CME SPAN Algorithm on FPGA.

Pramod Nayak (ppn2106@columbia.edu), Ankit Pradhan (ap3188@columbia.edu),
Vidhatre Gathey (vvg2111@columbia.edu),
Bhargav Sethuram (bs2814@columbia.edu).

Guided by

Prof.David Lariviere
Prof. Stephen Edwards
Department of Computer Science,
Columbia University,
New York

May 14, 2014

1 Abstract

The Standard Portfolio Analysis of Risk (SPAN) margin system, proposed by the Chicago Mercantile
Exchange provides a method to integrate both futures and options on futures contracts into the same
system to assess a portfolio’s risk. In the SPAN Methodology, the contracts are examined over a range of
price and volatility changes to determine potential gains and losses. SPAN also allows for both Inter-
Month and Inter-Commodity spreading among the different commodities in the portfolio. There is a need
for real time risk monitoring systems, both by exchanges & by the client members to keep a check on the
high speeds at which trading is executed currently. While the risk monitoring by the exchange has a linear
input, the currently matched orders in the portfolio, the pre-trade risk monitoring calculation is combinatorial
in nature. With an order flow of 1000 orders per second, it is imperative to shift to hardware based
infrastructure to support the current low latency trading infrastructure & its pre —trade risk check.

Our project aims to explore the SPAN Algorithm for computing the initial margin, keeping in mind the latency
requirements of the exchanges and the exchange members. The main focus of the project is to implement the
industry standard, SPAN Algorithm on a Hardware Platform to suit the demands of the pre-trade risk
monitoring in the High-Frequency Trading Environment. The Hardware Based Implementation will be
performed on randomized portfolios of futures & options on futures contracts, and the outputs will be
analyzed for accuracy and timing analysis.

2 Overview

Motivation
Just as in the day-to-day uncertainties we face pertaining to weather, health, traffic etc, the stock markets
face an uncertainty in the movement of share prices.

Futures are standardized contracts for the purchase and sale of financial instruments or physical
commodities for future delivery on a regulated commodity futures exchange.

A futures contract allows a trader to undertake a contract to accept or make delivery of a commodity or
some kind of financial asset essentially in the

(a) in the future on a known date,
(b) under specified conditions,
(c) for a price contracted today.

In the futures market, the party to contract, which agrees to take delivery of the commodity, is long in the
position, whereas the firm, which has to deliver the commodity, is short in position. A speculator will
benefit in the futures market is he is long and the prices rise, and shorts if the price falls.

The exchange or the clearing firm, through the submission of bids and asks will match long orders with
short orders, either with outside traders or with their own trades.

Due to the changing demands for futures services and the costs of doing business, which in turn were
related to changes in the general economy and in agriculture especially, gave rise to the concept of the
Initial Margin Requirements. The current futures and options contracts require a complex margining
system. The value of a contract is “marked to the market” each day (or a few times a day), which means
that losses and gains related to the changing value of the contract are settled by the end of the day. In the
Trading Environments, traders are financially responsible to the clearing house or the exchange, if they
are a member of the clearing organization or the exchange or indirectly if the trade goes through a
Commission Merchant. Margins are an important component of the institutional arrangements that help
ensure the integrity of futures and options contracts. The margin rates are set by the exchanges and some
brokerage will add an extra premium to the exchange minimum rate in order to lower their risk
exposure. The Initial Margin is set based on the risk associated with the commodity.

The positions in the futures and options market have legal obligation to make or take delivery and
margins can be considered as security deposits (performance bonds), to ensure the performance on the
contract. The buyer receives the underlying asset and makes the complete payments when the seller
makes the delivery or its equivalent cash settlements. Since in the current trends, futures are cancelled by
taking opposite positions rather than delivery of the actual commodity and since both short and long
positions need to be margined, the initial margins should not be considered as a down payment for the
contract.

In finance, a margin is the collateral that the holder of a financial instrument has to deposit to cover some
or all of the credit risk of their counterparty, mostly a broker or an exchange. The collateral can be in the

form of cash or securities, and it is deposited in a margin account. Options and futures traders are
required to have a certain amount of margins in their accounts to cover for the potential losses. The SPAN
(Standard Portfolio Analysis of Risk) methodology developed by CME is used worldwide to calculate
margins on options & futures. The SPAN Methodology uses complex algorithms and sets margin of each
position to its calculated worst possible one-day move. The system after calculating the margin of each
position can shift any excess margin on existing positions to new positions or existing positions that are
short of margin.

SPAN calculates margin for a portfolio of positions based on margin parameters determined by individual
exchanges/clearinghouses. Therefore, identical futures contracts traded on more than one exchange may
have different SPAN-calculated margin requirements.

Minimum margins are calculated in SPAN by the determination of appropriate parameters, such as
margin scan ranges and volatility scan ranges, for each underlying futures contract traded on the
exchange. An exchange may elect to change its margin requirements as often as daily, or may never
change them after they have been initially set if the underlying contract price is stable.

The overall portfolio risk is calculated by evaluating the worst possible loss that instruments in a
portfolio may incur over a trading day. This is done by computing the gains and losses of portfolio,
influenced by the various market conditions. The SPAN risk array, which is a set of numerical values,
indicates a particular contract gaining or losing value under various conditions. Each condition is called a
risk scenario. The numeric value for each risk scenario represents the gain or loss that that particular
contract will experience for a particular combination of price (or underlying price) change, volatility
change, and decrease in time to expiration.

The SPAN margin files sent out by the exchange to the organizations implementing SPAN, and are
plugged into a SPAN margin calculator. For the futures options, they are assumed to have risk until they
expire out of account or are closed. SPAN takes into account all the market scenarios and cases of
extreme market volatility, to evaluate the margin impact of these futures options. The SPAN margin
requirements are compared against broker’s pre-defined extreme market move scenarios and the greater
of the two are utilized as margin requirement.

3 SPAN Algorithm

The algorithm is made up of four modules:

1) Scanning Risk

2) Intra Commodity Spread Credit
3) Inter Commodity Spread Credit
4) Short Option Charge.

The SPAN Algorithm for a portfolio containing a combined commodity is calculated as follows -

1) Sum of risk, the Intracommodity Spread Risk and the Delivery Spot Risk
2) Subtracting the Inter Commodity Spread Credit from the above.
3) Taking the maximum value of the result and the short option minimum.

The individual modules making up the SPAN Algorithm are discussed below with examples. Much time
was spent in understanding the complex algorithm & identifying corner cases to make the
implementation robust. To calculate the Initial Margin for the portfolio, the modules are calculated in
parallel, as they are computed independent of each other. The top-level block diagram of the module is
shown in Fig 1.

Portfolio Data Risk Parameter File

SPAN Algorithm

Initial Margin
Requirement

Block Diagram of the SPAN Algorithm

3.1 Scanning Risk

The first calculation in SPAN is the Scanning Risk, and it is performed on a combined commodity level
assuming perfect correlations in price and volatility movements of the underlying instruments over time.
Each bin of orders in the portfolio with the same underlying asset is subjected to a series of 16 different
risk scenarios, where two parameters are used: the price scan range and volatility scan range.

Each combined commodity can consist of several futures contracts and options, each with a different
position. To calculate the Scanning Risk for the combined commodity, each order has its associated risk
array multiplied by its position, and then the value changes of all order in each risk scenario are summed
together. The risk scenario with the highest value, indicating the conditions under which the combined
commodity will experience the highest possible loss, is then chosen as the Active Scenario, and the
associated loss is set as the Scanning Risk.

The Scanning Risk, in other words, is just the worst-case outcome of the stress tests in the risk array.

The 16 risk scenarios are all different combinations of movements in price & implied volatility
futures contracts, with applied weights to vary probabilities for these movements. The two extreme
scenarios, scenarios 15 and 16, consist of drastic price movements, but their low probabilities of
occurring are reflected in the lower weights placed on them. When applied to a futures contract or
option, each risk scenario will yield the value loss for that order at the given price and volatility
movements. For instance, a long futures contract under risk scenario 10 will experience a value loss of
two thirds its price scan range, whereas a short futures contract in the same scenario would experience a
value gain of the same amount, indicated by a negative value loss.

SP Underlying Price SP Future SP Option Portfolio
Scenario Move Volatility Move Gain/Loss Gain/Loss Gain/Loss
1 UNCHANGED UP 0 1,807 1807
2 UNCHANGED DOWN 0 -1,838 -1,838
3 UP 33% UP -7,499 7,899 400
4 UP 33% DOWN -7,499 5,061 -2,438
5 DOWN 33% UP 7,499 -3,836 3,663
6 DOWN 33% DOWN 7,499 -8,260 -761
7 UP 67% UP -15,001 14,360 -641
8 UP 67% DOWN -15,001 12,253 -2,748
9 DOWN 67% UP 15,001 -8,949 6,052
10 DOWN 67% DOWN 15,001 -13,980 1,021
11 UP 100% UP -22,500 21,107 -1,393
12 UP 100% DOWN -22,500 19,604 -2,896
13 DOWN 100% UP 22,500 -13,455 9,045
14 DOWN 100% DOWN 22,500 -18,768 3,732
15 UP 300% UNCHANGED -22,275 21,288 -987
16 DOWN 300% UNCHANGED 22,275 -9,160 13,115
Largest Potential Loss = SPAN Risk 13,115

Reference: http://www.cmegroup.com/clearing/files/span-methodology.pdf

FC[0]
MULT
W)
MULT L:’ MULT
PSR }7
PC[0] —
MULT
W] —
MULT MULT };
L
PC[0] —
MULT
W] —
MULT MULT }7
PC[0] —
MULT
W] —
MULT MULT }—
PC(0]
MULT
WOl —
MULT MULT }—\
PC[0] —
MULT
W] —
MULT MULT }_\
PC[0] —
MULT
wo) |
MULT MULT }—\
PC[0] —
MuLT
W] —
R —
MuLT :‘ MuLT >
s
PC[0]
MULT |
wo] + S
MULT ‘ ’ MuLT ‘ Comparator {5
[J | J
PC[0] i
MULT
wo) S
MULT MULT ————
L"‘ e
—|
PCI0] 1
MULT
Wo] 1
MULT MULT
o -
MULT
wo] +
MULT MULT
PCl0]
MuLT
Wio] 1 l—)
MULT MULT
PC[0]
MULT
wpo] + I~ >
MULT ‘ ‘ MULT ‘
| | I
PClO] 1
MULT
wo] +
MULT MULT }7
PC[0]
MULT
wo] 1
MULT ‘ J MULT ‘
J J

The block diagram above shows how the Price Scan Range is computes for a portfolio.

The Operation of the Scanning Risk Module can be described in short as follows:

* Read input parameters and portfolio data

* (Calculate price change for each of the 16 scenarios.

* (Price Scan Range(PSR) * Price Change(PC))

e Multiplies by weight (reference to probability of event)

* Choose maximum price change of asset among these scenarios.

3.2 Intracommodity Spread Charge

The second parameter computed is the Intra-Commodity Spread Credit, which evaluates the basis risk
between contracts with different expirations within the same commodity, where there is imperfect
correlation of price and volatility movements over time, and allows precise targeting of these
requirements to particular intracommodity strategies.

While the portfolio under consideration consists of two orders with different maturities eg: 3 months for
the futures A contract and 2 months for the futures contract B- the price movements of these orders are
considered to be perfectly correlated in the Scanning Risk step. In each risk scenario, all prices move in
the same direction and by the same amount simultaneously. In other words, the Scanning Risk calculation
does not account for the fact that prices of orders with different maturities respond differently to
changing market conditions. Since futures prices do not correlate exactly across contract months, a gain
in one month may not exactly offset losses in another month.

For a particular portfolio, various Tiers & Spread Charge associated with the Tiers are assumed to
calculate the Intra- Commodity Spread Credit.

Tiers
The combined commodity is first divided into tiers, where each tier contains orders with a preset range
of maturities.

Tier Maturity

1 0-1 months
2 1-2 months
3 2-3 months

The Tier Spread Table then sets the fixed costs of having spreads between different tiers in the combined
commodity. These charges are typically set by the exchange and are dependent on the underlying asset of
the combined commodity. To decide which spreads get what charge applied to them and in what order, a
Spread Priority Table is also formed.

Tier Spread Table
Tier Maturity Tier 1 Tier 2 Tier 3
Tier 1 0-1 months 50 USD X X
Tier 2 1-2 months 80 USD 60 USD X
Tier 3 2-3 months 90 USD 100 USD 70 USD

Tier Spread Table:

Priority 1 2 3 4 5 6
TierSpread | 1to1 2to0 2 3to3 1to2 1to3 2to3
Outright Charge:

Outright Charge for Tier 1: 180 USD

Outright Charge for Tier 2: 150 USD

Outright Charge for Tier 3: 100 USD
Example:

Example Portfolio:

Instrument Futures Futures Futures
Position 10 15 -5
Maturity 90 25 150
Position Delta 10 15 -5

The delta spread table for the above portfolio is as follows:

Tier Long Short
1 15 0

2 10 0

3 0 -5

Consulting the Delta Spread Table, between Tier 1 & Tier 3, 5 Inter-tier spreads can be formed.
The process is continues until all possible spread formation between different Tiers are checked.

Hence, the Spread Margin = (Outright of Tier 1 - Outright of Tier 2) + (Number of Intermonth Spreads*
Tier Spread Charge). = (180-150) + (5* 90) = 480 USD.

For larger combined commodities that contain orders with longer maturities, more tiers are formed to
accommodate these orders, but the general method of calculation remains the same.

Hence, the Initial Margin Requirement for a portfolio containing futures: Scanning Risk + Intra
Commodity Spread Credit Inter Commodity Spread Credit (Cross Commodity Spread Credit).

The operation of the InterMonth Spread Charge can be summarized as follows -

* Read the input portfolio data and SPAN tier information

* Create a standard Tier table based on maturity dates

* Sort the contracts according to the standard tier table

* Calculate the spreads for each tier pair combination (relative difference between long and short
contracts)

* Multiply with the spread charge

* Add outright charge associated.

The block diagram for the InterMonth Spread Charge can be shown as —
The InterMonth Spread Charge Computation Block can be divided into two parts —

1) To form the Long Short Table according to their maturity.(Figure shown below)
2) To compute the Tier Spread Charge between different Tiers. (Figure shown below).

AND

TIER 1 LONG
TIER 1 SHORT

L

TIER 2LONG

Priority Encoder MUX
TIER 2 SHORT

TIER 3 LONG
TIER 3 SHORT

AND
TIER 1 LONG

TIER 1 SHORT

ADDER TIER 2 LONG
DEMUX

TIER 2 SHORT

1

TIER 3 LONG
TIER 3 SHORT

1

MAT[]] POS[i]

The above block shows the computation of the Long Short Table into Tiers depending on the maturity of the
contracts.

The block diagram shows how the Tier Spread Charge for each of the Tiers is computed.

AND

TIER 1 LONG
TIER 1 SHORT

TIER 2 LONG

Priority Encoder MUX
TIER 2 SHORT

TIER 3 LONG
TIER 3 SHORT

1t

AND
TIER 1 LONG

AND
TIER 1 SHORT

ARDER @ TIER 2 LONG
DEMUX

TIER 2 SHORT
Sel [EIZ

TIER 3 LONG
TIER 3 SHORT

1

MAT[i] Posi

For the computation of the Tier Spread Charges between different Tiers, a particular priority order is followed
as given in the Tier Priority Table mentioned above.

The Tier Spread Charge between Tier 1, Tier 2 and Tier 3 among themselves can be computed in parallel.
While the Tier Spread Charges between, Tier 1 & Tier 2, Tier 1 & Tier 3 and Tier 2 and Tier 3, have to be
computed sequentially and therefore a FSM was also built to be perform the tasks sequentially.

The FSM has been described in detail in the Source Code Section in the Appendix.

The FSM can be shown as follows :

RESET=0

X = (positions
accumulated and spread
table formed) =1

Output: TSC123Start =1

((~goSpread4) &&
(~goSpread5) &&
(~goSpread6)) =1 Q/P :tscDone =1

WAIT-123/

jgoSpread4 =1

O/P :tscStartd =1

SPREAD4

(~goSpread4 &&
goSpread5=1)

(~goSpreadsfrom4 &&
~goSpreadbfrom4) =1

WAIT4 OF :tscDone=1)

O/P :tsc5Start = 1

(goSpread5from4 = 1)
SPREAD_TOTA
O/P :tsc5Start =1 L

O/P : SpreadTotalDone = 1

N
- > SPREADS

~goSpread5from4 &&
goSpread6from4) =1
(~goSpread4 &&
~goSpreads &&
goSpreads) =1 WAITS J

~goSpreadéfrom5 =1

O/P :tscDone =1
O/P :tscStart= 1

N
~ > SPREADG

O/P :tscDone =1

3.3 Cross Commodity Spread Credit

In order to recognize the risk reducing aspects of the portfolio’s containing multiple commodities
containing offsetting positions in highly correlated instruments, the SPAN algorithm forms the Inter-
Commodity Spread Credit.

To recognize the risk reducing aspects of portfolios containing offsetting positions in highly correlated
instruments, SPAN forms Inter-Commodity Spreads. The Inter-Commodity Spreads formed reduces the

overall performance bond or margin requirement of the portfolio.

The Inter-Commodity Spread Credit needs to be taken into account for two different assets, which have
correlation between them can have an offsetting effect on the overall risk exposure to the portfolio.

For example, if the exchange considers the price of gold to be positively related to the price of silver, a
spread credit rate on the opposing positions in gold & silver is set. This takes into account that the losses
in the gold long position due to decrease in the gold price, is partially offset by the gains in the short
position on silver, due to accompanying decrease in the silver prices. Thus a portfolio with a long position
in gold & a short position in silver would thus have its overall margin requirement reduced.

The Inter-Commodity Spread Credits are formed taking into account:

1) Which products are related, thereby, authorizing margin reduction for spread positions;

2) The ratio of positions that must be present in an account for the spread to be applied;

3) The amount of the spread credit; and

4) The priority for applying spreads.

Also it must be noted that the Inter-Commodity Spread Credit will be zero for a portfolio containing only
one combined commodity as no spreads can be formed, as there is no correlated commodity in the
portfolio.

For example, considering a portfolio consisting of Gold & Silver, with an Inter Rate of 60 %.

Gold vs Silver (2:1) - 55 % Inter Rate.

Outright Rates

Gold $175, Silver $250

The outright margin before the Inter Spread Credit is - ($175*2) + $250 = $ 600

After applying the Inter Spread Credit to each leg of the spreads formed between the correlated
commodity, there is a total savings of ($350*%0.55) + ($250 *0.55) = $330.

This total savings needs to be subtracted from the outright margin amount in order to get the final Inter
Commodity Spread Charge on the portfolio.

Therefore, the final margin would be (Scanning Risk + Inter Month Spread Credit) - Cross Commodity
Spread Charge.

The operation of the Cross Commodity Spread Module can be described in the Block Diagram as follows -

OR[0] Ratio[0] OR[1] Ratio[1]

MUL MUL

L)

interRate

MUL

100

DIv

4. Problem Formulation

The SPAN Methodology to calculate the Initial Margin of the portfolio containing combined commodities
is an extensive algorithm. Calculating the Initial Margin on a portfolio of a few 100 orders can be
computed utilizing the modern computational tools. The SPAN Algorithm is used by the exchanges a few
times a day to check on client accounts to ensure compliance with the current Initial Margin
Requirements. The Initial Margin is calculated on accounts in which the orders are matched with the
buyer. On the basis of the complexity theory, a rough estimate of the complexity analysis is of the order of
O(16N), where N being the number of orders in the account. The 16 in the Big O Notation, is due to the 16
scenario’s calculated during the Scanning Risk Computation where the position losses are calculated for
16 possible scenarios to determine the worst price movement for the given current market data.

The exchange provides access to its members to the exchange data at a premium. The majority of the
members of the exchange being the High Frequency Trading Firms (HFT Firms), there is a need to
monitor the client accounts & ensure that they do not cause an undue increase in the Initial Margin
Requirement set by the exchange on it. Hence, there is also a need to check whether the unmatched
orders in the portfolios rather along with the matched orders. Hence, the computation becomes very
complex when taking into consideration both the matched & unmatched orders keeping in mind the
Initial Margin Requirements for the portfolio.

Currently, the High Frequency Trading Environments adjust their order books constantly in the scale of
microseconds, and strongly assert the need for real time computation of the pre-trade risk checks.

5 Implementation

5.1 Software Implementation of the SPAN Algorithm

To get a better understanding of the SPAN Algorithm, it was first implemented in C++, as it has been
described in the previous sections.

For simulating the SPAN Algorithm on a portfolio, a large number of orders had to be generated quickly
to check the accuracy of the algorithm. So for this purpose, we had a script to generate different types of
data for a portfolio. For the SPAN Algorithm the fixed parameters remain the same for all the simulations,
whereas the portfolio data keeps on changing.

The SPAN Algorithm was tested in C++ on a variety of sample portfolios and for a related Risk Parameter
Files.

The implementation of the Algorithm in C++ helped us heavily in the further SystemVerilog
Implementation of the Algorithm.

The C++ implementation is given in the section on Source Code.

Many additional developments were made after the implementation of the C++ code, while writing the
SystemVerilog code.

The outputs from the ModelSim and the SystemConsole were checked with the output of the C++ code
and were found to match at each stage.

The C++ Code has been given in the Appendix and describe in detail the various operations with
comments.

5.2 Hardware Implementation

The SystemVerilog implementation of the SPAN Algorithm was programmed on the FPGA board and was
verified using the SystemConsole and the otuputs from the ARM processor.

One of the benefits of the Altera Cyclone V FGPA is its 925 MHz, dual-core ARM® Cortex™-A9 MPCore™
processor. The Altera SoCs integrate the ARM-based hard processor system (HPS) consisting of a

processor, peripherals, and memory interfaces with the FPGA fabric using a high-bandwidth interconnect
backbone.

Avalon
|
Processor s MM pmg SPAN —

Interface Peripheral

-
MR -

Block Diagram

At this point we proceeded to build the software for the ARM core on the Altera Cyclone V FPGA. By
improvising on the code in the Lab3 Tutorial, a kernel module was created to interface the FPGA fabric
with the Avalon Memory Mapped Interface.

The Avalon MM bus functions by treating the peripheral components as a slave and the ARM core as a
master. The SPAN peripherals are implemented such that it accepts data entries containing the portfolio
data and the risk parameter files. The FPGA fabric after computation provides an output containing the
three modules computed (Scanning Risk, InterMonth Spread Charge and the Cross Commodity Credit)
and the final Initial Margin requirement. So the inputs are fed from to the CME SPAN peripheral from
input text files and the output is obtained in the form of a output text file. The signals required for the
Avalon MM interface to connect the ARM processor with the FPGA fabric are thewrite, writedata, read,
readdata, address, chipselect, clock, and reset.

The Master (ARM core), initiates a write or a read to a certain address location. The Avalon MM bus on
getting the request (read/write) and the address location decides on which peripheral (slave) to turn on
and selects the peripheral using the chipselect.

The Avalon MM bus also sends a read/write depending on the Master’s request and also a offset(
address) signal which is decided by the address and the memory address the Master called to. The
number of inputs also determined the number of offsets and the scope of the bits. If the number of inputs
fed is less than the scope of the bits, there is wastage of resources. Also the burst functionality can be
added, and will be implemented in the future work. The burst functionality requires additional signals
like burstcount, beginbursttransfer, and readdatavalid.

With the availability of sufficient hardware resources, Initial Margin can be calculated for multiple
portfolios in parallel and this would require the implementation of a lock signal so that only one core
talks to a component at a time.
The SystemVerilog Implementation of the SPAN Algorithm, consists of three main modules.

1) Scanning Risk

2) InterMonth Spread Charge & Tier Spread Calculation(To calculate the Tier Spread Charge for the

InterMonth Spread Credit)
3) Cross Commodity

The top level file - cme_span is a top level file for all the three modules.

5.2.1 Verification in ModelSim

The SystemVerilog Code of the SPAN Algorithm was verified in ModelSim. A Test Bench was constructed
to calculate the Initial Margin for different portfolio data and risk parameter inputs.

For example considering the portfolio containing gold as an underlying asset:

Instrument Future Future Future Future Future Future
Position 15 -5 10 -15 5 5
Maturity 1 1 3 3 5 5

And the following as the inputs of the Risk Parameter File:
Price Scan Range - 96 $

Outright Rate - Gold 175 $, Silver 250 $

Ratio - 2:1

Inter Rate - 55 %.

Tier Spread Table:

Tier Maturity Tier 1 Tier 2 Tier 3
Tier 1 0-1 months 50 USD X X

Tier 2 1-2 months 80 USD 60 USD X

Tier 3 2-3 months 90 USD 100 USD 70 USD

We get the values of the three parameters of the SPAN Algorithm as -
Scanning Risk - 480 $

Inter Month Spread Charge - 2470 $

Cross Commodity Charge - 330 $

Initial Margin Requirement - 2620 $

It can be very well seen that the Initial Margin Requirement is equal to (Scanning Risk + InterMonth
Spread Charge - Cross Commodity Charge).

The Scanning Risk is verified in ModelSim and the output is observed as follows -

< test_bench:span_cmel:scanRisk0:priceScanRange 96
+ test_bench:span_cmel:scanRisk0:position {25-510-155-
+ test_bench:span_cmel:scanRisk0:scanningRisk 480
+ test_bench:span_cmel:scanRisk0:netPos 5
+ test_bench:span_cmel:scanRisk0:priceChange {4032 -4032 §25¢
+«p test_bench:span_cmel:scanRisk0:rowlLoss {20160 -20160 41
+)«p ‘test_bench:span_cme1:scanRisk0:levell {20160 41280 61
4/« ‘test_bench:span_cmel:scanRisk0:level2 {41280 61440}
9 test_bench:span_cmel:scanRisk0:level3 61440
& test_bench:span_cmel:scanRisk0:underlyingPriceMovement {42 -42 56 -86 12
) test_bench:span_cmel:scanRisk0:scanningRiskTmp 480

:test_bench:span_cmel:scanRisk:i

InterMonth Spread Charge -

The InterMonth Spread Charge module is verified using ModelSim and the value is verified and found to
be -

test_bench:span_cmel:intertonthSpread0:out2
test_bench:span_cmel:interMonthSpread:out3 (1]
‘test_bench:span_cme1:interMonthSpread0:tierhax {000y
‘test_bench:span_cmel:interMonthSpread0:position {25 =510 =158 410 ({125 -510t155-150 0}
:test_bench:span_cme1:interMonthSpread:maturity {13385 00) 00000000} 8808]
test_bench:span_cme1:interMonthSpread0:short {51515} {000} {5 15/15}
:test_bench:span_cme1:interMonthSpread0:long {2510 5} {000} {2510 5}
:test_bench:span_cme1:interMonthSpread0:spreadCharge {50 60 70 8080)1(0 00D 00} A AL A{S0160 70 &0 90 100}
test_bench:span_cmeT:interMonthSpreado:outright {100 110 120) |0 00 0100 110 120}
:test_bench:span_cmel:interMonthSpread0:tier1 Short H0-5 000000} 00000000} f0-5000000}
:test_bench:span_cme1:interMonthSpread0:tier2Short {000-15000
test_bench:span_cme1:interMonthSpread0:tier3Short {00000-150 $0000/0-150[0}
test_bench:span_cme1:intertonthSpread0:tier] Long 250000000 $250000000}
b me1l:intertonthSpread0:tier2Long {00100000 l f00000000} ¥001000000}
:test_bench:span_cme1:intertMonthSpread0:tier3Long {00005 000 Y (00000000} 400005000}
test_bench:span_cmel:interMonthSpread0:magTier ShotFinal |5 o 15
test_bench:span_cmel:interMonthSpreadd:magTierzShortFinal |15 0] 115
test_bench:span_cmel:interMonthSpread0:magTier3ShortFinal |15] s
test_bench:span_cme1:interMonthSpread0:tier! ShortFinal -5 0 k5
test_bench:span_cme1:interMonthSpread0:tier2ShortFinal -15 0 15
test_bench:span_cmel:interMonthSpread0:tier3ShortFinal -15 a 15
test_bench:span_cmel:interMonthSpread0:tier] LongFinal 0 25
‘test_bench:span_cmel:interMonthSpread0:tierzLongFinal 0] 110
‘test_bench:span_cmel:interMonthSpread0:tier3LongFinal 0)&
:test_bench:span_cme1:interMonthSpread0:TSC1Long
test_bench:span_cme1:interMonthSpread0:TSC2Long
test_bench:span_cmel:interMonthSpread0:TSC3Long
test_bench:span_cmel:interMonthSpread0:TSC4Long
test_bench:span_cmel:interMonthSpread0:TSCS5Long
test_bench:span_cmel:interMonthSpread0:TSCBLong
test_bench:span_cmel:interMonthSpread0:TSC1Short
‘test_bench:span_cme1:interMonthSpreadd:TSC2Short
test_bench:span_cme1:interMonthSpreadd:TSC3Short
test_bench:span_cme1:interMonthSpreadd:TSC4Short
test_bench:span_cme1:interMonthSpreadd:TSC55hort
test_bench:span_cmel:interMonthSpread0:TSC6Short
‘test_bench:span_cmel:interMonthSpread:inputTSCSLong

Cross Commodity Credit

The Cross Commodity module of the Verilog is verified in ModelSim and the output is found to match the
ones we got from the C++ model.

ch:span_cmel:crossCommo0:clk 0

ch:span_cmel:crossCommO:reset 1
hch:span_cmel:crossCommO:outrightRate {175 250} {0 0} \ M175 250}
nch:span_cme1:crossCommo:ratio 2 13 0 0y 213
nch:span_cme1:crossCommO:interRate 55] 55
hch:span_cmel:crossComm0:crossCommCharge 330 \330
hch:span_cmel:crossCommO:outrighthMargin 600 I \600

nch:span_cmel:crossComm0:crossCommCharge100 33000 (33000

Now 1000000 fs

5.2.2 Implementing the Algorithm on the FPGA Board.

The SystemVerilog Implementation of the SPAN Algorithm was also burnt on the FPGA board and the
output was verified with the outputs from the C++ code and the ModelSim Simulation.

a) SystemConsole Verification

The System Verilog Code was burnt on the FPGA board and was tested using the SystemConsole. The
output of the SystemConsole matched the outputs from the ModelSim and C++ implementation.

The outputs we get from the SystemVerilog Implementation are the

1) Scanning Risk

2) InterMonth Spread Charge
3) Cross Commodity Credit

4) Initial Margin Requirement

Getting the individual outputs of the modules, are beneficial as it would help to verify the final Initial
Margin Output.

Figure below shows the output value of the Initial Margin Requirement of the SystemConsole is as follows

B
System Console EE

sile Tools Help

Messages o| [Tel Console o
I n, th Q 1 ros

tions

MAG|..@ 1#USB 3-3#CV SoCKit to SoCKit_Top.sof

@ Finished discovering USB connections

© Executing startup script fopt/alterajquartus-13.1/quartus/sopc_builder/system_console_mac
The script doesn't exist: fuser2/spring14/ap3188/system_console/system_console_rc.tcl. You

b) Using the ARM Processor

One of the main benefits of the Altera Cyclone V FPGA is the on board ARM Processor. The Arm Processor
was used to give inputs from a Text File containing the Risk parameters and the Portfolio Data.

The output files containing the Initial Margin is obtained in the form of a text file.

The Initial Margin value was found to be the same as the one obtained from the C++ implementation and
the ModelSim Verification.

The C code used to read from the input files and feed data to the ARM processor is also given in the
Source Code Section.

The SystemVerilog Implementation was also checked to calculate the Initial Margin requirements of
many different types of portfolios.

6 Results

The CME SPAN Algorithm was implemented in C++ and SystemVerilog and its functionality was checked
using ModelSim and on the FPGA board. The results of the simulation in ModelSim are described and
found to match the results from the FPGA fabric - from SystemConsole and the ARM Processor.

The project was concentrated for the Futures Market and involved a lot of optimization in the code for
the proper functioning and taking into consideration all the corner cases of the SPAN Algorithm.

The implementation of the CME SPAN Algorithm was tested on various different types of test cases and

was verified for its functionality for robustness. The implementation was found to function properly for
all single and multiple portfolios.

7 Conclusion

The project was a great learning experience as it involved a great exposure to the Risk Management
Systems in the High Frequency Trading Environments. The project also made us aware about the
designing of Hardware for the Trading Industry and important and through the design should be. With
the current implementation of CME SPAN Algorithm for the Futures Market, we believe that by working
on it over the coming semester, we can improvise the implementation to take into account the options
contracts in the portfolio and make the project a full-fledged implementation of CME- SPAN.

The implementation of the CME-SPAN for options would require the use of Black-Scholes Model or the
Jump Diffusion Models for the options pricing and would require the complex computation and rigorous
programming in SystemVerilog.

The goals for the future work would be -

1) Implementing the Algorithm to take into account the options contracts in the portfolio.

2) Short Option Minimum module to be included in the SPAN Algorithm for the Options Market.

3) Integrate the SPAN implementation with the current pre-trade risk checking infrastructure.

8 References

1) http://www.cmegroup.com/clearing/files /span-methodology.pdf

2) http://www.math.kth.se/matstat/seminarier/reports/M-exjobb12/120807b.pdf

3) http://www.cmegroup.com/clearing/margins/spread-calc.html

4) http://www.cftc.gov/files/tm /tmspan_margining043001.pdf

9

Special Thanks to

Prof. David Lariviere

Prof. Stephen Edwards

Qiushi Ding - TA

10 Appendix

a)

c)

C++ Implementation of the Code
C++ based model for CME SPAN
#include<iostream>
#include<conio.h>

#include<math.h>

#include<ctime>

#include<time.h>
#include<winsock.h>

using namespace std;

#define PATH "C:/ReadMe.txt"

#define PATHPA "C:/RiskArray.txt"

#define PATHPort "C:/Portfolio.txt"
#define PATHRAr "C:/ParameterFile.txt"
#define PATHTDT "C:/TierDivisionTable.txt"
#define PATHTST "C:/TierSpreadTable.txt"
#define PATHDST "C:/DeltaSpreadTable.txt"
#define PATHSPT "C:/SpreadPrioTable.txt"
#define PATHOC "C:/OutrightCharge.txt"
#define PATHRatio "C:/Ratio.txt"

#define PATHInterRate "C:/InterCharge.txt"

//ASSUMPTIONS

#define Spread Charge 25 //defining charges acc to table 1.13 of KTH

thesis paper

#define Outright Charge 50

#define CuNetPos -15
#define CuWFPR 70
#define Credit 0.4

void main()

{

FILE * readPort, *readRAr, *readPA, *readTDT, *readTST, *readDST,

*readSPT, *readOC, *readRatio, *readInterRate;

int netposdel = 0, DMC = 0;

SYSTEMTIME start, end, diff;

readRAr = NULL;

readPort = NULL;

readPA = NULL;

int pos, mat, price, th, vol, quantile, psr, volsr,
VC[16], W[16];

intRate,

mm) float PSR, posLoss[l16], PC[1l6], Long[l2], Short[1l2];
nn) char asset[20];

00) GetSystemTime (&start);

PpP) fopen s(&readPort, PATHPort, "r"); //Reading Portfolio data

qq) fopen s(&readPA, PATHPA, "r"); //Reading Parameter Array

rr) fopen_ s(&readRAr, PATHRAr, "r"); //Reading Risk Array data

ss) fopen s (&readTDT, PATHTDT, "r"); //Reading Tier Division table

tt) fopen s (&readTST, PATHTST, "r"); //Reading Tier Spread table data

uu) fopen s (&readDST, PATHDST, "r"); //Reading Delta spread table
data

vV) fopen s(&readSPT, PATHSPT, "r"); //Reading Spread Priority table
data

wWW) fopen s (&readOC, PATHOC, "r"); //Reading Outright charge
data

XX)

YY) //related to outright chare for cross-commodity

zZ) fopen s(&readRatio, PATHRatio, "r"); //reaing Rato for differnt
commodity - cross commodity

aaa) fopen s(&readInterRate, PATHInterRate, "r"); //related to
inter charge or weightage for cross-commodity

bbb)

ccce) for (int i = 0; i < 16; i++)

ddd) {

eee) posLoss[i] = 0;

fff) Long[i] = 0;

gg9) Short[i] = 0;

hhh) } //initialising posLoss Array

iii)

333)

kkk) if ((readPort != NULL) && (readRAr != NULL) && (readPA != NULL))

//Read if Portfolio file opened
111) {
mmm) fscanf s(readPort, "%d\t%d\t%d", &pos, &mat, &price);
//read 1lst line of portfolio file

nnn) fscanf s(readRAr, "%d %d %d %d %d %d\n", &vol, &th,
&quantile, &psr, &volsr, &intRate); //read First line of Parameter file

000) PSR = price * (vol/100.0) * (sqgrt(float(th) / 252.0)) *
quantile;

ppPP) //PSR(Price Scan Range) calculated each time Portfolio file is read

aqq)

rrr) for (int i = 0; i < 16; i++)

sss) {

ttt) if (readPA)

uuu) fscanf s(readPA, "$f\t%d\tsd\n", &PC[i], &VC[i],
&W[i]);

vVV) else

WWW) std::cout << "Invalid number of entires in Risk
Parameter File" << endl;

XXX)

VYY) posLoss[i] += (PC[i] * float(W[i] / 100.0) * PSR)
* pos; //Position loss for each row of Risk array

z222) }

aaaa)

bbbb) int month = (mat / 31), DMSC = 0, DMOC = 0; //month charge
declarations

ccce) netposdel += pos;

dddd) if (pos < 0)

eeee) {

ffff) Short[month] += pos;

gg999) }

hhhh) else

iiii) {

3333) Long[month] += pos;

kkkk) }

1111)

mmmm) int j = 1, maxMonth = month; //j meant for index of mat and
pos, maxMotnth stores the max month reached

nnnn) while(!feof(readPort))

0000) {

PPPP) fscanf s(readPort, "%d\t%d\t%d\n", &pos, &mat,
&price);

q999) Jtt;

rrrr) netposdel += pos;

ssss) month = mat / 31; //get month value after each
reada of mat

tttt) PSR = price * (vol / 100.0) * (sqgrt(float(th) /
252.0)) * quantile;

uuuu) for (int i = 0; i < 16; i++)

VVVV) {

WWWW) posLoss[i] += (PC[i] * (W[i] / 100) * PSR) * pos;

//Calculating position loss

XXXX) }

YYYY) //making Long and Short arrays

ZZZZ) if(pos < 0)

aaaaa) {Short[month] += pos; }

bbbbb) else

ccccce) {Long[month] += pos; }

ddddd) maxMonth = (month > maxMonth) ? month : maxMonth;

eeeee) if (Long[month] > -(Short[month]))

fffff) //as soon as a long and short exist for the same month, make short 0
if possible

99999) {

hhhhh) Long[month] += Short[month];

iiiii DMSC += Short[month] * Spread Charge; //add to
DMSC everytime there is a non zero short

33333) Short[month] = 0;

kkkkk) }

11111) else

mmmmm) {

nnnnn) Long[month] = 0;

00000) DMSC += -(Long[month] * Spread Charge);

PPPPP) Short[month] += Long[month];

999499) }

rrrrr) }//end of while

Sssss) int check[12];

ttttt) for (int z = 0; z < 12; z++)

uuuuu) {

VVVVV) check[z] = 0;

WWWWW) }

XXXXX)

YYYYY) for (int k = 0; k <= maxMonth; k++) //handle intermonth
spread

ZZZ2ZZ) {

aaaaaa) if (Short[k] != 0)

bbbbbb) {

cccceccece) for (int 1 = 0; 1 < k; 1++)

dddddd) {

eeeeee) check[1l] = 0;

FEFEEF) if ((Long[l] > -(Short[k])) && (Short[k] !=
0))

gggggg) //as soon as a long and short exist for the same month make short 0 if
possible

hhhhhh) {

iiiiii Long[l] += Short[k];

333333) DMSC += Short[k] * Spread Charge;

//add to DMSC each time there is a non-zero short

kkkkkk) Short[k] = 0;

111111) check[1l] = 1;

mmmmmm) }

nnnnnn) else

000000) {

PPPPPP) Long[l] = 0;

gqgqqqq) DMSC += -(Long[l] * Spread Charge);

rrrrrr) Short[k] += Long[l];

ssssss) }

tttttt) }

uuuuuu) }

VVVVVV) }//end of for

WWWWWW)

XXXXXX) for (int k = 0; k <= maxMonth; k++) //find Delivery Month
outright charge(DMOC)

YYYYYY) {

ZZZZZZ) if (check[k] == 1)

aaaaaaa) DMOC += Long[k] * Outright Charge;

bbbbbbb) }

cccccecece) DMC = DMOC - DMSC; //DMSC is -ve so subtract to add abs
values - Delivery Month Charge

ddddddd)

eeeeeee) }//end of topmost if

fffffff) float maxPosLoss = posLoss[0], pairedPosLoss = 0, VASC, TimeRisk

= 0, wFutPrRisk, ICSC = 0;
ggggggg) //declarations reqd for section 4

hhhhhhh)

iiiiiii)for (int i = 0; i < 16; i++)

3333333) {

kkkkkkk) if (maxPosLoss > posLoss[i])

1111111) {

mmmmmmm) maxPosLoss = posLoss[i];

nnnnnnn) if ((1 % 2) == 0)

0000000) {

PPPPPPP) pairedPoslLoss = posLoss[i + 1];
d999999) }

rrrrrrr) else

SSsSssss) {

ttttttt) pairedPoslLoss = posLoss[i - 1];
uuuuuuu) }

VVVVVVV) }

WWWWWWW)

XXXXXXX) }

YYYYYYY)

ZZZZZZZ) //start of calc for intercommodity spread credit
aaaaaaaa)

bbbbbbbb) VASC = -(maxPosLoss + pairedPosLoss) / 2;
ccceccececce) TimeRisk = (posLoss[0] + posLoss[l]) / 2;
dddddddd) wFutPrRisk = (VASC - TimeRisk) / netposdel;
eeeeeeee) int PCS1 = Credit * - (CuNetPos) * wFutPrRisk;

fEfffffff) int PCS2 Credit * - (CuNetPos)* CuWFPR;

99999999)
hhhhhhhh)

kkkkkkkk)
11111111)

DSpreadArr[30],

mmmmmmmm)
nnnnnnnn)
00000000

PPPPPPPP)

99999999)
Yrrrrrrr)

SSSssSsss)
tttttttt)
uuuuuuuu)
VVVVVVVV)
WWWWWWWW)
XXXXXXXX)

ICSC = PCS1 + PCS2;
//end of calc for section 4

//second part of calculations
int tier[10], T, SpArray, count = 0, TSpreadArr[40],

J=0;
while (!feof(readTDT))
{

count++;

fscanf s(readTDT, "%d\t", &T);
fscanf s(readTDT, "%d\n", &tier[T - 1]);
}
while (!feof(readTST))
{
int i, temp;
fscanf s(readTST, "%d\t", &temp);
for (i = 0; i < count - 1; i++)
fscanf s(readTST, "%d\t", &TSpreadArr[j++]);

//read as 50,0,0,80,60,0,90,100,70

YYYYYYYY)
ZZ2Z22Z2222)

aaaaaaaaa)
bbbbbbbbb)
cccceececcecece)
ddddddddd)
eeeeeeeee)
fffffffff)

fscanf s(readTST, "%d\n", &TSpreadArr[j++]);

}

while (!feof(readDST))

{
int i = 0, temp;
for (int i = 0; i < count; i++)
{

fscanf s(readDST, "%d\t%d\t%d\n", &temp,

&DSpreadArr[(2 * 1i)], &DSpreadArr[(2 * i) + 1]);

999999999)
hhhhhhhhh)

kkkkkkkkk)
111111111)
mmmmmmmmmn)
nnnnnnnnn)
000000000

TSpreadArr

PPPPPPPPP)
999999999)

//store long0, short0, longl, shortl..

}
}
int TSC = 0;
while (!feof(readSPT))
{
char col, row, ind;
fscanf s(readSPT, "%d %d\n", &col, &row);
ind = (3 * (row - 1)) + col - 1 ; //index for

col (col - 1) * 2;
row = (2 * row) - 1; //convert row and col to

corresponding indices in DSpreadArr

Yrrrrrrrr)
SSSSSSSSS)

//For example,

if ((DSpreadArr[col] != 0) && (DSpreadArr[row] != 0))
1 to 3 will access 15 and -5 from DSpreadArr and

90 from TSpreadArr

ttttttttt)
uuuuuuuuu)
VVVVVVVVYV)

TSC += DSpreadArr[row] * TSpreadArr[ind]; // calc

TSC and Long - Short

WWWWWWWWW)

DSpreadArr[col] = (DSpreadArr[col] +

DSpreadArr[row] >= 0) ? (DSpreadArr[col] + DSpreadArr[row]) : 0;

XXXXXXXXX)
YYYYYYYYY)

DSpreadArr[row]
//assign diff only if Long > Short

ZZZZZZZZZ)

aaaaaaaaaa)
bbbbbbbbbb)
ccececececececee)
dddddddddd)

//assign diff only if Long > Short

DSpreadArr[row] = (DSpreadArr[col] +
>= 0) ? 0 : (DSpreadArr[row] + DSpreadArr[col]);

}
} //end of if

eeeeeeeeee)
ffffffffff)

9999999999)
hhhhhhhhhh)

kkkkkkkkkk)
1111111111)
mmmmmmmmmm)
nnnnnnnnnn)
0000000000

PPPPPPPPPP)

9999999999)
Yrrrrrrrrr)

SSSSSsSSsSsSs)
tttttttttt)
100.0;
uuuuuuuuuu)
VVVVVVVVVV)
endl;
WWWWWWWWWW)
XXXXXXXXXX)
YYYYYYYYYY)

CrossComCharge;

2222222222

aaaaaaaaaaa)
bbbbbbbbbbb)
ccecceecececececece)
ddddddddddd)
eeeeeeeeeee)
fEEffffffff)

99999999999)
hhhhhhhhhhh)

kkkkkkkkkkk)
11111111111)
mmmmmmmmmmmn)
nnnnnnnnnnn)
00000000000

PPPPPPPPPPP)

999999999949)
Yrrrrrrrrrr)

SSSSSSSSSSS)
ttttttttttt)
uuuuuuuuuuu)
VVVVVVVVVVYV)
WWWWWWWWWWW)
XXXXXXKXXXXX)
YYYYYYYYYYY)
ZZZZZZZZZ2ZZ)
aaaaaaaaaaaa)
bbbbbbbbbbbb)
ccceccececececececee)
dddddddddddd)
eeeeeeeeceeee)
fEEfffffffff)

999999999999)
hhhhhhhhhhhh)

//Beginning of Cross-commodity calculations
int CrossOutCharge, CrossRatio, CrossComCharge = 0;
int intrRate;

int 1 = 0;
if (!(fscanf s(readInterRate, "%d", &intrRate)))
{
std::cout << "FILE READ ERROR" << endl;
}
while (!feof(readOC))
{
fscanf s(readOC, "%d ", &CrossOutCharge);
fscanf s(readRatio, "%d ", &CrossRatio);
CrossComCharge += CrossRatio * CrossOutCharge;
}
CrossComCharge = (float)CrossComCharge * (float)intrRate
//std::cout << "\n CrossCharge : " << CrossComCharge <<

GetSystemTime (&end) ;

//closing all opened files
float InitMargReq = (-maxPosLoss) + (-TSC) + DMC - ICSC -
//Intitial Margin Requirement

std::cout << endl << InitMargReq << endl;

//closing all opened text files
if (readPA)

¢ fclose(readPR);
if (readPort)

¢ fclose(readPort);
if (readRAr)

{ fclose(readRAr);
if (readTST)

¢ fclose(readTST);
if (readDST)

{ fclose(readDST);
if (readSPT)

¢ fclose(readSPT);
if (readTDT)

¢ fclose(readTDT);
if (readoOcC)

iiiiiiiiidiii fclose(readOC);

333333333333) }

kkkkkkkkkkkk) if (readRatio)

111111111111) {

mmmmmmmmmmmm) fclose(readRatio);

nnnnnnnnnnnn) }

000000000000 if (readInterRate)

PPPPPPPPPPPP) {

gggqqgqggaaqqq) fclose(readInterRate);

rYrrrrrrrrrr) }

SSSSSSSSSsSSs)

tttttttttttt) diff.wMinute = start.wMinute - end.wMinute;

uuuuuuuuuuuu) diff.wSecond = start.wSecond - end.wSecond;

VVVVVVVVVVVV) diff.wMilliseconds = start.wMilliseconds -
end.wMilliseconds; //Total program run time calculations

WWWWWWWWWWWW) std::cout << "\nTime Taken to complete program " <<
(end.wMilliseconds - start.wMilliseconds) << "milliseconds " << endl;

XXXXXXXXXXXX) _getch();

YYYYYYYYYYYY))

b)Verilog files

span_cme.sv
This is our top level file. It «calls the scanningRisk.sv, interMonthSpread.sv and
crossCommodityCharge.sv . When these sub-modules finish their calculation, they send these values
back to the top module. The top module then combines all these values and sends the final answer and
sub-module outputs to the software part. This module also keeps a count of the number of cycles that
were taken to get the final output and reports that too.
It receive the following inputs:

clk

reset

writeData

offset

write

chipselect
It sends out the following outputs:

read

readData

The software part sends out the data from input file serially in writeData with the appropriate value of
offset.

As the data arrives, the start signal to the sub-modules is sent.

When the done signal arrives from interMonthSpread sub-module (this module finishes calculation the
last), all the values calculated by the sub-modules are combined and sent back to the software part.

module span_cme(

input
input
input
input
input
input
input

output

logic
logic
logic
logic
logic
logic
logic

logic

clk,
reset,
[15:0] writeData,
[5:0] offset,
write,
chipselect,
read,

[15:0] readData

/**

**********************************/

[Hhkkkkkkkhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhks*x Declarations

***/

/**

**********************************/

reg [15:0]

Initial Margin

reg [15:0]
Scanning Risk

reg [15:0]

Tier Spread Charge

reg [15:0]

Commodity Charge

initialMargin; //Final calculated value of
scanningRisk; //First Component: The
TSC; //Second Component:
crossCommCharge; //Third Component: Cross

//Portfolio inputs
//Maximum number of instruments is 8

//Maximum number of Tiers is 3

reg [15:0] priceScanRange; //Price Scan Range

reg [15:0] position [0:7]; //Array for positions of
instrument

reg [7:0] maturity [0:7]; //Array for maturity of instrument, in
months

reg [3:0] tierMax[0:2]; //Array for upper limit of

tiers, in months

reg [7:0] spreadCharge [0:5]; //Array for spread charge Dbetween
tiers, in order of priority

reg [7:0] outright [0:2]; //Array for outright rate for spreads
between tiers, in order of priority

reg [15:0] outrightRate[0:1]; //Array for Outright rate for
Cross Commodity Charge

reg [7:0] ratio[0:17; //Array for Ratio between 2
commodities for Cross Commodity Charge

reg [7:0] interRate; //Rate for Cross Commodity
Charge

//Start signals for the 3 components

logic startScanRisk, //Start Scanning Risk
Calculation

startInterMonth, //Start Intermonth Spread
Charge calculation

startCross; //Start Cross
Commodity Calculation

//Tier Spread Calculation done, representing the end of all the 3
components.

wire spreadDone;

//Couter for keeping a track of number of cycles taken for the entire
calculation

reg startCount;

reg [15:0] cyclesTaken;

//Loop index

integer i;

/***
*************************************/

/**BODY
**/

/***
*************************************/

//Module for calculating the Scanning Risk

scanRisk scanRiskO(.reset(startScanRisk), .*);

//Module for calculating Cross Commodity Charge

crossComm crossCommO(.reset(startCross), .*);

//Module for calculating Inter Month Spread Charge

interMonthSpread interMonthSpread0O(.reset(startInterMonth),
.done(spreadDone), .*);

always_ ff @ (posedge clk) begin

if (reset) begin

everything

//Preparing for calculation,

startScanRisk <= 1'd0;
startInterMonth <= 1'd0;

startCross <= 1'd0;

priceScanRange <= 16'd0;

interRate <= 8'd0;

startCount = 1'd0;
//Disabling the counter

cyclesTaken <= 16'd0;
//Resetting the counter

for (i = 0; i < 8; i =1+ 1) begin
position[i] <= 16'd0;
maturity[i] <= 8'd0;

end

for (i = 0; i < 3; i =1+ 1) begin
tierMax[1i] <= 4'do0;
outright[i] <= 8'dO0;

end

resetting

for (i =0

; 1< 6; i =1+ 1) begin

spreadCharge[i] <= 8'dO0;

end

for (i =0

outrightRate[i]

; 1< 2; i=1i+ 1) begin

ratio[i]

end

<= 16'd0;

<= 8'd0;

end else if (chipselect && write) begin

//Reading input data from C code

case (offset)

6'd0 : Dbegin
priceScanRange
writeData[l1l5:0]; //Price scan range
startCount
= 1'dl; //Enabling the Counter
counting the number of cycles
end
6'dl : position[0]

writeData[l15:0];

writeData[l15:0];

//Positions of 1lst instrument

6'd2 : position[1]
//Positions of 2nd instrument

to

start

6'd3 : position[2] <=
writeData[15:0]; //Positions of 3rd instrument

6'dd : position[3] <=
writeData[15:0]; //Positions of 4th instrument

6'd5 : position[4] <=
writeData[15:0]; //Positions of 5th instrument

6'd6 : position[5] <=
writeData[15:0]; //Positions of 6th instrument

6'd7 : position[6] <=
writeData[15:0]; //Positions of 7th instrument

6'd8 : begin position[7] <=
writeData[15:0]; //Positions of 8th instrument

startScanRisk
<= 1'dl; //Starting Scanning Risk calculation
end

6'd9 : outrightRate[0] <=
writeData[15:07]; //0Outright rate for 1lst commodity

6'dl0 : outrightRate[1] <=
writeData[15:07]; //0Outright rate for 2nd commodity

6'dll : ratio[0] <=
writeData[7:0]; //Cross commodity ratio for 1st commodity

6'dl2 : ratio[1l] <=

writeData[7:0]; //Cross commodity ratio for 2nd commodity
6'dl3 : begin interRate <=

writeData[7:07]; //Cross commodity correlation factor

startCross

<= 1'dl; //Starting Cross Commodity calculation

end

6'dl4 : maturity[0] <=

writeData[7:0]; //Maturity for 1lst instrument in months

6'dl5 : maturity[1] <=

writeData[7:0]; //Maturity for 2nd instrument in months
6'dle6 : maturity[2] <=
writeData[7:0]; //Maturity for 3rd instrument in months
6'dl7 : maturity[3] <=
writeData[7:0]; //Maturity for 4th instrument in months
6'dl8 : maturity[4] <=
writeData[7:0]; //Maturity for 5th instrument in months
6'dl9 : maturity[5] <=
writeData[7:0]; //Maturity for 6th instrument in months
6'd20 : maturity[6] <=
writeData[7:0]; //Maturity for 7th instrument in months
6'd21 : maturity[7] <=
writeData[7:0]; //Maturity for 8th instrument in months
6'd22 : tierMax[0]
<= writeData[3:0]; //Upper value of a Tier 1 in months
6'd23 : tierMax[1l]
<= writeData[3:0]; //Upper value of a Tier 2 in months
6'd24 : tierMax[2]
<= writeData[3:0]; //Upper value of a Tier 3 in months
6'd25 : spreadCharge[0] <=
writeData[7:07]; //Charge for spread between tier 1 Long and tier
Short
6'd26 : begin spreadCharge[l] <=
writeData[7:07]; //Charge for spread between tier 2 Long and tier
Short

startInterMonth <=

1'd1; //Early Start to Intermonth Spread Charge
end
6'd27 : spreadCharge[2] <=
writeData[7:0]; //Charge for spread between tier 3 Long and tier

Short

writeData[7:0];
Short

writeData[7:0];
Short

writeData[7:0];

Short

writeData[7:0];

tier 2 Short

writeData[7:0];
tier 3 Short

writeData[7:0];
tier 3 Short

1'do;

<= 1'd0;

end else if (chipselect && read) begin

6'd28 :

spreadCharge[3]

//Charge for spread between tier 1 Long
6'd29 : spreadCharge[4]

//Charge for spread between tier 1 Long
6'd30 : spreadCharge[5]

//Charge for spread between tier 2 Long
6'd31 : outright([0]

//Outright rate for spread between tier
6'd32 : outright([1]

//Outright rate for spread between tier
6'd33 : outright([2]

//0Outright rate for spread between tier

default:

endcase

begin

end

startScanRisk

<=
and tier 2

<=
and tier 3

<=

and tier 3

<=

1 Long and

<=
1 Long and

<=
2 Long and

<= 1'do0;

startInterMonth <=

startCross

//Passing the calculated margin to Readdata output

case (offset)

6'd0: begin

readData[15:0] <= initialMargin[15:0];
//Sending out Initial Margin to software

startCount

= 1'd0;

//Disabling the cycle counter

end

6'dl: readData[1l5:0] <= scanningRisk[15:0];
//Sending out Scanning Risk to software

6'd2: readData[l5:0] <= TSC[15:0];
//Sending out Initial Margin to software

6'd3: readData[l1l5:0] <= crossCommCharge[l15:0];
//Sending out Cross Commodity Charge to software

6'd4: readData[l1l5:0] <= cyclesTaken[15:0];
//Sending out the cycles counted

default:readData[15:0] <= 16'd0;

endcase

end

//Counter that counts the number of cycles starting from arrival of data
till the output is sent on the Avalon Bus

if (startCount)

cyclesTaken <= cyclesTaken + 16'dl;

end

always_comb begin

initialMargin = (spreadDone) ? (scanningRisk + TSC -
crossCommCharge) : 16'd0; //Final total of all the 3 components

end

endmodule

scanningRisk.sv
Once this module receives the start signal from the top module it does the following.
It first calculates the sum of all the positions in the portfolio.

Depending upon the Price Scan Range value and the Risk parameters (hard coded) it determines the price
change for all the risk scenarios.

It multiplies the price change with the net positions to calculate the loss as per each risk scenario.
It then selects the largest value out of all the possible losses and that is the output of this module (if the

value is negative, then the output is 0. This module is calculating the worst case loss and a negative loss,
which would mean a profit, is reset to 0).

“define compareMag(x,y) ((x)>(y)) ? (x) : (V); //DEFINE:
Compares X and Y and returns the greater value

“define compareUnity(x,y,z) (X) ? (y) : (2); //DEFINE: Checks
if X is unity and returns Y if true, else returns Z

module scanRisk(

input logic clk,
input logic reset,
input logic [15:0] priceScanRange,
input logic [15:0] position [0:7],
output logic [15:0] scanningRisk

);

/**

******************************/

Jrkkkkkkkkhkhkhhkhkhhhkhhkhkkhkhkkhkkkhkkkhkkkkkk*kkk*kk*k*k*x*** Declarations
Khkkkkkhhhkhhhhhhhhhhhhhhhhhhhhhhhhkkhhkhhkx /

/**

******************************/

logic [15:0] netPos;
//Sum of all the positions in the portfolio

logic [23:0] priceChange[0:7];

//Change in the price as per the underlying
movement of the Price Scan Range for the 16 scenarios of Risk Array(only 8
scenarios are considered as volity change in not relavent for Futures)

logic [31:0] rowLoss[0:7];
//Loss for each of the 16(8) Risk Array scenarios

logic [31:0] levell[0:3];
//Array for selecting the greater value between 2

alternate Risk Array scenarios

logic [31:0] level2[0:1];
//Array for selecting the greater value between
the chosen(levell) values of Risk Array scenarios

logic [31:0] level3;
//The greatest the Risk Array scenario

logic [8:0] underlyingPriceMovement[0:7];
//Risk Array underlying price movements

logic [31:0] scanningRiskTmp;

//Temporary scanning risk value to <check 1if it
negative or positive

//Loop index

integer ij;

parameter UNDERLYING33 = 8'd42,
//33% of 128, Wieght 100%

UNDERLYING67 = 8'd86,
//67% of 128, Wieght 100%

UNDERLYING100 = 8'd128,
//100% of 128, Wieght 100%

UNDERLYING300 = 8'd127;
//300% of 128, Wieght 33%

/**
******************************/

/**********'k************************************* BODY
**/

/**
******************************/

always_ff @ (posedge clk) begin

if(~reset) begin

everything

//Preparing for

scanningRisk = 16'd0;

netPos 16'd0;

level3

32'd0;

scanningRiskTmp = 16'dO0;

for (i = 0; i < 8; i =1+ 1) begin
priceChange[i] = 24'd0;
rowLoss[i] = 32'dO0;

end

for (i = 0; i < 4; i =1 + 1) begin
levell[i] = 32'd0;

end

for (i = 0; i < 2; i =1+ 1) begin
level2[i] = 32'd0;

end

for (i = 0; i <8; i =1+ 1) begin

o

underlyingPriceMovement[i]
1 : underlyingPriceMovement[i]
2 : underlyingPriceMovement[i]
3 : underlyingPriceMovement[i]
4 : underlyingPriceMovement[i]

5 : underlyingPriceMovement[i]

[e))
.

underlyingPriceMovement[i]
7 : underlyingPriceMovement[i]

endcase

calculation, resetting

UNDERLYING33;

-UNDERLYING33;

UNDERLYING67;

—~UNDERLYING67;

UNDERLYING100;

-UNDERLYING100;

UNDERLYING300;

-UNDERLYING300;

end

end else begin
//Start Scanning Risk calculation

//Accumulating all the
positions

netPos (((position[0]+ position[1l])+ (position[2]+
position[3]))+ ((position[4]+ position[5])+ (position[6]+ position[7])));

for (i = 0; i < 4; i =1 + 1) begin
//Underlying price movement of price scan range

priceChange[(2*1i)] = underlyingPriceMovement[(2*1i)] *
priceScanRange;

priceChange[(2*i) + 1] = ~priceChange[(2*i)] + 1'dl;

end

for (i = 0; i < 4; i =1 + 1) begin
//Row loss multiplied with price change, multiple of
128

rowLoss[(2*1)] = (netPos[15]) ? (~(priceChange[(2*i)] *
(~netPos + 1'dl)) + 1'dl): (priceChange[(2*i)] * netPos);

rowLoss[((2*1) + 1)] = ~rowLoss[(2*i)] + 1'dl;

end

if (netPos == 16'd0 || netPos[15])

scanningRisk = 16'd0;
//If net position is 0 then no need to perform
any comparison/multiplication

else begin

for (i = 0; i < 4; i =1i + 1) begin
//Level 1 comparison between rows with same value but
opposite signs, comparing sign bit with 1

levell[i] = “compareUnity(rowLoss[((2*1) +
1)]1[31],rowLoss[(2*1i)],rowLoss[((2*i) + 1)]);

end

end

//Level 2 comparison
between (33% and 67%) and (100% and 300%) underlying price movements

level2[0] = "compareMag(levell[0],levell[l]);
level2[1l] = ~compareMag(levell[2],levell[3]);
level3 = “compareMag(level2[0],level2[1l]);

//Level 3 comparison between the winner of top 2

scanningRiskTmp = level3 >> 7;
//Dividing by 128 for the final answer

scanningRisk = scanningRiskTmp[15:0];
//1f scanning risk is negetive then scanning risk in 0

end

end

endmodule

interMonthSpread.sv

This module receives the start signal from the top module even before the entire data required by the
module is ready. We can achieve this because this module works in a step by step fashion. So it can be
started early and by the time the algorithm arrives at the step which requires the last string of data, that
data has arrived.

First the positions are sorted into tiers depending up on their maturity dates. After this they are
accumulated to form the Tier Spread Table, which contains all the Long and Short positions in the different
tiers.

Once the Tier Spread table is formed, the spread calculations begin. Calculation for spread 1, 2 and 3 is
always started. These 3 happen in parallel. Once done, the updated Tier Spread Table is checked to see if
other tiers (4, 5 and 6) can be formed. (These tier calculations are done in order, i.e. they have a priority.) If
yes, then calculation for those spreads is triggered otherwise they are skipped.

After all the spreads have been calculated, they are added and sent back to the top module.

All the steps inside this module are controlled by an FSM.

module interMonthSpread(

input logic clk,

input logic reset,

input logic [3:0] tierMax [0:2],
input logic [15:0] position [0:7],
input logic [7:0] maturity [0:7],
input logic [7:0] spreadCharge [0:5],
input logic [7:0] outright [0:2],

output logic [15:0] TSC,

output logic done

/**
******************************/

Jrkkkkkkkkhkhkhhkhkkhkhkhhkhkkhkhkhhkkkhkkkkkkkkk*kkk*k*k*k**x*** Declarations
khkkkkkhhhkhhhhhhhhhhhhhhhhhhhhhhhhkkhhkkhhkx /

/**
******************************/

reg [15:0] tierlShort[0:7],
//Array of Shorts sorted by Maturity

tier2Short[0:7],
tier3Short[0:7],

tierlLong[0:7],
//Array of Longs sorted my Maturity

tier2Long[0:7],

tier3Long[0:7];

reg [6:0] short[0:2],
//Short's Tier spread table

long[0:2];
//Long's Tier spread table

reg [15:0] magTierlShortFinal,
//Magnitude of Shorts in Tier Spread table

magTier2ShortFinal,

magTier3ShortFinal;

reg [15:0] tierlShortFinal,
//Total Short values in a Tier

tier2ShortFinal,
tier3ShortFinal,

tierllLongFinal,
//Total Long values in a Tier

tier2LongFinal,

tier3LongFinal;

//Signals triggering spread calculation

reg tscl23Start,
//Triggering spread 1, 2 and 3 calculation

tsc4Start,
//Triggering spread 4 calculation

tsc5Start,
//Triggering spread 5 calculation

tscé6Start,
//Triggering spread 6 calculation

tscDone,
//All spreads calculated

spreadTotalDone;
//All spreads added up

reg [6:0] TSClLong,
//Long results after Spread calculation

TSC2Long,
TSC3Long,
TSC4Long,
TSC5Long,
TSCé6Long,

TSClShort,
//Short result for Spread calculation

TSC2Short,
TSC3Short,
TSC4Short,
TSC5S8hort,

TSC6Short;

reg [6:0] inputTSC5Long,
//Long input for Spread 5

inputTSC6Short;
//Short input for Spread 6

reg [15:0] TSC1,
//Calculated Tier spreads

TSC2,
TSC3,
TSC4,
TSC5,

TSC6;

reg [15:0] outl,
//0Outright charge of Spread 4

out2,
//0Outright charge of Spread 5

out3;
//0Outright charge of Spread 6

wire positionsAccumulated,
//Signals informing the status about intermediate steps

spreadTableFormed,

goSpread4,
//Signals informing whether Spreads 4, 5 and 6 are possible
or not

goSpread5,
goSpreadé6,
goSpread5From4,
goSpread6From4,

goSpread6From5;

reg [3:0] state;
//State variable

localparam IDLE = 0,
//Initial state

SORTPOS =1,
//State for starting the sorting of Positions based on
Maturity
ACCPOS = 2,
//State for adding all the positions in a Tier
SPREAD123 = 3,
//State for calculating spreads 1, 2 and 3
WAIT123 = 4,
//State for waiting for the values of spreads 1, 2 amd 3 to
settle

SPREAD4 =5,
//State for calculating spread 4

WAIT4 =6,
//State for waiting for the values of spread 4 to settle

SPREADS = 7,
//State for calculating spread 5

WAITS = 8,
//State for waiting for the values of spread 5 to settle

SPREADG6 =9,
//State for calculating spread 6

SPREADTOTAL = 10,
//State for adding up all the spreads

DONE = 11;
//State representing that Inter Month Spread calculation is
Done

//Loop Index

integer ij;

/**
******************************/

/**********'k************************************* BODY
**/

/**
******************************/

//Signal informing that positions have been
sorted and accumulated

assign positionsAccumulated = ((tierlShortFinal != 8'b0) |
(tierlLongFinal != 8'b0) || (tier2ShortFinal != 8'b0) || (tier2LongFinal !=
8'b0) || (tier3ShortFinal != 8'b0) || (tier3LongFinal != 8'b0)) ? 1'bl
1'b0;

//Signal informing that spread table has been

formed

assign spreadTableFormed = ((long[0] != 0) || (short[0] != 0) ||
(long[1l] != 0) || (short[l] != 0) || (long[2] != 0) || (short[2] != 0));
assign goSpread4 = ((TsClLong != 0) && (TSC2Short !=
0)); //Spread 4 can be formed

assign goSpread5 = ((TsClLong != 0) && (TSC3Short !=
0)); //Spread 5 can be formed

assign goSpread6 = ((TsC2Long != 0) && (TSC3Short !=
0)); //Spread 6 can be formed

assign goSpread5From4 = ((TSC4Long != 0) && (TSC3Short != 0));

//Spread 5 can be formed after spread 4

assign goSpread6From4 = ((TsSC2Long != 0) && (TSC3Short != 0));

//Spread 6 can be formed after spread 4

assign goSpread6Fromb = ((TSC2Long != 0) && (TSC5Short != 0));

//Spread 6 can be formed after spread 5

assign done = spreadTotalDone;

//Spreads formed

always_ ff @(posedge clk) begin

if (~reset) begin

//Initializing FSM,

resetting everything

tscl23Start <=
1'do;

tsc4Start <=
1'do;

tsc5Start <=
1'do;

tsc6Start <=
1'do;

tscDone
<= 1'd0;

spreadTotalDone <= 1'd0;

state
<= IDLE;

end else begin
//FSM starts

case (state)

IDLE: begin

//STATE 0
tscl23Start <=
1'do;
tscd4Start <=
1'do;
tsc5Start <=
1'do;
tsc6Start <=
1'do;
tscDone
<= 1'd0;
spreadTotalDone <= 1'd0;
state
<= SORTPOS; //Always go to
next state for sorting positions
end
SORTPOS: begin
//STATE 1
state
<= ACCPOS; //Always go to next
state for accumulating all the positions
end
ACCPOS: begin
//STATE 2
if ((positionsAccumulated) &&
(spreadTableFormed)) begin
state
<= SPREAD123; //Start spread 1, 2

and 3 calculation after positions have been sorted and spread table is formed

tscl23Start <=
1'dl;

end else state <= ACCPOS;
//Else stay in the same state

end

SPREAD123: state <=

WAIT123;

//STATE 3

WAIT123: begin

//STATE 4

if (goSpread4) begin

//Start spread 4
calculation (the next spread in sequence)
state
<= SPREAD4;
tscd4Start <=
1'dl;
end else if (~goSpread4 && goSpread5)
begin //Jump to spread 5 calculation skipping
spread 4
state
<= SPREAD5;
tsc5Start <=
1'dl;

&& goSpread6) begin

<= SPREADG6;

1'dl;

end else if (~goSpread4 && ~goSpreadb
//Jump to spread 6 calculation skipping spread 4 and 5

state

tsc6Start <=

&& ~goSpread6)begin //No more

and 3

<= SPREADTOTAL;

<= 1'dl;

SPREAD4: state
WAIT4: begin
(the next spread in sequence)
<= SPREAD5;
1'dl;
goSpread6From4) begin

spread 5

<= SPREADG6;

1'dl;

(~goSpread4 && -~goSpread5
add up spread 1, 2

end else if
spreads can be formed,

state
tscDone
end
end
<= WAIT4;
//STATE 5
//STATE 6
if (goSpread5From4)begin
//Start spread 5 calculation
state
tsc5Start <=
end else if (~goSpread5From4 &&
//Jump to spread 6 calculation skipping
state
tsc6Start <=

end else if (~goSpread5From4 &&
~goSpread6From4) begin //No more spreads can be formed, add up spread 1,
2, 3 and 4

state
<= SPREADTOTAL;

tscDone
= 1'dl;

end

end

SPREAD5: state <= WAIT5;
//STATE 7

WAIT5: begin
//STATE 8

if (goSpread6From5) begin
//Start spread 6 calculation
(the next spread in sequence)

state
<= SPREADG6;

tsc6Start <=
1'dl;

end else begin
//No more spreads can
be formed, add up spread 1, 2, 3, 4 and 5

state
<= SPREADTOTAL;

tscDone
= 1'dl;

end

end

SPREAD6: begin

<= SPREADTOTAL;
calculated, proceed to add them

= 1'dl;

SPREADTOTAL:
<= DONE;

DONE: begin
<= DONE;

the FSM terminates in

end

default: state

endcase

end

//STATE 9
state
//All the
tscDone
end
begin
//STATE 10
state
spreadTotalDone <=
//All spreads added up
end
//STATE 11
state
//Final

spreads

1'd1;

state

IDLE;

end

always_ ff @(posedge clk) begin

if (~reset) begin
//Preparing for calculation, resetting everything

TSC <= 0;

magTierlShortFinal <= 0;
magTier2ShortFinal <= 0;
magTier3ShortFinal <= 0;
tierlShortFinal <= 0;
tierlLongFinal <= 0;
tier2ShortFinal <= 0;
tier2LongFinal <= 0;
tier3ShortFinal <= 0;
tier3LongFinal <= 0;

for (i = 0; i < 8; i =1+ 1) begin

tierlShort[i] <= 0;
tierlLong[i] <= 0;
tier2Short([i] <= 0;
tier2Long[i] <= 0;
tier3Short[i] <= 0;
tier3Long[i] <= 0; end

for (i = 0; i < 3; i =1+ 1) begin

short[i] <= 0;

long[i] <= 0; end

end else begin
//Starting the calculation for Inter Month Spread

for(i = 0; i < 8; i =1 + 1) begin
//Sorting Positions based upon Maturity

tierlShort[i] <= ((tierMax[0] > maturity[i]) &&

(position[i][15] == 1)) ? position[i] : 1'dO;
tierlLong[i] <= ((tierMax[0] > maturity[i]) &&
(position[i][15] == 0)) ? position[i] : 1'dO0;

tier2Short[i] <= ((tierMax[1l] > maturity[i]) &&

(tierMax[0] <= maturity[i]) && (position[i][l5] == 1)) ? position[i] : 1'dO0;
tier2Long[1i] <= ((tierMax[1l] > maturity[i]) &&
(tierMax[0] <= maturity[i]) && (position[i][1l5] == 0)) ? position[i] : 1'dO0;

tier3Short[i] <= ((tierMax[2] > maturity[i]) &&

(tierMax[1l] <= maturity[i]) && (position[i][1l5] == 1)) ? position[i] : 1'dO0;
tier3Long[i] <= ((tierMax[2] > maturity[i]) &&
(tierMax[1l] <= maturity[i]) && (position[i][1l5] == 0)) ? position[i] : 1'dO0;
end

//Accumulating all the Longs and Shorts in all
Tiers

tierlShortFinal <= tierlShort[0] + tierlShort[1l] +
tierlShort[2] + tierlShort[3] + tierlShort[4] + tierlShort[5] + tierlShort[6]
+ tierlShort[7];

tier2ShortFinal <= tier2Short[0] + tier2Short([1] +
tier2Short[2] + tier2Short[3] + tier2Short[4] + tier2Short[5] + tier2Short[6]
+ tier2Short[7];

tier3ShortFinal <= tier3Short[0] + tier3Short([1l] +
tier3Short[2] + tier3Short[3] + tier3Short[4] + tier3Short[5] + tier3Short[6]
+ tier3Short[7];

tierlLongFinal <= tierlLong[0] + tierlLong[1l] +
tierllLong[2] + tierllLong[3] + tierllLong[4] + tierlLong[5] + tierlLong[6] +
tierllLong[7];

tier2LongFinal <= tier2Long[0] + tier2Long[1l] +
tier2Long[2] + tier2Long[3] + tier2Long[4] + tier2Long[5] + tier2Long[6] +
tier2Long[7];

tier3LongFinal <= tier3Long[0] + tier3Long[1l] +
tier3Long[2] + tier3Long[3] + tier3Long[4] + tier3Long[5] + tier3Long[6] +
tier3Long[7];

//Forming Tier Spread Table

if (positionsAccumulated) begin

long[0] <= tierlLongFinal[6:0];
long[1] <= tier2LongFinal[6:0];
long[2] <= tier3LongFinal[6:0];

magTierlShortFinal
//Taking the magnitude of Shorts

(~tierlShortFinal + 1'dl);

magTier2ShortFinal (~tier2ShortFinal + 1'dl);

magTier3ShortFinal (~tier3ShortFinal + 1'dl);

short[0] <= magTierlShortFinal[6:0];
short[1] <= magTier2ShortFinal[6:0];
short[2] <= magTier3ShortFinal[6:0];

end

//Adding up all the spreads for the final Tier
Spread Charge

if (tscDone) TSC <= TSCl + TSC2 + TSC3 + TSC4 +
TSC5 + TSC6 + outl + out2 + out3;

end//if (reset)

end//always_ff

always_comb begin

inputTSC5Long = (goSpread4) ? TSC4Long : TSClLong; //Checking
if Spread charge 4 is skipped and passing appropriate value to instance
"tierl3SpreadCharge"

inputTsCé6Short = ((goSpread5From4) || (~goSpread4 && goSpread5)) ?
TSC5Short : TSC3Short; //Checking if Spread charge 5 is skipped and passing
appropriate value to instance "tier23SpreadCharge"

end

//Modules for Tier Spread Calculation

//Tier Spread Charge 1

tierSpread tierllSpreadCharge(.clk(clk), .reset(tscl23Start),
.long(long[0]), .short(short[0]), .spreadCharge(spreadCharge[0]),
.outrightChargeTierl(0), .outrightChargeTier2(0), .newLong(TSClLong),

.newShort (TSC1lShort), .spread(TSCl), .outright());

//Tier Spread Charge 2

tierSpread tier22SpreadCharge(.clk(clk), .reset(tscl23Start),
.long(long[1]), .short(short[1]), .spreadCharge(spreadCharge[1l]),
.outrightChargeTierl(0), .outrightChargeTier2(0), .newLong(TSC2Long),

.newShort (TSC2Short), .spread(TSC2), .outright());

//Tier Sprea

tierSpread tier33SpreadCharge(.clk(clk), .reset(tscl23Start),
.long(long[2]), .short(short[2]), .spreadCharge(spreadCharge[2]),
.outrightChargeTierl(0), .outrightChargeTier2(0), .newLong(TSC3Long),

.newShort (TSC3Short), .spread(TSC3), .outright());

//Tier Spread Charge 4

tierSpread tierl2SpreadCharge(.clk(clk), .reset(tsc4Start),
.long(TSClLong), .short (TSC2Short), .spreadCharge(spreadCharge[3]),
.outrightChargeTierl(outright[0]), .outrightChargeTier2(outright[1]),

.newLong(TSC4Long), .newShort(TSC4Short), .spread(TSC4), .outright(outl));

//Tier Spread Charge 5

tierSpread tierl3SpreadCharge(.clk(clk), .reset(tsc5S8tart),
.long(inputTSC5Long), .short (TSC3Short), .spreadCharge(spreadCharge[4]),
.outrightChargeTierl(outright[0]), .outrightChargeTier2(outright[2]),

.newLong(TSC5Long), .newShort(TSC5Short), .spread(TSC5), .outright(out2));

//Tier Spread Charge 6

tierSpread tier23SpreadCharge(.clk(clk), .reset(tsc6Start),
.long(TSC2Long), .short (inputTSC6Short), .spreadCharge(spreadCharge[5]),
.outrightChargeTierl(outright[1]), .outrightChargeTier2(outright[2]),

.newLong (TSC6Long), .newShort(TSC6Short), .spread(TSC6), .outright(out3));

endmodule

tierSpread.sv

For calculating the spread, another module has been implemented. This module has 6 instances in the
interMonthSpreadCharge.sv module.

This module is triggered by the FSM inside the interMonthSpread.sv module. It takes in the Long and Short

values between which the spreads need to be formed. It forms the spreads and returns the new Long and
Short values.

module tierSpread (

input logic clk,

input logic reset,

input logic [6:0] long,

input logic [6:0] short,

input logic [7:0] spreadCharge,

input logic [7:0] outrightChargeTierl,
input logic [7:0] outrightChargeTier2,
output logic [6:0] newLong,

output logic [6:0] newShort,

output logic [15:0] spread,

output logic [15:0] outright

);

/**
******************************/

/**********'k************************************* BODY
**/

/**
******************************/

always_ ff @(posedge clk) begin

if (~reset)begin
//Preparing for calculation, resetting everything

spread <= 0;
outright <= 0;
newLong <= 0;

newShort <= 0;

end else begin
//Start spread calculation

if (long <= short) begin
//1f Short positions are more than Long Positions,

if (long != 0) begin
//Skip if there are no Long positions, i.e. no
spreads
spread <= spreadCharge * long;
//Number of spreads is equal to number of Long
positions

newShort <= short - long;
//Subtract Long from Short positions to calculate the
remaining Short positions after spreads have been formed

newLong <= 0;
//The remaining Long positions is zero

outright <= outrightChargeTierl - outrightChargeTier2;
//Calculating outright only when spreads exist

end else begin
//When no spreads are formed, pass input

Longs and Shorts directly to output

spread <= 0;
outright <= 0;
newShort <= short;

newLong <= long;

end

end else begin
//If Long positions are more than Short

positions

if (short != 0) begin
//Skip if there are no Short positions

spread <= spreadCharge * short;
//Number of spreads is equal to number of Short positions

newLong <= long - short;
//Subtract Short from Long positions to calculate the
remaining Long positions after spreads have been formed

newShort <= 0;
//The remaining Short positions is =zero

outright <= outrightChargeTierl - outrightChargeTier2;
//Calculating outright only when spreads exist

end else begin
//When no spreads are formed, pass input

Longs and Shorts directly to output

spread <= 0;

outright <= 0;
newShort <= short;

newLong <= long;

end

end

end

end

endmodule

crossCommodity.sv

This module is also triggered by the top module when its data has arrived.

It calculates the credit that needs to be subtracted from the calculated risk margin. It does that by taking the
outright rate of the commodity and its correlated commodity along with their ratios. Based on that it

calculates the outright margin. That margin is then multiplied with the inter rate which is just a percentage
that specifies the effect the calculated outright margin has on the cross commodity charge.

module crossComm (
input logic clk,

input logic reset,

input logic [15:0] outrightRate [0:1],

input logic [7:0] ratio[0:1],
input logic [7:0] interRate,
output logic [15:0] crossCommCharge

/**
******************************/

Jxkkkkkkkkhkhkhhhkkhhkhkhhkhkkhhkhkkhkkkhkkkkkkkkk*kkk*k*k* **x*** Declarations
Khkkkkkhhhkhhhhhhhhhhhhhhhhhhhhhhhhkhhkhhkx /

/**
******************************/

reg [15:0] outrightMargin; //An intermediate variable for
calculation
reg [31:0] crossCommChargel00; //Final Cross Commodity <charge in

multiple of 100

/**
******************************/

/**********'k************************************* BODY
**/

/**
******************************/

always_ ff@(posedge clk) begin

if(~reset) begin

//Preparing for calculation, resetting everything

outrightMargin = 0;

crossCommChargel00

Il
o
~e

crossCommCharge = 0;

end else begin

//Starting Cross Commodity Charge calculation

outrightMargin (outrightRate[0] * ratio[0])
(outrightRate[l] * ratio[l]); //The Outright Marging as per
ratios between 2 commodities

crossCommChargel00 interRate * outrightMargin;

//Inter rate selects
percentage of Outright Margin that will influence CrossCommCharge

crossCommCharge = (crossCommChargel00 / 100);
//Dividing by 100 to get
final Cross Commodity Charge

end

end

endmodule

the

the

the

Test Benches
These are the testbeches used for testing the code in ModelSim.
test.sv
module test_bench;
logic clk;
logic reset;
logic [15:0] writeData;
logic [5:0] offset;
logic write;

logic chipselect;

logic [15:0] priceScanRange;
logic [15:0] readData;

logic read;

integer i;

span_cme span_cmel(.*);

initial begin

clk = 0;
forever # 1 clk = ~ clk;
end

initial begin

clk = 0;
reset = 1;
write = 0;

chipselect = 0

~e

@ (posedge clk) ;

reset =0 ;
write = 1;
chipselect = 1;

@ (posedge clk);

writeData = 16'd96; //Price Scan Range
offset = 6'd0;

@ (posedge clk);

offset = 6'dl;

writeData = 32'd25; //Position 1

@ (posedge clk);

offset = 6'd2;
writeData = -32'd5;
@ (posedge clk);
offset = 6'd3;
writeData = 32'd1l0;
@ (posedge clk);

offset = 6'd4;

writeData = -32'd1l5;

@ (posedge clk);
offset = 6'd5;
writeData = 32'd5;
@ (posedge clk);

offset = 6'd6;

writeData = -32'd1l5;

@ (posedge clk);
offset = 6'd7;
writeData = 32'd0;
@ (posedge clk);
offset = 6'd8;
writeData = 32'd0;
@ (posedge clk);
offset = 6'd9;
writeData= 32'd1l75;
@ (posedge clk);
offset = 6'd1l0;
writeData= 32'd250;
@ (posedge clk);

offset = 6'dll;

//Position

//Position

//Position

//Position

//Position

//Position

//Position

//0utright

//0utright

rate for 1st commodity

rate for 2nd commodity

writeData= 32'd2; //Cross commodity ratio for 1st commodity
@ (posedge clk);

offset = 6'dl2;

writeData= 32'dl; //Cross commodity ratio for 2nd commodity
@ (posedge clk);

offset = 6'dl3;

writeData= 32'd55; //Cross commodity correlation factor
@ (posedge clk);

offset = 6'dl4;

writeData = 32'dl; //Maturity for Position 1

@ (posedge clk);

offset = 6'dl5;

writeData = 32'dl; //Maturity for Position 2

@ (posedge clk);

offset = 6'dl6;

writeData = 32'd3; //Maturity for Position 3

@ (posedge clk);

offset = 6'dl7;

writeData = 32'd3; //Maturity for Position 4

@ (posedge clk);

offset = 6'dl8;

writeData = 32'd5; //Maturity for Position 5

@ (posedge clk);

offset = 6'dl19;

writeData = 32'd5; //Maturity for Position 6

@ (posedge clk);

offset = 6'd20;

writeData = 32'd0; //Maturity for Position 7

@ (posedge clk);

offset = 6'd21l;

writeData = 32'd0; //Maturity for Position 8
@ (posedge clk);

offset = 6'd22;

writeData = 32'd2; //Tier 1 upper limit
@ (posedge clk);

offset = 6'd23;

writeData = 32'd4; //Tier 2 upper limit
@ (posedge clk);

offset = 6'd24;

writeData = 32'd6; //Tier 3 upper limit
@ (posedge clk);

offset = 6'd25;

writeData = 32'd50; //Spread Charge 1

@ (posedge clk);

offset = 6'd26;

writeData = 32'd60; //Spread Charge 2

@ (posedge clk);

offset = 6'd27;

writeData = 32'd70; //Spread Charge 3

@ (posedge clk);

offset = 6'd28;

writeData = 32'd80; //Spread Charge 4

@ (posedge clk);

offset = 6'd29;

writeData = 32'd90; //Spread Charge 5

@ (posedge clk);

offset = 6'd30;

writeData = 32'd100; //Spread Charge 6
@ (posedge clk);

offset = 6'd31;

writeData = 32'dl100; //0Outrigt rate 1

@ (posedge clk);

offset = 6'd32;

writeData = 32'dl10; //0Outrigt rate 2

@ (posedge clk);

offset = 6'd33;

writeData= 32'd120; //0utrigt rate 3

for (i=0 ; 1<200; i=i+1)
begin
@ (posedge clk);

end

end

endmodule

test2.sv

module test_bench;
logic clk;
logic reset;
logic [15:0] writeData;
logic [5:0] offset;
logic write;

logic chipselect;

logic [15:0] priceScanRange;
logic [15:0] readData;
logic read;

integer i;

span_cme span_cmel(.*);

initial begin
clk = 0;
forever # 1 clk = ~ clk;

end

initial begin

clk = 0;
reset = 1;
write = 0;

chipselect = 0

~e

@ (posedge clk) ;

reset =0 ;

write = 1;

chipselect = 1;

@ (posedge clk);

writeData = 16'd100; //Price Scan Range
offset = 6'd0;

@ (posedge clk);

offset = 6'dl;

writeData = 32'd25; //Position 1
@ (posedge clk);

offset = 6'd2;

writeData = -32'd5; //Position 2
@ (posedge clk);

offset = 6'd3;

writeData = 32'd1l5; //Position 3
@ (posedge clk);

offset = 6'd4;

writeData = -32'dl5; //Position 4
@ (posedge clk);

offset = 6'd5;

writeData = 32'd5; //Position 5

@ (posedge clk);

offset

writeData

6'd6;

= -32'd20;

@ (posedge clk);

offset

writeData

6'd7;

= 32'dl5;

@ (posedge clk);

offset

writeData

6'ds8;

= 32'd5;

@ (posedge clk);

offset

6'd9;

writeData= 32'd100;

@ (posedge clk);

offset

6'dl0;

writeData= 32'd200;

@ (posedge clk);

offset

6'dll;

writeData= 32'd2;

@ (posedge clk);

offset

6'dl2;

writeData= 32'dl;

@ (posedge clk);

offset

6'dl3;

writeData= 32'd50;

@ (posedge clk);

offset

writeData

6'dl4;

= 32'dl;

@ (posedge clk);

offset

6'dl5;

//Position 6

//Position 7

//Position 8

//0Outright rate for 1lst commodity

//0Outright rate for 2nd commodity

//Cross commodity ratio for 1st commodity

//Cross commodity ratio for 2nd commodity

//Cross commodity correlation factor

//Maturity for Position 1

writeData = 32'dl;
@ (posedge clk);
offset = 6'dl6;
writeData = 32'd3;
@ (posedge clk);
offset = 6'dl7;
writeData = 32'd3;
@ (posedge clk);
offset = 6'dl1l8;
writeData = 32'd5;
@ (posedge clk);
offset = 6'dl9;
writeData = 32'd5;
@ (posedge clk);
offset = 6'd20;
writeData = 32'd3;
@ (posedge clk);
offset = 6'd21l;
writeData = 32'd5;
@ (posedge clk);
offset = 6'd22;
writeData = 32'd2;
@ (posedge clk);
offset = 6'd23;
writeData = 32'd4;
@ (posedge clk);
offset = 6'd24;

writeData = 32'dé6;

//Maturity for

//Maturity for

//Maturity for

//Maturity for

//Maturity for

//Maturity for

//Maturity for

//Tier 1 upper

//Tier 2 upper

//Tier 3 upper

Position

Position

Position

Position

Position

Position

Position

limit

limit

limit

@ (posedge clk);
offset = 6'd25;
writeData = 32'd50;
@ (posedge clk);
offset = 6'd26;
writeData = 32'd60;
@ (posedge clk);
offset = 6'd27;
writeData = 32'd70;
@ (posedge clk);
offset = 6'd28;
writeData = 32'd80;
@ (posedge clk);
offset = 6'd29;
writeData = 32'd90;
@ (posedge clk);
offset = 6'd30;
writeData = 32'd100;
@ (posedge clk);
offset = 6'd31;
writeData = 32'd100;
@ (posedge clk);
offset = 6'd32;
writeData = 32'dl10;
@ (posedge clk);
offset = 6'd33;

writeData= 32'd120;

//Spread Charge

//Spread Charge

//Spread Charge

//Spread Charge

//Spread Charge

//Spread Charge

//0Outrigt rate 1

//0Outrigt rate 2

//0Outrigt rate 3

for (i=0 ; i<200; i=i+1)
begin
@ (posedge clk);

end

end

endmodule

test3.sv

module test_bench;
logic clk;
logic reset;
logic [15:0] writeData;

logic [5:0] offset;

logic write;

logic chipselect;

logic [15:0] priceScanRange;

logic [15:0] readData;

logic read;

integer i;

span_cme span_cmel(.*);

initial begin

clk = 0;
forever # 1 clk = ~ clk;
end

initial begin

clk = 0;
reset = 1;
write = 0;

chipselect = 0

~e

@ (posedge clk) ;

reset =0 ;

write 1;
chipselect = 1;

@ (posedge clk);

writeData = 16'd200;

offset = 6'd0;

@ (posedge clk)

~e

offset = 6'dl;
writeData = 32'd25;
@ (posedge clk);
offset = 6'd2;
writeData = -32'd5;
@ (posedge clk);
offset = 6'd3;
writeData = 32'd1l0;
@ (posedge clk);

offset = 6'd4;

writeData = -32'dl5;

@ (posedge clk);
offset = 6'd5;
writeData = 32'd5;
@ (posedge clk);

offset = 6'd6;

writeData = -32'dl5;

@ (posedge clk);
offset = 6'd7;
writeData = 32'd0;

@ (posedge clk)

~e

offset = 6'd8;
writeData = 32'd0;

@ (posedge clk)

~e

offset = 6'd9;

//Price Scan Range

//Position 1

//Position 2

//Position 3

//Position 4

//Position 5

//Position 6

//Position 7

//Position 8

writeData= 32'dl75; //0Outright rate for 1lst commodity

@ (posedge clk);

offset = 6'd10;

writeData= 32'd250; //0Outright rate for 2nd commodity

@ (posedge clk);

offset = 6'dll;

writeData= 32'd2; //Cross commodity ratio for 1st commodity
@ (posedge clk);

offset = 6'dl2;

writeData= 32'dl; //Cross commodity ratio for 2nd commodity
@ (posedge clk);

offset = 6'dl3;

writeData= 32'd55; //Cross commodity correlation factor
@ (posedge clk);

offset = 6'dl4;

writeData = 32'dl; //Maturity for Position 1

@ (posedge clk);

offset = 6'dl5;

writeData = 32'dl; //Maturity for Position 2

@ (posedge clk);

offset = 6'dlé6;

writeData = 32'd3; //Maturity for Position 3

@ (posedge clk);

offset = 6'dl7;

writeData = 32'd3; //Maturity for Position 4

@ (posedge clk);

offset = 6'dl1l8;

writeData = 32'd5; //Maturity for Position 5

@ (posedge clk);
offset = 6'dl9;
writeData = 32'd5;
@ (posedge clk);
offset = 6'd20;
writeData = 32'd0;
@ (posedge clk);
offset = 6'd21l;
writeData = 32'd0;
@ (posedge clk);
offset = 6'd22;
writeData = 32'd2;
@ (posedge clk);
offset = 6'd23;
writeData = 32'd4;
@ (posedge clk);
offset = 6'd24;
writeData = 32'dé6;
@ (posedge clk);
offset = 6'd25;
writeData = 32'd50;
@ (posedge clk);
offset = 6'd26;
writeData = 32'd60;
@ (posedge clk);
offset = 6'd27;
writeData = 32'd70;

@ (posedge clk);

//Maturity for Position 6

//Maturity for Position 7

//Maturity for Position 8

//Tier 1 upper limit

//Tier 2 upper limit

//Tier 3 upper limit

//Spread Charge 1

//Spread Charge 2

//Spread Charge 3

offset = 6'd28;
writeData = 32'd80;
@ (posedge clk);
offset = 6'd29;
writeData = 32'd90;
@ (posedge clk);
offset = 6'd30;
writeData = 32'd100;
@ (posedge clk);
offset = 6'd31;
writeData = 32'd100;
@ (posedge clk);
offset = 6'd32;
writeData = 32'dl10;
@ (posedge clk);
offset = 6'd33;

writeData= 32'd120;

//Spread Charge 4

//Spread Charge 5

//Spread Charge 6

//0Outrigt rate 1

//0Outrigt rate 2

//Outrigt rate 3

for (i=0 ; i<200; i=i+1)

begin

@ (posedge clk);

end

end

endmodule

Sample TCL script

test.tcl(Its values are the same as test.sv testbench file)

A Tcl script for the Qsys system console

Start Qsys, open your soc_system.qsys file, run File->System Console,

then execute this script by selecting it with Ctrl-E

The System Console is described in Chapter 10 of Volume III of

the Quartus Il Handbook

Alternately,

system-console --project_dir=. --script=syscon-test.tcl
#

system-console --project_dir=. -cli

and then "source syscon-test.tcl"

Base addresses of the peripherals: take from Qsys

set vga_led 0x0

puts "Started system-console-test-script"

Using the JTAG chain, check the clock and reset”

setj [lindex [get_service_paths jtag_debug] 0]
open_service jtag_debug $j

puts "Opened jtag_debug"

puts "Checking the JTAG chain loopback: [jtag_ debug_loop $j {123 45 6}]"

jtag_debug_reset_system $j

puts -nonewline "Sampling the clock: "
foreachi{111111111111}{

puts -nonewline [jtag_debug_sample_clock $j]

putS nn

puts "Checking reset state: [jtag_debug_sample_reset $j]"

close_service jtag_debug $;

puts "Closed jtag_debug"

Perform bus reads and writes

set m [lindex [get_service_paths master] 0]

open_service master $m

puts "Opened master”

Write a test pattern to the various registers
#foreach {r v} {0 Oxff 1 0x1 2 0x2 3 0x4 4 0x8 5 0x10 6 0x20 7 0x40} {
foreach {rv}{
096

225

4-5

610

8-15

105

12 -15

140

16 0

18175

20 250

222

241

26 55

281

301

323

343

365

385

400

420

442

46 4

48 6
5050
52 60
5470
56 80
5890
60 100
62 100
64 110
66 120} {
master_write_16 $m [expr $vga_led + $r] $v
puts $v
}
puts "read finished -sleep start”
#after 5000
puts "woken up - read start”
foreach{i} {02468}
puts $i

puts [master_read_16 $m [expr $vga_led + $i] 1]

close_service master $m

puts "Closed master”

C) Span_cme.c

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<linux/module. h>
<linux/init.h>
<linux/errno.h>
<linux/version.h>
<linux/kernel.h>
<linux/platform_device.h>
<linux/miscdevice.h>
<linux/slab.h>
<linux/io.h>
<linux/of.h>
<linux/of_address.h>
<linux/fs.h>
<linux/uaccess.h>
"span_cme.h"

#define DRIVER_NAME "span_cme"

/*

% Information about our device

*/

struct span_cme_dev {

struct resource res;

/* Resource:

our registers x/

void __iomem xvirtbase; /* Where registers can be accessed in memory */

} dev;

/*

*x Writes the input data

of a single portifolio to the peripheral

* works serially, one data entry at a time

*/

static void write_digit(short input[])//, short inputl)

{

int it;

for (

it = 0; it < DATA_LENGTH;

it++) {

iowritel6(input[it], dev.virtbase + (2xit));

}
¥

/* read the out put data from the board,

* can be modified to include different reads for the debug data (individual
parameter values) as well

*/
static short read_digit()
{
return 1ioreadl6(dev.virtbase);
s
/%

* Handle ioctl() calls from userspace:

* Read or write data from the portifolio.

k

*/

static long span_cme_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
{

portifolio_t vla;

switch (cmd) {
case SPAN_CME_WRITE_DIGIT:
if (copy_from_user(&vla, (portifolio_t x) arg,
sizeof(portifolio_t)))
return —EACCES;
write_digit(vla.input);
break;

case SPAN_CME_READ_DIGIT:
if (copy_from_user(&vla, (portifolio_t x) arg,
sizeof(portifolio_t)))
return —EACCES;
vla.output = read_digit();
if (copy_to_user((portifolio_t %) arg, &vla,
sizeof(portifolio_t)))
return —EACCES;
break;

default:

return —EINVAL;
}
return 0;

by

/* The operations our device knows how to do *x/
static const struct file_operations span_cme_fops = {
.owner = THIS_MODULE,
.unlocked_ioctl = span_cme_ioctl,

};

/* Information about our device for the "misc" framework —— like a char dev x/
static struct miscdevice span_cme_misc_device = {

.minor = MISC_DYNAMIC_MINOR,
. hame = DRIVER_NAME,
. fops = &span_cme_fops,

b

/%

* Initialization code: get resources (registers) and display
* a welcome message

*/

static int __init span_cme_probe(struct platform_device *xpdev)
{

int ret;

/* Register ourselves as a misc device: creates /dev/span_cme *x/
ret = misc_register(&span_cme_misc_device);

/* Get the address of our registers from the device tree */
ret = of_address_to_resource(pdev->dev.of_node, 0, &dev.res);
if (ret) {

ret = —ENOENT;

goto out_deregister;

}

/* Make sure we can use these registers x/

if (request_mem_region(dev.res.start, resource_size(&dev.res),
DRIVER_NAME) == NULL) {
ret = —-EBUSY;
goto out_deregister;

}

/* Arrange access to our registers x/
dev.virtbase = of_iomap(pdev->dev.of_node, 0);
if (dev.virtbase == NULL) {

ret = —ENOMEM;

goto out_release_mem_region;
}

return 0;

out_release_mem_region:

release_mem_region(dev.res.start, resource_size(&dev.res));
out_deregister:

misc_deregister(&span_cme_misc_device);

return ret;

by

/* Clean-up code: release resources x/
static int span_cme_remove(struct platform_device xpdev)
{
iounmap(dev.virtbase);
release_mem_region(dev.res.start, resource_size(&dev.res));
misc_deregister(&span_cme_misc_device);
return 0;

by

/*x Which "compatible" string(s) to search for in the Device Tree */
#ifdef CONFIG_OF
static const struct of_device_id span_cme_of_match[] = {

{ .compatible = "altr,span_cme" },

{}
b
MODULE_DEVICE_TABLE(of, span_cme_of_match);
#endif

/* Information for registering ourselves as a "platform" driver x/
static struct platform_driver span_cme_driver = {

.driver = {
.hame = DRIVER_NAME,
.ownher = THIS_MODULE,

.of_match_table = of_match_ptr(span_cme_of_match),
I
. remove = __exit_p(span_cme_remove),

};

/* Called when the module is loaded: set things up *x/
static int __init span_cme_init(void)
{
pr_info(DRIVER_NAME ": init\n");
return platform_driver_probe(&span_cme_driver, span_cme_probe);

/* Called when the module is unloaded: release resources x/
static void __exit span_cme_exit(void)
{
platform_driver_unregister(&span_cme_driver);
pr_info(DRIVER_NAME ": exit\n");
}

module_init(span_cme_init);
module_exit(span_cme_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Vidhatre Gathey, CME, CSEE4840, Columbia University");
MODULE_DESCRIPTION("kernel interface with span_cme module");

D) /*

* —-Userspace program that communicates with the span_cme peripheral

* primarily through ioctls

* —program reads the portifolio data from the "input_file.txt"

* —program outputs all the read data from the peripheral to "output_file.txt"
*

*x Vidhatre Gathey

* Columbia University

*/

#include <stdio.h>
#include "span_cme.h"
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>
#include <inttypes.h>
#define NUM_OF_PORTIFOLIO 3 // number of portifolios the input contains
int span_cme_fd;

/* function to read the output from the board using an ioctl function,
* open an output file, and
*x append the output data to the file
*/
void print_output() {
portifolio_t port;
FILE xfpout;
fpout = fopen("output_file.txt","a");

if (ioctl(span_cme_fd, SPAN_CME_READ_DIGIT, &port)) {
perror("ioct1(SPAN_CME_READ_DIGIT) failed");
return;

¥
printf("%04d ", port.output);

fprintf(fpout,"%04d ", port.output);

printf("\n");
fprintf(fpout,"\n");

if (fpout) fclose(fpout);
}

/* Write the contents of the input portifolio data to the board,
* used the ioctl function to wrtie to the board
*/
void write_portifolio(short varl[])
{
portifolio_t port;
int 1i;
for (i=0; i< DATA_LENGTH; i++)
port.input[i] = varl[il;
port.output = 0;
if (ioctl(span_cme_fd, SPAN_CME_WRITE_DIGIT, &port)) {
perror("ioct1(SPAN_CME_WRITE_DIGIT) failed");

return;
¥

}
int main()
{

portifolio_t port; // portifolio template as described in the header
span_cme.h

int i,j,k; // iterators

short var[DATA_LENGTH]; // used as a buffer for storing the data from the

input file as it is read

char label[DATA_LENGTH] [14]; // store the first line of labels from the input
file

static const char filenamel[] = "/dev/span_cme";

FILE xfpin;

printf("SPAN CME Userspace program started\n");

fpin=fopen("input_file.txt", "r+"); // open input file

if ((span_cme_fd = open(filename, O0_RDWR)) == -1) {
fprintf(stderr, "could not open %s\n", filename);
return -1;

}

for (j = NUM_OF_PORTIFOLIO ; j > @ ; j—){ // read the a set of data i.e. a
portifolio from the input file
for(k = 0; k < DATA_LENGTH; k++)
fscanf(fpin, "shu",&varlk]l);

write_portifolio(var);

print_output();
¥
fclose(fpin);

printf("SPAN CME Userspace program terminating\n");
return 0;

E) SPAN_CME.h

#ifndef _SPAN_CME_H
#define _SPAN_CME_H

#include <linux/ioctl.h>
#define DATA_LENGTH 34 // data length for a portifolio is defined here

typedef struct { // currently the portifolio struct just hold the input data
and the calculated risk margin

short input[DATA_LENGTH];

short output;
} portifolio_t; //portifolio_t;

#define SPAN_CME_MAGIC 'q'

/* ioctls and their arguments x/

#define SPAN_CME_WRITE_DIGIT _IOW(SPAN_CME_MAGIC, 1, portifolio_t)
#define SPAN_CME_READ_DIGIT _IOWR(SPAN_CME_MAGIC, 2, portifolio_t =)

#endif

