
IKSwift
Design of an Inverse Kinematics Accelerator

Yipeng Huang, Lianne Lairmore, Richard Townsend

{yipeng, lairmore, rtownsend}@cs.columbia.edu

March 26, 2014

1 Overview

In this project, we will build specialized hardware to tackle the inverse kinematics problem.
Inverse kinematics is widely used in robotics computing and in computer graphics. The

problem takes as input a configuration of mechanical joints, which can be rotational or
sliding, that are present in an arm or a leg. Then, it takes as input the limb’s current shape
and a target shape, solving for the required joint motions to get to the desired shape.

We will build a configurable solver on an FPGA, in hopes of speeding up solutions when
compared to running the same algorithm on a regular CPU.

2 Motivation

Computers are increasingly embedded in the real world, often permanently attached to
sensors and actuators. One example of these systems are robots. Computer systems that
must coordinate with sensors and actuators are distinct from general purpose computers,
and the desired hardware to support its applications will also be different.

Specialty hardware such as GPUs can support hard-hitting sensing algorithms, especially
those that involve image processing. Equally important, but less well studied, is how com-
puter hardware should adapt to support controlling actuators. Actuator algorithms have yet
to appear in well known computer architecture research workloads. Early studies of com-
puter architecture support for robotics show that general purpose CPUs suffer when running
typical robotic workloads [1].

Problems that arise when controlling actuators, such as kinematics, dynamics, obstacle
avoidance, and collision detection, have been found to occupy a large portion of computer

1



runtime in robotics. Live measurements show 33-66 percent dedicated to embedded computer
on robot. In particular, the inverse kinematic problem is interesting because it has features
of two distinct workload categories: sparse matrix math and graph traversal [2]. This project
will focus on building hardware for inverse kinematics.

3 Inverse Kinematics Algorithm

We first present an algorithm that takes as input n homogenous transformation matrices
T i−1
i for i = 1 to n, and the current position of our end effector in three-dimensional space,

which is represented as the vector s. The output of the algorithm is the Jacobian matrix
for the current system configuration. Given matrices A and B, we use the notation AB for
matrix multiplaction and A×B for the cross-product in the following pseudocode.

Let J be a 6 x n matrix, where each column corresponds to a joint. The top three
scalars of a column represent the position of the joint in 3-space, while the bottom
three represent the oritentation of the joint in 3-space.
Let z be the z-axis of the coordinate frame at the base of our robot appendage
for i = 1 to n do

Let Ri be the 3x3 rotation block derived from T 0
i

Let vi = zRi be the axis of rotation or translation for joint i
Let pi be a column vector composed of the top three scalars in the last column of
T 0
i . This is the current position of joint i

if joint i is rotational then

Set column i of J to be
[
(vi × (s− pi)) vi

]T
else

Set column i of J to be
[
vi 0 0 0

]T
end

end
Return J

Algorithm 1: Jacobian(T 0
1 , T

1
2 , . . . , T

n−1
n , s)

The following algorithm describes the Jacobian Damped Least-Squares method of solving
the inverse kinematics problem. As input we are given a set of D-H parameters that fully
define the initial positions of the joints of our robot appendage, as well as a three-dimensional
target position for our end effector. Formally, for each joint i = 1 . . . n we have D-H param-
eters θi, di, ai, αi, and we call our target vector t. The final output of our algorithm is a set
of updated D-H parameters that fully define the required position of our joints such that the
end effector position is sufficiently close to the target. Although the algorithm given applies

2



to a general n−jointed robot, we will only consider robots with 6 joints in our system, leading
to a 6x6 Jacobian matrix.

Let ε be the desired accuracy of our final results;
for i = 1 to n do

Calculate the homogenous transformation matrix T i−1
i for joint i using the given

D-H parameters;
end

Let T 0
n =

∏n
i=1 T

i−1
i be the full homogenous transformation matrix for the system;

Let s be a column vector composed of the top three scalars in the last column of T 0
n .

This is the current position of our end effector;
Let e = t− s be the desired change in the position of our end effector;

Set e =
[
e 0 0 0

]T
so we can use it in our Jacobian equations, which deal with 6 x

6 matrices;
Let J = JACOBIAN(T 0

1 , T
1
2 , . . . , T

n−1
n , s) be the Jacobian matrix for the current

system configuration;
while the l2 norm of e is greater than ε do

Let JT be the transpose of J ;
Let λ be a small positive constant;
Let I be the identity matrix;
Use row operations to determine the vector f that satisfies the equation
(JJT + λ2I)f = e;
Let ∆θ = JTf be a vector whose ith component is a change in joint i’s angle.
Note that if joint i is translational along the unit vector vi, then the joint “angle”
measures the distance moved in the direction vi and the ith component in ∆θ will
be a change in di;
for i = 1 to n do

if joint i is translational then
Set di = di +∆θ[i];

else
Set θi = θi +∆θ[i];

end

Recalculate T i−1
i ;

end
Recalculate T 0

n , s, e, and J using our updated homogenous transformation
matrices;

end
Return the final set of D-H parameters currently specifying the positions of our joints;

Algorithm 2: JacobianTranspose({θ1, d1, a1, α1}, . . . , {θn, dn, an, αn}, t)

3



4 Software Prototype

Our software prototyping has two goals. The first goal is to verify we understand and can
translate the algorithm to hardware. The second purpose of our prototype is a way of
verifying results from our hardware. We found an open source C++ project on github.com
which computes the incremental angle movements for a given robot to reach a target position
given a beginning position using three different algorithms [3]. The algorithms being used in
the open source project were all ones we had been exploring to implement in hardware. The
code was organized and very clean. It was perfect for us to grasp how the Jacobian Transpose,
Jacobian Pseudo Inverse, and Damped Least Squares algorithms worked in practice since
our only source had been higher level papers. This project also covers our second need, for
a way to verify results from our hardware. The fact that the project wasn’t implemented by
us gives it credibility; it would be easy to implement the algorithm incorrectly in software
and then in hardware and not realize the original software was wrong.

Along with using this open source project we are implementing a smaller prototype that
will reflect the structures in our hardware and will only use the one algorithm we plan to use.
By creating this second software project we will be able to play around with structures we
might need to change. For example, it would be easier to edit a project created by ourselves
if we wanted to try and see how fixed point or integer math would work instead of floating
point. Another example of ways we might use the self implemented project in testing is
by testing different computational methods for sin and cos. It is important to test how
the accuracy of our algorithm changes if we change computational methods like the ones
mentioned above. Editing will be a lot easier to do in software than hardware and less time
consuming. It would be pointless wasting time designing hardware that doesn’t compute the
algorithm accurately enough.

After our software prototype has been implemented along with hardware we will have 3
different programs attempting to compute the same information. This will give us confidence
in our end result if all three methods match. As an extra measure we are planning, for at
least our software, to connect to software that will draw a robot arm to verify visually that
it works.

Since parsing XML documents in software isn’t really an important part of learning how
to write embedded systems we have decided to use part of the open source C++ project
to parse the XML robot configuration files to retrieve the original joint positions and the
joint types. The software from the cpp-inverse-kinematics-library will parse a given XML
file then give the resulting joint information to sofware we have created. Our software will
then obtain a target position from the user and with the target information and the joint
configurations it will start computing the next angle positions using the FPGA hardware
component we will build.

5 Architecture

For our project we will be using the FPGA as an accelerator for inverse kinematics com-
putations. Software running on the ARM processor on the SoCKit board will be driving
the FPGA and will display its outputs on a monitor. The user should be allowed to spec-

4



ify a robot design via an XML file, which contains the Denavit-Hartenberg parameters for
the robot. The software will supply target Cartesian coordinates to the accelerator, which
will return updated joint configurations to move towards the given target coordinates. The
software will use the joint configuration to update an image on the monitor. The resulting
image should result in an animation of a appendage moving towards a target position.

FPGA

CONFIGURATION

TIME

FPGA

RUNTIME

LINUX

RUNTIME Target Pose
Incremental 

Joint Actions

ROS URDF

Collada

D-H Params

Robot 

Geometry 

XML

matrix constants

variables

Forward 

Kinematics 

Jacobian

Jacobian 

Block

Forward 

Kinematics 

Matrix

Damped Least 

Squares Block 

Inverse 

Kinematics 

Matrix

cpp-inverse-

kinematics-

library

Compiler

Robot 

Current Joint 

Pose

Full Matrix 

Mult. Pipeline

4x4 Matrix 

Multiplier

d

A

α

Θ

16

16

• axis of rot. / trans.

• pos. & rot. of joint

16

A*cos(Θ)

A*sin(Θ)

sin(Θ)sin(α)

-sin(Θ)cos(α)

-cos(Θ)sin(α)

cos(Θ)cos(α)

sin(Θ)

cos(Θ)

sin(α)

cos(α)

Θ

α

A

d

Jacobian 

Finder

16...

Figure 1: An architecture view of the software and hardware tools we will use for this design.

6 Hardware/Software Interface

We will design a “joint” peripheral through which the software and hardware components of
our system will interact. The driver for the joint peripheral will provide an ioctl that copies
a struct to and from the user with the following components:

Field Comments
unsigned char target[3] The x,y,z, coordinates of the target position for our end-effector

unsigned char joint 0,1,...,JOINT DOF-1
unsigned char joint type The ith bit is 1 if the ith joint is rotational, 0 for translational
unsigned char parameter THETA,L OFFSET,L DISTANCE,ALPHA
unsigned short magnitude

The joint field represents which joint we’re referring to (we have a total of JOINT DOF joints),
the joint type field keeps track of the type of every joint in system, the parameter field
is a constant signifying which D-H parameter we’re reading or writing, and the magnitude
field holds the value of that D-H parameter.

The registers used by the device driver are represented with the following struct, following
the example given in lab 3:

5



struct joint_dev{

struct resource res; /* Resource: our registers */

void __iomem *virtbase; /* Pointer to registers */

u8 joint_type; /* ith bit is 1 if ith joint is rotational, 0 for translational */

u16 target[3]; /* Target position */

u16 dh_params[JOINT_DOF * 4] /* Every joint has 4 parameters */

} dev;

The joint type and target fields mirror the same fields in the user-level struct and
are only set once during the configuration stage of our pipeline. The dh params array in
the given struct will be used to read and write magnitudes for various D-H parameters in
the given configuration. For example, the magnitude of the third joint’s theta parameter
would be stored at dh params[2*4 + THETA]. Note that since the only parameters that our
algorithm modifies are θi and di for joint i, these are the only components of our struct that
will be modified after the start of our algorithm.

7 Hardware

We will represent numbers as 16-bit fixed point numbers in our hardware.
We are limited in the number of digital signal processors and lookup tables available in

the FPGA. We pay attention to reusing units that use a lot of area, and time multiplex their
use so they are used multiple times in the algorithm.

In the following subsections, we describe the submodules of the accelerator. Then, we de-
scribe the custom functional units we have to build in order to assemble our submodules. We
assemble these custom functional units using IP designs generated by Altera MegaFunctions.

7.1 D-H Parameter Homogeneous Transformation Block

Frames are a set of axes and coordinates that describe 3D space. Frames can be global or
local. A local frame would be useful in describing the x, y, z positions of an object in space,
along with the orientation (direction it is pointing) in space. Each link in a robot appendage
has a frame associated with it.

A moving joint that connects two links results in a change in reference frames between
the two links preceding and following the joint. We can transform from one frame to the
next using homogeneous transforms, which are described as 4 by 4 matrices. For background
information on homogeneous transforms refer to [4].

If we use the standard D-H parameters to describe the joint, this change in frames is
a homogeneous transformation shown in Figure 2, which when multiplied out in full is the
matrix shown in Figure 3.

Figure 2: The transformation between two frames linked by a joint, using D-H parameter
variables.

6



Recall that revolute joints are represented as a rotation of joint angle α about the Z
axis, and prismatic joints are translations by link offset a along the Z axis. To align the two
coordinates frames, we translate along the X axis by the link length d, and rotate by the X
axis by the link twist θ.

Figure 3: The full matrix describing the transformation between two frames linked by a
joint.

We can calculate this homogenous transformation using a dedicated hardware block in
the FPGA. Figure 4 is the dataflow diagram for a hardware block that calculates all the
elements in the transformation matrix. This submodule uses two instances of the sine cosine
functional unit, which we describe later.

Figure 4: The dataflow diagram for a hardware block that calculates the elements in a
homogenous transform matrix.

7.2 Full Matrix Multiplication Pipeline

A series of joints connected together by links in an appendage form a kinematic chain. To
solve the inverse kinematics problem, we must first have the forward kinematic description
of the robot. We can describe the location and orientation of the end of the appendage
with yet another 4 by matrix. This full forward kinematics matrix is simply the product of
the matrices that describe each joint. We can calculate this in hardware using the pipeline
shown in Figure 5.

7



Figure 5: The homogenous transform matrix blocks are chained together to calculate the
full transformation matrix of the forward kinematic chain.

7.3 Jacobian Block

The matrix that relates the differential motion of joints to differential motion in cartesian
space is called the Jacobian matrix. This matrix describes the velocity relationship between
joints and the end of the actuator [5].

Extract 3x3
rotation block

T

Extract top 3
scalars of last

column

16
9

3

Multiplication

Z_0 3

Subtraction

Cross
Multiply

3

3

J
o

in
t 
T
y
p

e
 M

u
lt
ip

le
x
e

r

type

s

3

Column of Jacobian6

3

1

Figure 6: The dataflow diagram for a hardware block that calculates the ith column of the
Jacobian matrix.

7.4 Damped Least Squares Block

The Jacobian matrix describes the velocity of the manipulator end point as a function of
joint velocities. The inverse kinematics problem is solved if we can find the matrix inverse of
the Jacobian matrix, which would describe the requisite joint velocities to obtain the desired
velocity of the manipulator.

8



Finding the inverse Jacobian matrix is not possible in practice. A robot that has fewer
than six degrees of freedom (six joints) would not have full control of translation and orien-
tation of its hand, resulting in a non-square, and therefore non-invertible, Jacobian matrix.
A robot that is at extreme points in its range of motion may also have a Jacobian matrix
that does not have full row rank, and therefore have no inverse Jacobian matrix.

Instead, we will find the Jacobian matrix inverse in the least squared sense by solving the
normalized matrix equation. We do this by multiplying both sides of the matrix equation
with the Jacobian matrix transpose.

Furthermore, a square matrix may not be invertible when two or more rows cancel out,
leading to a matrix that does not have full row rank. Running any matrix inversion algorithm
on such a matrix would result in a divide by zero exception. We eliminate this possibility
by adding a small bias constant along the diagonal of the Jacobian matrix, preventing the
matrix from losing a row.

The pipeline for the damped least squares inverse kinematics algorithm is shown in Figure
7.

Figure 7: The pipeline for calculating joint movements using the damped least squares
algorithm.

9



7.5 Custom Functional Units

In this section we describe the building blocks of the accelerator—our custom functional
units—which we assemble to create the submodules described in previous sections. These
custom functional units are assembled from IP designs generated by Altera MegaFunctions.

7.5.1 16-bit Sine and Cosine

We use Taylor series to estimate sine and cosine functions. The Taylor series expansion
for sine is sin(x) = x − x3/3! + x5/5!... Similarly, the Taylor series expansion for cosine is
cos(x) = 1−x2/2!+x4/4!... Figures 8, 9 show the effect of including more terms on accuracy.

Figure 8: The Taylor series estimate of sine becomes more accurate as more terms are added.
Blue is the ideal function. Red is the six term estimate.

Figure 9: The Taylor series estimate of cosine becomes more accurate as more terms are
added. Blue is the ideal function. Red is the six term estimate.

For our design, we will use just six terms to estimate sine and cosine. This level of
accuracy is acceptable because the robot joint angles are constrained to positive and negative
one radian. Low order estimates for sine and cosine suffice for function values near the origin.

Such a functional unit would require 20 multipliers and would finish in 20 cycles. Special-
ized multipliers that square a single variable or multiply a variable by a constant coefficient
cost less than a regular multiplier, so we use those where possible to trim area costs.

7.5.2 4x4 Matrix-Matrix Multiplication

The full transformation matrix pipeline needs to multiply D-H transformation blocks. In-
stead of instantiating a costly, dedicated 4x4 matrix multiplication functional unit, we use
the 6x6 matrix multiplication functional unit needed for the damped least squared algorithm,
which would otherwise be idle while the accelerator is finding the Jacobian matrix.

When using the 6x6 matrix multiplier for multiplying 4x4 matrices, the additional pair
of rows and columns that pad the 4x4 matrices will be zero.

10



7.5.3 6x6 Matrix-Matrix Multiplication

Matrix-matrix multiplication is highly parallel—multiplying 6x6 matrices requires 63 multi-
plications that may occur in parallel. We cannot instantiate 216 multipliers on the FPGA,
so instead we will do 36 multiplies or 72 multiplies at once.

Strassen’s algorithm could further reduce the multiplications needed for 6x6 matrix mul-
tiplication.

7.6 Submodule Timing Design

The FPGA has a limited number of DSPs which are used to implement multipliers, so we
must time multiplex their use. We schedule the use of our functional units so that parts
of the inverse kinematics algorithm can run in parallel, and so that functional units can
be reused in different parts of the algorithm. By minimizing area costs, we may be able
increase the precision of our numbers from 16-bit to 24-bit or even 32-bit. Larger number
representations could improve convergence of the algorithm, and make the accelerator easier
to use.

Figure 10 shows the timing design of the accelerator. The diagram lists the functional unit
hardware resources along the vertical axis, and displays which clock cycles those resources are
active along the horizontal axis. The top half of the diagram shows the first 150 clock cycles
of the algorithm, which is dedicated to finding the forward kinematics Jacobian matrix. The
bottom half of the diagram is the second 150 clock cycles of the algorithm, which carries
out the damped least squares algorithm.

Functional 

Unit

Functional 

Unit Width

Functional 

Unit Delay
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

sincos 2 20
joint 

1
joint 

1
joint 

1
joint 

1
joint 

1
joint 

1
joint 

1
joint 

1
joint 

1
joint 

1
joint 

1
joint 

1
joint 

1
joint 

1
joint 

1
joint 

1
joint 

1
joint 

1
joint 

1
joint 

1
joint 

2
joint 

2
joint 

2
joint 

2
joint 

2
joint 

2
joint 

2
joint 

2
joint 

2
joint 

2
joint 

2
joint 

2
joint 

2
joint 

2
joint 

2
joint 

2
joint 

2
joint 

2
joint 

2
joint 

2
joint 

3
joint 

3
joint 

3
joint 

3
joint 

3
joint 

3
joint 

3
joint 

3
joint 

3
joint 

3
joint 

3
joint 

3
joint 

3
joint 

3
joint 

3
joint 

3
joint 

3
joint 

3
joint 

3
joint 

3
joint 

4
joint 

4
joint 

4
joint 

4
joint 

4
joint 

4
joint 

4
joint 

4
joint 

4
joint 

4
joint 

4
joint 

4
joint 

4
joint 

4
joint 

4
joint 

4
joint 

4
joint 

4
joint 

4
joint 

4
joint 

5
joint 

5
joint 

5
joint 

5
joint 

5
joint 

5
joint 

5
joint 

5
joint 

5
joint 

5
joint 

5
joint 

5
joint 

5
joint 

5
joint 

5
joint 

5
joint 

5
joint 

5
joint 

5
joint 

5
joint 

6
joint 

6
joint 

6
joint 

6
joint 

6
joint 

6
joint 

6
joint 

6
joint 

6
joint 

6
joint 

6
joint 

6
joint 

6
joint 

6
joint 

6
joint 

6
joint 

6
joint 

6
joint 

6
joint 

6

multiplier 9 3
joint 

1
joint 

1
joint 

1
joint 

2
joint 

2
joint 

2
T01 
x Z0

T01 
x Z0

T01 
x Z0

T01 
axis 
mul

T01 
axis 
mul

T01 
axis 
mul

joint 
3

joint 
3

joint 
3

T02 
x Z0

T02 
x Z1

T02 
x Z2

T02 
axis 
mul

T02 
axis 
mul

T02 
axis 
mul

joint 
4

joint 
4

joint 
4

T03 
x Z0

T03 
x Z0

T03 
x Z0

T03 
axis 
mul

T03 
axis 
mul

T03 
axis 
mul

joint 
5

joint 
5

joint 
5

T04 
x Z0

T04 
x Z0

T04 
x Z0

T04 
axis 
mul

T04 
axis 
mul

T04 
axis 
mul

joint 
6

joint 
6

joint 
6

T05 
x Z0

T05 
x Z0

T05 
x Z0

T05 
axis 
mul

T05 
axis 
mul

T05 
axis 
mul

T06 
x Z0

T06 
x Z0

T06 
x Z0

T06 
axis 
mul

T06 
axis 
mul

T06 
axis 
mul

6x6 matrix 

multiplier
36 20

T02 
cyc 
1

T02 
cyc 
2

T02 
cyc 
3

T02 
cyc 
4

T02 
cyc 
5

T02 
cyc 
6

T02 
cyc 
7

T02 
cyc 
8

T02 
cyc 
9

T02 
cyc 
10

T02 
cyc 
11

T02 
cyc 
12

T02 
cyc 
13

T02 
cyc 
14

T02 
cyc 
15

T02 
cyc 
16

T02 
cyc 
17

T02 
cyc 
18

T02 
cyc 
19

T02 
cyc 
20

T03 
cyc 
1

T03 
cyc 
2

T03 
cyc 
3

T03 
cyc 
4

T03 
cyc 
5

T03 
cyc 
6

T03 
cyc 
7

T03 
cyc 
8

T03 
cyc 
9

T03 
cyc 
10

T03 
cyc 
11

T03 
cyc 
12

T03 
cyc 
13

T03 
cyc 
14

T03 
cyc 
15

T03 
cyc 
16

T03 
cyc 
17

T03 
cyc 
18

T03 
cyc 
19

T03 
cyc 
20

T04 
cyc 
1

T04 
cyc 
2

T04 
cyc 
3

T04 
cyc 
4

T04 
cyc 
5

T04 
cyc 
6

T04 
cyc 
7

T04 
cyc 
8

T04 
cyc 
9

T04 
cyc 
10

T04 
cyc 
11

T04 
cyc 
12

T04 
cyc 
13

T04 
cyc 
14

T04 
cyc 
15

T04 
cyc 
16

T04 
cyc 
17

T04 
cyc 
18

T04 
cyc 
19

T04 
cyc 
20

T05 
cyc 
1

T05 
cyc 
2

T05 
cyc 
3

T05 
cyc 
4

T05 
cyc 
5

T05 
cyc 
6

T05 
cyc 
7

T05 
cyc 
8

T05 
cyc 
9

T05 
cyc 
10

T05 
cyc 
11

T05 
cyc 
12

T05 
cyc 
13

T05 
cyc 
14

T05 
cyc 
15

T05 
cyc 
16

T05 
cyc 
17

T05 
cyc 
18

T05 
cyc 
19

T05 
cyc 
20

T06 
cyc 
1

T06 
cyc 
2

T06 
cyc 
3

T06 
cyc 
4

T06 
cyc 
5

T06 
cyc 
6

T06 
cyc 
7

T06 
cyc 
8

T06 
cyc 
9

T06 
cyc 
10

T06 
cyc 
11

T06 
cyc 
12

T06 
cyc 
13

T06 
cyc 
14

T06 
cyc 
15

T06 
cyc 
16

T06 
cyc 
17

T06 
cyc 
18

T06 
cyc 
19

T06 
cyc 
20

adder 36 2
T01 
x Z0

T01 
x Z0

T02 
x Z0

T02 
x Z0

T03 
x Z0

T03 
x Z0

T04 
x Z0

T04 
x Z0

T05 
x Z0

T05 
x Z0

T06 
x Z0

T06 
x Z0

square root 1 5

divider 6 5

Functional 

Unit

Functional 

Unit Width

Functional 

Unit Delay
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301

sincos 2 20

multiplier 9 3

6x6 matrix 

multiplier
36 20

JJT 
cyc 
1

JJT 
cyc 
2

JJT 
cyc 
3

JJT 
cyc 
4

JJT 
cyc 
5

JJT 
cyc 
6

JJT 
cyc 
7

JJT 
cyc 
8

JJT 
cyc 
9

JJT 
cyc 
10

JJT 
cyc 
11

JJT 
cyc 
12

JJT 
cyc 
13

JJT 
cyc 
14

JJT 
cyc 
15

JJT 
cyc 
16

JJT 
cyc 
17

JJT 
cyc 
18

JJT 
cyc 
19

JJT 
cyc 
20

chol 
15 

mult

chol 
15 

mult

chol 
15 

mult

chol 
25 

mult

chol 
25 

mult

chol 
25 

mult

chol 
35 

mult

chol 
35 

mult

chol 
35 

mult

chol 
45 

mult

chol 
45 

mult

chol 
45 

mult

chol 
55 

mult

chol 
55 

mult

chol 
55 

mult

inv 
cyc 
1

inv 
cyc 
2

inv 
cyc 
3

inv 
cyc 
4

inv 
cyc 
5

inv 
cyc 
6

inv 
cyc 
7

inv 
cyc 
8

inv 
cyc 
9

inv 
cyc 
10

inv 
cyc 
11

inv 
cyc 
12

inv 
cyc 
13

inv 
cyc 
14

inv 
cyc 
15

inv 
cyc 
16

inv 
cyc 
17

inv 
cyc 
18

inv 
cyc 
19

inv 
cyc 
20

JT(J
JT)-1 
cyc 
1

JT(J
JT)-1 
cyc 
2

JT(J
JT)-1 
cyc 
3

JT(J
JT)-1 
cyc 
4

JT(J
JT)-1 
cyc 
5

JT(J
JT)-1 
cyc 
6

JT(J
JT)-1 
cyc 
7

JT(J
JT)-1 
cyc 
8

JT(J
JT)-1 
cyc 
9

JT(J
JT)-1 
cyc 
10

JT(J
JT)-1 
cyc 
11

JT(J
JT)-1 
cyc 
12

JT(J
JT)-1 
cyc 
13

JT(J
JT)-1 
cyc 
14

JT(J
JT)-1 
cyc 
15

JT(J
JT)-1 
cyc 
16

JT(J
JT)-1 
cyc 
17

JT(J
JT)-1 
cyc 
18

JT(J
JT)-1 
cyc 
19

JT(J
JT)-1 
cyc 
20

theta theta theta

adder 36 2
JJT 
+ bI

JJT 
+ bI

chol 
15 

sub

chol 
15 

sub

chol 
25 

sub

chol 
25 

sub

chol 
35 

sub

chol 
35 

sub

chol 
45 

sub

chol 
45 

sub

chol 
55 

sub

chol 
55 

sub

square root 1 5
chol 
diag 

0

chol 
diag 

0

chol 
diag 

0

chol 
diag 

0

chol 
diag 

0

chol 
diag 

1

chol 
diag 

1

chol 
diag 

1

chol 
diag 

1

chol 
diag 

1

chol 
diag 

2

chol 
diag 

2

chol 
diag 

2

chol 
diag 

2

chol 
diag 

2

chol 
diag 

3

chol 
diag 

3

chol 
diag 

3

chol 
diag 

3

chol 
diag 

3

chol 
diag 

4

chol 
diag 

4

chol 
diag 

4

chol 
diag 

4

chol 
diag 

4

chol 
diag 

5

chol 
diag 

5

chol 
diag 

5

chol 
diag 

5

chol 
diag 

5

divider 6 5
chol 
inv 

col 0

chol 
inv 

col 0

chol 
inv 

col 0

chol 
inv 

col 0

chol 
inv 

col 0

chol 
inv 

col 1

chol 
inv 

col 1

chol 
inv 

col 1

chol 
inv 

col 1

chol 
inv 

col 1

chol 
inv 

col 2

chol 
inv 

col 2

chol 
inv 

col 2

chol 
inv 

col 2

chol 
inv 

col 2

chol 
inv 

col 3

chol 
inv 

col 3

chol 
inv 

col 3

chol 
inv 

col 3

chol 
inv 

col 3

chol 
inv 

col 4

chol 
inv 

col 4

chol 
inv 

col 4

chol 
inv 

col 4

chol 
inv 

col 4

inv 
col 5

inv 
col 5

inv 
col 5

inv 
col 5

inv 
col 5

Clock Cycle

Clock Cycle

Figure 10: The timing design of the accelerator. The diagram lists the functional unit
hardware resources along the vertical axis, and displays which clock cycles those resources
are active along the horizontal axis. In each cell we provide a brief note on which part of
the algorithm occurs in that cycle.

While it may appear that there is minimal parallelism in the damped least squares al-
gorithm, we point out that the matrix multiplier, divider, and adder units are all parallel,
SIMD-style functional units. The matrix multiplier in particular does 36 parallel multipli-
cations at once.

Once the design is implemented, we will find the longest register-to-register critical path,
and pipeline those stages to increase operating frequency. We suspect these paths would
occur in the divider or square root IP designs. We will also decrease the pipeline depth of
non-critical paths, possibly within the multiplier units, to decrease latency. We could also
further optimize the design by further increasing the degree of parallelism in the matrix
multiplier.

11



8 Milestones

Completed Milestones

1. Design block diagram of our system

2. Find C code that implements various inverse kinematics algorithms

3. Determine how to represent input and output with respect to the user (textual
input, graphical output)

Milestone 1

1. Write our own implementation of the damped least-squares algorithm in C

2. Design top-level module describing the interface between the hardware and soft-
ware sections of our system

3. Design our joint peripheral device driver

4. Determine how best to decrease the number of DSP blocks our system uses in the
FPGA

Milestone 2

1. Associate the different blocks in the diagram of our system with corresponding
sections of C code in our implementation

2. Construct timing diagrams for each of our submodules

3. Begin coding the submodules of our system in SystemVerilog

Milestone 3

1. Full implementation of our system

2. Develop testbenches for the different modules in our system

Final Project Presentation

1. Finish testing our system both in simulation and on the FPGA

2. Write up our final report and prepare our final presentation

9 Appendix: FPGA Utilization Estimate

In order to estimate the area and timing costs of the accelerator, we created a table enu-
merating the costs of each of the custom functional units and submodules we proposed, in
terms of the pipeline depth of the block, and the DSP, lookup table, and register costs of the
block. These figures are based on estimates given by the Altera MegaFunction User Manual
and by generating the IP designs in Quartus MegaWizard. These estimates are shown in
Figure 11.

12



References

[1] S. Caselli, E. Faldella, and F. Zanichelli, “Performance evaluation of processor architec-
tures for robotics,” in CompEuro ’91. Advanced Computer Technology, Reliable Systems
and Applications. 5th Annual European Computer Conference. Proceedings., pp. 667–671,
May 1991.

[2] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan,
D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick, “A view of the parallel
computing landscape,” Commun. ACM, vol. 52, pp. 56–67, Oct. 2009.

[3] kirillv@github.com, “cpp-inverse-kinematics-library,”

[4] “Introduction to homogeneous transformations & robot kinematics,”

[5] H. H. Asada, “Introduction to robotics chapter 5 differential motion,”

13



count precision delay DSP % DSP Use ALM % ALM Use Regs 18 x 18 Mult

LPM_ADD_SUB adder subtractor 1 20-bit 2 0 0% 11 0% 0 0

LPM_MULT square multiplier 1 16-bit 3 0 0% 146 0% 151 0

LPM_MULT variable multiplier 1 16-bit 3 2 2% 294 1% 274 2

LPM_DIVIDE divider 1 30-bit 5 0 0% 642 2% 0 0

ALTSQRT square root 1 20-bit 5 0 0% 94 0% 0 0

LPM_MULT square multiplier 3 16-bit 0 0% 438 1% 453 0

LPM_MULT variable multiplier 7 16-bit 14 13% 2058 5% 1918 14

coefficient multiplier 10 16-bit 20 18% 2940 7% 2740 20

subtotal 1 16-bit 20 34 30% 5436 13% 5111 34

LPM_MULT variable multiplier 16 16-bit 32 29% 4704 11% 4384 32

LPM_ADD_SUB adder subtractor 16 20-bit 0 0% 176 0% 0 0

subtotal 1 16-bit 14 32 29% 4880 12% 4384 32

LPM_MULT variable multiplier 6 16-bit 12 11% 1764 4% 1644 12

LPM_ADD_SUB adder subtractor 3 20-bit 0 0% 33 0% 0 0

subtotal 1 16-bit 5 12 11% 1797 4% 1644 12

LPM_MULT variable multiplier 6 16-bit 12 11% 1764 4% 1644 12

LPM_ADD_SUB adder subtractor 6 20-bit 0 0% 66 0% 0 0

subtotal 1 16-bit 20 12 11% 1830 4% 1644 12

LPM_MULT variable multiplier 36 16-bit 72 64% 10584 25% 9864 72

LPM_ADD_SUB adder subtractor 36 20-bit 0 0% 396 1% 0 0

subtotal 1 16-bit 20 72 64% 10980 26% 9864 72

ALTSQRT square root 1 20-bit 0 0% 94 0% 0 0

LPM_DIVIDE divider 5 30-bit 0 0% 3210 8% 0 0

LPM_MULT variable multiplier 25 16-bit 50 45% 7350 18% 6850 50

LPM_ADD_SUB adder subtractor 25 20-bit 0 0% 275 1% 0 0

subtotal 1 16-bit 80 50 45% 10929 26% 6850 50

LPM_DIVIDE divider 6 30-bit 0 0% 3852 9% 0 0

LPM_MULT variable multiplier 9 16-bit 18 16% 2646 6% 2466 18

LPM_ADD_SUB adder subtractor 6 20-bit 0 0% 66 0% 0 0

subtotal 1 16-bit 50 18 16% 6564 16% 2466 18

sincos 2 16-bit 68 61% 10872 26% 10222 68

LPM_MULT variable multiplier 6 16-bit 12 11% 1764 4% 1644 12

subtotal 23 80 71% 12636 30% 11866 80

D-H Transformation Block 1 16-bit 68 61% 12636 30% 11866 80

4x4 matrix multiplier 1 16-bit 32 29% 4880 12% 4384 32

subtotal 152 32 29% 17516 42% 16250 112

LPM_ADD_SUB adder subtractor 3 20-bit 0 0% 33 0% 0 0

3x1 vector vector cross product 1 16-bit 12 11% 1797 4% 1644 12

subtotal 1 16-bit 7 12 11% 1830 4% 1644 12

6x6 matrix multiplier 1 16-bit 72 64% 10980 26% 9864 72

LPM_ADD_SUB adder subtractor 6 20-bit 0 0% 66 0% 0 0

6x6 cholesky decomposition 1 16-bit 50 45% 10929 26% 6850 50

6x6 lower triangular matrix inversion 1 16-bit 18 16% 6564 16% 2466 18

6x6 6x1 matrix vector multiplier 1 16-bit 12 11% 1830 4% 1644 12

subtotal 1 16-bit 212 152 136% 30369 73% 20824 152

196 175% 49715 120% 38718 276

Cyclone V SX C6 (5CSXFC6D6F31) 112 100% 41509 100% 166036 224

Functional Units

D-H Transformation Block

6 Degree of Freedom Full Matrix Block

FGPA RESOURCES

Damped Least Squares Block

sincos

4x4 matrix multiplier

6x6 matrix multiplier

GRAND TOTAL

Jacobian Block

3x1 vector vector cross product

6x6 6x1 matrix vector multiplier

6x6 cholesky decomposition

6x6 lower triangular matrix inversion

Figure 11: An estimate of area and timing costs of the accelerator submodules and custom
functional units.

14


