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The Final

75 minutes

Closed book

One double-sided sheet of notes of your own devising

Comprehensive: Anything discussed in class is fair game,
including things from before the midterm

Little, if any, programming

Details of O’Caml/C/C++/Java syntax not required

Broad knowledge of languages discussed



Compiling a Simple Program

int gcd(int a, int b)
{
while (a != b) {
if (a > b) a -= b;
else b -= a;

}
return a;

}



What the Compiler Sees
int gcd(int a, int b)
{
while (a != b) {
if (a > b) a -= b;
else b -= a;

}
return a;

}

i n t sp g c d ( i n t sp a , sp i
n t sp b ) nl { nl sp sp w h i l e sp
( a sp ! = sp b ) sp { nl sp sp sp sp i
f sp ( a sp > sp b ) sp a sp - = sp b
; nl sp sp sp sp e l s e sp b sp - = sp
a ; nl sp sp } nl sp sp r e t u r n sp
a ; nl } nl

Text file is a sequence of characters



Lexical Analysis Gives Tokens

int gcd(int a, int b)
{
while (a != b) {
if (a > b) a -= b;
else b -= a;

}
return a;

}

int gcd ( int a , int b ) { while ( a

!= b ) { if ( a > b ) a -= b ; else

b -= a ; } return a ; }

A stream of tokens. Whitespace, comments removed.



Parsing Gives an Abstract Syntax Tree

func

int gcd args

arg

int a

arg

int b

seq

while

!=

a b

if

>

a b

-=

a b

-=

b a

return

a

int gcd(int a, int b)
{
while (a != b) {
if (a > b) a -= b;
else b -= a;

}
return a;

}



Semantic Analysis Resolves Symbols and Checks
Types

Symbol Table

int a

int b

func

int gcd args

arg

int a

arg

int b

seq

while

!=

a b

if

>

a b

-=

a b

-=

b a

return

a



Translation into 3-Address Code

L0: sne $1, a, b
seq $0, $1, 0
btrue $0, L1 # while (a != b)
sl $3, b, a
seq $2, $3, 0
btrue $2, L4 # if (a < b)
sub a, a, b # a -= b
jmp L5

L4: sub b, b, a # b -= a
L5: jmp L0
L1: ret a

int gcd(int a, int b)
{
while (a != b) {
if (a > b) a -= b;
else b -= a;

}
return a;

}

Idealized assembly language w/
infinite registers



Generation of 80386 Assembly

gcd: pushl %ebp # Save BP
movl %esp,%ebp
movl 8(%ebp),%eax # Load a from stack
movl 12(%ebp),%edx # Load b from stack

.L8: cmpl %edx,%eax
je .L3 # while (a != b)
jle .L5 # if (a < b)
subl %edx,%eax # a -= b
jmp .L8

.L5: subl %eax,%edx # b -= a
jmp .L8

.L3: leave # Restore SP, BP
ret



Describing Tokens

Alphabet: A finite set of symbols

Examples: { 0, 1 }, { A, B, C, . . . , Z }, ASCII, Unicode

String: A finite sequence of symbols from an alphabet

Examples: ε (the empty string), Stephen, αβγ

Language: A set of strings over an alphabet

Examples: ; (the empty language), { 1, 11, 111, 1111 }, all
English words, strings that start with a letter followed by
any sequence of letters and digits



Operations on Languages

Let L = { ε, wo }, M = { man, men }

Concatenation: Strings from one followed by the other

LM = { man, men, woman, women }

Union: All strings from each language

L∪M = {ε, wo, man, men }

Kleene Closure: Zero or more concatenations

M∗ = {ε}∪M ∪M M ∪M M M · · · =
{ε, man, men, manman, manmen, menman, menmen,
manmanman, manmanmen, manmenman, . . . }



Regular Expressions over an Alphabet Σ

A standard way to express languages for tokens.

1. ε is a regular expression that denotes {ε}

2. If a ∈Σ, a is an RE that denotes {a}

3. If r and s denote languages L(r ) and L(s),
Ï (r ) | (s) denotes L(r )∪L(s)
Ï (r )(s) denotes {tu : t ∈ L(r ),u ∈ L(s)}
Ï (r )∗ denotes ∪∞

i=0Li (L0 = {ε} and Li = LLi−1)



Nondeterministic Finite Automata

“All strings containing
an even number of 0’s
and 1’s”

A B

C D

0

0
11

0

0
1 1

1. Set of states

S :

{
A B C D

}
2. Set of input symbols Σ : {0,1}
3. Transition function σ : S×Σε → 2S

state ε 0 1
A ; {B} {C }
B ; {A} {D}
C ; {D} {A}
D ; {C } {B}

4. Start state s0 : A

5. Set of accepting states

F :

{
A

}



The Language induced by an NFA

An NFA accepts an input string x iff there is a path from the
start state to an accepting state that “spells out” x.

A B

C D

0

0
11

0

0
1 1

Show that the string “010010” is accepted.

A B D C D B A
0 1 0 0 1 0



Translating REs into NFAs

a
a

Symbol

r1r2
r1 r2r1 Sequence

r1 | r2

r1

r2

ε

ε

ε

ε

Choice

(r )∗ rε ε

ε

ε

Kleene Closure



Translating REs into NFAs

Example: Translate (a | b)∗abb into an NFA. Answer:

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

Show that the string “aabb” is accepted. Answer:

0 1 2 3 6 7 8 9 10
ε ε a ε ε a b b



Simulating NFAs

Problem: you must follow the “right” arcs to show that a
string is accepted. How do you know which arc is right?

Solution: follow them all and sort it out later.

“Two-stack” NFA simulation algorithm:

1. Initial states: the ε-closure of the start state
2. For each character c,

Ï New states: follow all transitions labeled c
Ï Form the ε-closure of the current states

3. Accept if any final state is accepting



Simulating an NFA: ·aabb, Start

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε



Simulating an NFA: a·abb

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε



Simulating an NFA: aa·bb

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε



Simulating an NFA: aab·b

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε



Simulating an NFA: aabb·, Done

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε



Deterministic Finite Automata

Restricted form of NFAs:

Ï No state has a transition on ε

Ï For each state s and symbol a, there is at most one edge
labeled a leaving s.

Differs subtly from the definition used in COMS W3261
(Sipser, Introduction to the Theory of Computation)

Very easy to check acceptance: simulate by maintaining
current state. Accept if you end up on an accepting state.
Reject if you end on a non-accepting state or if there is no
transition from the current state for the next symbol.



Deterministic Finite Automata

{
type token = ELSE | ELSEIF

}

rule token =
parse "else" { ELSE }

| "elseif" { ELSEIF }

e l s e i f



Deterministic Finite Automata

{ type token = IF | ID of string | NUM of string }

rule token =
parse "if" { IF }

| [’a’-’z’] [’a’-’z’ ’0’-’9’]* as lit { ID(lit) }
| [’0’-’9’]+ as num { NUM(num) }

NUM

ID IF

ID

0–9

i

a–hj–z

f

a–z0–9

a–eg–z0–9

0–9

a–z0–9



Building a DFA from an NFA

Subset construction algorithm

Simulate the NFA for all possible inputs and track the states
that appear.

Each unique state during simulation becomes a state in the
DFA.



Subset construction for (a | b)∗abb

a

b

a

b

b

a

a

ba

b



Subset construction for (a | b)∗abb

a

b

a

b

b

a

a

ba

b



Subset construction for (a | b)∗abb

a

b

a

b

b

a

a

ba

b



Subset construction for (a | b)∗abb

a

b

a

b

b

a

a

b

a

b



Subset construction for (a | b)∗abb

a

b

a

b

b

a

a

ba

b



Result of subset construction for (a | b)∗abb

a

b

a
b

b

a

a

ba

b

Is this minimal?



Ambiguous Arithmetic

Ambiguity can be a problem in expressions. Consider
parsing

3 - 4 * 2 + 5

with the grammar

e → e +e | e −e | e ∗e | e /e | N

+

-

3 *

4 2

5

-

3 +

*

4 2

5

*

-

3 4

+

2 5

-

3 *

4 +

2 5

-

*

+

3 4

2

5



Operator Precedence

Defines how “sticky” an operator is.

1 * 2 + 3 * 4

* at higher precedence than +:

(1 * 2) + (3 * 4)

+

*

1 2

*

3 4

+ at higher precedence than *:

1 * (2 + 3) * 4

*

*

1 +

2 3

4



Associativity
Whether to evaluate left-to-right or right-to-left

Most operators are left-associative

1 - 2 - 3 - 4

-

-

-

1 2

3

4

-

1 -

2 -

3 4

((1−2)−3)−4 1− (2− (3−4))

left associative right associative



Fixing Ambiguous Grammars

A grammar specification:

expr :
expr PLUS expr

| expr MINUS expr
| expr TIMES expr
| expr DIVIDE expr
| NUMBER

Ambiguous: no precedence or associativity.

Ocamlyacc’s complaint: “16 shift/reduce conflicts.”



Assigning Precedence Levels

Split into multiple rules, one per level

expr : expr PLUS expr
| expr MINUS expr
| term

term : term TIMES term
| term DIVIDE term
| atom

atom : NUMBER

Still ambiguous: associativity not defined

Ocamlyacc’s complaint: “8 shift/reduce conflicts.”



Assigning Associativity

Make one side the next level of precedence

expr : expr PLUS term
| expr MINUS term
| term

term : term TIMES atom
| term DIVIDE atom
| atom

atom : NUMBER

This is left-associative.

No shift/reduce conflicts.



Rightmost Derivation of Id∗ Id+ Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e

t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

At each step, expand the rightmost nonterminal.

nonterminal

“handle”: The right side of a production

Fun and interesting fact: there is exactly one rightmost
expansion if the grammar is unambigious.



Rightmost Derivation: What to Expand

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e
t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

Expand here ↑Terminals only

e

t + e

t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id



Reverse Rightmost Derivation

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e
t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

viable prefixes terminals

Id ∗ Id+ Id Id

tId ∗ t + Id ∗Id

tt + Id Id

tt + t

et + e

e

+
e



Shift/Reduce Parsing Using an Oracle

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e
t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

stack input

Id ∗ Id+ Id shift
Id ∗ Id+ Id shift

Id ∗ Id+ Id shift
Id ∗ Id+ Id reduce 4
Id ∗ t + Id reduce 3

t + Id shift
t + Id shift

t + Id reduce 4
t + t reduce 2
t + e reduce 1

e accept



Handle Hunting

Right Sentential Form: any step in a rightmost derivation

Handle: in a sentential form, a RHS of a rule that, when
rewritten, yields the previous step in a rightmost derivation.

The big question in shift/reduce parsing:

When is there a handle on the top of the stack?

Enumerate all the right-sentential forms and pattern-match
against them? Usually infinite in number, but let’s try
anyway.



The Handle-Identifying Automaton
Magical result, due to Knuth: An automaton suffices to
locate a handle in a right-sentential form.

Id∗ Id∗·· ·∗ Id∗ t · · ·
Id∗ Id∗·· ·∗ Id · · ·
t + t +·· ·+ t +e

t + t +·· ·+ t+ Id

t + t +·· ·+ t + Id∗ Id∗·· ·∗ Id∗ t

t + t +·· ·+ t

Id

t

Id∗ t

t +e

e

t

+t

e

Id
Id

∗Id

t

e



Building the Initial State of the LR(0) Automaton

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e ′ →·e

e →·t +e
e →·t
t →·Id∗ t
t →·Id

Key idea: automata identify viable prefixes of right
sentential forms. Each state is an equivalence class of
possible places in productions.

At the beginning, any viable prefix must be at the
beginning of a string expanded from e. We write this
condition “e ′ →·e”

There are two choices for what an e may expand to: t +e
and t . So when e ′ →·e, e →·t +e and e →·t are also true, i.e.,
it must start with a string expanded from t .

Similarly, t must be either Id∗ t or Id, so t →·Id∗ t and t →·Id.

This reasoning is a closure operation like ε-closure in subset
construction.
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Building the LR(0) Automaton

S0 :

e ′ →·e
e →·t +e
e →·t
t →·Id∗ t
t →·Id

S1 :
t → Id ·∗t
t → Id·

S7 : e ′ → e·

S2 :
e → t ·+e
e → t ·

e

Id

t

S3 :
t → Id∗·t

t →·Id∗ t
t →·Id

S4 :

e → t +·e

e →·t +e
e →·t
t →·Id∗ t
t →·Id

∗

+

S5 : t → Id∗ t ·t

Id

S6 : e → t +e·

t

Id e

“Just passed a
prefix ending in
a string derived
from t”

“Just passed a
prefix that ended
in an Id”

“Just passed
a string de-
rived from
e”

The first state suggests a
viable prefix can start as any
string derived from e, any
string derived from t , or Id.

The items for these three
states come from advancing
the · across each thing, then
performing the closure
operation (vacuous here).
In S2, a + may be next. This
gives t +·e.

Closure adds 4
more items.

In S1, ∗ may be next, giving
Id∗·t

and two others.
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Converting the LR(0) Automaton to an SLR Parsing
Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2

1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

From S0, shift an Id and go to S1;
or cross a t and go to S2; or cross
an e and go to S7.



Converting the LR(0) Automaton to an SLR Parsing
Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4

2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

From S1, shift a ∗ and go to S3;
or, if the next input could follow
a t , reduce by rule 4. According
to rule 1, + could follow t ; from
rule 2, $ could.



Converting the LR(0) Automaton to an SLR Parsing
Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2

3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

From S2, shift a + and go to S4;
or, if the next input could follow
an e (only the end-of-input $),
reduce by rule 2.



Converting the LR(0) Automaton to an SLR Parsing
Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5

4 s1 6 2
5 r3 r3
6 r1
7 X

From S3, shift an Id and go to S1;
or cross a t and go to S5.



Converting the LR(0) Automaton to an SLR Parsing
Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2

5 r3 r3
6 r1
7 X

From S4, shift an Id and go to S1;
or cross an e or a t .



Converting the LR(0) Automaton to an SLR Parsing
Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3

6 r1
7 X

From S5, reduce using rule 3 if
the next symbol could follow a t
(again, + and $).



Converting the LR(0) Automaton to an SLR Parsing
Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1

7 X

From S6, reduce using rule 1 if
the next symbol could follow an
e ($ only).



Converting the LR(0) Automaton to an SLR Parsing
Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

If, in S7, we just crossed an e,
accept if we are at the end of
the input.



Shift/Reduce Parsing with an SLR Table

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Stack Input Action

0 Id∗ Id+ Id$ Shift, goto 1

Look at the state on top of the
stack and the next input token.

Find the action (shift, reduce, or
error) in the table.

In this case, shift the token onto
the stack and mark it with state 1.

0 Id
1 ∗ Id+ Id$ Shift, goto 3

0 Id
1

∗
3 Id+ Id$ Shift, goto 1

0 Id
1

∗
3

Id
1 + Id$ Reduce 4

0 Id
1

∗
3

t
5 + Id$

Reduce 3

0
t
2 + Id$ Shift, goto 4

0
t
2

+
4 Id$ Shift, goto 1

0
t
2

+
4

Id
1 $ Reduce 4

0
t
2

+
4

t
2 $ Reduce 2

0
t
2

+
4

e
6 $ Reduce 1

0
e
7 $ Accept



Shift/Reduce Parsing with an SLR Table

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Stack Input Action

0 Id∗ Id+ Id$ Shift, goto 1

0 Id
1 ∗ Id+ Id$ Shift, goto 3

Here, the state is 1, the next
symbol is ∗, so shift and mark it
with state 3.

0 Id
1

∗
3 Id+ Id$ Shift, goto 1

0 Id
1

∗
3

Id
1 + Id$ Reduce 4

0 Id
1

∗
3

t
5 + Id$

Reduce 3

0
t
2 + Id$ Shift, goto 4

0
t
2

+
4 Id$ Shift, goto 1

0
t
2

+
4

Id
1 $ Reduce 4

0
t
2

+
4

t
2 $ Reduce 2

0
t
2

+
4

e
6 $ Reduce 1

0
e
7 $ Accept



Shift/Reduce Parsing with an SLR Table

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Stack Input Action

0 Id∗ Id+ Id$ Shift, goto 1

0 Id
1 ∗ Id+ Id$ Shift, goto 3

0 Id
1

∗
3 Id+ Id$ Shift, goto 1

0 Id
1

∗
3

Id
1 + Id$ Reduce 4

Here, the state is 1, the next
symbol is +. The table says reduce
using rule 4.

0 Id
1

∗
3

t
5 + Id$

Reduce 3

0
t
2 + Id$ Shift, goto 4

0
t
2

+
4 Id$ Shift, goto 1

0
t
2

+
4

Id
1 $ Reduce 4

0
t
2

+
4

t
2 $ Reduce 2

0
t
2

+
4

e
6 $ Reduce 1

0
e
7 $ Accept



Shift/Reduce Parsing with an SLR Table

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Stack Input Action

0 Id∗ Id+ Id$ Shift, goto 1

0 Id
1 ∗ Id+ Id$ Shift, goto 3

0 Id
1

∗
3 Id+ Id$ Shift, goto 1

0 Id
1

∗
3

Id
1 + Id$ Reduce 4

0 Id
1

∗
3

t
5

+ Id$

Reduce 3

Remove the RHS of the rule (here,
just Id), observe the state on the
top of the stack, and consult the
“goto” portion of the table.

0
t
2 + Id$ Shift, goto 4

0
t
2

+
4 Id$ Shift, goto 1

0
t
2

+
4

Id
1 $ Reduce 4

0
t
2

+
4

t
2 $ Reduce 2

0
t
2

+
4

e
6 $ Reduce 1

0
e
7 $ Accept



Shift/Reduce Parsing with an SLR Table

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Stack Input Action

0 Id∗ Id+ Id$ Shift, goto 1

0 Id
1 ∗ Id+ Id$ Shift, goto 3

0 Id
1

∗
3 Id+ Id$ Shift, goto 1

0 Id
1

∗
3

Id
1 + Id$ Reduce 4

0 Id
1

∗
3

t
5 + Id$ Reduce 3

Here, we push a t with state 5.
This effectively “backs up” the
LR(0) automaton and runs it over
the newly added nonterminal.

In state 5 with an upcoming +,
the action is “reduce 3.”

0
t
2 + Id$ Shift, goto 4

0
t
2

+
4 Id$ Shift, goto 1

0
t
2

+
4

Id
1 $ Reduce 4

0
t
2

+
4

t
2 $ Reduce 2

0
t
2

+
4

e
6 $ Reduce 1

0
e
7 $ Accept



Shift/Reduce Parsing with an SLR Table

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Stack Input Action

0 Id∗ Id+ Id$ Shift, goto 1

0 Id
1 ∗ Id+ Id$ Shift, goto 3

0 Id
1

∗
3 Id+ Id$ Shift, goto 1

0 Id
1

∗
3

Id
1 + Id$ Reduce 4

0 Id
1

∗
3

t
5 + Id$ Reduce 3

0
t
2 + Id$ Shift, goto 4

This time, we strip off the RHS for
rule 3, Id∗ t , exposing state 0, so
we push a t with state 2.

0
t
2

+
4 Id$ Shift, goto 1

0
t
2

+
4

Id
1 $ Reduce 4

0
t
2

+
4

t
2 $ Reduce 2

0
t
2

+
4

e
6 $ Reduce 1

0
e
7 $ Accept



Shift/Reduce Parsing with an SLR Table

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Stack Input Action

0 Id∗ Id+ Id$ Shift, goto 1

0 Id
1 ∗ Id+ Id$ Shift, goto 3

0 Id
1

∗
3 Id+ Id$ Shift, goto 1

0 Id
1

∗
3

Id
1 + Id$ Reduce 4

0 Id
1

∗
3

t
5 + Id$ Reduce 3

0
t
2 + Id$ Shift, goto 4

0
t
2

+
4 Id$ Shift, goto 1

0
t
2

+
4

Id
1 $ Reduce 4

0
t
2

+
4

t
2 $ Reduce 2

0
t
2

+
4

e
6 $ Reduce 1

0
e
7 $ Accept



Types

A restriction on the possible interpretations of a segment of
memory or other program construct.

Two uses:

Safety: avoids data being treated
as something it isn’t

Optimization: eliminates certain
runtime decisions



Types of Types

Type Examples

Basic Machine words, floating-point numbers,
addresses/pointers

Aggregate Arrays, structs, classes

Function Function pointers, lambdas



Basic Types

Groups of data the processor is designed to operate on.

On an ARM processor,

Type Width (bits)

Unsigned/two’s-complement binary

Byte 8
Halfword 16
Word 32

IEEE 754 Floating Point

Single-Precision scalars & vectors 32, 64, .., 256
Double-Precision scalars & vectors 64, 128, 192, 256



Derived types

Array: a list of objects of the same type, often fixed-length

Record: a collection of named fields, often of different types

Pointer/References: a reference to another object

Function: a reference to a block of code



C’s Declarations and Declarators

Declaration: list of specifiers followed by a
comma-separated list of declarators.

static unsigned

basic type︷︸︸︷
int︸ ︷︷ ︸

specifiers

(*f[10])(int, char*);︸ ︷︷ ︸
declarator

Declarator’s notation matches that of an expression: use it
to return the basic type.

Largely regarded as the worst syntactic aspect of C: both
pre- (pointers) and post-fix operators (arrays, functions).



Structs

Structs are the precursors of objects:

Group and restrict what can be stored in an object, but not
what operations they permit.

Can fake object-oriented programming:

struct poly { ... };

struct poly *poly_create();
void poly_destroy(struct poly *p);
void poly_draw(struct poly *p);
void poly_move(struct poly *p, int x, int y);
int poly_area(struct poly *p);



Unions: Variant Records

A struct holds all of its fields at once. A union holds only
one of its fields at any time (the last written).

union token {
int i;
float f;
char *string;

};

union token t;
t.i = 10;
t.f = 3.14159; /* overwrite t.i */
char *s = t.string; /* return gibberish */



Applications of Variant Records

A primitive form of polymorphism:

struct poly {
int x, y;
int type;
union { int radius;

int size;
float angle; } d;

};

If poly.type == CIRCLE, use poly.d.radius.

If poly.type == SQUARE, use poly.d.size.

If poly.type == LINE, use poly.d.angle.



Name vs. Structural Equivalence

struct f {
int x, y;

} foo = { 0, 1 };

struct b {
int x, y;

} bar;

bar = foo;

Is this legal in C? Should it be?



Type Expressions

C’s declarators are unusual: they always specify a name
along with its type.

Languages more often have type expressions: a grammar
for expressing a type.

Type expressions appear in three places in C:

(int *) a /* Type casts */
sizeof(float [10]) /* Argument of sizeof() */
int f(int, char *, int (*)(int)) /* Function argument types */



Static Semantic Analysis

Lexical analysis: Make sure tokens are valid

if i 3 "This" /* valid Java tokens */
#a1123 /* not a token */

Syntactic analysis: Makes sure tokens appear in correct order

for ( i = 1 ; i < 5 ; i++ ) 3 + "foo"; /* valid Java syntax */
for break /* invalid syntax */

Semantic analysis: Makes sure program is consistent

int v = 42 + 13; /* valid in Java (if v is new) */
return f + f(3); /* invalid */



What To Check

Examples from Java:

Verify names are defined and are of the right type.

int i = 5;
int a = z; /* Error: cannot find symbol */
int b = i[3]; /* Error: array required, but int found */

Verify the type of each expression is consistent.

int j = i + 53;
int k = 3 + "hello"; /* Error: incompatible types */
int l = k(42); /* Error: k is not a method */
if ("Hello") return 5; /* Error: incompatible types */
String s = "Hello";
int m = s; /* Error: incompatible types */



How To Check: Depth-first AST Walk

Checking function: environment → node → type

1 - 5

-

1 5

check(-)
check(1) = int
check(5) = int
Success: int − int = int

1 + "Hello"

+

1 "Hello"

check(+)
check(1) = int
check("Hello") = string
FAIL: Can’t add int and string

Ask yourself: at each kind of node, what must be true
about the nodes below it? What is the type of the node?



How To Check: Symbols
Checking function: environment → node → type

1 + a

+

1 a

check(+)
check(1) = int
check(a) = int
Success: int + int = int

The key operation: determining the type of a symbol when
it is encountered.

The environment provides a “symbol table” that holds
information about each in-scope symbol.



Basic Static Scope in C, C++, Java, etc.

A name begins life where it is
declared and ends at the end
of its block.

From the CLRM, “The scope
of an identifier declared at
the head of a block begins at
the end of its declarator, and
persists to the end of the
block.”

void foo()
{

int x;

}



Hiding a Definition

Nested scopes can hide earlier
definitions, giving a hole.

From the CLRM, “If an
identifier is explicitly declared
at the head of a block,
including the block
constituting a function, any
declaration of the identifier
outside the block is
suspended until the end of
the block.”

void foo()
{

int x;

while ( a < 10 ) {
int x;

}

}



Static Scoping in Java

public void example() {
// x, y, z not visible

int x;
// x visible

for ( int y = 1 ; y < 10 ; y++ ) {
// x, y visible

int z;
// x, y, z visible

}

// x visible
}



Basic Static Scope in O’Caml

A name is bound after the
“in” clause of a “let.” If the
name is re-bound, the
binding takes effect after the
“in.”

let x = 8 in

let x = x + 1 in

Returns the pair (12, 8):
let x = 8 in

(let x = x + 2 in
x + 2),

x



Let Rec in O’Caml

The “rec” keyword makes a
name visible to its definition.
This only makes sense for
functions.

let rec fib i =
if i < 1 then 1 else

fib (i-1) + fib (i-2)
in

fib 5

(* Nonsensical *)
let rec x = x + 3 in



Let...and in O’Caml

Let...and lets you bind
multiple names at once.
Definitions are not mutually
visible unless marked “rec.”

let x = 8
and y = 9 in

let rec fac n =
if n < 2 then

1
else

n * fac1 n
and fac1 n = fac (n - 1)
in
fac 5



Nesting Function Definitions

let articles words =

let report w =

let count = List.length
(List.filter ((=) w) words)

in w ^ ": " ^
string_of_int count

in String.concat ", "
(List.map report ["a"; "the"])

in articles
["the"; "plt"; "class"; "is";
"a"; "pain"; "in";
"the"; "butt"]

let count words w = List.length
(List.filter ((=) w) words) in

let report words w = w ^ ": " ^
string_of_int (count words w) in

let articles words =
String.concat ", "
(List.map (report words)
["a"; "the"]) in

articles
["the"; "plt"; "class"; "is";
"a"; "pain"; "in";
"the"; "butt"]

Produces “a: 1, the: 2”



Applicative- and Normal-Order Evaluation
int p(int i) {

printf("%d ", i);
return i;

}

void q(int a, int b, int c)
{
int total = a;
printf("%d ", b);
total += c;

}

q( p(1), 2, p(3) );

What does this print?

Applicative: arguments evaluated before function is called.

Result: 1 3 2

Normal: arguments evaluated when used.

Result: 1 2 3



Applicative- vs. and Normal-Order

Most languages use applicative order.

Macro-like languages often use normal order.

#define p(x) (printf("%d ",x), x)

#define q(a,b,c) total = (a), \
printf("%d ", (b)), \
total += (c)

q( p(1), 2, p(3) );

Prints 1 2 3.

Some functional languages also use normal order
evaluation to avoid doing work. “Lazy Evaluation”



Storage Classes and Memory Layout

Code

StaticStatic: objects allocated at compile
time; persist throughout run

Heap
Heap: objects created/destroyed in
any order; automatic garbage
collection optional

Program
break

Stack
Stack: objects created/destroyed in
last-in, first-out order

Stack
pointer

Low
memory

High
memory



Static Objects

class Example {
public static final int a = 3;

public void hello() {
System.out.println("Hello");

}
}

Examples

Static class variable

Code for hello method

String constant “Hello”

Information about the
Example class

Advantages

Zero-cost memory
management

Often faster access (address a
constant)

No out-of-memory danger

Disadvantages

Size and number must be
known beforehand

Wasteful if sharing is possible



Stack-Allocated Objects

Natural for supporting recursion.

Idea: some objects persist from when a procedure is called
to when it returns.

Naturally implemented with a stack: linear array of memory
that grows and shrinks at only one boundary.

Each invocation of a procedure gets its own frame
(activation record) where it stores its own local variables
and bookkeeping information.



An Activation Record: The State Before Calling bar

int foo(int a, int b) {
int c, d;
bar(1, 2, 3);

}

From Callerb
a

Return addr.
Old frame ptr.

Registers

c
d
3
2
1

Frame Ptr.

Stack Ptr.



Recursive Fibonacci
(Real C)
int fib(int n) {

if (n<2)

return 1;
else
return

fib(n-1)
+
fib(n-2);

}

(Assembly-like C)
int fib(int n) {

int tmp1, tmp2, tmp3;
tmp1 = n < 2;
if (!tmp1) goto L1;
return 1;

L1: tmp1 = n - 1;
tmp2 = fib(tmp1);

L2: tmp1 = n - 2;
tmp3 = fib(tmp1);

L3: tmp1 = tmp2 + tmp3;
return tmp1;

}

fib(3)

fib(2)

fib(1) fib(0)

fib(1)



Executing fib(3)

int fib(int n) {
int tmp1, tmp2, tmp3;
tmp1 = n < 2;
if (!tmp1) goto L1;
return 1;

L1: tmp1 = n - 1;
tmp2 = fib(tmp1);

L2: tmp1 = n - 2;
tmp3 = fib(tmp1);

L3: tmp1 = tmp2 + tmp3;
return tmp1;

}

n = 3
SP



Executing fib(3)

int fib(int n) {
int tmp1, tmp2, tmp3;
tmp1 = n < 2;
if (!tmp1) goto L1;
return 1;

L1: tmp1 = n - 1;
tmp2 = fib(tmp1);

L2: tmp1 = n - 2;
tmp3 = fib(tmp1);

L3: tmp1 = tmp2 + tmp3;
return tmp1;

}

n = 3

return address
last frame pointer
tmp1 = 2
tmp2 =
tmp3 =
n = 2

FP

SP



Executing fib(3)

int fib(int n) {
int tmp1, tmp2, tmp3;
tmp1 = n < 2;
if (!tmp1) goto L1;
return 1;

L1: tmp1 = n - 1;
tmp2 = fib(tmp1);

L2: tmp1 = n - 2;
tmp3 = fib(tmp1);

L3: tmp1 = tmp2 + tmp3;
return tmp1;

}

n = 3

return address
last frame pointer
tmp1 = 2
tmp2 =
tmp3 =
n = 2

return address
last frame pointer
tmp1 = 1
tmp2 =
tmp3 =
n = 1

FP

SP



Executing fib(3)

int fib(int n) {
int tmp1, tmp2, tmp3;
tmp1 = n < 2;
if (!tmp1) goto L1;
return 1;

L1: tmp1 = n - 1;
tmp2 = fib(tmp1);

L2: tmp1 = n - 2;
tmp3 = fib(tmp1);

L3: tmp1 = tmp2 + tmp3;
return tmp1;

}

n = 3

return address
last frame pointer
tmp1 = 2
tmp2 =
tmp3 =
n = 2

return address
last frame pointer
tmp1 = 1
tmp2 =
tmp3 =
n = 1

return address
last frame pointer
tmp1 = 1
tmp2 =
tmp3 =

FP

SP



Executing fib(3)

int fib(int n) {
int tmp1, tmp2, tmp3;
tmp1 = n < 2;
if (!tmp1) goto L1;
return 1;

L1: tmp1 = n - 1;
tmp2 = fib(tmp1);

L2: tmp1 = n - 2;
tmp3 = fib(tmp1);

L3: tmp1 = tmp2 + tmp3;
return tmp1;

}

n = 3

return address
last frame pointer
tmp1 = 2
tmp2 =
tmp3 =
n = 2

return address
last frame pointer
tmp1 = 0
tmp2 = 1
tmp3 =
n = 0

FP

SP



Executing fib(3)

int fib(int n) {
int tmp1, tmp2, tmp3;
tmp1 = n < 2;
if (!tmp1) goto L1;
return 1;

L1: tmp1 = n - 1;
tmp2 = fib(tmp1);

L2: tmp1 = n - 2;
tmp3 = fib(tmp1);

L3: tmp1 = tmp2 + tmp3;
return tmp1;

}

n = 3

return address
last frame pointer
tmp1 = 2
tmp2 =
tmp3 =
n = 2

return address
last frame pointer
tmp1 = 0
tmp2 = 1
tmp3 =
n = 0

return address
last frame pointer
tmp1 = 1
tmp2 =
tmp3 =

FP

SP



Executing fib(3)

int fib(int n) {
int tmp1, tmp2, tmp3;
tmp1 = n < 2;
if (!tmp1) goto L1;
return 1;

L1: tmp1 = n - 1;
tmp2 = fib(tmp1);

L2: tmp1 = n - 2;
tmp3 = fib(tmp1);

L3: tmp1 = tmp2 + tmp3;
return tmp1;

}

n = 3

return address
last frame pointer
tmp1 = 2
tmp2 =
tmp3 =
n = 2

return address
last frame pointer
tmp1 = 2
tmp2 = 1
tmp3 = 1

FP
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Executing fib(3)

int fib(int n) {
int tmp1, tmp2, tmp3;
tmp1 = n < 2;
if (!tmp1) goto L1;
return 1;

L1: tmp1 = n - 1;
tmp2 = fib(tmp1);

L2: tmp1 = n - 2;
tmp3 = fib(tmp1);

L3: tmp1 = tmp2 + tmp3;
return tmp1;

}

n = 3
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tmp3 =
n = 1
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Executing fib(3)

int fib(int n) {
int tmp1, tmp2, tmp3;
tmp1 = n < 2;
if (!tmp1) goto L1;
return 1;

L1: tmp1 = n - 1;
tmp2 = fib(tmp1);

L2: tmp1 = n - 2;
tmp3 = fib(tmp1);

L3: tmp1 = tmp2 + tmp3;
return tmp1;

}

n = 3

return address
last frame pointer
tmp1 = 3← result
tmp2 = 2
tmp3 = 1

FP

SP



Allocating Fixed-Size Arrays

Local arrays with fixed size are easy to stack.

void foo()
{
int a;
int b[10];
int c;

}

return address ← FP
a

b[9]
...

b[0]
c ← FP − 48



Allocating Variable-Sized Arrays

Variable-sized local arrays aren’t as easy.

void foo(int n)
{
int a;
int b[n];
int c;

}

return address ← FP
a

b[n-1]
...

b[0]
c ← FP − ?

Doesn’t work: generated code expects a fixed offset for c.
Even worse for multi-dimensional arrays.



Allocating Variable-Sized Arrays

As always:
add a level of indirection

void foo(int n)
{
int a;
int b[n];
int c;

}

return address ← FP
a

b-ptr

c
b[n-1]

...
b[0]

Variables remain constant offset from frame pointer.



Nesting Function Definitions

let articles words =

let report w =

let count = List.length
(List.filter ((=) w) words)

in w ^ ": " ^
string_of_int count

in String.concat ", "
(List.map report ["a"; "the"])

in articles
["the"; "plt"; "class"; "is";
"a"; "pain"; "in";
"the"; "butt"]

let count words w = List.length
(List.filter ((=) w) words) in

let report words w = w ^ ": " ^
string_of_int (count words w) in

let articles words =
String.concat ", "
(List.map (report words)
["a"; "the"]) in

articles
["the"; "plt"; "class"; "is";
"a"; "pain"; "in";
"the"; "butt"]

Produces “a: 1, the: 2”



Implementing Nested Functions with Access Links

let a x s =

let b y =

let c z = z + s in

let d w = c (w+1) in

d (y+1) in (* b *)

let e q = b (q+1) in

e (x+1) (* a *)

What does “a 5 42” give?

(access link)
x = 5
s = 42

a:
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let b y =

let c z = z + s in

let d w = c (w+1) in

d (y+1) in (* b *)

let e q = b (q+1) in

e (x+1) (* a *)

What does “a 5 42” give?

(access link)
x = 5
s = 42

a:
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Implementing Nested Functions with Access Links

let a x s =

let b y =

let c z = z + s in

let d w = c (w+1) in

d (y+1) in (* b *)

let e q = b (q+1) in

e (x+1) (* a *)

What does “a 5 42” give?

(access link)
x = 5
s = 42

a:

(access link)
q = 6

e:

(access link)
y = 7b:

(access link)
w = 8
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Implementing Nested Functions with Access Links

let a x s =

let b y =

let c z = z + s in

let d w = c (w+1) in

d (y+1) in (* b *)

let e q = b (q+1) in

e (x+1) (* a *)

What does “a 5 42” give?

(access link)
x = 5
s = 42

a:

(access link)
q = 6

e:

(access link)
y = 7b:

(access link)
w = 8

d:

(access link)
z = 9

c:



Layout of Records and Unions

Modern processors have byte-addressable memory.

0

1

2

3

The IBM 360 (c. 1964)
helped to popularize
byte-addressable memory.

Many data types (integers, addresses, floating-point
numbers) are wider than a byte.

16-bit integer: 1 0

32-bit integer: 3 2 1 0



Layout of Records and Unions

Modern memory systems read
data in 32-, 64-, or 128-bit
chunks:

3 2 1 0

7 6 5 4

11 10 9 8

Reading an aligned 32-bit
value is fast: a single
operation.

3 2 1 0

7 6 5 4

11 10 9 8

It is harder to read an
unaligned value: two reads
plus shifting

3 2 1 0

7 6 5 4

11 10 9 8

6 5 4 3

SPARC and ARM prohibit
unaligned accesses

MIPS has special unaligned
load/store instructions

x86, 68k run more slowly with
unaligned accesses



Padding
To avoid unaligned accesses, the C compiler pads the layout
of unions and records.

Rules:

Ï Each n-byte object must start on a multiple of n bytes
(no unaligned accesses).

Ï Any object containing an n-byte object must be of size
mn for some integer m (aligned even when arrayed).

struct padded {
int x; /* 4 bytes */
char z; /* 1 byte */
short y; /* 2 bytes */
char w; /* 1 byte */

};

x x x x

y y z

w

struct padded {
char a; /* 1 byte */
short b; /* 2 bytes */
short c; /* 2 bytes */

};

b b a

c c



Unions

A C struct has a separate space for each field; a C union
shares one space among all fields

union intchar {
int i; /* 4 bytes */
char c; /* 1 byte */

};

i i i i/c

union twostructs {
struct {

char c; /* 1 byte */
int i; /* 4 bytes */

} a;
struct {

short s1; /* 2 bytes */
short s2; /* 2 bytes */

} b;
};

c

i i i i
or

s2 s2 s1 s1



Arrays

Basic policy in C: an array is
just one object after another
in memory.

int a[10];

a[0] a[0] a[0] a[0]

a[1] a[1] a[1] a[1]

a[9] a[9] a[9] a[9]

...

This is why you need padding
at the end of structs.

struct {
int a;
char c;

} b[2];

a a a a

c

a a a a

c

b[0]

b[1]



Arrays and Aggregate types

The largest primitive type
dictates the alignment

struct {
short a;
short b;
char c;

} d[4];

b b a a

a a c

c b b

b b a a

a a c

c b b

d[0]

d[1]

d[2]

d[3]



Arrays of Arrays

char a[4]; a[3] a[2] a[1] a[0]

char a[3][4];

a[0][3] a[0][2] a[0][1] a[0][0]

a[1][3] a[1][2] a[1][1] a[1][0]

a[2][3] a[2][2] a[2][1] a[2][0]

a[0]

a[1]

a[2]



Heap-Allocated Storage

Static works when you know everything beforehand and
always need it.

Stack enables, but also requires, recursive behavior.

A heap is a region of memory where blocks can be allocated
and deallocated in any order.

(These heaps are different than those in, e.g., heapsort)



Dynamic Storage Allocation in C

struct point {
int x, y;

};

int play_with_points(int n)
{
int i;
struct point *points;

points = malloc(n * sizeof(struct point));

for ( i = 0 ; i < n ; i++ ) {
points[i].x = random();
points[i].y = random();

}

/* do something with the array */

free(points);
}



Dynamic Storage Allocation

↓ free( )

↓ malloc( )
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Dynamic Storage Allocation

↓ free( )

↓ malloc( )



Dynamic Storage Allocation

Rules:

Each allocated block contiguous (no holes)

Blocks stay fixed once allocated

malloc()

Find an area large enough for requested block

Mark memory as allocated

free()

Mark the block as unallocated



Simple Dynamic Storage Allocation

Maintaining information about free memory

Simplest: Linked list

The algorithm for locating a suitable block

Simplest: First-fit

The algorithm for freeing an allocated block

Simplest: Coalesce adjacent free blocks



Simple Dynamic Storage Allocation

S N S S N

malloc( )

S S N S S N

free( )

S S N
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Simple Dynamic Storage Allocation

S N S S N

malloc( )

S S N S S N

free( )

S S N



Fragmentation

malloc( ) seven times give

free() four times gives

malloc( ) ?

Need more memory; can’t use fragmented memory.

Hockey smile



Fragmentation and Handles

Standard CS solution: Add another layer of indirection.

Always reference memory through “handles.”

*a *b *c Pointers

**a **b **c Handles

The original
Macintosh did
this to save
memory.



Fragmentation and Handles

Standard CS solution: Add another layer of indirection.

Always reference memory through “handles.”

*a *b *c Pointers

**a **b **c Handles

The original
Macintosh did
this to save
memory.



Automatic Garbage Collection

Entrust the runtime system with freeing heap objects

Now common: Java, C#, Javascript, Python, Ruby, OCaml
and most functional languages

Advantages

Much easier for the
programmer

Greatly improves reliability:
no memory leaks,
double-freeing, or other
memory management errors

Disadvantages

Slower, sometimes
unpredictably so

May consume more memory



Reference Counting
What and when to free?

Ï Maintain count of references to each object
Ï Free when count reaches zero

let a = (42, 17) in
let b = [a;a] in
let c = (1,2)::b in
b

0 42, 17
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Reference Counting
What and when to free?

Ï Maintain count of references to each object
Ï Free when count reaches zero

let a = (42, 17) in
let b = [a;a] in
let c = (1,2)::b in
b

2 42, 17

1 1

b



Issues with Reference Counting

Circular structures defy reference counting:

a b

Neither is reachable, yet both have non-zero reference
counts.

High overhead (must update counts constantly), although
incremental



Mark-and-Sweep
What and when to free?

Ï Stop-the-world algorithm invoked when memory full
Ï Breadth-first-search marks all reachable memory
Ï All unmarked items freed

let a = (42, 17) in
let b = [a;a] in
let c = (1,2)::b in
b
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a

b
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Mark-and-Sweep
What and when to free?

Ï Stop-the-world algorithm invoked when memory full
Ï Breadth-first-search marks all reachable memory
Ï All unmarked items freed

let a = (42, 17) in
let b = [a;a] in
let c = (1,2)::b in
b

42, 17

b



Mark-and-Sweep

Mark-and-sweep is faster overall; may induce big pauses

Mark-and-compact variant also moves or copies reachable
objects to eliminate fragmentation

Incremental garbage collectors try to avoid doing
everything at once

Most objects die young; generational garbage collectors
segregate heap objects by age

Parallel garbage collection tricky

Real-time garbage collection tricky



Single Inheritance
Simple: Add new fields to end of the object

Fields in base class always at same offset in derived class
(compiler never reorders)

Consequence: Derived classes can never remove fields

C++
class Shape {
double x, y;

};

class Box : Shape {
double h, w;

};

class Circle : Shape {
double r;

};

Equivalent C
struct Shape {

double x, y;
};

struct Box {
double x, y;
double h, w;

};

struct Circle {
double x, y;
double r;

};



Virtual Functions

class Shape {
virtual void draw(); // Invoked by object’s run-time class

}; // not its compile-time type.

class Line : public Shape {
void draw();

}

class Arc : public Shape {
void draw();

};

Shape *s[10];
s[0] = new Line;
s[1] = new Arc;
s[0]->draw(); // Invoke Line::draw()
s[1]->draw(); // Invoke Arc::draw()



Virtual Functions
Trick: add to each object a pointer to the virtual table for its
type, filled with pointers to the virtual functions.

Like the objects themselves, the virtual table for each
derived type begins identically.

struct A {
int x;
virtual void Foo();
virtual void Bar();

};

struct B : A {
int y;
virtual void Foo();
virtual void Baz();

};

A a1;
A a2;
B b1;

A::Foo
A::Bar

A’s Vtbl
B::Foo
A::Bar
B::Baz

B’s Vtbl

vptr
x

a1

vptr
x

a2

vptr
x
y

b1



C++’s Exceptions

struct Except {} ex; // This struct functions as an exception

void top(void) {
try {
child();

} catch (Except e) { // throw sends control here
printf("oops\n");

}
}

void child() {
child2();

}

void child2() {
throw ex; // Pass control up to the catch block

}

1

2 3



C’s setjmp/longjmp: Idiosyncratic Exceptions
#include <setjmp.h>

jmp_buf closure; /* return address, stack & frame ptrs. */

void top(void) {
switch ( setjmp(closure) ) { /* normal: store closure, return 0 */

/* longjmp jumps here, returns 1 */

case 0: child(); /* unexceptional case */
break;

case 1: break; /* longjmp( ,1) called */
}

}

void child() {
child2();

}

void child2() {
longjmp(closure, 1);

}

1

2

3

4

5



Implementing Exceptions

One way: maintain a stack of exception handlers
try {

child();

} catch (Ex e) {
foo();

}

void child() {
child2();

}

void child2() {
throw ex;

}

push(Ex, Handler); // Push handler on stack

child();
pop(); // Normal termination
goto Exit; // Jump over "catch"

Handler:
foo(); // Body of "catch"

Exit:

void child() {
child2();

}

void child2() {
throw(ex); // Unroll stack; find handler

}

Incurs overhead, even when no exceptions thrown



Implementing Exceptions with Tables
Q: When an exception is thrown, where was the last try?

A: Consult a table: relevant handler or “pop” for every PC
1 void foo() {
2
3 try {
4 bar();
5 } catch (Ex1 e) {
6 a();
7 }
8 }
9

10 void bar() {
11 baz();
12 }
13
14 void baz() {
15
16 try {
17 throw ex1;
18 } catch (Ex2 e) {
19 b();
20 }
21 }

Lines Action

1–2 Pop stack
3–5 Handler @ 5 for Ex1

6–15 Pop stack

16–18 Handler @ 14 for Ex2

19–21 Pop stack

1: query

2: pop stack

3: query

4: pop stack

5: query

6: handle



Stack-Based IR: Java Bytecode

int gcd(int a, int b) {
while (a != b) {

if (a > b)
a -= b;

else
b -= a;

}
return a;

}

# javap -c Gcd

Method int gcd(int, int)
0 goto 19

3 iload_1 // Push a
4 iload_2 // Push b
5 if_icmple 15 // if a <= b goto 15

8 iload_1 // Push a
9 iload_2 // Push b
10 isub // a - b
11 istore_1 // Store new a
12 goto 19

15 iload_2 // Push b
16 iload_1 // Push a
17 isub // b - a
18 istore_2 // Store new b

19 iload_1 // Push a
20 iload_2 // Push b
21 if_icmpne 3 // if a != b goto 3

24 iload_1 // Push a
25 ireturn // Return a



Stack-Based IRs

Advantages:

Ï Trivial translation of expressions
Ï Trivial interpreters
Ï No problems with exhausting registers
Ï Often compact

Disadvantages:

Ï Semantic gap between stack operations and modern
register machines

Ï Hard to see what communicates with what
Ï Difficult representation for optimization



Register-Based IR: Mach SUIF

int gcd(int a, int b) {
while (a != b) {

if (a > b)
a -= b;

else
b -= a;

}
return a;

}

gcd:
gcd._gcdTmp0:
sne $vr1.s32 <- gcd.a,gcd.b
seq $vr0.s32 <- $vr1.s32,0
btrue $vr0.s32,gcd._gcdTmp1 // if !(a != b) goto Tmp1

sl $vr3.s32 <- gcd.b,gcd.a
seq $vr2.s32 <- $vr3.s32,0
btrue $vr2.s32,gcd._gcdTmp4 // if !(a<b) goto Tmp4

mrk 2, 4 // Line number 4
sub $vr4.s32 <- gcd.a,gcd.b
mov gcd._gcdTmp2 <- $vr4.s32
mov gcd.a <- gcd._gcdTmp2 // a = a - b
jmp gcd._gcdTmp5

gcd._gcdTmp4:
mrk 2, 6
sub $vr5.s32 <- gcd.b,gcd.a
mov gcd._gcdTmp3 <- $vr5.s32
mov gcd.b <- gcd._gcdTmp3 // b = b - a

gcd._gcdTmp5:
jmp gcd._gcdTmp0

gcd._gcdTmp1:
mrk 2, 8
ret gcd.a // Return a



Register-Based IRs

Most common type of IR

Advantages:

Ï Better representation for register machines
Ï Dataflow is usually clear

Disadvantages:

Ï Slightly harder to synthesize from code
Ï Less compact
Ï More complicated to interpret



Optimization In Action

int gcd(int a, int b) {
while (a != b) {
if (a < b) b -= a;
else a -= b;

}
return a;

}

GCC on SPARC

gcd: save %sp, -112, %sp
st %i0, [%fp+68]
st %i1, [%fp+72]

.LL2: ld [%fp+68], %i1
ld [%fp+72], %i0
cmp %i1, %i0
bne .LL4
nop
b .LL3
nop

.LL4: ld [%fp+68], %i1
ld [%fp+72], %i0
cmp %i1, %i0
bge .LL5
nop
ld [%fp+72], %i0
ld [%fp+68], %i1
sub %i0, %i1, %i0
st %i0, [%fp+72]
b .LL2
nop

.LL5: ld [%fp+68], %i0
ld [%fp+72], %i1
sub %i0, %i1, %i0
st %i0, [%fp+68]
b .LL2
nop

.LL3: ld [%fp+68], %i0
ret
restore

GCC -O7 on SPARC

gcd: cmp %o0, %o1
be .LL8
nop

.LL9: bge,a .LL2
sub %o0, %o1, %o0
sub %o1, %o0, %o1

.LL2: cmp %o0, %o1
bne .LL9
nop

.LL8: retl
nop



Typical Optimizations

Ï Folding constant expressions
1+3 → 4

Ï Removing dead code
if (0) { . . . } → nothing

Ï Moving variables from memory to registers

ld [%fp+68], %i1
sub %i0, %i1, %i0
st %i0, [%fp+72]

→ sub %o1, %o0, %o1

Ï Removing unnecessary data movement
Ï Filling branch delay slots (Pipelined RISC processors)
Ï Common subexpression elimination



Machine-Dependent vs. -Independent Optimization

No matter what the machine is, folding constants and
eliminating dead code is always a good idea.

a = c + 5 + 3;
if (0 + 3) {
b = c + 8;

}

→ b = a = c + 8;

However, many optimizations are processor-specific:

Ï Register allocation depends on how many registers the
machine has

Ï Not all processors have branch delay slots to fill
Ï Each processor’s pipeline is a little different



Basic Blocks

int gcd(int a, int b) {
while (a != b) {
if (a < b) b -= a;
else a -= b;

}
return a;

}

lower→

A: sne t, a, b
bz E, t
slt t, a, b
bnz B, t
sub b, b, a
jmp C

B: sub a, a, b
C: jmp A
E: ret a

split→

A: sne t, a, b
bz E, t

slt t, a, b
bnz B, t

sub b, b, a
jmp C

B: sub a, a, b

C: jmp A

E: ret a

The statements in a basic block all run if the first one does.

Starts with a statement following a conditional branch or is
a branch target.

Usually ends with a control-transfer statement.



Control-Flow Graphs

A CFG illustrates the flow of control among basic blocks.

A:
sne t, a, b
bz E, t

slt t, a, b
bnz B, t

sub b, b, a
jmp C

B:
sub a, a, b

C:
jmp A

E:
ret a

A:
sne t, a,
b
bz E, t

slt t, a,
b
bnz B, t

sub b, b,
a
jmp C

B:
sub a, a,
b

E:
ret a

C:
jmp A



Separate Compilation and Linking

foo

foo.o

foo.s

foo.c

Compiler

Assembler

Linker

bar.o

bar.s

bar.c

cc

as

libc.a

printf.o

Archiver

fopen.o malloc.o

ar

ld



Linking

Goal of the linker is to combine the disparate
pieces of the program into a coherent whole.

file1.c:

#include <stdio.h>
char a[] = "Hello";
extern void bar();

int main() {
bar();

}

void baz(char *s) {
printf("%s", s);

}

file2.c:

#include <stdio.h>
extern char a[];

static char b[6];

void bar() {
strcpy(b, a);
baz(b);

}

libc.a:

int
printf(char *s, ...)
{

/* ... */
}

char *
strcpy(char *d,

char *s)
{

/* ... */
}



Linking

Goal of the linker is to combine the disparate
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file1.c:
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char a[] = "Hello";
extern void bar();

int main() {
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}

void baz(char *s) {
printf("%s", s);

}

file2.c:

#include <stdio.h>
extern char a[];

static char b[6];
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{
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{
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Linking

file1.o
a=“Hello”

main()

baz()

a.out
.text segment

main()

baz()

bar()

.data segment

a=“Hello”

.bss segment

char b[6]

file2.o
char b[6]

bar()

.text
Code of program

.data
Initialized data

.bss
Uninitialized data
“Block Started by

Symbol”
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Object Files

Relocatable: Many need to be pasted together. Final
in-memory address of code not known when program is
compiled

Object files contain

Ï imported symbols (unresolved “external” symbols)
Ï relocation information (what needs to change)
Ï exported symbols (what other files may refer to)



Object Files

file1.c:

#include <stdio.h>
char a[] = "Hello";
extern void bar();

int main() {
bar();

}

void baz(char *s) {
printf("%s", s);

}

exported symbols

imported symbols



Object Files

file1.c:
#include <stdio.h>
char a[] = "Hello";
extern void bar();

int main() {
bar();

}

void baz(char *s) {
printf("%s", s);

}

# objdump -x file1.o
Sections:
Idx Name Size VMA LMA Offset Algn
0 .text 038 0 0 034 2**2
1 .data 008 0 0 070 2**3
2 .bss 000 0 0 078 2**0
3 .rodata 008 0 0 078 2**3

SYMBOL TABLE:
0000 g O .data 006 a
0000 g F .text 014 main
0000 *UND* 000 bar
0014 g F .text 024 baz
0000 *UND* 000 printf

RELOCATION RECORDS FOR [.text]:
OFFSET TYPE VALUE
0004 R_SPARC_WDISP30 bar
001c R_SPARC_HI22 .rodata
0020 R_SPARC_LO10 .rodata
0028 R_SPARC_WDISP30 printf



Object Files

file1.c:
#include <stdio.h>
char a[] = "Hello";
extern void bar();

int main() {
bar();

}

void baz(char *s) {
printf("%s", s);

}

# objdump -d file1.o
0000 <main>:
0: 9d e3 bf 90 save %sp, -112, %sp
4: 40 00 00 00 call 4 <main+0x4>

4: R_SPARC_WDISP30 bar
8: 01 00 00 00 nop
c: 81 c7 e0 08 ret
10: 81 e8 00 00 restore

0014 <baz>:
14: 9d e3 bf 90 save %sp, -112, %sp
18: f0 27 a0 44 st %i0, [ %fp + 0x44 ]
1c: 11 00 00 00 sethi %hi(0), %o0

1c: R_SPARC_HI22 .rodata
20: 90 12 20 00 mov %o0, %o0

20: R_SPARC_LO10 .rodata
24: d2 07 a0 44 ld [ %fp + 0x44 ], %o1
28: 40 00 00 00 call 28 <baz+0x14>

28: R_SPARC_WDISP30 printf
2c: 01 00 00 00 nop
30: 81 c7 e0 08 ret
34: 81 e8 00 00 restore



Before and After Linking
int main() {
bar();

}

void baz(char *s) {
printf("%s", s);

}

Ï Combine object files
Ï Relocate each function’s code
Ï Resolve previously unresolved

symbols

0000 <main>:
0: 9d e3 bf 90 save %sp, -112, %sp
4: 40 00 00 00 call 4 <main+0x4>

4: R_SPARC_WDISP30 bar
8: 01 00 00 00 nop
c: 81 c7 e0 08 ret
10: 81 e8 00 00 restore

0014 <baz>:
14: 9d e3 bf 90 save %sp, -112, %sp
18: f0 27 a0 44 st %i0, [ %fp + 0x44 ]
1c: 11 00 00 00 sethi %hi(0), %o0

1c: R_SPARC_HI22 .rodata Unresolved symbol
20: 90 12 20 00 mov %o0, %o0

20: R_SPARC_LO10 .rodata
24: d2 07 a0 44 ld [ %fp + 0x44 ], %o1
28: 40 00 00 00 call 28 <baz+0x14>

28: R_SPARC_WDISP30 printf
2c: 01 00 00 00 nop
30: 81 c7 e0 08 ret
34: 81 e8 00 00 restore

105f8

Code starting address changed

<main>:
105f8: 9d e3 bf 90 save %sp, -112, %sp
105fc: 40 00 00 0d call 10630 <bar>

10600: 01 00 00 00 nop
10604: 81 c7 e0 08 ret
10608: 81 e8 00 00 restore

1060c <baz>:
1060c: 9d e3 bf 90 save %sp, -112, %sp
10610: f0 27 a0 44 st %i0, [ %fp + 0x44 ]
10614: 11 00 00 41 sethi %hi(0x10400), %o0

10618: 90 12 23 00 or %o0, 0x300, %o0

1061c: d2 07 a0 44 ld [ %fp + 0x44 ], %o1
10620: 40 00 40 62 call 207a8

10624: 01 00 00 00 nop
10628: 81 c7 e0 08 ret
1062c: 81 e8 00 00 restore



Linking Resolves Symbols
file1.c:
#include <stdio.h>
char a[] = "Hello";
extern void bar();

int main() {
bar();

}

void baz(char *s) {
printf("%s", s);

}

file2.c:
#include <stdio.h>
extern char a[];

static char b[6];

void bar() {
strcpy(b, a);
baz(b);

}

105f8 <main>:
105f8: 9d e3 bf 90 save %sp, -112, %sp
105fc: 40 00 00 0d call 10630 <bar>
10600: 01 00 00 00 nop
10604: 81 c7 e0 08 ret
10608: 81 e8 00 00 restore

1060c <baz>:
1060c: 9d e3 bf 90 save %sp, -112, %sp
10610: f0 27 a0 44 st %i0, [ %fp + 0x44 ]
10614: 11 00 00 41 sethi %hi(0x10400), %o0
10618: 90 12 23 00 or %o0, 0x300, %o0 ! "%s"
1061c: d2 07 a0 44 ld [ %fp + 0x44 ], %o1
10620: 40 00 40 62 call 207a8 ! printf
10624: 01 00 00 00 nop
10628: 81 c7 e0 08 ret
1062c: 81 e8 00 00 restore

10630 <bar>:
10630: 9d e3 bf 90 save %sp, -112, %sp
10634: 11 00 00 82 sethi %hi(0x20800), %o0
10638: 90 12 20 a8 or %o0, 0xa8, %o0 ! 208a8 <b>
1063c: 13 00 00 81 sethi %hi(0x20400), %o1
10640: 92 12 63 18 or %o1, 0x318, %o1 ! 20718 <a>
10644: 40 00 40 4d call 20778 ! strcpy
10648: 01 00 00 00 nop
1064c: 11 00 00 82 sethi %hi(0x20800), %o0
10650: 90 12 20 a8 or %o0, 0xa8, %o0 ! 208a8 <b>
10654: 7f ff ff ee call 1060c <baz>
10658: 01 00 00 00 nop
1065c: 81 c7 e0 08 ret
10660: 81 e8 00 00 restore
10664: 81 c3 e0 08 retl
10668: ae 03 c0 17 add %o7, %l7, %l7



Lambda Expressions
Function application written in prefix form. “Add four and
five” is

(+ 4 5)

Evaluation: select a redex and evaluate it:

(+ (∗ 5 6) (∗ 8 3)) → (+ 30 (∗ 8 3))
→ (+ 30 24)
→ 54

Often more than one way to proceed:

(+ (∗ 5 6) (∗ 8 3)) → (+ (∗ 5 6) 24)
→ (+ 30 24)
→ 54

Simon Peyton Jones, The Implementation of Functional Programming
Languages, Prentice-Hall, 1987.



Function Application and Currying

Function application is written as juxtaposition:

f x

Every function has exactly one argument.
Multiple-argument functions, e.g., +, are represented by
currying, named after Haskell Brooks Curry (1900–1982). So,

(+ x)

is the function that adds x to its argument.

Function application associates left-to-right:

(+ 3 4) = ((+ 3) 4)
→ 7



Lambda Abstraction

The only other thing in the lambda calculus is lambda
abstraction: a notation for defining unnamed functions.

(λx . + x 1)

( λ x . + x 1 )
↑ ↑ ↑ ↑ ↑ ↑

That function of x that adds x to 1



The Syntax of the Lambda Calculus

expr ::= expr expr
| λ variable . expr
| constant
| variable
| (expr)

Constants are numbers and built-in functions;
variables are identifiers.



Beta-Reduction

Evaluation of a lambda abstraction—beta-reduction—is just
substitution:

(λx . + x 1) 4 → (+ 4 1)
→ 5

The argument may appear more than once

(λx . + x x) 4 → (+ 4 4)
→ 8

or not at all

(λx . 3) 5 → 3



Free and Bound Variables

(λx . + x y) 4

Here, x is like a function argument but y is like a global
variable.

Technically, x occurs bound and y occurs free in

(λx . + x y)

However, both x and y occur free in

(+ x y)



Beta-Reduction More Formally

(λx . E) F →β E ′

where E ′ is obtained from E by replacing every instance of x
that appears free in E with F .

The definition of free and bound mean variables have
scopes. Only the rightmost x appears free in

(λx . + (− x 1)) x 3

so

(λx . (λx . + (− x 1)) x 3) 9 → (λ x . + (− x 1)) 9 3
→ + (− 9 1) 3
→ + 8 3
→ 11



Alpha-Conversion

One way to confuse yourself less is to do α-conversion:
renaming a λ argument and its bound variables.

Formal parameters are only names: they are correct if they
are consistent.

(λx . (λx . + (− x 1)) x 3) 9 ↔ (λx . (λy . + (− y 1)) x 3) 9
→ ((λy . + (− y 1)) 9 3)
→ (+ (− 9 1) 3)
→ (+ 8 3)
→ 11



Beta-Abstraction and Eta-Conversion

Running β-reduction in reverse, leaving the “meaning” of a
lambda expression unchanged, is called beta abstraction:

+ 4 1 ← (λx . + x 1) 4

Eta-conversion is another type of conversion that leaves
“meaning” unchanged:

(λx . + 1 x) ↔η (+ 1)

Formally, if F is a function in which x does not occur free,

(λx . F x) ↔η F



Reduction Order

The order in which you reduce things can matter.

(λx . λy . y)
(
(λz . z z) (λz . z z)

)
Two things can be reduced:

(λz . z z) (λz . z z)

(λx . λy . y) ( · · · )

However,

(λz . z z) (λz . z z) → (λz . z z) (λz . z z)

(λx . λy . y) ( · · · ) → (λy . y)



Normal Form

A lambda expression that cannot be β-reduced is in normal
form. Thus,

λy . y

is the normal form of

(λx . λy . y)
(
(λz . z z) (λz . z z)

)
Not everything has a normal form. E.g.,

(λz . z z) (λz . z z)

can only be reduced to itself, so it never produces an
non-reducible expression.



Normal Form

Can a lambda expression have more than one normal form?

Church-Rosser Theorem I: If E1 ↔ E2, then there
exists an expression E such that E1 → E and E2 →
E .

Corollary. No expression may have two distinct normal forms.

Proof. Assume E1 and E2 are distinct normal forms for E :
E ↔ E1 and E ↔ E2. So E1 ↔ E2 and by the Church-Rosser
Theorem I, there must exist an F such that E1 → F and
E2 → F . However, since E1 and E2 are in normal form,
E1 = F = E2, a contradiction.



Normal-Order Reduction

Not all expressions have normal forms, but is there a
reliable way to find the normal form if it exists?

Church-Rosser Theorem II: If E1 → E2 and E2 is in normal form,
then there exists a normal order reduction sequence from E1

to E2.

Normal order reduction: reduce the leftmost outermost
redex.



Normal-Order Reduction

((
λx .

(
(λw . λz . + w z) 1

)) (
(λx . x x) (λx . x x)

)) (
(λy . + y 1) (+ 2 3)

)

leftmost outermost

leftmost innermost
λx

λw

λz

+ w
z

1

λx

x x

λx

x x

λy

+ y

1 + 2

3



Recursion

Where is recursion in the lambda calculus?

F AC =
(
λn . I F (= n 0) 1

(
∗ n

(
F AC (− n 1)

)))

This does not work: functions are unnamed in the lambda
calculus. But it is possible to express recursion as a function.

F AC = (λn . . . . F AC . . .)
←β (λ f . (λn . . . . f . . .)) F AC
= H F AC

That is, the factorial function, F AC , is a fixed point of the
(non-recursive) function H :

H = λ f . λn . I F (= n 0) 1 (∗ n ( f (− n 1)))



Recursion
Let’s invent a function Y that computes F AC from H , i.e.,
F AC = Y H :

F AC = H F AC
Y H = H (Y H)

F AC 1 = Y H 1
= H (Y H) 1
= (λ f . λn . I F (= n 0) 1 (∗ n ( f (− n 1)))) (Y H) 1
→ (λn . I F (= n 0) 1 (∗ n ((Y H) (− n 1)))) 1
→ I F (= 1 0) 1 (∗ 1 ((Y H) (− 1 1)))
→ ∗ 1 (Y H 0)
= ∗ 1 (H (Y H) 0)
= ∗ 1 ((λ f . λn . I F (= n 0) 1 (∗ n ( f (− n 1)))) (Y H) 0)
→ ∗ 1 ((λn . I F (= n 0) 1 (∗ n (Y H (− n 1)))) 0)
→ ∗ 1 (I F (= 0 0) 1 (∗ 0 (Y H (− 0 1))))
→ ∗ 1 1
→ 1



The Y Combinator
Here’s the eye-popping part: Y can be a simple lambda
expression.

Y =

= λ f .
(
λx . f (x x)

) (
λx . f (x x)

)
Y H =

(
λ f .

(
λx . f (x x)

) (
λx . f (x x)

))
H

→ (
λx . H (x x)

) (
λx . H (x x)

)
→ H

((
λx . H (x x)

) (
λx . H (x x)

))
↔ H

( (
λ f .

(
λx . f (x x)

) (
λx . f (x x)

))
H

)
= H (Y H)

“Y: The function that takes a function f and returns
f ( f ( f ( f (· · · ))))”



Prolog Execution

Facts

nerd(X) :- techer(X).
techer(stephen).

↓
Query
?- nerd(stephen). → Search (Execution)

↓
Result

yes



Simple Searching

Starts with the query:

?- nerd(stephen).

Can we convince ourselves that nerd(stephen) is true given
the facts we have?

techer(stephen).
nerd(X) :- techer(X).

First says techer(stephen) is true. Not helpful.

Second says that we can conclude nerd(X) is true if we can
conclude techer(X) is true. More promising.



Simple Searching

techer(stephen).
nerd(X) :- techer(X).

?- nerd(stephen).

Unifying nerd(stephen) with the head of the second rule,
nerd(X), we conclude that X = stephen.

We’re not done: for the rule to be true, we must find that
all its conditions are true. X = stephen, so we want
techer(stephen) to hold.

This is exactly the first clause in the database; we’re
satisfied. The query is simply true.



More Clever Searching
techer(stephen).
techer(todd).
nerd(X) :- techer(X).

?- nerd(X).

“Tell me about everybody who’s provably a nerd.”

As before, start with query. Rule only interesting thing.

Unifying nerd(X) with nerd(X) is vacuously true, so we need
to establish techer(X).

Unifying techer(X) with techer(stephen) succeeds, setting
X = stephen, but we’re not done yet.

Unifying techer(X) with techer(todd) also succeeds,
setting X = todd, but we’re still not done.

Unifying techer(X) with nerd(X) fails, returning no.



The Prolog Environment

Database consists of Horn clauses. (“If a is true and b is true
and ... and y is true then z is true”.)

Each clause consists of terms, which may be constants,
variables, or structures.

Constants: foo my_Const + 1.43

Variables: X Y Everybody My_var

Structures: rainy(rochester)
teaches(edwards, cs4115)



Structures and Functors

A structure consists of a functor followed by an open
parenthesis, a list of comma-separated terms, and a close
parenthesis:

“Functor”

bin_tree(

paren must follow immediately

foo, bin_tree(bar, glarch) )

What’s a structure? Whatever you like.

A predicate nerd(stephen)
A relationship teaches(edwards, cs4115)
A data structure bin(+, bin(-, 1, 3), 4)



Unification

Part of the search procedure that matches patterns.

The search attempts to match a goal with a rule in the
database by unifying them.

Recursive rules:

Ï A constant only unifies with itself
Ï Two structures unify if they have the same functor, the

same number of arguments, and the corresponding
arguments unify

Ï A variable unifies with anything but forces an
equivalence



Unification Examples
The = operator checks whether two structures unify:

| ?- a = a.
yes % Constant unifies with itself
| ?- a = b.
no % Mismatched constants
| ?- 5.3 = a.
no % Mismatched constants
| ?- 5.3 = X.
X = 5.3 ? ; % Variables unify
yes
| ?- foo(a,X) = foo(X,b).
no % X=a required, but inconsistent
| ?- foo(a,X) = foo(X,a).
X = a % X=a is consistent
yes
| ?- foo(X,b) = foo(a,Y).
X = a
Y = b % X=a, then b=Y
yes
| ?- foo(X,a,X) = foo(b,a,c).
no % X=b required, but inconsistent



The Searching Algorithm

search(goal g , variables e)
for each clause

in the order they appear

h :- t1, . . . , tn in the database
e = unify(g , h, e)
if successful,

for each term

in the order they appear

t1, . . . , tn ,
e = search(tk , e)

if all successful, return e
return no

Note: This pseudo-code ignores one very important part of
the searching process!



Order Affects Efficiency

edge(a, b). edge(b, c).
edge(c, d). edge(d, e).
edge(b, e). edge(d, f).

path(X, X).

path(X, Y) :-
edge(X, Z), path(Z, Y).

Consider the query
| ?- path(a, a).

path(a,a)

path(a,a)=path(X,X)

X=a

yes

Good programming practice: Put the easily-satisfied clauses
first.



Order Affects Efficiency

edge(a, b). edge(b, c).
edge(c, d). edge(d, e).
edge(b, e). edge(d, f).

path(X, Y) :-
edge(X, Z), path(Z, Y).

path(X, X).

Consider the query
| ?- path(a, a).

Will eventually produce
the right answer, but
will spend much more
time doing so.

path(a,a)

path(a,a)=path(X,Y)

X=a Y=a

edge(a,Z)

edge(a,Z) = edge(a,b)

Z=b

path(b,a)

...



Order Can Cause Infinite Recursion

edge(a, b). edge(b, c).
edge(c, d). edge(d, e).
edge(b, e). edge(d, f).

path(X, Y) :-
path(X, Z), edge(Z, Y).

path(X, X).

Consider the query
| ?- path(a, a).

path(a,a)
Goal

path(a,a)=path(X,Y)
Unify

X=a Y=a
Implies

Subgoal
path(a,Z)

path(a,Z) = path(X,Y)

X=a Y=Z

path(a,Z)

path(a,Z) = path(X,Y)

X=a Y=Z

...

edge(Z,Z)

edge(Z,a)



Prolog as an Imperative Language

A declarative statement such as

P if Q and R and S

can also be interpreted
procedurally as

To solve P, solve Q, then R, then S.

This is the problem with the last
path example.

path(X, Y) :-
path(X, Z), edge(Z, Y).

“To solve P, solve P. . . ”

go :- print(hello_),
print(world).

| ?- go.
hello_world
yes



Cuts
Ways to shape the behavior
of the search:

Ï Modify clause and term
order.
Can affect efficiency,
termination.

Ï “Cuts”
Explicitly forbidding
further backtracking.

When the search reaches a
cut (!), it does no more
backtracking.
techer(stephen) :- !.
techer(todd).
nerd(X) :- techer(X).

| ?- nerd(X).

X = stephen

yes
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