CSEE 4840
Embedded System Design
Tutorial: Configuring Linux: Kernels and All That

Stephen A. Edwards
Columbia University

2014

The Linux system on our SoCKit boards consists of three pieces:

1. The Linux Kernel

This is the big C program that actually runs on the ARM processors. It’s responsible
for running multiple processes, managing resources such as memory, communicating
with hardware, providing filesystems, and so forth.

The Linux kernel is due to Linus Torvalds and many others; the various versions can be
downloaded from http://www.kernel.org. Versions are numbered, such as “3.8”

In our environment, the kernel resides in file called “uImage.”

2. The Root Filesystem

This is the root directory “/” and all the files under it, including all the programs under
/bin; all the libraries in /lib; configuration files in /etc; /root, the home directory for the
superuser; the device files under /dev; and a few others.

The contents of the root filesystem typically starts from a distribution, such as Debian,
Ubuntu, or Linaro.

3. A Bootloader

On the SoCKit board, there are actually two: a first-stage bootloader responsible
mostly for configuring the bbR memory and loading the rather elaborate second-stage
bootloader “u-boot” that has a command-line interface, the ability to load the Linux
kernel into memory from a FAT filesystem on an sp card or over the network.


http://www.kernel.org

1 The Configuration for Lab 2
1.1 The Linux Kernel

I used the modified Linux kernel (with support for the Altera framebuffer) prepared for the
RocketBoards Linaro example.'

This requires the ARM cross compiler that comes with the Altera tools. The easiest way to ensure
this is in your path is to run /opt/altera/quartus-13.1/embedded/embedded_command_shell.sh.

git clone https://github.com/altcrauer/linux.git

cd linux

git checkout -b neek_soc_38 origin/arrow_sockit_vga
export ARCH=arm

export CROSS_COMPILE=arm-none-eabi-

export LOADADDR=0x8000

make socfpga_defconfig

make menuconfig

make uImage

make socfpga_cyclone5.dtb

This creates the Linux kernel image arch/arm/boot/ulmage and the device tree blob
arch/arm/boot/dts/socfpga_cyclones.dtb.

For lab 2, I disabled the virtual terminal, which normally uses the framebuffer to display text
as it is booting and running. To do this, after make menuconfig, I disabled Device Drivers —
Character devices — Virtual terminal.

1.2 The Root Filesystem

I used a Linaro root filesystem I selected from http://www.linaro.org.

wget http://releases.linaro.org/14.01/ubuntu/saucy-images/nano/\
linaro-saucy-nano-20140126-627.tar.gz
tar zxf linaro-saucy-nano-20140126-627.tar.gz

>

This produces a root filesystem in a directory called “binary” For the full effect, the “tar’
command needs to be run as root to get all the file permissions right. Also, only root can
create the device nodes in the /dev directory.

1http://www.rocketboards.org/foswiki/Projects/SoCKitLinaroLinuxDesktop


http://www.linaro.org
http://www.rocketboards.org/foswiki/Projects/SoCKitLinaroLinuxDesktop

2 The Configuration for Lab 3
2.1 The Linux Kernel

git clone git://git.rocketboards.org/linux-socfpga.git
cd linux-socfpga

git checkout -b lab3-kernel-3.8 origin/socfpga-3.8
export ARCH=arm

export CROSS_COMPILE=arm-none-eabi-

export LOADADDR=0x8000

make socfpga_defconfig

make uImage

make socfpga_cyclone5.dtb

2.2 The Root Filesystem

wget http://releases.linaro.org/13.11/ubuntu/raring-images/\
nano/linaro-raring-nano-20131124-562.tar.gz
tar zxf linaro-raring-nano-20131124-562.tar.gz

2.3 More Configuration

After booting the board to the Linux command prompt, the network needs be configured:

route add default gw 192.168.1.1
echo "nameserver 128.59.1.3
nameserver 128.59.1.4" > /etc/resolv.conf

This should enable apt-get to install tools such as make and the C compiler:

apt-get update
apt-get install -y make gcc



	The Configuration for Lab 2
	The Linux Kernel
	The Root Filesystem

	The Configuration for Lab 3
	The Linux Kernel
	The Root Filesystem


