Vector: A High-Level Programming
Language for GPU Computing

Harry Lee (hhi2114), Howard Mao (zm2169), Zachary
Newman (zjn2101), Sidharth Shanker (sps2133),
Jonathan Yu (jy2432)

The Problem

e GPUs have gained the ability to perform general-
purpose computing tasks, so-called GPGPU

e GPGPU now the workhorse of High-Performance
Computing

e Current GPGPU languages, CUDA and OpenCL, not
very beginner-friendly and operate at low level of
abstraction
o Explicit copying of memory to and from GPU
o EXxplicit choice of warp size

e GPU programming often follows common patterns, like
map or reduce, but with no first-class functions, no way
to implement patterns in reusable way

The Solution: Vector

e Memory implicitly copied to and from GPU on ad-hoc
basis

e Automatic warp size selection

e Lightweight parallel-for syntax instead of defining
kernels

e Map and Reduce implemented as higher order functions

e Compiles to CUDA

Syntax

e Mostly C-like syntax
e Extensions for GPU computing and some syntactic
sugar

Arrays

int a[3, 4, 5];
x = ali, j, kJ;
afi, j, k1 = x;

Support for n-dimensional arrays
Arrays created on both CPU and
GPU

Arrays are reference counted
Data automatically copied to GPU
if accessed in GPU statements
Automatically copied back to CPU
if accessed in CPU code

For and Parallel For (pfor)

for (iin 0:5:2, jin 0:4) {
/| some code
}

for (x in arr) {
/l some code
}

pfor (i in 0:5:2, j in 0:4) {
/I some GPU code
}

For loop uses iterator statements
instead of explicit incrementing as
in C, so “i=0; i<5; i+=2" becomes
“1in 0:5:2”

Pfor loop uses same syntax, but
each iteration run in separate
thread on GPU

For loop also supports “for each”
type syntax. Iterate over elements
of array

Map and Reduce

__device__ float square(float x) { S

return X * x;
} o

int[] another_function(int inputs[]) {
squares := @map(square, inputs);
return squares; °

}

__device__intadd(intx, inty) {
return x +y;
}

int another_function(int inputs[]) {
sum := @reduce(add, inputs);
return sum;

}

Higher order functions

Must be generated at compile-time
(function pointers not guaranteed to
work in CUDA)

Map takes function fand array a,
returns array b where b[i] = f(ali])
Reduce takes function fand array
a, returns the result of applying f to
two pairs of elements in a, then
applying it to pairs of the results,
etc. The function f must be
associative and commutative

Implementation Details

Scanner/Parser in Ocamllex and Ocamlyacc
Generator takes AST and produces CPU code inline
Generation of GPU code is deferred until end
Environment stores variables in scope and other state
Runtime library implements arrays and iterators

Lessons Learned

Group dynamics is important - good balance between
leader and team members

It's better to segment building the compiler by feature
than by phase of the compiler. It's very hard to predict
exactly what the grammar should be before
Implementing code generation.

e Communication with teammates is very important.
Enforcing a consistent coding style (especially with
respect to indentation) will avoid problems down the
line.

e (OCaml tools (and the functional programming paradigm
iIn general) are really great for writing compilers.

o Start early

And Now a Demo!!!

Mandelbrot set generator on CPU and GPU

CPU vs GPU performance

Mandelbrot Benchmark

25
2 20

Q

=

s 15

% i CPU
3 10 b GPU
&

O

Q

2 5

T

z

0 [>— — L —

200000 400000 600000 800000 1000000 1200000 1400000

Image Area (pixels)

