
csee 4840
Embedded System Design

Lab 2: Using C, Linux, Sockets, and usb

Stephen A. Edwards
Columbia University

2014

Learn how to code and compile C under Linux on the SoCKit board. Implement a primitive
Internet chat client that communicates with a server. Draw text on a framebu�er and receive
keystrokes

1 Introduction

Unlike the �rst lab, this lab only involves developing so�ware. We supply a platform con-
sisting of Linux running on the arm processors on the fpga on the SoCKit board. A fpga
con�guration adds a simple video framebu�er.

You will implement an Internet-based chat client on this platform. When a user types a line
of text on the attached usb keyboard, it will appear on the video display. When s/he presses
Enter, the contents of the line should be sent through the Ethernet port to a chat server we
have running on the SoCKit board network we have running in the lab, which will then
broadcast it to all the other connected chat clients.

1

2 Booting the Board

Set the fpga con�guration mode switches (sw6, on
the underside of the board) to 000001.

�is setting for the msel switches instructs the fpga
to accept its con�guration from the arm processors.

If this is set di�erently, the system will likely not pro-
duce video but may work otherwise.

Set jumpers j15–j19 such that
bootsel[2:0] is 111 and clk-
sel[1:0] is 00.

Bootsel controls how the arm
processor boots; 111 sets it to
boot from the onboard serial �ash
“qspi.”

Bootsel is set di�erently, nothing
will appear on the serial debugging
port and Linux will not start.

Power on the board. A�er a few seconds, start the screen terminal emulator on the desktop
workstation by typing in a shell window

screen /dev/ttyUSB0 57600

�is establishes a 57600-baud serial connection to the hps system on the board through the
right usb connector on the board (which appears as /dev/ttyUSB0). If you do this before you
power on the board, screen will report that it “cannot �nd the PTY.”

You should see a countdown followed by boot messages that begin like

Waiting for PHY auto negotiation to complete. done

ENET Speed is 100 Mbps - FULL duplex connection

Using mii0 device

TFTP from server 192.168.1.1; our IP address is 192.168.1.101

Filename ’board01/soc_system.rbf’.

Load address: 0x2000000

Loading: ###

###

�e board �rst uses tftp to download three �les in the /sockit directory on your workstation:
soc_system.rbf, a con�guration for the fpga that includes the framebu�er; uImage, the Linux
kernel; and socfpga.dtb, a small �le with address and driver information for all the peripherals
visible to the processors.

Note: Each board is con�gured to work with a speci�c workstation. Do not move boards
between workstations.

�e Linux kernel should start and report things like

Starting kernel ...

Booting Linux on physical CPU 0x0

Initializing cgroup subsys cpuset

Linux version 3.8.0-00111-g85cc90f (sedwards@zaphod) (gcc version 4.6.3

(Sourcery CodeBench Lite 2012.03-56)) #2 SMP Tue Feb 4 21:04:47 EST 2014

CPU: ARMv7 Processor [413fc090] revision 0 (ARMv7), cr=10c5387d

Finally, it will mount the root �lesystem from /sockit/root and report something like

VFS: Mounted root (nfs filesystem) on device 0:11.

devtmpfs: mounted

Freeing init memory: 188K

Last login: Thu Jan 1 00:00:08 UTC 1970 on ttyS0

root@linaro-nano:~#

�is is a shell prompt. Typing in the terminal emulator window on your workstation (i.e.,
where you ran screen) will send commands to this Linux system running on the SoCKit board.

3 Compiling the Skeleton Lab 2 Files

From the class website, download lab2.tar.gz to your workstation and unpack it to /sockit/-
root/root. �is will make it visible to the SoCKit board. On a terminal on your workstation,
this might look like

sedwards@micro28 root-> cd /sockit/root/root

sedwards@micro28 root-> ls

lab2.tar.gz

sedwards@micro28 root-> tar zxf lab2.tar.gz

sedwards@micro28 root-> cd lab2

sedwards@micro28 lab2-> ls

fbputchar.c fbputchar.h lab2.c Makefile usbkeyboard.c usbkeyboard.h

sedwards@micro28 lab2->

Note: It is important that you unpack these �les using the workstation and not from the
command line on the SoCKit board. Otherwise, you won’t have permissions to to edit them
on the workstation.

Now, on the SoCKit board (i.e., in the window you ran screen), compile and run the skeleton
Lab 2 code:

root@linaro-nano:~# cd lab2

root@linaro-nano:~/lab2# make

cc -Wall -c -o lab2.o lab2.c

cc -Wall -c -o fbputchar.o fbputchar.c

cc -Wall -c -o usbkeyboard.o usbkeyboard.c

cc -Wall -o lab2 lab2.o fbputchar.o usbkeyboard.o -lusb-1.0 -pthread

root@linaro-nano:~/lab2# ./lab2

Welcome to the CSEE 4840 Lab2 chat server

On the display driven by the
SoCKit board, you should see a
“hello world” message.

When a key is pressed, this skele-
ton client will display three hex-
adecimal numbers indicating the
message received from the usb key-
board.

�is skeleton client also displays messages received from the chat server.

�e skeleton client will quit (return to a command prompt) if you press Esc on the keyboard.

If you get an error like

root@linaro-nano:~/lab2# ./lab2

Error: connect() failed. Is the server running?

it probablymeans that the chat server is not running on the server in the lab. Ask the instructor
or a ta to restart it.

4 Editing and Saving Files

Your source �les should appear on your workstation under /sockit/root/root/lab2. Edit them
using your favorite editor (e.g., emacs, vi, nano) on the workstation. Because the /sockit/root
directory is shared between the SoCKit board and your workstation, any modi�cations you
make to �les on your workstation will be instantly visible on the SoCKit board.

On the SoCKit board, runmake to recompile your �les and ./lab2 to run them.

When you are done working for this session, runmake lab2.tar.gz in the /sockit/root/root/lab2
directory on your workstation and copy the lab2.tar.gz �le to your home directory on the
workstation.

Note: To be able to read your newly made lab2.tar.gz �le on the workstation, you may need
to change its ownership or permission on the SoCKit board with chown or chmod.

Important: When you are done working on your lab, remove your �les from the /sockit/root/-
root directory to hide them from other students. Do this on the SoCKit board:

root@linaro-nano:~# cd

root@linaro-nano:~# rm -rf lab2*

5 �e Framebu�er

A framebu�er is a region of memory that is displayed as pixels on a monitor. For this lab, we
are supplying you with an fpga con�guration and Linux kernel that supplies a framebu�er
device named /dev/fb0.

To use this device in a user-level program, open the device �le and call mmap(2) to make it
appear in the process’s address space. In fbputchar.c, the fbopen() function does this for you.
Also in this �le is the fbputchar() function, which displays a single character on the screen,
and fbputs(), which displays a string. See lab2.c for a simple demonstration of their use.

Once mapped, the framebu�er memory appears as a sequence of pixels in the usual raster

order: the upper le� pixel appears �rst, followed by the one just to its right. �e next row of
pixels starts immediately a�er the �rst row ends.

Each pixel is a group of four bytes, representing red, green, and blue intensities and an unused
byte sometimes used to represent transparency.

For this lab, you may want to add functions that clear the framebu�er, scroll a region of
the framebu�er (consider using memcpy()), draw lines, etc. You may also want to modify
fbputchar() to use di�erent colors, a di�erent font, etc.

6 Networking

We will use Internet protocols to communicate to and from a chat server. Each computer
connected to the Internet has a numeric ip address; our chat server is “192.168.1.1”. Within
each computer, servers communicate on ports, which are numbered starting from 1. For
example, webservers listen on port 80 and ssh uses port 22. Our chat server uses port 42000.

“Sockets” is the standard api for network communcation in Linux. You send and receive data
to and from programs on remote computers using read() and write() system calls.

�emain function in lab2.c creates, opens, and listens to a socket. Abstractly, this looks like

// Create an Internet socket

int sockfd = socket(AF_INET, SOCK_STREAM, 0);

// Connect to the server

#define IPADDR(a,b,c,d) (htonl(((a)<<24)|((b)<<16)|((c)<<8)|(d)))

#define SERVER_HOST IPADDR(192,168,1,1)

#define SERVER_PORT htons(42000)

struct sockaddr_in serv_addr = { AF_INET, SERVER_PORT, { SERVER_HOST } };

connect(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr));

// Write to the socket

write(sockfd, "Hello World!\n", 13);

// Read from the socket

#define BUFFER_SIZE 128

char recvBuf[BUFFER_SIZE];

read(sockfd, &recvBuf, BUFFER_SIZE - 1));

Note that all of these functions can fail in various ways and their return values must be
checked for errors.

7 USB

We use the libusb C library for communicating with the usb keyboard. �e usb protocol
is rich and complicated, allowing it to work with peripherals as diverse as keyboards, hard
drives, and speakers; libusb hides many of the details, especially those related to intializing
and communicating with the usb controller chip.

Usb is nearly a networking protocol like ip, but assumes a simple, tree-shaped network
consisting of a single host connected to peripherals and hubs that fan out. While it is possible
to directly address the tree structure of the network, libusb allows us to ignore it.

To communicate with a usb keyboard, we have to �nd it. Because there are so many kinds of
usb devices, we need to look at each one and determine if it is a keyboard before attempting
to receive keystrokes from it.

�e code in the openkeyboard() function in usbkeyboard.c does this: it initializes libusb,
enumerates all the currently connected devices, then checks each one to see if it is part of the
“Human Interface Device” (hid) class and speaks the keyboard protocol (hid devices also
include mice). If openkeyboard() �nds a keyboard, it attempts to connect to it.

In lab2.c, keypress events are received from theusb keyboard using libusb’s libusb_interrupt_transfer()
function. �is returns an eight-byte packet consisting of a byte indicating which modi�er
keys (such as Shi�) are pressed, an unused byte, and six bytes holding keycodes of pressed
keys or 0.

Usb keyboards use their own, non-ascii keycodes. Consult section 10 (page 53) of the usb
Implementer’s Forum documentation1 for details.

�e skeleton code in lab2.c receives and displays the modi�er and the �rst two keycode bytes.
For example, when the “A” key is pressed, it displays “00 04 00,” and when it is released, “00
00 00.” Shi�-A produces “02 04 00,” and Ctrl, A, and C together give “01 04 06.”

1http://www.usb.org/developers/devclass_docs/Hut1_12v2.pdf

http://www.usb.org/developers/devclass_docs/Hut1_12v2.pdf

8 �reads

Reading from a socket and reading from the usb keyboard are blocking, meaning the various
reader functions do not return until new data is available. �is is a problem because we must
be able to receive messages from other users while we are typing.

A solution is to spawn threads. �ese are e�ectively separate program counters within the
same program; we can have one waiting for networking communication while the other waits
for events from the keyboard.

In lab2.c, we spawn one thread to receive data from the network, leaving the main program
to handle the usb keyboard. �e basic template is this:

#include <pthread.h>

pthread_t network_thread;

void *network_thread_f(void *)

{

// Code to be run "in parallel" with the main program

}

int main()

{

// Start the network thread

pthread_create(&network_thread, NULL, network_thread_f, NULL);

// Do stuff "in parallel" with the network thread

// Wait for the network thread to terminate

pthread_join(network_thread, NULL);

}

�reads can communicate with each other and themain program through global variables. To
avoid race conditions (i.e., where one thread is reading while the other writing), the pthread
library providesmutexes (mutual exclusion constructs) that can be used to enforce exclusive
access to global variables.

9 What to Do

�e lab2.tar.gz �le on the class homepage has a partially-working skeleton for the application.
Extend it as follows.

• Make the display work properly and look good. fbputchar.c has the framebu�er initial-
ization code and some simple character generation code.

– Clear the screen when the program starts.
– Separate the screen into two parts with a horizontal line between. Use the bottom
two rows as the user’s text input area, and the rest of the screen to record what
s/he and other users send.

– When a packet arrives, print its contents in the “receive” region. Don’t forget to
wrap long messages across multiple lines.

– When printing reaches the bottom of the area, you may either start again at the
top, or scroll the entry region of the screen.

– Implement a reasonable text-editing system for the bottom of the screen. Have
input from the keyboard display characters there and allow users to erase un-
wanted characters and send the message with return. Clear the bottom area when
a message is sent.

– Display a cursorwhere the user is typing.�is could be a vertical line, an underline,
or a white box.

• Make the keyboard input work. Speci�cally,

– Convert the usb keycodes into ascii to display and send them over the network.
– Make both shi� keys work (i.e., do upper and lowercase characters)
– Make the le� and right arrow keys work
– Make the backspace key work

• Complete the network communication

– When your client receives a packet from the server, display it on the next line at
the top of the screen.

– When the user presses return, have your client send to the server the text s/he
has been typing and display it in the text area at the top of the sceen.

10 What to turn in

Find an overworked TA or instructor, show him/er your working chat application, demon-
strate that it is sending well-formed packets, runmake lab2.tar.gz on the SoCKit board in your
lab2 directory to collect all the source code, and submit your lab2.tar.gz via Courseworks.

	Introduction
	Booting the Board
	Compiling the Skeleton Lab 2 Files
	Editing and Saving Files
	The Framebuffer
	Networking
	USB
	Threads
	What to Do
	What to turn in

