
Leap Motion Piano
Patrice Liang

Matthew Patey
Vanshil Shah
Kevin Walters



Overview - Leap Motion

● 2 cameras, 3 infrared LEDs
● 8 ft3 interactive space
● Leap Motion controller 
software

Retrieved from www.leapmotion.com



Overview - High-Level Block Diagram



Architecture

● Hardware
○ custom VGA
○ cursor memory
○ audio

● Software
○ communication with Leap
○ drivers for the hardware peripherals
○ userspace programs 



● Connected to the Avalon Bus as a slave
● VGA monitor runs on 25MHz clock, created from the on-

board 50Mhz clock
● Responsible for painting 

the cursor (retrieved from 
custom-built cursor 
memory) and piano 
(hardcoded)

http://www.rocketboards.
org/pub/Documentation/ArrowSoCKitEvaluationBoard/SoCKit_User_manual.pdf

Hardware: VGA



● I2C bus controller and configuration (FPGA master, 
Audio codec slave)
○ I2C_SCLK set to ~390kHz

● I2C data sent in through I2C_SDAT line; sends Start 
signal, addresses 0x34 for the SSM2603 codec, then 
configures data

● I2C configuration done in hardware, 44.1kHz sample 
rate, 16 bit samples

Hardware: Audio



● Audio codec input clock: 11.2896MHz; cannot be 
derived from main 50MHz clock, thus created a 
precision clock generator

● Audio codec controller responsible for sending data 
from the HPS to the codec

● HPS connected to the 
main audio hardware, which
has two 2048 byte buffers

Hardware: Audio



● Leap cannot run on ARM instruction set so had to use 
external, x86 architecture and send over data through 
UDP

● Receive this data on the HPS and send it to VGA 
controller as the cursor position

● Send information about key presses to hardware
● Send audio data over the Avalon bus by sending 2048 

byte chunks of the pre-downloaded audio files 
● Audio files converted to raw amplitude data using “sox”

Software



Challenges - VGA Cursor

● Cursor image stored in small memory
● When raster scan is within bounds of cursor, 

read correct pixel from memory and paint it
● Requires two cycles
● Though 50 MHZ clock is double 25 MHZ 

VGA clock, each point only has one board 
cycle before VGA clock rises



VGA - continued

● Problem: painting is behind reading
● Paints column at left side

○ for each scan, first cursor cycle sees pixel at 0,0 the 
address sent to memory during rest of scan

● Solution: start painting one cycle after start 
requesting pixels



Challenges - Control Audio Buffers

● Two buffers, alternate between writing to 
and playing from

● Writing happens on Avalon/HPS clock, 
playing happens on audio clock

● Use flags in registers to control when each 
buffer is accessed

● Can’t set flags in both sections of hardware



Challenges - Audio Software

● Filling audio buffer presents time constraints 
for processor

● Processor clock is a lot faster than audio 
clock, but difficult to guarantee timing on 
processor
○ context switches, kernel traps, IO latency
○ (somewhat) out of programs control, cause 

significant delays



Challenges - Audio Software

● Maximize CPU time with separate thread
● Use thread-safe queue for communication 

between main and audio threads
● Minimize traps, send an entire frame in one 

driver call



Summary - Lessons Learned

● Hardware compilation is LONG
○ double-check all changes
○ be smart about it

● Have a backup plan
○ workspace unavailability and faulty boards

● Front-load as much as possible
● Expect the unexpected
● Divide and conquer



Summary - Future Implementations

Multiple Fingers
● Sending the data
● Displaying multiple fingers

○ duplicate logic for each finger
● Drawing keypresses (software)
● Playing audio from multiple inputs

○ simultaneous playing
○ note cancellation on a per-finger basis



Future Implementations (cont.)

● Incorporate interrupts instead of polling
○ interrupt when available to send data

● Condition variables instead of popping 
queue
○ prevent unnecessary looping; wake on a queue push
○ better multi-threaded practice

● Continuous key playing
○ prolong the last part of the data sent



Thank you!


