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1. Introduction 
 
Our Ball-balance video game is based on the Mario Party game. The game has a 3D-plate at the 
center of the screen. Sections of the plate will light up and the aim of the player is to balance a 
ball on that plate, while moving over the section that is lit up in a random color, in order to get 
more points. Certain colors that are lit up are to be avoided (e.g. red and white are to be avoided). 
If a player rolls over a penalty section, the player loses points. The player loses the game if the 
ball falls off the plate. 
 
To implement this project, few challenges need to be overcome. The first task would be to 
successfully display a plate in 3D. In addition to that, the plate has to be able to rotate in 3D. The 
user via a PS3 controller specifies the direction of rotation.  Effective VGA implementation is 
key in this aspect. Further, a ball is to move in accordance with the plate; while keeping in mind 
the effects of gravity. Minor challenges also include how the hardware and software are going to 
split/handle the workload.  
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2. Hardware Structure 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
The CPU has two main hardware peripherals: the 3D Accelerator and the VGA 
Controller/Output. They are connected to the Avalon bus to enable mutual communication to the 
VGA output from both the 3D accelerator and CPU.  
 
3D ACCELERATOR 
 
The 3D Accelerator is the main crux of our project. It renders 3D models so that they can be 
displayed on a 2D screen. It communicates with the VGA Controller, which deals with the VGA 
output. The major load on the FPGA is from this block. Figure 1 is a block diagram of the 3D 
Accelerator subsystem along with the main subcomponents it interfaces with. Figure 2 is a 
reference design of a typical FPGA/External Ram interface. 
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A 3D object is modeled using a collection of vertices in 3D space (x,y,z). The vertices can be 
connected to form the surfaces of the 3d object. The surfaces can be filled in using any number 
of methods according to the model. To project a 3D object onto a 2D screen, the models vertices 
undergo a series of matrix multiplications to transform the 3D vertices into 2D coordinates that 
can then be displayed on the screen. The rendering pipeline we will use for our project is shown 
in Figure 3 
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In our model, the vertices are represented using four coordinates (x, y, z, w). The addition of the 
‘w’ coordinate makes these Homogeneous coordinates, which are used to simplify the 
operations, involved for 3D rendering. The ‘w’ can be used for other rendering purposes such as 
shadows, which will be out of the scope of this project. Here we describe each of the coordinate 
blocks in the pipeline and the matrix operations that transform the vertices from one domain to 
another. 
 

i. The Model Coordinates 
Each surface in the 3D model to be displayed is considered to be a collection of triangles. The 
triangles are defined by a set of vertices. To start with, the x,y,z coordinates are defined relative 
to the center of the object which is a vertex at (0,0,0). We want to be able to rotate, translate and 
scale our model. Each of the above transformations requires a matrix to be multiplied with the 
vertices. The model matrix is a product of the following matrices; the 3 rotation matrices (for x, 
y and z axes) scale and translate matrices.  
 

ii. The World Coordinates 
After model matrices are applied to the vertices, the model went from being in Model Space (all 
vertices defined relative to the center of the model) to World Space (all vertices defined relative 
to the center of the world). 
 
To understand the view matrix, consider a camera moving around your world space. If the 
camera looking at the entire world rotates 3 units to the right, it is equivalent to your world space 
rotating 3 units to the left. The view matrix defines which point in world space is being viewed. 
In other words, it describes the direction the camera is pointed in. In our project, we plan on 
keeping the camera/view fixed while moving the object/world. 
  
The method we will use to generate the view matrix is the “UVN Camera”. The details of this 
method can be found in [1] and [2].  
 
The U, V and N vectors that make up the view matrix are described according to [] 

N - The vector from the camera to its target. Also known as the 'look at' vector in some 
3D literature. This vector corresponds to the Z-axis. 

V - When standing upright this is the vector from your head to the sky. If you are writing 
a flight simulator and the plane is reversed that vector may very well point to the ground. 
This vector corresponds to the Y-axis. 

U - This vector points from the camera to its "right" side". It corresponds to the X-axis. 

For our project, we plan to place the plate object along the z-axis so that the movement of the 
camera will be minimal. The world coordinates are transformed into the view coordinates (all 
vertices defined relative to the camera) after multiplying the vertices by the view matrix. 
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iii. The View Coordinates 
Once we have the view coordinates, we need to convert the 3D Coordinates into 2D Coordinates 
that represent the 3D object being projected onto a 2D screen. This requires another matrix 
transformation. The matrix generated at this step is called the Projection matrix. It defines the 
window that the 3D coordinates will be projected onto. There are 6 main parameters: near, far, 
left, right, top and bottom. Near and far are used to specify the camera’s field of view, that is, 
how near and far the camera is able to see. Left, right, top and bottom represent the boundaries of 
the display in their respective directions. Note that the left and right boundaries are dependent on 
the angle of view of the camera, which can be specified in the software. The top and bottom 
boundaries are dependent on the aspect ratio of the display. These parameters are listed in the 
equations below and the dependencies are reflected in these equations. 
 n = near 
 size=near*tan (angle_of_view/2.0) 
 left= -size = l 
 right= size = r 
 bottom= -size/aspect_ratio = b 
 top = size / aspect_ratio = t 
 
See references [3] and [4] for details on how the projection matrix is derived. 
 
iv. The 2D Coordinates: 

After the projection transformation, we have the 2D space vertices, which can be used for 
displaying the model on screen. To fill in the model’s surfaces, we use a basic rasterization 
algorithm that includes z - buffering. A set of three vertices represents a triangle, which is the 
primitive shape that makes up the surface of an object. Figure 4 shows a sample triangle defined 
by vertices P1, P2 and P3.  
 

 
Figure 4: Triangle defined by 3 vertices 

 
The three vertices allow us to calculate the gradient of lines P1-P2 and P1-P3. Using these 
gradients, we can determine sx and ex, which represent the start location and end location of the 
triangle, for each value y. Similarly, we can calculate a sz and ez which represents the start and 
end z-coordinates that correspond to the sx and ex values. Given these values, we can determine 
the boundaries of the triangle that needs to be rasterized. The addition of the z coordinate can tell 
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us if particular pixels should reside in front of other pixels, which maintain the 3D look of the 
object when projected on the screen. 
 
The details of the algorithm we are using are at [5]. 
 
For sequencing the mathematical transforms, we can choose from the following options: 
 Avalon ST 
 Ready and valid signals (sink, src) 
 Tag method 
 
The ready and valid signal method seems the most straightforward, and we plan on sequencing 
the transforms with the help of those signals. 
 
Registers 
 
This is a preliminary list of I/O registers we plan to implement. The hardware will be modeled as 
a standard memory-mapped I/O with the device driver reading/writing to these registers. 
 

 
The ‘Rendering Pipeline’ block consists of multiple multipliers to perform the matrix 
multiplications required. The dedicated multipliers present on the board will provide this 
functionality. Each element of the rotation matrix is fed into the pipeline as a 16 bit word and 
operations are performed in parallel where possible. 
 
All the modules are clocked at 50MHz. 
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Software prototype 
We wrote a software prototype to test and verify this pipeline method. We use a program called 
Blender to generate the vertices of our 3D model. We used the tutorial [] as a guideline for our 
prototype. The tutorial was written in C# however we chose to implement our software prototype 
in python. The numpy module is used to do the matrix operations while the pygame module was 
used to draw pixels on the screen. No higher-level graphics libraries were used in our prototype. 
All of the transform matrices and matrix multiplications were generated and performed from 
scratch. We successfully implemented our pipeline in software, and Figure 5 is a sample object 
rotated in space using our software pipeline. Note that the colors used during rasterization were 
random to simply be able to distinguish between the different surfaces of the object.  
 

	   	   	  	  

	   	  	   	  
Figure 5: Software Pipeline Sample 

 
• VGA CONTROLLER AND OUTPUT 

The VGA module gets the input from the frame buffer, to display the graphics pixel by pixel on 
the screen. As of now, we plan on sticking to the default screen resolution of 640x480.  
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The user-space component consists of the software structure of the project. The software mainly 
handles the game logic. In our project, we have divided the software part into the controller and 
the graphics. The controller decides the movement of the plate. While doing this, the graphics 
play a significant role to display a nice rotating plate.  
 

• Controller 
This block deals with the USB Game controller. As this is a physically connected device, a 
device driver is necessary on software. We plan on using the PS3 controller, which has an inbuilt 
accelerometer. This segment detects the direction in which the user wants to move the plate, and 
interfaces this information with the device driver for the controller. The information fed by the 
controller leads to the calculation of the rotation angle, the depth, the vertices and faces.  
 

• Graphics 
The Graphics module defines the matrices necessary for the transformation from 3D to 2D, 
which is done by the 3D Accelerator of the hardware. The controller reads the directions. The 
graphics module interprets this in terms of rotational matrices. This block also deals with reading 
of the vertices to be rotated, and the faces defined by these vertices. All the transformation 
matrices are identified in this block and sent over to the hardware interface for calculation, 
processing and display. 
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4. Initial problems to address 
 

• The board has only 224 multipliers. First, we have to get the mathematics involving the 
matrices working, and fit the overall transformation within this multiplier limit. Initial 
target would be to do a multiplier test, and get the mathematics to work. 

• The format of the vertices is another issue. We need to figure out the number of bits 
necessary to represent the vertices. For now we will assume 16-bits for the vertices and 
32-bits for the intermediate multiplication values. The 1GB DDR3 will be used to hold 
both intermediate calculate values and our output frame buffer, which should be 
sufficient memory for our purposes. 
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