
1	
	

The Ultimate Ball Balancer

CSEE 4840 Embedded System Design

Spring 2014

Earvin Caceres (ec2946)
Gautham Vunnam (gv2226)

Garvit Singh (gs2731)
Annjana Ramesh (ar3303)

2	
	

1. Introduction

Our Ball-balance video game is based on the Mario Party game. The game has a 3D-plate at the
center of the screen. Sections of the plate will light up and the aim of the player is to balance a
ball on that plate, while moving over the section that is lit up in a random color, in order to get
more points. Certain colors that are lit up are to be avoided (e.g. red and white are to be avoided).
If a player rolls over a penalty section, the player loses points. The player loses the game if the
ball falls off the plate.

To implement this project, few challenges need to be overcome. The first task would be to
successfully display a plate in 3D. In addition to that, the plate has to be able to rotate in 3D. The
user via a PS3 controller specifies the direction of rotation. Effective VGA implementation is
key in this aspect. Further, a ball is to move in accordance with the plate; while keeping in mind
the effects of gravity. Minor challenges also include how the hardware and software are going to
split/handle the workload.

3	
	

2. Hardware Structure

The CPU has two main hardware peripherals: the 3D Accelerator and the VGA
Controller/Output. They are connected to the Avalon bus to enable mutual communication to the
VGA output from both the 3D accelerator and CPU.

3D ACCELERATOR

The 3D Accelerator is the main crux of our project. It renders 3D models so that they can be
displayed on a 2D screen. It communicates with the VGA Controller, which deals with the VGA
output. The major load on the FPGA is from this block. Figure 1 is a block diagram of the 3D
Accelerator subsystem along with the main subcomponents it interfaces with. Figure 2 is a
reference design of a typical FPGA/External Ram interface.

CPU	

Avalon	 Bus	

3D	 Accelerator	

VGA	
Controller	

and	
Output	

3D	 Accelerator	

Rendering	
Pipeline	

On-‐chip	
SRAM	

DDR3	
Controller	

Matrix	
Input	 FIFO	

DDR3	
(Frame	
Buffer)	

Matrix	 Parameters	

Vertices	

Figure	 1:	 3D	 Accelerator	 Block	 Diagram	

Application	 Logic	

Root	 Complex	
Slave	
DMA	

Control/Statu
DMA	 Read	 and	

Write	

Clock	 Domain	
FIFO	 Buffers	

External	 Memory	
Controller	

Figure	 2:	 Altera	 Reference	 Design	

FPGA	

Ext.	 Ram	

4	
	

Model	
Coordinates	

World	
Coordinates	

View	 Coordinates	

2D	 Screen	
Coordinates	

Draw/Color	 the	
pixels	

Transformation Pipeline

A 3D object is modeled using a collection of vertices in 3D space (x,y,z). The vertices can be
connected to form the surfaces of the 3d object. The surfaces can be filled in using any number
of methods according to the model. To project a 3D object onto a 2D screen, the models vertices
undergo a series of matrix multiplications to transform the 3D vertices into 2D coordinates that
can then be displayed on the screen. The rendering pipeline we will use for our project is shown
in Figure 3

!

𝑐𝑜𝑠𝜃 − sin 𝜃 0 0
sin 𝜃 𝑐𝑜𝑠𝜃 0 0
 0 0 1 0
 0 0 0 1

! !

𝑐𝑜𝑠𝜃 0 − sin 𝜃 0
0 1 0 0
sin 𝜃 0 𝑐𝑜𝑠𝜃 0
 0 0 0 1

! !

𝑐𝑜𝑠𝜃 0 − sin𝜃 0
0 1 0 0
sin 𝜃 0 𝑐𝑜𝑠𝜃 0
 0 0 0 1

! 	

	 	 	 	 	 	 	 	 	 	 	 Rotate	 X	 	 Rotate	 Y	 	 	 Rotate	 Z	

⎝

⎜
⎛𝑆𝑋 0 0 0
0 𝑆𝑌 0 0
0 0 𝑆𝑍 0
0 0 0 1 ⎠

⎟
⎞

 Scale
 	

⎝

⎜
⎛1 0 0 𝑋
0 1 0 𝑌
0 0 1 𝑍
0 0 0 1⎠

⎟
⎞

 Translate
 	

⎝

⎜
⎛𝑈! 𝑈! 𝑈! 0
𝑉! 𝑉! 𝑉! 0
𝑁! 𝑁! 𝑁! 0
0 0 0 1⎠

⎟
⎞
	

	 	 	 	 	 	 	 	 	 UVN	 Camera	

⎝

⎜
⎜
⎜
⎜
⎛ 2𝑛

𝑟 − 𝑙 0
𝑟 + 𝑙
𝑟 − 𝑙 0

0 2𝑛𝑡 − 𝑏
𝑡 + 𝑏
𝑡 − 𝑏 0

 0 0 −(𝑓 + 𝑛)𝑓 − 𝑛 −2𝑓𝑛𝑓 − 𝑛
0 0 − 1 0 ⎠

⎟
⎟
⎟
⎟
⎞

	

	
	 	 	 	 	 	 	 	 	 Projection	 Matrix	 	 	 	 	 	 	 	 	 	

Rasterization	 &	 Z-‐buffering	
to	 VGA	 Output	

Figure	 3:	 Rendering	 Pipeline	

5	
	

In our model, the vertices are represented using four coordinates (x, y, z, w). The addition of the
‘w’ coordinate makes these Homogeneous coordinates, which are used to simplify the
operations, involved for 3D rendering. The ‘w’ can be used for other rendering purposes such as
shadows, which will be out of the scope of this project. Here we describe each of the coordinate
blocks in the pipeline and the matrix operations that transform the vertices from one domain to
another.

i. The Model Coordinates
Each surface in the 3D model to be displayed is considered to be a collection of triangles. The
triangles are defined by a set of vertices. To start with, the x,y,z coordinates are defined relative
to the center of the object which is a vertex at (0,0,0). We want to be able to rotate, translate and
scale our model. Each of the above transformations requires a matrix to be multiplied with the
vertices. The model matrix is a product of the following matrices; the 3 rotation matrices (for x,
y and z axes) scale and translate matrices.

ii. The World Coordinates
After model matrices are applied to the vertices, the model went from being in Model Space (all
vertices defined relative to the center of the model) to World Space (all vertices defined relative
to the center of the world).

To understand the view matrix, consider a camera moving around your world space. If the
camera looking at the entire world rotates 3 units to the right, it is equivalent to your world space
rotating 3 units to the left. The view matrix defines which point in world space is being viewed.
In other words, it describes the direction the camera is pointed in. In our project, we plan on
keeping the camera/view fixed while moving the object/world.

The method we will use to generate the view matrix is the “UVN Camera”. The details of this
method can be found in [1] and [2].

The U, V and N vectors that make up the view matrix are described according to []

N - The vector from the camera to its target. Also known as the 'look at' vector in some
3D literature. This vector corresponds to the Z-axis.

V - When standing upright this is the vector from your head to the sky. If you are writing
a flight simulator and the plane is reversed that vector may very well point to the ground.
This vector corresponds to the Y-axis.

U - This vector points from the camera to its "right" side". It corresponds to the X-axis.

For our project, we plan to place the plate object along the z-axis so that the movement of the
camera will be minimal. The world coordinates are transformed into the view coordinates (all
vertices defined relative to the camera) after multiplying the vertices by the view matrix.

6	
	

iii. The View Coordinates
Once we have the view coordinates, we need to convert the 3D Coordinates into 2D Coordinates
that represent the 3D object being projected onto a 2D screen. This requires another matrix
transformation. The matrix generated at this step is called the Projection matrix. It defines the
window that the 3D coordinates will be projected onto. There are 6 main parameters: near, far,
left, right, top and bottom. Near and far are used to specify the camera’s field of view, that is,
how near and far the camera is able to see. Left, right, top and bottom represent the boundaries of
the display in their respective directions. Note that the left and right boundaries are dependent on
the angle of view of the camera, which can be specified in the software. The top and bottom
boundaries are dependent on the aspect ratio of the display. These parameters are listed in the
equations below and the dependencies are reflected in these equations.
 n = near
 size=near*tan (angle_of_view/2.0)
 left= -size = l
 right= size = r
 bottom= -size/aspect_ratio = b
 top = size / aspect_ratio = t

See references [3] and [4] for details on how the projection matrix is derived.

iv. The 2D Coordinates:

After the projection transformation, we have the 2D space vertices, which can be used for
displaying the model on screen. To fill in the model’s surfaces, we use a basic rasterization
algorithm that includes z - buffering. A set of three vertices represents a triangle, which is the
primitive shape that makes up the surface of an object. Figure 4 shows a sample triangle defined
by vertices P1, P2 and P3.

Figure 4: Triangle defined by 3 vertices

The three vertices allow us to calculate the gradient of lines P1-P2 and P1-P3. Using these
gradients, we can determine sx and ex, which represent the start location and end location of the
triangle, for each value y. Similarly, we can calculate a sz and ez which represents the start and
end z-coordinates that correspond to the sx and ex values. Given these values, we can determine
the boundaries of the triangle that needs to be rasterized. The addition of the z coordinate can tell

7	
	

us if particular pixels should reside in front of other pixels, which maintain the 3D look of the
object when projected on the screen.

The details of the algorithm we are using are at [5].

For sequencing the mathematical transforms, we can choose from the following options:
 Avalon ST
 Ready and valid signals (sink, src)
 Tag method

The ready and valid signal method seems the most straightforward, and we plan on sequencing
the transforms with the help of those signals.

Registers

This is a preliminary list of I/O registers we plan to implement. The hardware will be modeled as
a standard memory-mapped I/O with the device driver reading/writing to these registers.

The ‘Rendering Pipeline’ block consists of multiple multipliers to perform the matrix
multiplications required. The dedicated multipliers present on the board will provide this
functionality. Each element of the rotation matrix is fed into the pipeline as a 16 bit word and
operations are performed in parallel where possible.

All the modules are clocked at 50MHz.

8	
	

Software prototype
We wrote a software prototype to test and verify this pipeline method. We use a program called
Blender to generate the vertices of our 3D model. We used the tutorial [] as a guideline for our
prototype. The tutorial was written in C# however we chose to implement our software prototype
in python. The numpy module is used to do the matrix operations while the pygame module was
used to draw pixels on the screen. No higher-level graphics libraries were used in our prototype.
All of the transform matrices and matrix multiplications were generated and performed from
scratch. We successfully implemented our pipeline in software, and Figure 5 is a sample object
rotated in space using our software pipeline. Note that the colors used during rasterization were
random to simply be able to distinguish between the different surfaces of the object.

	 	 	 	

	 	 	 	
Figure 5: Software Pipeline Sample

• VGA CONTROLLER AND OUTPUT

The VGA module gets the input from the frame buffer, to display the graphics pixel by pixel on
the screen. As of now, we plan on sticking to the default screen resolution of 640x480.

9	
	

User	 Space	

Kernel	 Space	 	

3. Software Structure

The user-space component consists of the software structure of the project. The software mainly
handles the game logic. In our project, we have divided the software part into the controller and
the graphics. The controller decides the movement of the plate. While doing this, the graphics
play a significant role to display a nice rotating plate.

• Controller
This block deals with the USB Game controller. As this is a physically connected device, a
device driver is necessary on software. We plan on using the PS3 controller, which has an inbuilt
accelerometer. This segment detects the direction in which the user wants to move the plate, and
interfaces this information with the device driver for the controller. The information fed by the
controller leads to the calculation of the rotation angle, the depth, the vertices and faces.

• Graphics
The Graphics module defines the matrices necessary for the transformation from 3D to 2D,
which is done by the 3D Accelerator of the hardware. The controller reads the directions. The
graphics module interprets this in terms of rotational matrices. This block also deals with reading
of the vertices to be rotated, and the faces defined by these vertices. All the transformation
matrices are identified in this block and sent over to the hardware interface for calculation,
processing and display.

Game	 Engine	

USB	 Game	
Controller	

3D	 Accelerator	 VGA	
Controller	

10	
	

4. Initial problems to address

• The board has only 224 multipliers. First, we have to get the mathematics involving the
matrices working, and fit the overall transformation within this multiplier limit. Initial
target would be to do a multiplier test, and get the mathematics to work.

• The format of the vertices is another issue. We need to figure out the number of bits
necessary to represent the vertices. For now we will assume 16-bits for the vertices and
32-bits for the intermediate multiplication values. The 1GB DDR3 will be used to hold
both intermediate calculate values and our output frame buffer, which should be
sufficient memory for our purposes.

11	
	

5. References

[1]	 http://ogldev.atspace.co.uk/www/tutorial13/tutorial13.html	
[2]	 http://blog.db-in.com/cameras-on-opengl-es-2-x/
[3]	 http://www.songho.ca/opengl/gl_projectionmatrix.html	
[4]	 http://blog.db-in.com/cameras-on-opengl-es-2-x/
[5] http://blogs.msdn.com/b/davrous/archive/2013/06/21/tutorial-part-4-learning-how-to-write-a-
3d-software-engine-in-c-ts-or-js-rasterization-amp-z-buffering.aspx

