unit:
colunit(mx[0, range(1, 2)], {‘’, ‘’});

Now the unit of 2nd column is gone! Note: there is no
implicity way to remove units.
To reset the column unit to units in the same category,
just use colunit. 0 numbers are converted to new unit.

colunit(mx[0, 2], {‘m’});
To reset the column unit to units in the different
category: No direct way!

● Implicitly: The unit of a column is decided when first
assigned with “double with unit”. Be advised, once the
unit is set, the “category” of unit is also set. So if
“double with unit” is assigned to other elements of the
same column, the unit have to be in the same category.

18

Example:
mat mx : {1, 2; 3, 4; 1, 5} # now mx have no units

mx[2, 1] : {1kg};
the 1st column has unit ‘kg’, and category ‘weight’

mx[2, 1] : {2};
the 1st column still has unit ‘kg’

mx[1, 1] : {1lb};
In fact ‘lb’ is converted to ‘kg’.
Now mx{1, 1} = 0.45 , since 1lb = 0.45kg

mx[3, 1] : {1m};
Assignment fail! ‘m’ belongs to ‘length’, not ‘weight’

The column unit is a attribute of a matrix, as is name of

column. And the unit can be printed when disp a matrix:
 c1(kg) c2
r1 0.45 2
r2 2 4
r3 1 5

7.5. Other operations with unit
● mx : rowcat(mx1, mx2);

The units of corresponding columns in mx1 and mx2 should
be of the same unit. Otherwise a runtime error is raised.

● double a : mx[1, 1]; # a = 1
● mx[1, 2] : a; # mx[1, 2] = 1

When a double with unit assigned to a double, the unit
are dropped.

● mx : rowcat(mx1, mx2);
The units of corresponding columns in mx1 and mx2 should
be of the same unit. Otherwise a runtime error is raised.

● binary operations:
mx1[1, 0] + mx2[1, 0]; mx1[0, 1] - mx2[0, 2];
mx1[1, 0] * mx2[2, 0]; mx1[0, 1] - mx2[0, 1];

The units/names are dropped in result.

19

8. Sample Program

8.1. Hello-world style

function definition
def hello() do
 disp ‘hello’;
fed

top variable declaration
int a : 5;
int i : 0;
int x : 0;
int mat v ;
double b : 0.0;
string endstr : ‘End’ ;

top level code
hello();
for i do
 if i <= 5 do
 v : colcat(v, {i});
 i : i + 1;
 else
 break;
 fi
orf
for x in v do
 if x <= 2 then
 b : b + x*x;
 elif x <= 4 then
 b : b + x;
 else
 b : b + x/2.0;
 fi
orf
disp endstr;

8.2. Matrix operation

sum up rows! not using sum_row deliberately.
def double mat sum_up_rows(double mat mx) do
 int x;

20

 double mat s: range(1, cols(mx)) * 0.;
 for x in range(1, (rows mx)) do
 s: s+ mx[x, 0];
 orf
 return s;
fed

declare top variable(mat)
double mat budget;
double mat subdget;

initialize
init_mat_col(budget, {‘Food’, ‘Price’});
set unit of budget
colunit(budget[0, 1], {‘lb’});
add one row with naming
budget: addrows(budget, {1+1, 3.3}, {‘John’});
add one column and naming
budget: colcat({0}, budget);
colname(budget[0, 1], {‘Paper’});
add one row with naming
budget: addrows(budget, {250*2, 0, 5.10}, {‘Tom’});
summing
subdget: sum_up_rows(budget);
display
disp budget;

===
Note: The output of disp statement is as follows:
budget:

 Paper Food(lb) Price

John 0 2 3.3

Tom 500 0 5.10

21

Appendix A. BuckCal Library Function List

Built-in Functions
Matrix functions
int mat range(int x, int y);
 Return a column vector {x; x+1; … ; y}. If y < x, return {}
int mat ranger(int x, int y);
 Similar to range(), except that it returns a row vector.
int rows(int mat mx); int rows(double mat mx); int rows(string mat mx);
int cols(int mat mx); int cols(double mat mx); int cols(string mat mx);
 Return the number of rows/columns in matrix mx;
int mat rowcat(int mat mx1, int mat mx2); double mat rowcat(double mat mx1, double mat mx2); string
mat rowcat(string mat mx1, string mat mx2);
int mat colcat(int mat mx1, int mat mx2); double mat colcat(double mat mx1, double mat mx2);
string mat colcat(string mat mx1, string mat mx2);
 Return a new matrix looks like mx1 added all rows from mx2
 Return a new matrix looks like mx1 added all columns from mx2
colunit(double mat mx, string mat u);
 Set the units of every column of mx. u looks like {‘kg’, ‘m’, …}
rowame(int mat mx, string mat n); rowame(double mat mx, string mat n);
rowame(string mat mx, string mat n);
colname(mat mx, string mat n); colname(double mat mx, string mat n);
colname(string mat mx, string mat n);
 Set names of rows/columns in a matrix. n looks like {‘a’, ‘b’, …}.

The default value are ‘r1’, ‘r2’, … / ‘c1’, ‘c2’, ...
init_mat_col(int mat mx, string mat nc); init_mat_col(double mat mx, string mat nc);
init_mat_col(string mat mx, string mat nc);
 Reinitialize matrix ax as 0 rows and n columns. nc looks like {‘name’, ‘Age’, ‘...’, ...}.

n = cols(nC), and the names of columns are specified by nc.
init_mat_size(int mat mx, int nrow, int ncol); init_mat_size(double mat mx, int nrow, int ncol);
init_mat_size(string mat mx, int nrow, int ncol);

 Reinitialize matrix mx with nrow rows and ncol columns. nrow and ncol should be positive.
int mat addrows(int mat mx, int mat dr, string mat drn);
double mat addrows(double mx, double mat dr, string mat drn);
string addrows(string mx, string mat dr, string mat drn);

 Add rows in dr to mx, and naming the new added rows with drn. drn looks like {‘Tom’, ‘John’,
‘...’, ...}, and its length equals to the row number of dr.
note: the naming of this function is different “rowcat”, which begins with “row”. Because rowcat
is a buit-in function while addrows not.

Datatype Conversion Functions
string string_of_int(string x);
string string_of_double(string x);
int int_of_string(string x);
double double_of_string(string x);
int mat mat_int_of_string(string mat x);
double mat mat_double_of_string(string mat x);
string mat mat_double_of_double(double mat x);
string mat mat_double_of_int(int mat x);

String Functions
string slice(string x, int mat idx);

22

 Get a substring out of a string. idx looks like {1, 2, 3} or range(1, 3)
Math/Statistics Functions
double abs(double x);
double mat sum_row(double mat mx);
double mat sum_col(double mat mx);
 Return a vector, as the sum of rows/columns in mat mx.
double mat avg_row(double mat mx);
double mat avg_col(double mat mx);
 Return a vector, as the average of all rows/columns in mat mx.
double mat var_row(double mat mx);
 Return a row vector v, where v[i] is the variace of numbers in mx[0, i].
double mat var_col(double mat mx);
 Return a column vector v, where v[i] is the variace of numbers in mx[i, 0].

