
The PLT Course at Columbia

Alfred V. Aho
aho@cs.columbia.edu

 Guest Lecture
PLT September 10, 2014

Outline
• Course objectives

• Language issues

• Compiler issues

• Team issues

Course Objectives
• Developing an appreciation for the critical role of

software in today’s world

• Discovering the principles underlying the design of
modern programming languages

• Mastering the fundamentals of compilers

• Experiencing an in-depth capstone project combining
language design and translator implementation

Plus Learning Three Vital Skills for Life

Project management

Teamwork

Communication both oral and written

The Importance of Software in Today’s World
How much software does the world use today?

Guesstimate: around one trillion lines of source code

What is the sunk cost of the legacy software base?

$100 per line of finished, tested source code

How many bugs are there in the legacy base?

10 to 10,000 defects per million lines of source code
Alfred V. Aho

Software and the Future of Programming Languages
Science, v. 303, n. 5662, 27 February 2004, pp. 1331-1333

Why Take Programming Languages and
Compilers?

To discover the marriage of theory and practice

To develop computational thinking skills

To exercise creativity

To reinforce robust software development practices

To sharpen your project management, teamwork and
communication (both oral and written) skills

Why Take PLT?

To discover the beautiful marriage of
 theory and practice in compiler design

“Theory and practice are not mutually exclusive;
they are intimately connected. They live together
and support each other.” [D. E. Knuth, 1989]

Theory in practice: regular expression pattern matching in
Perl, Python, Ruby vs. AWK

Running time to check whether a?nan matches an

regular expression and text size n

Russ Cox, Regular expression matching can be simple and fast (but is slow in Java, Perl, PHP,
Python, Ruby, ...) [http://swtch.com/~rsc/regexp/regexp1.html, 2007]

 Computational Thinking – Jeannette Wing

Computational thinking is a fundamental skill for
everyone, not just for computer scientists. To
reading, writing, and arithmetic, we should add
computational thinking to every child’s analytical
ability. Just as the printing press facilitated the
spread of the three Rs, what is appropriately
incestuous about this vision is that computing and
computers facilitate the spread of computational
thinking.

Computational thinking involves solving problems,
designing systems, and understanding human
behavior, by drawing on the concepts fundamental
to computer science. Computational thinking
includes a range of mental tools that reflect the
breadth of the field of computer science.

[Jeannette Wing,
Computational
Thinking, CACM, March,
2006]

What is Computational Thinking?

 The thought processes involved
in formulating a problem and
expressing its solution in a way
that a computer − human or
machine − can effectively carry it
out

A. V. Aho
Computation and Computational Thinking

The Computer Journal 55:12, pp. 832-835, 2012

Jeannette M. Wing
Joe Traub 80th Birthday Symposium

Columbia University, November 9, 2012

What is a Programming Language?

 A programming language is a notation for describing computations
to people and to machines.

Evolutionary Forces Driving PL Changes

Increasing diversity of applications

Stress on increasing programmer productivity and
shortening time to market

Need to improve software security, reliability and
maintainability

Emphasis on mobility and distribution

Support for parallelism and concurrency

New mechanisms for modularity and scalability

Trend toward multi-paradigm programming

Target Languages and Machines

Another programming language

CISCs

RISCs

Parallel machines

Multicores

GPUs

Quantum computers

How Many PLs are There Today?

Guesstimate: thousands

 The website http://www.99-bottles-of-beer.net
 has programs in over 1,500 different
 programming languages and variations to print
 the lyrics to the song “99 Bottles of Beer.”

http://www.99-bottles-of-beer.net/

“99 Bottles of Beer”
99 bottles of beer on the wall, 99 bottles of beer.
Take one down and pass it around, 98 bottles of beer on the wall.

98 bottles of beer on the wall, 98 bottles of beer.
Take one down and pass it around, 97 bottles of beer on the wall.

.

.

.
2 bottles of beer on the wall, 2 bottles of beer.
Take one down and pass it around, 1 bottle of beer on the wall.

1 bottle of beer on the wall, 1 bottle of beer.
Take one down and pass it around, no more bottles of beer on the wall.

No more bottles of beer on the wall, no more bottles of beer.
Go to the store and buy some more, 99 bottles of beer on the wall.

[Traditional]

“99 Bottles of Beer” in AWK

BEGIN {
 for(i = 99; i >= 0; i--) {
 print ubottle(i), "on the wall,", lbottle(i) "."
 print action(i), lbottle(inext(i)), "on the wall."
 print
 }
}
function ubottle(n) {
 return sprintf("%s bottle%s of beer", n ? n : "No more", n - 1 ? "s" : "")
}
function lbottle(n) {
 return sprintf("%s bottle%s of beer", n ? n : "no more", n - 1 ? "s" : "")
}
function action(n) {
 return sprintf("%s", n ? "Take one down and pass it around," : \
 "Go to the store and buy some more,")
}
function inext(n) {
 return n ? n - 1 : 99
}

 [Osamu Aoki, http://people.debian.org/~osamu]

“99 Bottles of Beer” in Perl

 ''=~('(?{' .('`' |'%') .('[' ^'-')
 .('`' |'!') .('`' |',') .'"'. '\\$'
 .'==' .('[' ^'+') .('`' |'/') .('['
 ^'+') .'||' .(';' &'=') .(';' &'=')
 .';-' .'-'. '\\$' .'=;' .('[' ^'(')
 .('[' ^'.') .('`' |'"') .('!' ^'+')
 .'_\\{' .'(\\$' .';=('. '\\$=|' ."\|".('`'^'.'
).(('`')| '/').').' .'\\"'.+('{'^'['). ('`'|'"') .('`'|'/'
).('['^'/') .('['^'/'). ('`'|',').('`'|('%')). '\\".\\"'.('['^('(')).
 '\\"'.('['^ '#').'!!--' .'\\$=.\\"' .('{'^'['). ('`'|'/').('`'|"\&").(
 '{'^"\[").('`'|"\"").('`'|"\%").('`'|"\%").('['^(')')). '\\").\\"'.
 ('{'^'[').('`'|"\/").('`'|"\.").('{'^"\[").('['^"\/").('`'|"\(").(
 '`'|"\%").('{'^"\[").('['^"\,").('`'|"\!").('`'|"\,").('`'|(',')).
 '\\"\\}'.+('['^"\+").('['^"\)").('`'|"\)").('`'|"\.").('['^('/')).
 '+_,\\",'.('{'^('[')). ('\\$;!').('!'^"\+").('{'^"\/").('`'|"\!").(
 '`'|"\+").('`'|"\%").('{'^"\[").('`'|"\/").('`'|"\.").('`'|"\%").(
 '{'^"\[").('`'|"\$").('`'|"\/").('['^"\,").('`'|('.')). ','.(('{')^
 '[').("\["^ '+').("\`"| '!').("\["^ '(').("\["^ '(').("\{"^ '[').("\`"|
 ')').("\["^ '/').("\{"^ '[').("\`"| '!').("\["^ ')').("\`"| '/').("\["^
 '.').("\`"| '.').("\`"| '$')."\,".('!'^('+')). '\\",_,\\"' .'!'.("\!"^
 '+').("\!"^ '+').'\\"'. ('['^',').('`'|"\(").('`'|"\)").('`'|"\,").(
 '`'|('%')). '++\\$="})');$:=('.')^ '~';$~='@'| '(';$^=')'^ '[';$/='`';

 [Andrew Savage, http://search.cpan.org/dist/Acme-EyeDrops/lib/Acme/EyeDrops.pm]

“99 Bottles of Beer” in the Whitespace Language

[Andrew Kemp, http://compsoc.dur.ac.uk/whitespace]

tiobe.com
C

Java

Objective-C

C++
Basic

C#

Python

PHP
Perl

JavaScript

[www.tiobe.com,
 August 2014

Data from search engines]

PyPL Index
Java

PHP

Python

C#

C++

C
Javascript

Objective-C

Ruby

Basic

[PyPL Index,
 August 2014

Tutorial searches
on Google]

What are Today’s Most Popular PLs?

RedMonk
Java/JavaScript

PHP

Python

C#

C++/Ruby

CSS
C

Objective-C

[redmonk.com,
 June 2014

Data from GitHub]

StackOverflow
Java

C#

JavaScript

PHP

Python

C++

SQL

Objective-C
C

Ruby

[langpop.corger.nl,
 August 2014

Data from GitHub]

• Ruby is a dynamic, OO scripting language designed by
Yukihiro Matsumoto in Japan in the mid 1990s

• Characteristics: object oriented, dynamic, designed for
the web, scripting, reflective

• Supports multiple programming paradigms including
functional, object oriented, and imperative

• The three pillars of Ruby
– everything is an object

– every operation is a method call
– all programming is metaprogramming

• Made popular by the web application framework Rails

http://www.ruby-lang.org/en/about/

Case Study 1: Ruby

• Scala is a multi-paradigm programming language designed by
Martin Odersky at EPFL starting in 2001

• Characteristics: scalable, object oriented, functional, seamless
Java interoperability, functions are objects, future-proof, fun

• Integrates functional, imperative and object-oriented
programming in a statically typed language

• Functional constructs used for parallelism and distributed
computing

• Generates Java byte code
• Used to implement Twitter

– Katy Perry has 54 million followers
– Barack Obama has 44 million followers

 [http://twitaholic.com/]

http://www.scala-lang.org/what-is-scala.html

Case Study 2: Scala

Issues in Programming Language Design
• Domain of application

– exploit domain restrictions for expressiveness, performance

• Computational model

– simplicity, ease of expression

• Abstraction mechanisms
– reuse, suggestivity

• Type system

– reliability, security

• Usability

– readability, writability, efficiency, learnability, scalability, portability

Computational Thinking in Language Design

Problem
Domain

Mathematical
Abstraction

Computational
Model

Programming
Language

Common Models of Computation in PLs

PLs are designed around a model of computation:

Procedural: Fortran (1957)

 Functional: Lisp (1958)

 Object oriented: Simula (1967)

 Logic: Prolog (1972)

 Relational algebra: SQL (1974)

AWK is a scripting language designed to perform routine data-processing
tasks on strings and numbers

Use case: given a list of name-value pairs, print the total value associated with each name.

Computational Model Underlying AWK

 eve 20
 bob 15
 alice 40

 alice 10
 eve 20
 bob 15
 alice 30

 { total[$1] += $2 }
 END { for (x in total) print x, total[x] }

An AWK program
is a sequence of
pattern-action statements

Kinds of Languages - I
• Declarative

– Program specifies what computation is to be done
– Examples: Haskell, ML, Prolog

• Domain specific
– Many areas have special-purpose languages for

creating applications
– Examples: Lex for scanners, Yacc for parsers

• Functional
– One whose computational model is based on lambda

calculus
– Examples: Haskell, ML

Kinds of Languages - II
• Imperative

– Program specifies how a computation is to be done
– Examples: C, C++, C#, Fortran, Java

• Markup
– One designed for the presentation of text
– Usually not Turing complete
– Examples: HTML, XHTML, XML

• Object oriented
– Program consists of interacting objects
– Uses encapsulation, modularity, polymorphism, and

inheritance
– Examples: C++, C#, Java, OCaml, Smalltalk

Kinds of Languages - III
• Parallel

– One that allows a computation to run concurrently on
multiple processors

– Examples: CUDA, Cilk, MPI, POSIX threads, X10
• Scripting

– An interpreted language with high-level operators for
“gluing together” computations

– Examples: Awk, Perl, PHP, Python, Ruby
• von Neumann

– One whose computational model is based on the von
Neumann architecture

– Computation is done by modifying variables
– Examples: C, C++. C#, Fortran, Java

Interesting Past Languages Designed in PLT
• Q-HSK quantum computing language
• Upbeat – sonifying data
• Language to create three-panel comic strips
• Trowel – a language for journalists
• Geometric figure drawing language
• Screenplay animation language
• Manipulation of multiple media
• Escher-like pattern generator
• Functional language for composing music
• What to wear

What is a Compiler?

Compilersource
program

target
program

input

output

An Interpreter Directly Executes a Source
Program on its Input

Interpreter

source
program

output

input

Java Compiler

Translator

source program

output
input

Java
Virtual

Machine

intermediate representation

Compilers Can Have Many Other Forms

• Cross compiler: a compiler on one machine that generates target
code for another machine

• Incremental compiler: one that can compile a source program in
increments

• Just-in-time compiler: one that is invoked at runtime to compile
each called method in the IR to the native code of the target
machine

• Ahead-of-time compiler: one that translates IR to native code
prior to program execution

Major Application Areas - I
• Big data

– C++, Python, R, SQL, and Hadoop-based languages

• Scientific computing
– Fortran, C++

• Scripting applications
– Awk, Perl, Python, Tcl

• Specialized applications
– LaTex for typesetting
– SQL for database applications
– VB macros for spreadsheets

Major Application Areas - II
• Symbolic programming

– F#, Haskell, Lisp, ML, Ocaml
• Systems programming

– C, C++, C#, Java, Objective-C
• Web programming

– CGI
– HTML
– JavaScript
– Ruby on Rails

• Countless other application areas

What does this AWK program do?

!x[$0]++

Maybe a little less cryptic:

!seen[$0]++

/* Both programs print the unique lines of the input. */

The Specification of PLs

• Syntax

• Semantics

• Pragmatics

• However, a precise, automatable, easy-to-
understand, easy-to-implement method for
specifying a complete language is still an open
research problem

Grammars are Used to Help Specify Syntax
The grammar S → aSbS | bSaS | ε generates all strings of a’s and b’s

with the same number of a’s as b’s.

This grammar is ambiguous: abab has two parse trees.

S

a

b S a S ε

S b S

ε ε

(ab)n has parse trees

+ n

n
n

2
1

1

S

SbSaε

a S b S

ε ε

Natural Languages are Inherently Ambiguous

I made her duck.
[5 meanings: D. Jurafsky and J. Martin, 2000]

One morning I shot an elephant in my pajamas. How he got into my
pajamas I don’t know.

[Groucho Marx, Animal Crackers, 1930]

List the sales of the products produced in 1973 with the products
produced in 1972.

[455 parses: W. Martin, K. Church, R. Patil, 1987]

Programming Languages are not
Inherently Ambiguous

This grammar G generates the same language

S → aAbS | bBaS | ε
A → aAbA | ε
B → bBaB | ε

G is unambiguous and has
only one parse tree for
every sentence in L(G).

S

SbAaε

a A b S

ε ε

Methods for Specifying the Semantics of
Programming Languages

Operational semantics

Program constructs are translated to an understood language.

Axiomatic semantics

Assertions called preconditions and postconditions specify

 the properties of statements.

Denotational semantics

Semantic functions map syntactic objects to semantic values.

The Implementation of PLs

• Compilers

• Interpreters

• Just-in-time compilers

• Compiler collections such as GCC and LLVM

Phases of a Compiler

Semantic
Analyzer

Interm.
Code
Gen.

Syntax
Analyzer

Lexical
Analyzer

Code
Optimizer

Code
Gen.

source
program

token
stream

syntax
tree

annotated
syntax

tree

interm.
rep.

interm.
rep.

target
program

Symbol Table

[A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman, Compilers: Principles, Techniques, & Tools, 2007]

Compiler Component Generators

Syntax
Analyzer

Lexical
Analyzer

source
program

token
stream

syntax
tree

Lexical
Analyzer

Generator
(lex)

Syntax
Analyzer

Generator
(yacc)

lex
specification

yacc
specification

Lex Specification for a Desk Calculator

number [0-9]+\.?|[0-9]*\.[0-9]+

%%

[] { /* skip blanks */ }

{number} { sscanf(yytext, "%lf", &yylval);

 return NUMBER; }

\n|. { return yytext[0]; }

 [M. E. Lesk and E. Schmidt, Lex – A Lexical Analyzer Generator]

Yacc Specification for a Desk Calculator
%token NUMBER
%left '+'
%left '*'
%%
lines : lines expr '\n' { printf("%g\n", $2); }
 | /* empty */
 ;
expr : expr '+' expr { $$ = $1 + $3; }
 | expr '*' expr { $$ = $1 * $3; }
 | '(' expr ')' { $$ = $2; }
 | NUMBER
 ;
%%
#include "lex.yy.c"

[Stephen C. Johnson, Yacc: Yet Another Compiler-Compiler]

Creating the Desk Calculator

Invoke the commands
lex desk.l
yacc desk.y
cc y.tab.c –ly –ll

Result

Desk
Calculator1.2 * (3.4 + 5.6) 10.8

The Spring Compilers Course Project

Week Task
 2 Form a team of five and design an innovative new language

 4 Write a whitepaper on your proposed language modeled after
 the Java whitepaper

 8 Write a tutorial patterned after Chapter 1 and a language
 reference manual patterned after Appendix A of Kernighan
 and Ritchie’s book, The C Programming Language

 14 Give a ten-minute presentation of the language to the class

 15 Give a 30-minute working demo of the compiler to the
 teaching staff

 15 Hand in the final project report

Team Roles

• Project manager
– sets the project schedule, holds weekly meetings with the entire team,

maintains project log, and makes sure project deliverables get done on time

• Language and tools guru
– defines the baseline process to track language changes and maintain the

intellectual integrity of the language
– teaches the team how to use specialized tools used to build the compiler

• System architect
– defines the compiler architecture, modules, and interfaces

• System integrator
– defines system platform, makefile and makes sure components interoperate

• Tester and validator
– defines the test suites
– “one-click build and test”

Final Project Report
1. Introduction – Team
2. Tutorial – Team
3. Reference manual – Team
4. Project plan – Project Manager
5. Language evolution – Language Guru
6. Translator architecture – System Architect
7. IDE and runtime environment – Integrator
8. Test plan and scripts – Tester
9. Lessons learned – Team
10.Full code listing – Team

Telling Lessons Learned in COMS W4115

• “Designing a language is hard and designing a
simple language is extremely hard!”

• “During this course we realized how naïve and
overambitious we were, and we all gained a
newfound respect for the work and good decisions
that went into languages like C and Java which
we’ve taken for granted for years.”

Parting Advice

• Grow your language and translator

• Don’t agonize over minor details

• Start immediately!

