SMURF Programming Language Final Report

Richard Townsend, Lianne Lairmore, Lindsay Neubauer, Van Bui, Kuangya Zhai
{rt2515, lel2143, 1lan2135, vb2363, kz2219}Qcolumbia.edu

December 20, 2013

1 Introduction

SMURF is a functional language that allows a composer to create serialist music based on the twelve
tone composition technique. In general, serialism is a musical composition method where a set of values,
chosen through some methodical progress, generates a sequence of musical elements. SMURF is based on the
functional syntax and semantics set forth by Haskell. The backend of SMURF generates MIDIs corresponding
to the composition defined by the user’s initial program in SMURF.

1.1 Background: What is Serialism?

In general, serialism is a musical composition technique where a set of values, chosen through some methodical
process, generates a sequence of musical elements. Its origins are often attributed to Arnold Schoenberg’s
twelve-tone technique, which he began to use in the 1920s. In this system, each note in the chromatic scale
is assigned an integer value, giving us a set of twelve “pitch classes” (Figure 1 [1]). A composer utilizing
this method then takes each of these integers, and orders them into a twelve tone row, where each number
appears exactly once. We refer to this row as the prime form of a piece, and conventionally refer to it as
Py.

The composer can then generate other rows that are derived from Py through three types of transfor-
mations: transposition, inversion, and retrograde. In each of these transformations, we always use mod 12
arithmetic to preserve the numbering system of our pitch classes. Transposing a row consists of taking each
pitch class in the row and adding the same number to each. If we transpose Py by four semitones, we add four
mod twelve to each pitch class in Py and end up with a new row called P,. In general, P, is a transposition
of Py by x semitones. To invert a row, we "flip" each interval between two pitch classes in that row. An
interval is best thought of as the smallest "distance" between two pitch classes, using the proximity on the
piano of the two pitch classes as the distance metric (refer to Figure 1 for reference). For example, pitch
classes 0 and 11 have a distance of 1 from each other, since you can reach pitch class 0 from 11 by adding
1 to 11 (remember the mod 12 arithmetic) or reach 11 from 0 by subtracting 1 from 0. Thus an interval of
+1 exists from 11 to 0, and an interval of -1 exists from 0 to 11. As a further example, if Py starts with
pitch classes 0-11-7, then we have an interval of -1 between the first two pitches and -4 between the second
two. Flipping an interval between two pitch classes is identical to negating its sign. Thus, in the inverse
of Py (called Iy), the first interval would be +1 and the second would be +4, giving us 0-1-5 as our first
three pitch classes. The subscript of I, refers both to the number of transpositions required to arrive at I,
from Iy, and to the prime row P, that would need to be inverted to generate I,. The final row operation
is a retrograde transformation, which merely consists of reading a row backwards. That is, R, is generated
by reading the pitch classes of P, in their opposite order. One can also have a retrograde inversion; RI, is
generated by reading the pitch classes of I, backwards.

L I, L & I L

i

L I,L I, I, L
Pitch classes (pc): o ts Ao s s
(Original image: http://www.music-mind.com /Music/Srm0038.GIF) Po 0 11 7 8 31 2 106 5 4 9

MGIA GIDF RGIAE CIDF FiGEAY CHDS
bodb b bbb

., 108942311765 10
, 5 401 86 7 3 11109 2
, 43 1107562 109 8 1

P

P

P

P, 98 45 0 10117 3 216

P, 11106 720195 4338

Pp, 109 5 6 1 1108 43 2 7
219105340876 11

P, 6 51297840 11 103
7

6 2 3 108 9 5 1 0 11 4

P, 8 7 3 4 11l 9 106 2 1 0 5

2 10116 451 9 8 70

il
w
o5

Figure 1: pitch classes
Figure 2: twelve tone matrix

Once a composer chooses a Py, the three transformations outlined above can be applied to varying degrees
to generate a twelve tone matrix, which will contain each P row as a row in the matrix and each I row
as a column. Furthermore, all of the R and RI rows are found by reading the rows in the matrix from
right to left or the columns from bottom to top, respectively. An example of a twelve tone matrix from one
of Shoenberg’s pieces can be found in Figure 2 [2]. Finally, using the twelve tone matrix as a guide, the
composer picks various rows and columns to serve as melodic and harmonic elements in their composition,
resulting in a piece of serial music.

1.2 Motivation

Twelve tone serialism is a mathematically intensive method of creating music which involves mapping notes
to numbers. It is natural to work with twelve tone rows using a programming language since the method
treats notes like numbers that can be added and subtracted. SMURF makes twelve tone composition easier
by using data types and programming paradigms that cater to the needs of a serial composer. By simplifying
the method of inverting, retrograding, and transposing rows, composers can focus more on how to exploit
new ways to make serial music and worry less about creating matrices.

We chose to implement a functional language because of the clear and succinct programs that functional
languages produce. In addition, the well known ability of functional languages to work on lists is advantagous
for twelve tone serialism, because most serial arithmetic operations use rows and columns from the twelve
tone matrix as operands. As a group we were also interested on how a functional language compiler works.

Overall we hope to use the simplicity of a functional language to help composers write complex, new,
and interesting music based on twelve tone serialism.

2 Tutorial

This tutorial covers how to install, run, and write basic SMURF programs.

2.1 Installation

First, untar the SMURF tarball. To compile SMURF, simply type make in the top level source directory. A
few sample SMURF programs are located in the examples directory as a reference.

2.2 Compiling and Running a SMIURF Program
A SMURF program has the extension .sm. To compile and run a SMURF program, execute the toplevel .native
file as follows:

$./toplevel.native foo.sm

A midi file containing the composition defined in your SMURF program will generate if compilation was
successful. The midi file can be played using any midi compatible software such as QuickTime. Running
toplevel.native with the -h flag will display additional options that can be supplied to toplevel.native
when compiling a SMURF program, such as specifying an output midi file name.

2.3 SMURF Examples

A basic SMURF program can generate a midi file that plays a note. The following SMURF program defines
a quarter note in middle C:

/% A quarter note in middle C - Hello World! */

(0,2) 84

main =

simplenote.sm

The identifier main must be set in every SMURF program. In simplenote.sm, main is set to a note. A
note in SMURF consists of a pitch class or rest, the register, and the beat. In simplenote.sm, the pitch class
is set to 0, the register is 2, and the 4 indicates a single beat, which turns the note into a quarter note.

As a second example, consider the following program that plays an ascending scale followed by a series
of notes interleaved with rests:

/* Sample SMURF program that plays a shortened cascade */

//[Register] -> [Pitch classses] -> [Durations] -> [Chords]

makeChords :: [Int] -> [Int] -> [Beat] -> [Chord]

makeChords [1 _ _ = []

makeChords _ [1 _ = []

makeChords _ _ [] = []

makeChords r:restr p:restp d:restd = [(p,r)$d] (makeChords restr restp restd)

endBeats = [4,4,4,4,4,2]

endReg = [0,2,2,0,2,0,2,0,2]

2| regd = 0 : endReg

trackl = let pitchesil = [0,2,4,5,7,9,11,0,-1,0,-1,11,-1,11]
regl = [2,2,2,2,2,2,2,3,0,3,0,2,0,2]
beatsl = [8,8,8,8,8,8,8,(1 $+ 8)] ++ endBeats

in makeChords regl pitchesl beatsl

track2 = pitches2 = [-1,11,9,-1,8,-1,8,-1,7]
reg2 = endReg

beats2 = [1,8,(2..)] ++ endBeats

in makeChords reg2 pitches2 beats2

main = [trackl,track2]

shortcascade.sm

In shortcascade.sm, main is set to a list of lists of chords, the latter being defined as a system in SMURF.
The makeChords function has as input two lists of integers and a list of beats and iterates through the
respective lists using recursion to generate a list of chords. The : operator seen in line 8 constructs a new
list by appending the single note list on the left side of the operator to the list of chords. As previously
mentioned, a system is a list of chords, hence makeChords creates a system. In line 14, a let expression is
used to call makeChords providing as input the list of pitches, beats, and registers, which are defined in the
declaration section of the let expression. Line 16 uses the concatenate operator ++ to combine two lists.
On the same line, the $+ operator performs rhythmic addition adding together a whole note and an eighth

note. The . operator shown in line 21 also performs rythmic addition, but adds a half of the note on the
left side of the operator. In this case, the dot operator adds a quarter note and an eighth note to the half
note. This SMURF example introduces several SMURF language features, but there are additional features
that are not shown in this example.

The remainder of this document describes in more detail the SMURF language.

3 Langauge Reference Manual

3.1 Syntax Notation

The syntax notation used in this manual is as follows. Syntactic categories are indicated by italic type.
Literal words and characters used in the SMURF language will be displayed in typeset. Alternatives are
listed on separate lines.

Regular expression notations are used to specify grammar patterns in this manual. 7 means the pattern
7 1may appear zero or more times, r+ means r may appear one or more times, and r? means r may appear
once or not at all. r1|r2 denotes an option between two patterns, and r1 r2 denotes r! followed by r2.

3.2 Lexical Conventions

SMURF programs are lexically composed of three elements: comments, tokens, and whitespace.

3.2.1 Comments

SMURF allows nested, multiline comments in addition to single line comments.

Comment Symbols Description Example
/x */ Multiline comments, nesting allowed /* This /* is all */ commented */
// Single-line comment // This is a comment

3.2.2 Tokens

In SMURF, a token is a string of one or more characters that is significant as a group. SMURF has 6 kinds
of tokens: identifiers, keywords, constants, operators, separators and newlines.

Identifiers An identifier consists of a letter followed by other letters, digits and underscores. The letters
are the ASCII characters a-z and A-Z. Digits are ASCII characters 0-9. SMURF is case sensitive.

letter — [‘a’-‘z’ ‘N’-‘Z]
digit — [‘0-‘9’]

underscore —

identifier — letter (letter | digit | underscore)*

Keywords Keywords in SMURF are identifiers reserved by the language. Thus, they are not available for
re-definition or overloading by users.

Keywords Descriptions

Bool Boolean data type

Int Integer data type

Note Atomic musical data type

Beat Note duration data type

Chord Data type equivalent to [Note] type

System Data type equivalent to [Chord] type

let, in Allow local bindings in expressions

if, then, else Specify conditional expression, else compulsory
main Specify the value of a SMURF program

Constants In SMURF, constants are expressions with a fixed value. Integer literals and Boolean keywords
are the constants of SMURF.

digit — [0-9)]

constant — -7 [‘1-9"] digit*
digit+
True
False

Operators SMURF permits arithmetic, comparison, boolean, list, declaration, and row operations, all of
which are carried out through the use of specific operators. The syntax and semantics of all of these operators
are described in sections 3.4.6, 3.4.7, and 3.4.8, except for declaration operators, which are described in section
3.5.

Newlines SMURF uses newlines to signify the end of a declaration, except when included in a comment
or preceded by the \ token. In the latter case, the newline is ignored by the compiler (see example below). If
no such token precedes a newline, then the compiler will treat the newline as a token being used to terminate
a declaration.

Separators

separator —
&
\

Separators in SMURF are special tokens used to separate other tokens. Commas are used to separate
elements in a list. The & symbol can be used in place of a newline. That is, the compiler will replace all &
characters with newlines. The \ token, when followed by a newline token, may be used to splice two lines.
E.g.

genAltChords (x:y:ys) = [(x,Time 4,1)] \

:[(y,Time 4,-1)]:(genAltChords ys)

is the same as

genAltChords (x:y:ys) = [(x,Time 4,1)]:[(y,Time 4,-1)]:(genAltChords ys)

The & and \ tokens are syntactic sugar and exist solely for code formatting when writing a SMURF
program.

3.2.3 Whitespace

Whitespace consists of any sequence of blank and tab characters. Whitespace is used to separate tokens
and format programs. All whitespace is ignored by the SMURF compiler. As a result, indentations are not
significant in SMURF.

3.3 Meaning of Identifiers

In SMURF, an identifier is either a keyword or a name for a variable or a function. The naming rules
for identifiers are defined in section 3.2.2. This section outlines the use and possible types of non-keyword
identifiers.

3.3.1 Purpose

Functions Functions in SMURF enable users to structure programs in a more modular way. Each function
takes at least one argument and returns exactly one value (except the built in random function, see section
3.6 for more details), whose types need to be explicitly defined by the programmer. The function describes
how to produce the return value, given a certain set of arguments. SMURF is a side effect free language,
which means that if provided with the same arguments, a function is guaranteed to return the same value
(again, this is no longer the case when using the random function).

Variables In SMURF, a variable is an identifier that is bound to a constant value or to an expression.
Any use of a variable within the scope of its definition refers to the value or expression to which the variable
was bound. Each variable has a static type which can be automatically deduced by the SMURF compiler,
or explicitly defined by users. The variables in SMURF are immutable.

3.3.2 Scope and Lifetime

The lexical scope of a top-level binding in a SMURF program is the whole program itself. As a result of this
fact, a top-level binding can refer to any other top-level variable or function on its right-hand side, regardless
of which bindings occur first in the program. Local bindings may also occur with the let declarations in
expression construct, and the scope of a binding in declarations is expression and the right hand side of any
other bindings in declarations. A variable or function is only visible within its scope. An identifier becomes
invalid after the ending of its scope. E.g.

prime = [2,0,4,6,8,10,1,3,5,7,9,11]
main = let prime = [0,2,4,6,8,10,1,3,5,7,9,11]
p3 = (head prime) + 3
in (p3, 0)$4

In line 1, prime is bound to a list of integers in a top-level definition, so it has global scope. In line 2,
the main identifier (a special keyword described in 3.5.4) is bound to a let expression. The let expression
declares two local variables, prime and p3. In line 3, the head function looks for a definition of prime in the
closest scope, and thus uses the binding in line 2. So the result of the expression in line 4 is (3,0)$4. After
line 4 and prior to line 2, the locally defined prime and p3 variables are invalid and can’t be accessed.

3.3.3 Basic Types

There are three fundamental types in SMURF: Int, Bool and Beat.
e Int: integer type
e Bool: boolean type

e Beat: beat type, used to represent the duration of a note. A constant of type Beat is any power of 2
ranging from 1 to 16. These beat constants are assumed to be of type Int until they are used in an
operation that requires them to have type Beat e.g. when used as an operand to the beat arithmetic
operator $+.

3.3.4 Structured Types

Structured types use special syntactic constructs and other types to describe new types. There are two
structured types in SMURF: list types and function types.

A list type has the format [¢{] where ¢ is a type that specifies the type of all elements of the list. Thus,
all elements of a list of type [¢] must themselves have type t. Note that ¢ itself may be a list type.

A function type has the format ¢t -> ¢ -> ...-> t, -> t..; which specifies a function type that takes n
arguments, where the kth argument has type t, and returns an expression of type t..;. Any type may be
used to define a function type, except for a function type itself. In other words, functions may not be passed
as arguments to other functions, nor may a function return another function.

3.3.5 Derived Types

Besides the basic types, SMURF also has several derived types.
Expressions of type Note are used to represent musical notes in SMURF. The note type can be written
as

(Int, Int)$Beat|.]*

The first expression of type Int must evaluate to an integer in the range from -1 to 11, representing
a pitch class or a rest. When this expression evaluates to -1, the note is treated as a rest, otherwise it
represents the pitch class of the note. The second expression of type Int must evaluate to an integer in the
range of 0-3, representing the register of the note, where the integer values and corresponding registers are
given below.

e 1: Bass clef, B directly below middle C to first C below middle C
e 0: Bass clef, next lowest B to next lowest C

e 2: Treble clef, middle C to the first B above middle C

e 3: Treble clef, first C above middle C to next highest B

The expression of type Beat refers to the duration of the note, and may be followed by optional dots. The
dot is a postfix operator described in section 3.4.6. Ignoring the possible postfix operators, the expression
must evaluate to an integer in the range [1,2,4,8,16]. Using this format, a quarter note on middle C could
be written as (0,2) $4.

The Chord type is used to represent several notes to be played simultaneously. It is equivalent to the list
type [Note]. The compiler will check to make sure all the notes in a chord have the same time duration.

The System type is used to represent a list of chords to be played sequentially. It is equivalent to the list
type [Chord].

3.3.6 Polymorphic Types

SMURF provides the option of specifying an identifier as having a polymorphic type by using a non-keyword
identifier in place of a basic, structured, or derived type in that identifier’s type signature. For more in-
formation on the structure of type signatures, see section 3.5.1. For example, a :: b specifies that a
variable named a has polymorphic type b, where b can be replaced with any basic, structured, or derived
type. Using the same polymorphic type across different type signatures is permitted and each use has no
bearing on another. For example, givinga :: bandc :: b merely states that a and c are both variables
with polymorphic types and would be equivalent to giving a :: hippo and ¢ :: dinosaur. However, if
the same identifier is used multiple times as a type in a function’s type signature, then the types assigned
to those components of the function must be identical. For example, say we have a function

f :: Int ->b -> [b]

This type signature specifies that £ takes two arguments, the first of type Int and the second of poly-
morphic type, and that the expression bound to £ must be a list type, where the elements of the list are of
the same type as the second argument passed to £. Thus £ 0 True = [False] would be a valid function
declaration (as True and False both have type Bool) given this type signature, but £ 0 True = [1] would
result in a compile-time error because 1 has type Int.

3.4 Expressions

This section describes the syntax and semantics of ezxpressions in SMURF. Some expressions in SMURF use
prefix, infix, or postfix operators. Unless otherwise stated, all infix and postfix operators are left-associative
and all prefix operators are right-associative. Some examples of association are given below.

Expression Association
fx+gy-hz ((f x) + (gy) - (b 2)
let { ... }inx +y let { ... } in (x + y)
~ <> [0,1,2,3,4,5,6,7,8,9,10,11] | (~ (<> [0,1,2,3,4,5,6,7,8,9,10,11]))

3.4.1 Variable Expression

variable-expr — variable

variable — identifier

A variable z is an expression whose type is the same as the type of . When we evaluate a variable, we are
actually evaluating the expression bound to the variable in the closest lexical scope. A variable is represented
with an identifier as defined in section 3.2.2.

3.4.2 Constant Expression
constant-expr — constant

An integer or boolean constant, as described in section 3.2.2, is an expression with type equivalent to the
type of the constant.

3.4.3 Parenthesized Expression

parenthesized-expr — (expression)

An expression surrounded by parentheses is itself an expression. Parentheses can be used to force the
evaluation of an expression before another e.g. 2 + 3 - 4 - 5 evaluates to ((2+3) - 4) - 5 = -4
but 2 + 3 - (4 - 5) evaluatesto (2 + 3) - (4 - 5) = 6.

3.4.4 List Expression

list-expr — []
[expression (, expression)*]

A list is an expression. Lists can be written as:
Lexpression, ..., expressiony]
or
EIPTESSION] : €TPTESSIONy s ... : expressiony : []
where k£ >= 0. These two lists are equivalent. The expressions in a list must all be of the same type.

The empty list []1 has a polymorphic type i.e. it can take on the type of any other list type depending on
the context.

3.4.5 Notes

note-expr — (expression, expression)$expression

A note is an expression, and is written as a tuple of expressions of type Int followed by a $ symbol and
an expression of type Beat. The values of each of these expressions must follow the rules outlined in section
3.3.5.

3.4.6 Postfix Operator Expressions

postfiz-expression — expression .

The only expression in SMURF using a postfix operator is the partial augmentation of an expression
of type Beat, which uses the dot operator. This operator has higher precedence than any prefix or infix
operator. We say “partial augmentation" because a dot increases the durational value of the expression
to which it is applied, but only by half of the durational value of that expression. That is, if ezpr is an
expression of type Beat that evaluates to a duration of n, then expr. is a postfix expression of type Beat
that evaluates to a duration of n 4+ n/2. In general, a note with duration d and total dots n has a total
duration of 2d — d/2". The dot operator may be applied until it represents an addition of a sixteenth note
duration, after which no more dots may be applied. For instance, 4.. is legal, as this is equivalent to a
quarter note duration plus an eighth note duration (the first dot) plus a sixteenth note duration (the second
dot). However, 8.. is not legal, as the second dot implies that a thirty-second note duration should be
added to the total duration of this expression. Qur compiler checks the number of dots and returns an error
if too many are applied.

3.4.7 Prefix Operator Expressions

prefiz-expression — prefix-op expression

Prefix Operator Description Example

~ Tone row inversion ~ row (returns the inversion of row)

<> Tone row retrograde <> row (returns the retrograde of row)
! Logical negation if !(a == 5) then True else False

SMURF has three prefix operators: logical negation, tone row inversion, and tone row retrograde. There
is another row transformation operator, but it takes multiple arguments and is described in section 3.4.8.
The tone row prefix operators have higher precedence than any infix operator, while the logical negation
operator is lower in precedence than all infix operators except for the other logical operators && and ||. The
logical negation operator can only be applied to expressions of type Bool, and the two row operators can
only be applied to expressions of type [Int]. The compiler will check that all of the integers in a list are
in the range 0 — 11 if the list is passed to either of the tone row operators. All three operators return an
expression of the same type as the expression the operator was applied to.

3.4.8 Binary Operator Expressions

binary-expression — expressiony binary-op erpressions

The following categories of binary operators exist in SMURF, and are listed in order of decreasing precedence:
list, arithmetic, comparison, boolean, tone row.

List Operator Description Example

++ List Concatenation [1,2,3] ++ [4,5,6] (result is [1,2,3,4,5,6])
: List Construction 1 : [2,3,4] (resultis [1,2,3,4])

List operators List operators are used to construct and concatenate lists. These two operators are : and
++, respectively. The : operator has higher precedence than the ++ operator. Both of these operators are
right-associative. The list construction operator requires that expressions be an expression of type [¢], where
t is the type of ezpression;. In other words, expression; must have the same type as the other elements in
expressions when doing list construction. When doing list concatenation, both expression; and expressions
must have type [¢], where ¢ is some non-function type.

Arithmetic Operator Description Example

+ Integer Addition a+ 2

- Integer Subtraction 5 - a

* Integer Multiplication 5 % 10

/ Integer Division 4 / 2

% Integer Modulus, ignores negatives 14 9 12

ht Pitch Class Addition (addition mod 12) 14 %+ 2 == 4
%- Pitch Class Subtraction (subtraction 14 %- 2 == 0

mod 12)

$+ Rhythmic Addition 2 %+ 2==1
$- Rhythmic Subtraction 18-2==2
$x Rhythmic Augmentation 8 $x 4 == 2
$/ Rhythmic Diminution 2 $§/ 8 == 16

Arithmetic operators There are three types of arithmetic operators: basic, pitch class, and rhythmic.
Basic arithmetic operators are those found in most programming languages like +, -, *, /, and %, which
operate on expressions of type Int. It should be noted that the modulus operator ignores negatives e.g. 13
% 12 is equal to -13 % 12 is equal to 1. The pitch class operators are %+ and %-. These can be read as mod
12 addition and mod 12 subtraction. They operate on expressions of type Int, but the expressions must
evaluate to values in the range 0 — 11. The built-in mod 12 arithmetic serves for easy manipulation of pitch
class integers. Lastly, there are rhythmic arithmetic operators (both operands must be of type Beat). These
include $+, $-, $*, and $/. If one of the operands of these operators is of type Int, it will be cast to a Beat
type if it is an allowable power of 2 and generate a semantic error otherwise.

In terms of precedence, *, /, $*, $/ and ¥, are all at the same level of precedence, which is higher than
the level of precedence shared by the rest of the arithmetic operators.

10

Comparison Operator Description Example

< Integer Less than if a < 5 then True else
False

> Integer Greater than if a > 5 then True else
False

<= Integer Less than or equal to if a <= 5 then True else
False

>= Integer Greater than or equal to if a >= 5 then True else
False

$< Rhythmic Less than 4 $< 8 == False

$> Rhythmic Greater than 4 $> 8 == True

$<= Rhythmic Less than or equal to 4 $<= 4 == True

$>= Rhythmic Greater than or equal to 1 $>= 16 == True

== Structural comparison if a == 5 then a = True

else a = False

Comparison operators SMURF allows comparison operations between expressions of type Int or Beat.
Structural comparison, however, can be used to compare expressions of any type for equality. All of the
comparison operators have the same precedence except for structural comparison, which has lower precedence
than all of the other comparison operators.

Boolean Operator Description Example
&& Logical conjunction if b && c then True else False
[Logical disjunction if b || ¢ then True else False

Boolean operators Boolean operators are used to do boolean logic on expressions of type Bool. Logical
conjunction has higher precedence than logical disjunction.

Tone row operators The only binary tone row operator is the transposition operator, AA. expressiong
must have type Int, and expression, must be an expression that evaluates to a list of pitch classes. The
result of this operation is a new tone row where each pitch class has been transposed up by n semitones,
where n is the result of evaluating expressions.

3.4.9 Conditional expressions
conditional-expression — if expressionyooican then erpressioniy . else erpressionsqise

When the value of expressionyooiean €valuates to true, expressioni, .. is evaluated, otherwise expressionsqise
is evaluated. expressionpooieqan, Mmust have type Bool.

3.4.10 Let Expressions

let-exp — let decls+ in expression

Let expressions have the form let decls in e, where decls is a list of one or more declarations and e is an
expression. The scope of these declarations is discussed in section 3.5.

The declarations in a let expression must be separated by either the & symbol or by the newline character.
For example:

letx=2&y=48&z=28
in x +y + z

11

The previous code is equivalent to the following:

let x = 2
y=4
z =8

in x +y + z

If the first code snippet were written without the & symbol and no newlines after each declaration, a
compile-time error will be raised.

3.4.11 Function application expressions

function-app-expression — identifier expression+

A function gets called by invoking its name and supplying any necessary arguments. Functions can only
be called if they have been declared in the same scope where the call occurs, or in a higher scope. Functions
may be called recursively. Function application associates from left to right. Parentheses can be used to
change the precedence from the default. Furthermore, parentheses must be used when passing the result of
a complex expression to a function. Here, complex expression refers to any expression that uses an operator
or itself is a function call. The following evaluates function funct! with argument b then evaluates function
funct2 with argument a and the result from evaluating (funct! b):

funct2 a (functl b)

If the parentheses were not included, a compile-time error would be generated, as it would imply that
funct2 would be called with a as its first argument and funct! as its second argument, which is illegal based
on the description of function types in section 3.3.4.

A function call may be used in the right-hand side of a binding just like any other expression. For
example:

let a = double 10
in a

evaluates to 20, where double is a function that takes a single integer argument and returns that integer
multiplied by two.

3.5 Declarations and Bindings

This section of the LRM describes the syntax and informal semantics of declarations in SMURF. A program
in SMURF, at its top-most level, is a series of declarations separated by newline tokens. Declarations may
also occur inside of let expressions (but still must be separated with newline tokens). The scoping of such
declarations is described in this section. There are three types of declarations in SMURF: type signatures,
definitions, and function declarations.

Declaration Operator Description Example
Type specification number :: Int

-> Argument and function return type specifi- isPositiveNum :: Int -> Bool
cation

= Variable or function binding x =3

3.5.1 Type Signatures
type-sig — identifier :: (type|function-type)

function-type — type -> type (-> type)*

12

type — Int
Bool
Beat
Note
Chord
System
identifier
[type]

A type signature explicitly defines the type for a given identifier. The :: operator can be read as “has
type of." Only one type signature for a given identifier can exist in a given scope. That is, two different
type signatures for a given identifier can exist, but they must be declared in different scopes. There are four
categories of types in SMURF: basic, structured, derived, and polymorphic types; types are described in
sections 3.3.3-3.3.6.

3.5.2 Definitions
definition — identifier = expression

A definition binds an identifier to an expression. All definitions at a given scope must be unique and can
be mutually recursive. For example, the following is legal in SMURF:

let x =4
z = if y == 7 then x else y
y=1let x =5
in x + 3

inx+z+y

The x in the nested let expression is in a different scope than the x in the global let expression, so the
two definitions do not conflict. z is able to refer to y even though y is defined after z in the program. In this
example, the three identifiers x,y, and z in the global let will evaluate to values 4, 8, and 8, respectively,
while the identifier in the nested let expression will evaluate to 5.

A type signature may be given for the identifier in a definition but is not required.

3.5.3 Function Declarations

fun-dec — identifier args = expression

args — pattern
pattern args

pattern — pat
pat : pattern
[pattern-list?]
(pattern)

pattern-list — pat (, pat)*

pat — identifier
constant

A function declaration defines an identifier as a function that takes some number of expressions as
arguments and, based on which patterns are matched against those expressions when the function is called,
returns the result of a given expression. Essentially, a function declaration can be seen as a binding associating
an expression with a function identifier and a set of patterns that will be matched against the function’s

13

arguments when the function is called. There must be at least one pattern listed as an argument in a function
declaration. All function declarations for the same identifier in a given scope must have the same number of
patterns given in the declaration.

Unlike variable definitions, multiple function declarations for the same identifier may exist in the same
scope, as long as no two declarations have an equivalent set of patterns. This rule does not pertain to
multiple function declarations for an identifier across different scopes.

If a function declaration for some identifier x occurs in scope n, then a type signature for x in scope
k >= n is required. That is if a function has been declared but its type has not been explicitly stated in
the same or a higher scope, a compile-time error will be generated. The type of the patterns in a function
declaration are checked at compile-time as well, and an error is issued if they don’t match the types specified
in that function’s type signature.

A pattern can be used in a function declaration to “match" against arguments passed to the function.
The arguments are evaluated and the resultant values are matched against the patterns in the same order
they were given to the function. If the pattern is a constant, the argument must be the same constant or
evaluate to that constant value in order for a match to occur. If the pattern is an identifier, the argument’s
value is bound to that identifier in the scope of the function declaration where the pattern was used. If the
pattern is the wildcard character ‘_’; any argument will be matched and no binding will occur. If the pattern
is structured, the argument must follow the same structure in order for a match to occur.

Below, we have defined an example function f that takes two arguments. The value of the function call is
dependent on which patterns are matched. The most restrictive patterns are checked against the arguments
first. In this example, we first check if the first argument evaluates to 0 (we disregard the second argument
using the wildcard character), and return True if it does. Otherwise, we check if the second argument
evaluates to the empty list, and, if so, return False. Next, we check if the second argument evaluates to a
list containing exactly two elements and, if so, the first element is bound to x and the second is bound to
y in the expression to the right of the binding operator =, and that expression is evaluated and returned.
Finally, if none of the previous pattern sets matched, we bind the first argument to m, the head of the second
argument to x, and the rest of the second argument to rest. Note we can do this as we already checked if
the second argument was the empty list, and, since we did not match that pattern, we can assume there is
at least one element in the list.

: Int -> [Int] -> Bool

[1 = False

[x, y] = if x then True else False
0 _ = True

x:rest = f m rest

f
£
f
f
f

=

3.5.4 main Declaration

Every SMURF program must provide a definition for the reserved identifier main. This identifier may only
be used on the left-hand side of a top-level definition. The expression bound to main is evaluated and its
value is the value of the SMURF program itself. That is, when a SMURF program is compiled and run, the
expression bound to main is evaluated and the result is converted to our bytecode representation of a MIDI
file. As a result, this expression must evaluate to a value of type [1, Note, Chord, System, or [System] (or
any type that is equivalent to one of these). If a definition for main is not included in a SMURF program or
if the expression bound to it does not have one of the types outlined above, a compile-time error will occur.

3.6 Library Functions

Below are the library functions that can be used in the SMURF language. While some of these functions are
implemented using SMURF, others (such as print) are special cases that provide helpful services but cannot
explicitly be defined in our language. These special cases are implemented in the translation section of the
compielr. Each library function will include a description and its SMURF definition (if it can be defined
using SMURF). Users are not permitted to redefine any of these functions.

Print

14

The function print takes an argument of any type, evaluates it, and prints the result to standard output.
The result of calling the print function is the result of evaluating its argument i.e. print(x+1) evaluates
to x+1.

Random

The function random is the only SMURF function that takes no parameters. It is another example of
a function that cannot be explicitly defined using the SMURF language. The result of a call to random is
a pseudo-random integer between 1 and 1000000, inclusive. For example, random % 12 will return some
number between 0 and 11. Every time random is called, a new pseudo-random seed is used to initialize the
random number generator used by the compiler, allowing for different results on each run of a program where
random is used. There is no capability for the user to set their own initializing seed.

Head
The function head takes a list as an argument and returns the first element. This function is commonly
used when working with lists.

head :: [a] -> a
head (h:tl) = h

Tail
The function tail takes a list as an argument and returns the same list with the first element removed.
This function is commonly used when working with lists.

tail :: [a] -> [a]
tail (h:tl) = tl

MakeNotes

The function makeNotes takes in three lists and returns a list of notes. The first list consists of expressions
of type Int representing pitches and/or rests. The second list consists of expressions of type Int representing
the register that the pitch will be played in. The third list is a list of expressions of type Beat representing a
set of durations. This function allows the user to manipulate tone rows independently of beats and registers,
then combine the three components into a list of notes. If the lengths of the three arguments are not
equivalent, this function will only return the list of notes generated from the first n elements of each list,
where n is the length of the shortest list given as an argument.

makeNotes :: [Int] -> [Int] -> [Beat] -> [Notel
makeNotes [] _ _ = []
makeNotes _ [] _ = []
makeNotes _ _ [1 = []

makeNotes (h1l:tl11) (h2:t12) (h3:t13) = (h1,h2)$h3: (makeNotes t1l1 tl12 t13)

Reverse
The function reverse takes a list as an argument and returns the same list in reverse.

reverse :: [a] -> [al
reverse [] = []
reverse a:rest = (reverse rest) ++ [al

Last
The function last takes a list as an argument and returns the last element in the list.

last :: [a] -> a

last a:[] = a
last a:rest = last rest

15

[¥)

Drop
The function drop takes an integer n and a list as arguments, and returns the same list with the first n
elements removed.

drop :: Int -> [a] -> [al

drop 0 x = x

drop _ [1 = []

drop x l:rest = drop (x - 1) rest

Take
The function take takes an integer n and a list as arguments, and returns a list composed of the first n
elements of the original list.

take :: Int -> [a] -> [a]
take 0 _ = []

take _ [1 = []
take x l:rest =1 : (take (x - 1) rest)

4 Project Plan

4.1 Example Programs

The first sample program constructs a little tune. First an ascending scale is heard, followed by a descending
scale being played in four tracks, with each track suspending the second note it plays in the descending
scale. Finally, we hear a half-diminished chord, a fully diminished chord, and a major seventh chord, with
the chords being interleaved with quarter rests.

/* Sample SMURF program that should play a cascade :-) %/

//[Register] -> [Pitch classses] -> [Durations] -> [Chords]

makeChords :: [Int] -> [Int] -> [Beat] -> [Chordl]

makeChords [1 _ _ = []

makeChords _ [] = [1

makeChords _ _ [] = []

makeChords r:restr p:restp d:restd = [(p,r)$d] : (makeChords restr restp restd)
endBeats = [4,4,4,4,4,2]

endReg = [0,2,2,0,2,0,2,0,2]

reg3d = 0 : endReg

trackl = let pitchesl = [0,2,4,5,7,9,11,0,-1,0,-1,11,-1,11]
regl = [2,2,2,2,2,2,2,3,0,3,0,2,0,2]
beatsl = [8,8,8,8,8,8,8,(1 $+ 8)] ++ endBeats
in makeChords regl pitchesl beatsl

)| track2 = let pitches2 = [-1,11,9,-1,8,-1,8,-1,7]

reg2 = endReg
beats2 = [1,8,(2..)] ++ endBeats
in makeChords reg2 pitches2 beats2

track3 = let pitches3 = [-1,-1,7,5,-1,5,-1,5,-1,4]
beats3 = [1,4,8,(2 $+ 8)] ++ endBeats
in makeChords reg3 pitches3 beats3

)| track4 = let pitches4 = [-1,-1,4,2,-1,2,-1,2,-1,0]

beats4 = [1,2,8,4.] ++ endBeats
regd = reg3
in makeChords reg4 pitches4 beats4d

1| main = [trackl,track2,track3,track4]

cascade.sm

| Timing Resolution set to 4 PPQ

Instrument set to 48 on channel O

16

N}
[}

Instrument set to 48 on channel 1
Instrument set to 48 on channel 2
Instrument set to 48 on channel 3

Track
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick

Track
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick

Track
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick

Track
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick
tick

0:

0,
0,
2,
2,
4,
4,
6,
6,
8,

0,

24,
26,
26,
32,
36,
40,
44,
48,
52,
60,
60,

channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel

[S N o S SN S

R

1:

program change 48

note
note
note
note
note
note
note
note
note
note
note
note
note
note
note
note
note
note
note
note
note
note

end of track

channel 2:

channel
channel
channel
channel
channel
channel
channel
channel
channel
channel

N

NNNNNNDNDNN

C4 on velocity:
C4 on velocity:
D4 on velocity:
D4 on velocity:
E4 on velocity:
E4 on velocity:
F4 on velocity:
F4 on velocity:
G4 on velocity:
G4 on velocity:
A4 on velocity:
A4 on velocity:
B4 on velocity:
B4 on velocity:
C5 on velocity:
Cb on velocity:
C5 on velocity:
C5 on velocity:
B4 on velocity:
B4 on velocity:
B4 on velocity:
B4 on velocity:

program change 48

note
note
note
note
note
note
note
note
note
note

end of track

channel 3:

channel
channel
channel
channel
channel
channel
channel
channel
channel
channel

w

WWWwwWwwwwww

B4 on velocity:
B4 on velocity:
A4 on velocity:
A4 on velocity:

G#4 on velocity:
G#4 on velocity:
G#4 on velocity:
G#4 on velocity:

G4 on velocity:
G4 on velocity:

program change 48

note
note
note
note
note
note
note
note
note
note

end of track

channel 4:

channel
channel
channel
channel
channel
channel
channel
channel
channel
channel

4:

I NN N G IN

note
note
note
note
note
note
note
note
note
note

end of track
PASSED SEMANTIC CHECKS

./Lib/CSV2MIDI. jar a.csv a.midi

G4 on velocity:
G4 on velocity:
F4 on velocity:
F4 on velocity:
F4 on velocity:
F4 on velocity:
F4 on velocity:
F4 on velocity:
E4 on velocity:
E4 on velocity:

program change 48

E4 on velocity:
E4 on velocity:
D4 on velocity:
D4 on velocity:
D4 on velocity:
D4 on velocity:
D4 on velocity:
D4 on velocity:
C4 on velocity:
C4 on velocity:

90

90

920

90

90

90

90

90

90

cascade.out

Our second sample program constructs the first half of Webern’s Op. 27 second movement, with some
liberties taken with respect to the durations of the notes and the rests (we don’t have grace notes in our
language which feature prominently in the actual composition). This piece has a number of interesting
features, focusing on symmetry throughout the piece. For example, the tone row that starts in the right

17

hand is completed by the left hand and vice versa for the tone row starting in the left hand. Furthermore,
the next two tone rows are selected by looking at the last note in the first two tone rows, and selecting rows
that start with those last notes. A number of other interesting features can be found in the composition, see
Solomon’s analysis [3] for a fuller description and the original score.

getTransRow :: [Int] -> Int -> [Int]
getTransRow [1 _ = []

getTransRow 1 1 = 71

getTransRow 1 2 = <>1

getTransRow 1 3 <>(~1)

/*Given a PO and a pitch class x get the row of type ’typetrans’ derived from PO
whose first element is x
For typetrans=0 we get P

1 we get I

2 we get R

3 we get RI */

findRowStartsWith :: [Int] -> Int -> Int -> [Int]
findRowStartsWith [] _ _ = []
findRowStartsWith 1 x typetrans = if x < 0 || typetrans > 12 then [] else \
if head (checkTrans typetrans 1) == x then (checkTrans typetrans 1) else \
(12 - ((head (checkTrans typetrans 1)) - x)) ~~ (checkTrans typetrans 1
)
checkTrans :: Int -> [Int] -> [Int]
checkTrans typetrans 1 = if typetrans == 0 then 1 else getTransRow 1 typetrans
singleChords :: [Notel -> [Chord]
singleChords [] = []
singleChords n:rest = [n] : (singleChords rest)

//Converts single note chords from index x to y-1 into a chord composed of the notes,
//where x is 1st arg and y is 2nd arg

subChord :: Int -> Int -> [Note] -> [Chord]

subChord _ _ [1 = []

subChord 0 y 1 = (take y 1) : (singleChords (drop y 1))

subChord x y c:rest = [c] : (subChord (x - 1) (y - 1) rest)
interweaveRest :: Int -> [Chord] -> [Chord]

interweaveRest _ [] = []

interweaveRest 1 l:rest = 1 : [(-1,0)$8] : (interweaveRest 1 rest)
interweaveRest 2 l:rest = [(-1,0)$8] : 1 : (interweaveRest 2 rest)
swapAt :: Int -> [Int]l -> [Int] -> [Int]

swapAt 0 _ b = b

swapAt _ [1 b = b

swapAt _ _ [] = []

swapAt x a:ra b:rb = a : (swapAt (x-1) ra rb)

crossOver :: Int -> [Int]l -> [Int] -> [[Int]]
crossOver x a b = (swapAt x a b) : ((swapAt x b a) : [])

p0 = [0,8,7,11,10,9,3,1,4,2,6,5]
RP3 = <>(3 =~ PO)
RI3 = <>(3 =~ ~PO)

/* First two tone rows */
firstrows = crossOver 9 RP3 RI3
tl = head firstrows
t2 = head (tail firstrows)
reg = [0,1,2,3,2,1,0,1,2,3,2,1]
durationsl = [8,8,4,16,16,8,8,8,8,8,8,16]
sectionl = subChord 5 8 (makeNotes tl reg durationsil)
section2 = subChord 5 8 (makeNotes t2 (<>reg) durationsl)

tempt3 = findRowStartsWith PO (last tl) 2
tempt4 = findRowStartsWith PO (last t2) 3

secrows = crossOver 5 tempt3 temptd

t3 = tail (head secrows) /*First note of this row is last note of previous row! %/
t4 = tail (head (tail secrows)) /* Same for this row */

durations2 = [16,4,16,16,8,8,8,8,8,8,8]

newsectionl = sectionl ++ (subChord 4 6 (makeNotes t3 (tail reg) durations2))
newsection2 = section2 ++ (subChord 4 6 (makeNotes t4 (tail (<>reg)) durations2))

/* This should be everything before the first repeat */
firstRepeatl = newsectionl ++ newsectionl

18

74| firstRepeat2 = newsection2 ++ newsection2

/* Second part of composition */
temptb = findRowStartsWith PO (last t3) 3
tempt6 = findRowStartsWith PO (last t4) 2

79| thirdrows = crossOver 11 temptb5 tempt6

t5 = tail (head thirdrows)

t6 = tail (head (tail thirdrows))

durations3 = [8,8,8,4,8,8,8,8,8,8,16]

section3 = subChord 4 6 (makeNotes t5 (tail reg) durations3)
section4 = subChord 4 6 (makeNotes t6 (tail (<>reg)) durations3)

»

tempt7 = findRowStartsWith PO (last tb5) 3
tempt8 = findRowStartsWith PO (last t6) 2
fourthrows = crossOver 2 tempt7 tempt8

ol t7 = tail (head fourthrows)

t8 = tail (head (tail fourthrows))

durations4 = [16,16,16,8,8,8,8,8,16,16,8]

newsection3 = sectionl ++ (subChord 4 6 (makeNotes t7 (tail reg) durations4))
newsection4 = section2 ++ (subChord 4 6 (makeNotes t8 (tail (<>reg)) durations4))

/* This should be everything after the first repeat */

secRepeatl = newsection3 ++ newsection3
secRepeat2 = newsection4 ++ newsection4
99| main = [interweaveRest 1 firstRepeatl, interweaveRest 2 firstRepeat2]

webern.sm

1| Fatal error: exception Sast.Function_not_defined("head")
L

weber.out

4.2 Processes
4.2.1 Planning

We had a 2 hour meeting every Wednesday that everyone attended. In these meetings, organized by Richard
(our benevolent dictator), we discussed project milestones, delegated responsibilities to each member of the
group, designed and updated our design of SMURF, and eventually coded in meetings to allow for discussion
of tricky parts of our implementation. We chose milestones based on a review of previous semesters team
projects that were successful.

4.2.2 Specification

Both our Proposal and LRM were completely outlined in our group meetings. Lindsay took notes for the
group and pushed them to GitHub so all members had access. We divided the outlines into equal sections
to divide the writing and proof-reading responsibilities: Each group member had a portion to write and a
different portion to proofread. Once we started coding, any updates that needed to be made were done by
the person coding that portion of the language (regardless of who originally wrote that section of the LRM).

4.2.3 Development

Each member of our group was given a slice of our language to implement from start to finish. By doing
this, we minimized the issues that arise from having to wait for another group member’s section of the code
to be implemented before being able to start your own. We each followed a similar development process,
implementing in the same order the scanner (first), parser, abstract syntax tree, semantic abstract syntax
tree, and code generation (last). We used GitHub to track our code but did not utilize its branching features
for coding. This was a decision we made to force our code to always be in a compilable/runnable form and to
avoid large merging issues at the end of development. Because we divided the language into pieces and had
complete ownership of our slice, using the LRM (which we worked on together) as the ultimate reference on
how to implement our section was crucial. In the few cases where the LRM specification was unable to be
implemented in the way we planned, the owner of that section chose how to most appropriately implement
it and then updated the LRM and the rest of the group with the changes.

19

4.2,.4 Testing

At the end of each stage of development, every group member wrote unit tests to ensure their slice of the
code worked as anticipated. Our integration testing took the form of several "Hello World" style programs.
Any failed tests were addressed as soon as the failure was discovered.

4.3 Style Guide

We conformed to the following coding conventions:
e Indentation: 4 spaces, with multiple indents to differentiate between nested blocks of code

e Maximum Characters per Line: 100 (including indentation)

4.4 Project Timeline

Our project timeline includes class deadlines and self imposed deadlines.

Date Milestone

09-25-13 | Proposal due

10-07-13 | Initial LRM section written
10-09-13 | Initial LRM section proofread
10-27-13 | Full proofread of LRM completed
10-28-13 | LRM due

10-28-13 | Scanner and Parser completed
11-06-13 | Scanner and Parser tests completed
11-20-13 | Semantic Analyzer completed
11-27-13 | Semantic Analyzer tests completed
12-04-13 | End-to-end "Hello World" compilation succeeds
12-20-13 | Final report due

20

4.5 Roles and Responsibilities

Team Member

Responsibilities

Van Bui

Lianne Lairmore

Lindsay Neubauer

Richard Townsend

Kuangya Zhai

Proposal: Examples

Rough Draft of LRM: Write Parenthetical Expressions, Let Expressions

Rough Draft of LRM: Proofread Description of Precedence, Syntax Notation, Library Functions,
Declarations and Bindings

Code: Function Application, Let Expressions, test scripts

Proposal: Motivation

Rough Draft of LRM: Write Description of Precedence, Syntax Notation, Library Functions
Rough Draft of LRM: Proofread Lexical Conventions, Primary Expressions, Meaning of Identifiers
Code: Literals, Main/Print/Random, Symbol Table/Environment, Polymorphism

Note Taker

Proposal: Language Description

Rough Draft of LRM: Write Curried Applications, Operator Application, Conditionals, Lists,
Tuples

Rough Draft of LRM: Proofread Parenthetical Expressions, Let Expressions, Type Signatures,
Pattern Matching

Code: Non-music operators, Notes, Beats, Music operators

Group Leader

Proposal: Background

Rough Draft of LRM: Write Declarations and Bindings

Rough Draft of LRM: Proofread Curried Applications, Operator Application, Conditionals, Lists,
Tuples

Code: Pattern Matching, Bindings, Function Application

GitHub and LaTeX Go-To Person

Proposal: Generate Latex

Rough Draft of LRM: Write Lexical Conventions, Primary Expressions, Meaning of Identifiers
Rough Draft of LRM: Proofread Declarations and Bindings

Code: MIDI generation, List operators, Conditionals, Function Application

4.6 Software Development Environment

We used the following tools and languages:

e Compiler Implementation: OCaml, version 4.01.0

e Musical Interface: MIDI, java package CSV2MIDI (uses java.sound.midi.*) [4]

o Testing Environment: Shell Scripts

e Version Control System: GitHub

21

4.7 Project Log

Date Milestone

09-18-13 | Proposal writing sections assigned

GitHub repository setup

09-25-13 | LRM timeline established

10-02-13 | LRM writing and proofreading sections assigned

10-11-13 | Switch from OpenGL musical score to MIDI music

10-16-13 | Decided on top-level description of SMURF program

Outlined all acceptable inputs and outputs to a SMURF program

Assigned vertical slices to team members

10-23-13 | Divided backend into semantic analyzer and translator modules instead of single "compiler"
module

11-06-13 | Decided to add polymorphism back into language

Discussed structure of Semantic Analyzer modules

11-08-13 | Semantic analyzer started

11-13-13 | Parser completed

11-20-13 | Interpreter Started, changed output of semantic analyzer from sast to beefed up symbol table
11-27-13 | Hello World end-to-end compilation succeeds

12-04-13 | Semantic Analyzer with tests completed

12-20-13 | Interpreters with all tests passing completed

Interesting SMURF program end-to-end compilation succeeds

5 Architectural Design

5.1 Overview

The SMURF compiler transforms a SMURF program into a playable MIDI file. The compiler first scans
the source file, parses the resulting tokens, creates an abstract syntax tree, semantically checks the abstract
syntax tree, translates the tree into intermediate code and finally translates this intermediate representation
into a MIDI file which can be played in most media players.

abstract semantic
smur f.sm TOKENS syntaxr [I
iree analyzer

intermediate
representation

MIDI
converter

symbol table

5.2 Scanner

The SMURF program file is first passed to the scanner. The scanner matches the string of input characters to
tokens and white spaces. The tokens include keywords, constants, and operators used in a SMURF program.
All white space characters except new lines are ignored. Any illegal characters are caught and an exception
is raised. The tokens are defined with regular expressions and nested comments use a state machine and
counter to be resolved. The scanner was built with the ocaml lexer.

22

5.3 Parser

The tokens generated in the scanner are then used in the parser. The parser matches the string of tokens to
a grammar defining the SMURF language. An abstract syntax tree is built as the tokens are matched to the
grammar and stored as a program which is defined as a list of declarations. Syntax errors in the SMURF
code will be identified during parsing resulting in an exception being raised. The parser is generated using
the grammar and the ocaml yacc program.

5.4 Abstract Syntax Tree

The abstract syntax tree is the intermediate representation of a SMURF program after it has been parsed
but before it has been semantically checked. The program can easily be transversed by organizing the code
into an abstract syntax tree because of its hierarchical nature.

5.5 Semantic Analyzer

The semantic analyzer uses the abstract syntax tree to build a semantic abstract syntax tree which holds
more information like scope and type information. Semantic errors are caught during the translation and
transversing of the semantic abstract syntax tree. The semantic analyzer walked through the semantic
abstract syntax tree twice, first to create the symbol table and then to do checks using the filled symbol
table. The second pass of the semantic abstract syntax tree was required because SMURF does not require
variables or functions to be defined before they are used.

5.6 Translator

The symbol table is then passed to our translator which evaluates all expressions and creates an intermediate
representation that is then converted into MIDI code. Since symbol table contains the expression of all
variables and functions all expressions can be evaluated starting from the main declaration without the
semantic abstract symbol tree. Errors found during evaluation of expressions are found causing compilations
errors. If there are no errors found then an intermediate representation is produced.

5.7 MIDI Converter

The intermediate representation produced from the translator then is translated into MIDI code using the
MIDI converter. The MIDI code can then be played.

6 Test Plan

During the development process of SMURF, to let everyone involve in the development as much as possible,
we adopt the slice model, i.e., in each developing stage, everyone has a slice of assignment to work on. One
problem with this model is that different people needs to work on a same job, so one people’s change to
the program can easily crash other people’s work. As a result, extensive tests to ensure the quality of the
software is crucial.

6.1 Testing Levels
6.1.1 Unit Testing

For lexer and parser, we generated a separate executable to test their functionality (parser test.ml). This
executable reads in SMURF programs, analyzes the input files with lexer and parser, generates the abstract
syntax trees, and then spits out the information stored in the ast trees.

23

6.1.2 Integration Testing

We tested the correctness of semantic checking and code generation models together with the lexer and
parser models. We generated the toplevel executable with semantic test.ml for semantic checking, and with
toplevel.ml for code generation. The output of semantic checking is the semantic abstract syntax tree, which
is the abstract syntax tree with types of every variables resolved. The output of code generation is the
bytecode for midi music generation.

We also tested the integration between our bytecode and the midi music generator in java.

6.1.3 System Testing

The end-to-end SMURF compiler accepts SMURF program and generates MIDIs, with the bytecode for
MIDI generation as byproduct. For the ASCII bytecode we compare it with golden results to make sure its
correctness. We also listen to the MIDIs generated by SMURF with music players to make the sounds are
correct.

6.2 Test Suites

The hierarchy for SMURF test cases is shown in (figure 3). In each developing stage, everyone is in charge
of a directory holding test cases constructed for the functionality he/she is working on. Every person needs
to give the expecting output for his/her test cases in the exp directory. A case passes the test if its output is
identical with the corresponding output in the exp directory. We have a script for testing all the test cases
in the toplevel of the directory running all the test cases and comparing the results with the expect results
given by every owner of the cases. The script gives the result about how many test cases passed and which
test cases failed, if any. Before committing his/her result to the repository, everyone need to make sure the
new change passed all the other people’s cases. For the occasions that one people’s work need to change the
output of other people’s cases, he/she need to check the changes are as expected, and then generate new
expected results for the cases before committing changes to repository.

There are two types of test cases, to pass and to fail. We don’t treat them differently during the test. As
long as the program is not broken, on one hand, the pass cases should give the same output, On the other
hand, the fail cases should give the same exception message as that stored in exp directory. We use the
convention to name the fail cases starting with test-fail- and name the pass cases starting with test-.

24

TEST _ROOT

codegen-tests

—| personl

@

Xp

test-chord.out

—' test-system.out |

—' test-fail-note.out |

,—

[

test-chord.sm
test-system.sm

—| test-fail-note.sm |

e

person2
persond

person4

persond

Figure 3: The directory of SMURF test cases
6.3 Example Test Cases
Below we give several sample test cases and their expected output for SMURF.

6.3.1 parser-tests

Note that the programs that pass parser testing may not be semantically correct.

a = if 1 then 1 else 2

test-if.sm

6.3.2 semantic-tests

For cases successfully passed semantic checking, semantic checking spits out the semantic abstract syntax
tree with the type of each variable resolved.

a = []
b = [[1]
e =01 ++ I

£ = [[0I11]1 ++ [1

old = [1] ++ [2]

25

N

[1 ++ [1,2,3,4]

(]
]

h = [True,False,False] : []
i=1:[]

j = [1,2]1 : [[1]1,[2,3]1]

aa [(1,2)$2..] ++ []

bb = [(1,2)%$2..]1 : []

main = []

test-emptyList.sm

PASSED SEMANTIC CHECKS

test-emptyList.out

For cases that failed to passed the semantic checking, semantic checking captures the exception and spits
out the message regarding the exception to help the programmer to easily locate the problem in program.

a = [(1,2)%4.., (2,3)$2., (3,4)$8., Truel

main = [J]

test-fail-chord.sm

Fatal error: exception Sast.Type_error("Elements in Chord should all have type of Note but the element of
true has type of Bool")

test-fail-chord.out

6.3.3 codegen-tests

Following is an example used for codegen test.

/* Sample SMURF program that should play a cascade :-) %/

//[Register] -> [Pitch classses] -> [Durations] -> [Chords]

makeChords :: [Int] -> [Int] -> [Beat] -> [Chordl]

makeChords [1 _ _ = []

makeChords _ [] _ = []

makeChords _ _ [] = []

makeChords r:restr p:restp d:restd = [(p,r)$d] : (makeChords restr restp restd)

pitcheslt = [0,2,4,5,7,9,11,0,-1,0,-1,11,-1,11]
pitches2 = [-1,11,9,-1,8,-1,8,-1,7]

pitches3 = [-1,-1,7,5,-1,5,-1,5,-1,4]
pitches4 = [-1,-1,4,2,-1,2,-1,2,-1,0]
endBeats = [4,4,4,4,4,2]

beatsl = [8,8,8,8,8,8,8,(1 $+ 8)] ++ endBeats
beats2 = [1,8,(2..)] ++ endBeats

beats3 = [1,4,8,(2 $+ 8)] ++ endBeats

beats4 = [1,2,8,4.] ++ endBeats

endReg = [0,2,2,0,2,0,2,0,2]

regl = [2,2,2,2,2,2,2 ,0,3,0,2,0,2]

reg2 = endReg

reg3 = 0 : endReg

regd = reg3

,2
»3

trackl = makeChords regl pitchesl beatsl
track2 = makeChords reg2 pitches2 beats2
track3 = makeChords reg3 pitches3 beats3
track4 = makeChords reg4 pitches4 beatséd

main = [trackl,track2,track3,track4]

cascade.sm

And following is the output bytecode generated by SMURF program.

26

kkx% Generated by SMURF *xkxx*
number of trace: 4
Time Resolution (pulses per quarter note) ,4,
track 1,48,track 2,48,track 3,48,track 4,48,
Tick, Note (0-127), Velocity (0-127), Tick, Note (0-127), Velocity (0-127), Tick, Note (0-127), Velocity
(0-127), Tick, Note (0-127), Velocity (0-127),
0,60,90,,,,,,,,55>
2,60,0,,,,55555,
2,62,90,
4,62,0,,,,,,,55,
4,64,90,,,,,5555>
6,64,0,,,,,5555,
6,65,90,,,,,,,,,,
8,65,0,,,,,,5555,
8,67,90,,,,,5555>
10,67,0,,,,555555
10,69,90,,
12,69,0,,,
12,71,90,,
14,71,0,,,
14,72,90,,,,,,555
32,72,0,,,
s ,,16,71,90,,,,,,,
,,,18,71,0,,,,,,,
,,,18,69,90,,,,,,,
,5:32,69,0,,,,,,,
s 05,20,67,90,,,,
yss5,22,67,0,,,,
»s5,22,65,90,,,,
»s335,32,656,0,,,,
s »24,64,90,
s ,26,64,0,
s :26,62,90,
333333 ,32,62,0,

36,72,90,36,68,90,36,65,90,36,62,90,
40,72,0,40,68,0,40,65,0,40,62,0,
44,71,90,44,68,90,44,65,90,44,62,90,
48,71,0,48,68,0,48,65,0,48,62,0,

52,71,90,52,67,90,52,64,90,52,60,90,
60,71,0,60,67,0,60,64,0,60,60,0,

cascade.sm

7 Lessons Learned

7.1 Lindsay Neubauer

We had a meeting at the same time every week that lasted between one and two hours that everyone
attended. This time set aside to make real progress on project was crucial to our success. In the beginning
of the semester we spent all the time discussing LRM-related topics and during the latter half of the semester
it was split between discussion and coding. Often being in the same room, even for a short amount of time,
while coding was helpful for figuring out the trickier aspects of our language. This was particularly helpful

27

for me because OCaml was my first experience using a functional programming language and having access
to others with more experience helped me pick it up quicker.

Another important choice we made was to designate a group leader at the beginning of this project.
Our group leader was organized with tasks to discuss or complete in each meeting and helped drive the
conversation in a productive way. In addition to this, we had a note taker and a person in charge of our
GitHub and Latex environments. It was helpful to have I&%go to'l};% people for questions and concerns that
arose throughout the project.

After turning in our LRM we decided to divide each part of our language into slices. Each group member
was in charge of a different aspect of our language and implemented that slice for each step of the compiler
building process. This ownership of a part of the language was helpful and touching each step of the compiler
was very helpful for learning. It also allowed each group member to work throughout the semester regardless
of the progress made by others.

The most important learning I had from this project are understanding the functional language paradigm
and knowledge on how to implement a compiler from start to finish.

7.2 Kuangya Zhai

First of all, the best lesson I learned from this project is: Finish early. The importance of starting early has
been told by numerous previous PLT groups while the importance of finishing early has not. By finishing
early I mean you should project the finishing time of the deadline of your project a bit earlier than the
actual deadline to allow any exceptions. As is always said, deadline is the first productivity. Your efficiency
boosts when the deadline approaches. But there exists the possibility that something unexpected happens
and you are not going to be able to finished the project in the due day if your plan is to finish everything
in the last day. These situation is common when you are working on a group project. Take our group as
an example, we projected everything to be finished on the exact morning of the presentation while it turned
out that not everything goes well as expected, so we had to presented an incomplete version which was kind
of embarrassing. And the problems was solved on the exact afternoon of the presentation but we had no
chance the present it again. Had we project our own deadline one day earlier, I believe the result will be
much better.

The second thing, enjoy OCaml. Few people has functional programming background before the PLT
class. So it’s likely that you will have a steeper learning curve when comparing with learning other program-
ming languages. However, when you got used to the functional style, you will find it’s at least as expressive
and productive as imperative languages you have got used to. The thing I love the most about functional
programming is its type checking system. So you will spend tons of time to get your program to compile. But
once after that, your program will likely to give the correct result since most of the bugs have been captured
at the compiling stage. Also, the side effect free property of functional program guarantees the robustness of
your program, which is especially important when you are working on a teaming working project. OCaml is
not purely functional. It also keeps several imperative features which might also be helpful and make your
life much easier when comparing with Haskell, the pure functional programming language.

7.3 Lianne Lairmore

The first important lesson I learned was that communication between group members is very important.
Having a weekly meeting was very helpful for communication and helped us quickly defined what we wanted
in out language. Later in the semester we still met but our meetings were more coding instead of talking. It
would have been better to spend more time talking about what we were doing and how far along we were. It
probably would have been helpful to do some pair programming in some of the tougher part of the project
so that when someone got stuck another person knew who to help them.

The second important lesson I learned was that organization is important. It was important to know
what each person was suppose to be doing at one time that way you always knew what was expected of you.
Although our group might have balanced the loads more evenly this is hard to do not knowing either how
much certain parts of the language are going to take or everyones skills. For example a few people in our
group had considerably more experience with functional languages than the others and didn’t have as steep
a learning curve learning OCaml.

28

The third important lesson I learned was to make a schedule and stick to it. Our group did half of this.
We had a schedule but when we fell behind we didn’t push hard to catch up. The first half of the semester
we staid on schedule but the second half we fell behind and never was able to catch back up making the end
a rush to finish everything.

7.4 Richard Townsend

Weekly meetings are a must! While we had them and they were helpful, we mostly used them to discuss
overarching language features and code in the same room. In hindsight, it would have been effective to also
use these meetings to discuss how we implemented the various features in the compiler. There were many
instances where group members had to work with someone else’s code and it was not entirely clear what the
original programmer’s thought process was. By going over these aspects of the compiler, a lot of time would
have been saved for future coding.

It would have also been beneficial for us to assign priorities to different features of our langauge, making
sure the higher priority features were up and running before the others. In our case, function application
was the highest priority (since SMURF is a functional language), but it was the last feature to be fully
implemented, leading to some stress and a less-than-ideal demo for our presentation. This problem would
also have been mitigated if we assigned some of our vertical slices to pairs of members as opposed to single
members. That way, the two members would keep each other on top of the implementation and deadlines
associated with that specific language feature.

Finally, take good notes during Stephen’s OCaml series of lectures. If something doesn’t make sense
during the lecture, talk to him or a TA about it ASAP, as you will probably use that aspect of the language
in your compiler at some point. It’s imperative, especially with a huge project like a compiler, that you can
read another team member’s code and understand the basic operations and processes going on.

7.5 Van Bui

Getting used to a functional programming mindset is nontrivial if you are more used to the imperative style
of programming. It would have been helpful to practice writing OCaml programs through out the semester.
The OCaml programming assignments in class helped with this, but I think more assignments or self-practice
beyond that would have been very useful. The beginning of the project is mostly planning and writing and
the latter half is a lot of OCaml programming. I would often know in mind exactly how to implement some
algorithm imperatively, but would struggle trying to come up with how to write it in OCaml. It is a steep
learning curve and requires a lot of practice to get used to the functional programming paradigm.

I also learned that if you need help with something, ask for help and ask early. This prevents the project
from getting behind schedule. In my case, the members in the group were very helpful once I asked for help,
I just wish I had asked for it earlier. My programming slice, function application, turned out to be much
harder than I originally anticipated. Since this was the first end-to-end compiler I helped to write, I had no
sense really for the difficulty of implementing different langauge features.

Time management is also a major factor. The project requires a lot of time. So when chosing your
courses, chose wisely, and take into account the time required for this project and also your other classes.
I was taking Operating Systems, which has a lot of programming projects written in C. So there was quite
a bit of context switching between C and OCaml throughout the semester. If you are new to functional
programming, writing a lot of C code the same semester might not be such a great idea.

This has been mentioned previously, but I will mention it again to underscore its importance. Pair
programming could have been helpful for several reasons: to help with understanding OCaml code written
by others, debugging, and to switch off to make sure some slice does not get behind schedule.

8 Appendix

{ open Parser
open Lexing
let cc = [|0]]
} (* Get the Token types *)
(x Optional Definitions *)

29

(* Rules *)

let letter = [’a’-°z? 2A°-°Z7°]

let digit = [207-°97]

let identifier = letter (letter | digit | 7_?)x*
let whitespace = [’ * ’\t’ ’\r’]

rule token = parse

whitespace { token lexbuf } (* White space *)
/7" { nlcomment lexbuf }
| /xn { cc.(0)<-cc.(0)+1; ncl lexbuf }
12\’ { continue lexbuf }
| ’\n’ { Lexing.new_line lexbuf; NL }
| & { NL }

I °re { LLIST }

|21 { RLIST }

I 7+2 { PLUS }

[{ MINUS }

| 2% { TIMES }

12/ { DIV }

I 2% { MOD }

[{ LT }

I 2> { 6T }

| r<=" { LE }

| t>=n { GE }

| ngen { BPLUS }

| ng-n { BMINUS }

[ETY { BTIMES }

I "g/" { BDIV }

I rg<n { BLT }

| ng>n { BGT }

| rg<=n { BLE }

I "g>=" { BGE }

I { PCPLUS }

|- { PCMINUS }

| r==n { EQ }

| { NOT }

| "eg" { AND }

[{ OR }

[{ CONCAT }

[{ CONS }

| e { TYPE }

| "->n { FUNC }

| =2 { BIND }

| tomm { TRANS }

| e { INV }

RS { RET }

I { LPAREN 1}

12> { RPAREN }

[{ COMMA }

| o { PERIOD }

1 8% { DOLLAR }

| o_» { WILD }

| "let" { LET }

| "in" { IN }

| mifn { IF }

| "then" { THEN }

| "else" { ELSE }

| "True" { BOOLEAN(true) }
| "False" { BOOLEAN(false) }
| "Int" { INT }

| "Bool" { BOOL }

| "Beat" { BEAT }

| "Note" { NOTE }

| "Chord" { CHORD }

| "System" { SYSTEM }

| "main" { MAIN }

| "print" { PRINT }

| identifier as id { VARIABLE(id) }

| (digit)+ as num { LITERAL(int_of_string num) }
| eof { EOF }

|

_ Char.escaped char)) }

as char { raise (Failure("Illegal character:

and nlcomment = parse
’\n”’ { lexbuf.lex_curr_pos <- lexbuf.lex_curr_pos - 1; token lexbuf }
I _ { nlcomment lexbuf }

30

and continue = parse

’\n”’ { Lexing.new_line lexbuf; token lexbuf }

| whitespace { continue lexbuf }

and ncl = parse

2/ { nc2 lexbuf }

| 2% { nc3 lexbuf }

| >\n? { Lexing.new_line lexbuf; ncl lexbuf }

| { ncl lexbuf }

and nc2 = parse

Tx {cc.(0)<-cc.(0)+1; ncl lexbuf}

| _ {ncl lexbuf}

and nc3 = parse

2/ { if(cc.(0) = 1)
then (cc.(0) <- cc.(0)-1;token lexbuf)
else (cc.(0)<-cc.(0)-1; ncl lexbuf)

H
L { nc3 lexbuf }

I _ { ncl lexbuf }

../../Code/scanner.mll

%{ open Ast
open Util
w}

%token NL LET IN IF THEN ELSE INT BOOL EOF
%token BEAT NOTE CHORD SYSTEM MAIN RANDOM PRINT
%token PERIOD DOLLAR

%token LPAREN RPAREN LLIST RLIST COMMA

%token TYPE FUNC

%token PLUS MINUS TIMES DIV MOD BTIMES BDIV BPLUS BMINUS PCPLUS PCMINUS
%token EQ NOT AND OR LT GT LE GE BLT BGT BLE BGE
%token CONCAT CONS BIND

%token INV RET TRANS

%token WILD

%token <int> LITERAL

%token <bool> BOOLEAN

%token <string> VARIABLE

%nonassoc IF THEN ELSE INT BOOL NOTE BEAT CHORD SYSTEM MAIN RANDOM PRINT LET IN
%nonassoc LLIST RLIST COMMA

%nonassoc TYPE FUNC

%right BIND

%nonassoc INV RET

%left TRANS

%left OR

%left AND

%nonassoc NOT

%left EQ

%left LT LE GT GE BLT BGT BLE BGE

%#left PLUS MINUS BPLUS BMINUS PCPLUS PCMINUS
%#left TIMES DIV BTIMES BDIV MOD

hright CONCAT

Y%right CONS

%nonassoc DOLLAR

%right PERIOD

%nonassoc LPAREN RPAREN

%start program
%type <Ast.program> program

hh

/* List of declarations, possibly surrounded by NL */
program:

/* nothing */
| newlines
| decs
| newlines decs
|
|

[
[
List.rev $1
List.rev $2
List.rev $1
List.rev $2

decs newlines
newlines decs newlines

N S e S
S

newlines:
NL {
| newlines NL 1{

N

decs:

31

dec { [$11 3
| decs newlines dec { $3 :: $1 } /* declarations are separated by >= 1 newline */
dec:

VARIABLE TYPE types { Tysig($1, [$3]) } /* variable type-sig only have one type */
| VARIABLE TYPE func_types { Tysig($1, List.rev $3) } /x function type-sig have >= 2 types */
| VARIABLE BIND expr { Vardef ($1, $3) }
| VARIABLE patterns BIND expr { Funcdec{ fname = $1; args = List.rev $2; value = $4 } }
| MAIN BIND expr { Main($3) }

/* types for vars */
types:

INT { TInt }
| BOOL { TBool }
| NOTE { TNote }
| BEAT { TBeat 1}
| CHORD { TChord }
| SYSTEM { TSystem }
| LLIST types RLIST { TList ($2) }
| VARIABLE { TPoly($1) }

/* types for functions x/
func_types:

types FUNC types { $3 :: [$11 }
| func_types FUNC types { $3 :: $1 }
patterns:

pattern { [$11 }
| patterns pattern { $2 :: $1 }
pattern:

LITERAL { Patconst($1) }
| BOOLEAN { Patbool($1) %}
| VARIABLE { Patvar($1) }
| WILD { Patwild }
| LLIST comma_patterns RLIST { Patcomma(List.rev $2) }
| pattern CONS pattern { Patcons ($1, $3) }
| LPAREN pattern RPAREN { $2 }
comma_patterns:

/* empty */ {011}
| pattern { [$1] 3}
| comma_patterns COMMA pattern { $3 :: $1 }
expr:

LITERAL { Literal($1) 1}
| VARIABLE { Variable($1) }
| BOOLEAN { Boolean($1) }
| LPAREN expr RPAREN { %2}
| expr PLUS expr { Binop($1, Add, $3) }
| MINUS LITERAL { Literal(-%2) }
| expr MINUS expr { Binop($1, Sub, $3) }
| expr TIMES expr { Binop($1, Mul, $3) }
| expr DIV expr { Binop($1, Div, $3) }
| expr MOD expr { Binop($1, Mod, $3) 1}
| expr BDIV expr { Binop($1, BeatDiv, $3) }
| expr BTIMES expr { Binop($1, BeatMul, $3) }
| expr BPLUS expr { Binop($1, BeatAdd, $3) }
| expr BMINUS expr { Binop($1, BeatSub, $3) 1}
| expr PCPLUS expr { Binop($1, PCAdd, $3) 1}
| expr PCMINUS expr { Binop($1, PCSub, $3) }
| expr LT expr { Binop($1, Less, $3) 1}
| expr GT expr { Binop($1, Greater, $3) }
| expr LE expr { Binop($1, Leq, $3) 1}
| expr GE expr { Binop($1, Geq, $3) 1}
| expr BLT expr { Binop($1, BeatLess, $3) }
| expr BGT expr { Binop($1, BeatGreater, $3) }
| expr BLE expr { Binop($1, BeatLeq, $3) }
| expr BGE expr { Binop($1, BeatGeq, $3) 1}
| expr AND expr { Binop($1, And, $3) }
| expr OR expr { Binop($1, Or, $3) 1}
| expr EQ expr { Binop($1, BoolEq, $3) }
| expr CONCAT expr { Binop($1, Concat, $3) }
| expr CONS expr { Binop($1, Cons, $3) }
| expr TRANS expr { Binop($1, Trans, $3) }
| NOT expr { Prefix(Not, $2) }
| INV expr { Prefix(Inv, $2) }
| RET expr { Prefix(Retro, $2) }

32

88

expr dots {
LPAREN

expr COMMA expr

RPAREN

DOLLAR expr {
IF expr

THEN expr ELSE expr {

LLIST expr_list RLIST {

LET program IN expr {

VARIABLE args
PRINT expr

A

args:

arg

arg
args arg

lan Nt

LITERAL
BOOLEAN
VARIABLE
LLIST expr_list RLIST

e Wan ol

LPAREN expr RPAREN {

dots:

PERIOD
PERIOD dots

{132
{ $2+1 2}

expr_list:

/% Nothing */ { [1 }

Beat ($1, $2) 1}

match $7 with

Literal(_) as e -> Note($2, $4, Beat(e,0))
| - -> Note($2, $4, $7) 1}
If($2, $4, $6) }
match $2 with
[1 -> List($2)
| _ -> (match (List.hd $2) with
Note(_,_,_) -> Chord($2)
| Chord(_) -> System($2)
| _ -> List($2)) }
Let ($2, $4) }

Call($1,8$2) }
Print ($2) }

[$11 3

$2 $1)

Arglit ($1) 1}
Argbool ($1) }
Argvar ($1) }
match $2 with
[]

-> Arglist ($2)

| _ -> (match (List.hd $2) with

Note (_,_,_)

| Chord(_)

(-
Argparens ($2) }

-> Argchord ($2)

-> Argsystem($2)
-> Arglist($2)) 1}

| expr_list_back { List.rev $1 }
expr_list_back:
expr { [$11 }
| expr_list_back COMMA expr { $3 : $1 3}
/*
stmt:
expr { Expr(3$1) }
| IF expr THEN stmt ELSE stmt { If($2, $4, $6) }
*/
../../Code/parser.mly
type operator = Add | Sub | Mul | Div | Mod |
Less | Leq | Greater | Geq |
BeatAdd | BeatSub | BeatDiv | BeatMul |
BeatLess | BeatlLeq | BeatGreater | BeatGeq |
PCAdd | PCSub |
BoolEq | And | Or | Concat | Coms | Tranms
type prefix_operator = Not | Inv | Retro
(¥ Not sure if these should be here...doing it for type signature definition *)
type types = TInt | TBool | TNote | TBeat | TChord | TSystem | TList of types |
TPoly of string
type expr = (¥ Expressions %)
Literal of int (% 42 *)
| Boolean of bool (* True *)
| Variable of string (* bar x)
| Beat of expr * int (x 2. *)
| Note of expr * expr * expr (x (11, 2)-4. *)
| Binop of expr * operator * expr (# a + 2 %)
| Prefix of prefix_operator * expr (*» 1 a == 4 %)
| If of expr * exXxpr * expr (¥ if b == 4 then True else False x)
| List of expr list (x [1,2,3,4] x*)

33

84

and

| Chord of expr list (x [(11,3)84., (5,2)%$4.1%)

| System of expr list (« [[(11,3)%4.,(5,2)84.1, [(-1,0)82]1 1)
| Call of string * fargs list (* foo a *)

| Let of dec list =x expr (* let x = 4 in x + 2 %)

| Print of expr (¥ print 3 x)

dec = (¥ Declarations *)

Tysig of string * types list (+ £ :: Int -> [Note] -> Bool %)

| Funcdec of func_decl (* £ x y =x +y %)

| Vardef of string #* expr (* x = (2 + B) [1,2,3] *)

| Main of expr (* main (f x) + (g x) *)

and func_decl = { (¥ Function Declaration *)
fname string; (* Function name *)
args pattern list; (¥ Pattern arguments %)
value expr; (¥ Expression bound to function *)
}
and pattern = (% Patterns *)
Patconst of int (¥ integer x)
| Patbool of bool (¥ boolean x)
| Patvar of string (* identifier*)
| Patwild (¥ wildcard *)
| Patcomma of pattern list (¥ [pattern, pattern, pattern, 1 or [1 *)
| Patcons of pattern * pattern (* pattern pattern *)
and fargs = (x Function Arguments x*)
Arglit of int (x 42 *)
| Argbool of bool (* True *)
| Argvar of string (* bar *)
| Argbeat of expr * int (x 2. x)
| Argnote of expr * expr * expr (x (11, 2)~4. *)
| Argchord of expr list (+ [(11,3)%4., (5,2)8$4.1 *)
| Argsystem of expr list (x [[(11,3)%4.,(5,2)8$4.], [(-1,0)%$2]1 1 =)
| Arglist of expr list (* [farg, farg, farg,] or [1 %)
| Argparens of expr (¥ parenthesized expressions x)
type program = dec list (¥ A program is a list of declarations x*)
let rec string_of_expr = function
Literal(l) -> string_of_int 1
| Boolean(b) -> string_of_bool b
| Variable(s) -> s
| Binop(el, o, e2) ->
string_of_expr e1 ~ " " =~
(match o with
Add -> "+" | Sub -> "-" | Mul -> "s" | Div -> "/" | Mod -> "%"
| BeatAdd -> "$+" | BeatSub -> "$-" | BeatMul -> "$*" | BeatDiv -> "$/"
| PCAdd -> "%+" | PCSub -> "j%-"
| Less -> "<" | Leq -> "<=" | Greater -> ">" | Geq -> ">="
| BeatLess -> "$<" | Beatleq -> "$<=" | BeatGreater -> "$>" | BeatGeq -> "§>="
| And -> "&&" | Or -> "[|" | BoolEq -> "=="
| Concat -> "++" | Cons -> ":" | Trans -> "~~")
~ " "~ string_of_expr e2
| Prefix(o, e) ->
(match o with Not -> "!" | Inv -> """ | Retro -> "<>")
-~ " " " string_of_expr e
| If(el, e2, e3) -> "if " ~ string_of_expr el ~ " then " - string_of_expr e2 -~
" else " ~ string_of_expr e3
| Beat(il, i2) -> string_of_expr il =
let rec repeat n s =
if n>0 then
repeat (n-1) ("." =~ s)
else s in repeat i2 ""
| Note(pc, reg, bt) -> " (" = string_of_expr pc ~ ", " =~ string_of_expr reg ~ ")$" =~ (string_of_expr bt
)
| List(el) -> "[" ~ (String.concat ", " (List.map string_of_expr el)) ~ "]"
| Chord(el) -> "[" -~ (String.concat ", " (List.map string_of_expr el)) =~ "]"
| System(el) -> "[" ~ (String.concat ", " (List.map string_of_expr el)) ~ "1"
|
|

and

Call(fname,args) -> fname =~ " " =~ (String.concat " " (List.map string_of_args args))
Let (decl, exp) -> "let " ~ (String.concat " " (List.map string_of_dec decl)) -~

" in " string_of_expr exp
Print (e) -> "print ("~ (string_of_expr e)~")"

string_of _fdec function
{fname;args;value} -> fname

(List.map string_of_patterns args)

function
->id ~ " "o

string_of_dec
Tysig(id, types)
"\n"

String.concat
string_of_expr value

String.concat

n_s n

34

~ "\n"

(List .map string_of_types types)

104

109

~

N
I}

| Vardef (id, expr) -> id =~ " = " ~ string_of_expr expr ~ "\n"
Funcdec (fdec) -> string_of_fdec fdec
| Main(expr) -> "main " ~ string_of_expr expr -~ "\n"

and string_of_patterns = function

Patconst (1) -> string_of_int 1

Patbool(b) -> string_of_bool b

Patwild -> "_"

Patvar(s) -> s

Patcomma(p) -> "[" ~ (String.concat ", " (List.map string_of_patterms p)) -~ "]"
Patcons(pl, p2) -> (string_of_patterns pl) -~ " : " ~ (string_of_patterns p2)

and string_of_types = function
TInt -> "Int" | TBool -> "Bool" | TChord -> "Chord"
| TNote -> "Note" | TBeat -> "Beat" | TSystem -> "System"
| TList(t) -> "[" - string_of_types t ~ "1" | TPoly(v) -> "Poly " ~ v
and string_of_args = function

Arglit (1) -> string_of_int 1
Argbool(b) -> string_of_bool b
Argvar (s) -> s
Arglist(el) -> "[" = (String.concat " " (List.map string_of_expr el)) ~ "1"
Argparens (p) -> "(" ~ (string_of_expr p) s~ omyn
Argbeat (il1,i2) -> string_of_expr il -~

let rec repeat n s =

if n>0 then

repeat (n-1) ("." = s)
else s in repeat i2 ""
| Argnote(pc, reg, bt) -> " (" - string_of_expr pc -~ ", " ~ string_of_expr reg ~ ")$" - (string_of_expr
bt)
| Argchord(el) -> "[" ~ (String.concat ", " (List.map string_of_expr el)) ~ "I"
| Argsystem(el) -> "[" =~ (String.concat ", " (List.map string_of_expr el)) =~ "I"

let string_of_program decs =
String.concat "" (List.map string_of_dec decs)

../../Code/ast.ml

(% File: interpeter.ml
* interpret a file from AST to SMURFy code *)

open Ast

open BSast

open Util

open Printf
open Values
open Output
open Semanalyze

let ticks_16 = [| 1 |[]
let ticks_8 = [| 2

let ticks_4 = [| 4; 6; 7 |]
let ticks_2 = [| 8; 12; 14; 15 |]

let ticks_1 = [| 16; 24; 28; 30; 31 1]

let r_max = 1000000

(* convernt the symbol table defined in Sast to environment defined in Values
* and set the parent of the new environment to the one passed to it
*)
(* Values.environment -> Sast.symbol_table -> Values.environment’ *)
let st_to_env par st =

let newmap = List.fold_left (fun mp {v_expr=ve; name=nm; pats=pl} ->

NameMap.add nm {nm_expr=ve; nm_value=VUnknownl} mp)
NameMap .empty st.identifiers
in {parent=par; ids=newmap}

update a variable ’name’ with the value of ’v’,
looking for the definition of ’name’ from the current
scope all the way up to the global scope, if can’t find the
definition in the global scope, add a new binding of
’name’ to ’v’ in the current scope
* function returns an updated environment chain
*)
(* environment -> string -> value -> environment’ *)
let rec update_env env name v =
match NameMap.mem name env.ids with
true -> let newE = {parent=env.parent;
ids=NameMap.add name {nm_value=v;nm_expr=None} env.ids} in (*show_env newE;*) newE

* X X X ¥

35

Q

-~
)

102

107

117

| false -> match env.parent with
None -> let newE = {parent=env.parent;
ids=NameMap.add name {nm_value=v;nm_expr=None} env.ids} in (*show_env newE;*) newE
| Some par -> let newE = {parent=Some (update_env par name v);
ids=env.ids} in (*show_env newE;#*) newE

(x searching for the definition of a name, returns its value *)
(* environment -> string -> value,environment’ *)
let rec resolve_name env symtab name =
match NameMap.mem name env.ids with
true -> let id=(NameMap.find name env.ids) in (*print_string ("In resolve_name we found the
name " ~ name) ;*)
(match id.nm_expr with

Some expr -> (*print_string ("We found an expr for " ~“name ~ "and it is: " ~(
string_of_sexpr expr) ~ "\n");*)let (v,envli)=(eval env symtab expr) in
let env2 = update_env envl name v in v,env2
| None -> (#print_string ("No expr for " ~ name " but we have a value of: " -~ (
string_of_value id.nm_value) ~ "\n");*) id.nm_value,env)
| false -> match env.parent with
None -> interp_error ("Can’t find binding to " ~ name)
| Some par -> resolve_name par symtab name
(¥ eval : env -> Sast.expression -> (value, env’) *)
(¥ evaluate the expression, return the result and the updated
* environment, the environment updated includes the
% current and all the outer environments that modified
*)
(¥ environment -> symbol_table -> Sast.s_expr -> (value, environment’) x*)
and eval env symtab = function
Sast.SLiteral(x) -> (VInt(x), env)
| Sast.SBoolean(x) -> (VBool(x), env)
| Sast.SVariable(str) ->
let v,env’ = resolve_name env symtab str in v,env?’
| Sast.SBeat(e, n) -> if n < 0 then interp_error ("Somehow we have a negative number of dots on a
beat!")
else let (ve,envl) = eval env symtab e in

(match ve with
| VInt(x) -> (match x with
1 -> if n > 4 then interp_error ("A whole Beat may only have up to 4 dots")

else (VBeat(ticks_1.(n)),envl)

| 2 -> if n > 3 then interp_error ("A half Beat may only have up to 3 dots")
else (VBeat(ticks_2.(n)),envl)

| 4 -> if n > 2 then interp_error ("A quarter Beat may only have up to 2 dots")
else (VBeat(ticks_4.(n)),envl)

| 8 -> if n > 1 then interp_error ("An 8th Beat may only have up to 1 dot")
else (VBeat(ticks_8.(n)),envl)

| 16 -> if n > O then interp_error ("A 16th Beat may not have dots'")

else (VBeat(ticks_16.(n)),envl)
| _ -> interp_error ("Beat must be a power of 2 between 1 & 16"))

| _ -> interp_error ("Not expected Beat values"))
| Sast.SNote(pc, reg, beat) ->(*print_string "HERE WE GO";=*)

(let (vpc,envl) = eval env symtab pc in
let (vreg,env2) = eval envl symtab reg in
let (vbeat,env3) = eval env2 symtab beat in let vbeat =

(match vbeat with
VBeat (_) -> vbeat
| VInt(x) -> if List.mem x [1;2;4;8;16] then VBeat (16/x) else interp_error ("Non-power of two
being used as a beat")
| _ -> interp_error ("We have a note with a non-int non-beat Beat value")) in (*print_string
("Making a note with number of ticks " ~ (string_of_value vbeat));#*) VNote(vpc,vreg,vbeat),env3)
| Sast.SBinop(el, op, e2) -> (xIncomplete*)
(let (vl,envl) = eval env symtab el in
let (v2,env2) = eval envl symtab e2 in
let ticks = [| O0; 16; 8; 0; 4; 1; 0; 0; 2; 0; 0; 0; 0; O0; 0; O0; 1] inm
(match v1, v2 with
| VInt(x), VList(lst) ->
(match op with
Trans -> if not (List.for_all (fun v -> match v with VInt(x) ->
if x >= 0 || x <= 11 then true else false
| _ -> false) 1st)
then interp_error ("Non pitch class integer found in inversion list")
else VList(List.map (fun v -> match v with VInt(y) ->
Vint ((x+y) mod 12)
| _ -> interp_error ("Ran into a transposition error"))
1st), env2
| Cons -> (match (List.hd 1st) with
ViInt(_) -> VList(vl :: 1lst), env2
|_ -> interp_error ("Trying to cons an int onto a list of non-ints"))
| _ -> (#print_string ("Problem expression: " (string_of_sexpr (Sast.SBinop(el,op,e2

36

127

))) © "\n") ;%)

| VInt(x),

interp_error ("The only op that can be used between an int

and a list is the transposition operator"))
Vint (y) ->

(match op with

subtraction")

division™")

Add -> VInt (x+y),env2
Sub -> VInt(x-y),env2
Mul -> VInt(x*y),env2
Div ->
if y<>0
then VInt(x/y),env2
else interp_error ("Cannot divide by zero")
Mod ->
if y<o0
then VInt(x mod (y*(-1))),env2
else VInt(x mod y),env2
PCAdd -> VInt ((x+y) mod 12),env2
PCSub -> VInt ((x-y) mod 12),env2
Less -> VBool(x<y),env2
Leq -> VBool(x<=y),env2
Greater -> VBool(x>y),env2
Geq -> VBool(x>=y),env2
BoolEq -> VBool(x=y),env2
BeatAdd ->
if List.mem x [1;2;4;8;16] && List.mem y [1;2;4;8;16]
then (* This is a hacky way of doing this *)
VBeat (ticks.(x) + ticks.(y)),env2
else interp_error ("Ints used in Beat operation must be power of 2 "
~ "between 1 & 16")
BeatSub ->
if List.mem x [1;2;4;8;16] && List.mem y [1;2;4;8;16]
then (* This is a hacky way of doing this *)
if ticks.(x) > ticks.(y)
then VBeat (ticks.(x) - ticks.(y)),env2
else interp_error ("First operand must be greater than second in Beat

else interp_error ("Ints used in Beat operation must be power of 2 "
" "between 1 & 16")
BeatMul ->
if y>0 then
if List.mem x [1;2;4;8;16]
then (* This is a hacky way of doing this *)
VBeat (ticks.(x) * y),env2
else interp_error ("Ints used in Beat operation must be power of 2 "
~ "between 1 & 16")
else interp_error ("Must multiple Beat by positive Int")
BeatDiv ->
if y>0 then
if List.mem x [1;2;4;8;16]
then (* This is a hacky way of doing this *)
if ticks.(x) >y
then VBeat(ticks.(x) / y),env2
else interp_error ("First operand must be greater than second in Beat

else interp_error ("Ints used in Beat operation must be power of 2 "
~ "between 1 & 16")
else interp_error ("Must divide Beat by positive Int")
BeatLess ->
if List.mem x [1;2;4;8;16] && List.mem y [1;2;4;8;16]
then (* This is a hacky way of doing this *)
VBool(ticks.(x) < ticks.(y)),env2
else interp_error ("Ints used in Beat operation must be power of 2 "
~ "between 1 & 16")
BeatLeq ->
if List.mem x [1;2;4;8;16] && List.mem y [1;2;4;8;16]
then (* This is a hacky way of doing this *)
VBool (ticks.(x) <= ticks.(y)),env2
else interp_error ("Ints used in Beat operation must be power of 2 "
~ "between 1 & 16")
BeatGreater ->
if List.mem x [1;2;4;8;16] && List.mem y [1;2;4;8;16]
then (# This is a hacky way of doing this *)
VBool (ticks.(x) > ticks.(y)),env2
else interp_error ("Ints used in Beat operation must be power of 2 "
~ "between 1 & 16")
BeatGeq ->
if List.mem x [1;2;4;8;16] && List.mem y [1;2;4;8;16]
then (# This is a hacky way of doing this *)
VBool(ticks.(x) >= ticks.(y)),env2
else interp_error ("Ints used in Beat operation must be power of 2 "
"~ "between 1 & 16")
_ -> interp_error ("Not expected op for Ints"))

37

207

&
et
&

| VBeat(x), VBeat(y) ->
(* Operations act the same as normal because Beat has been converted to Ticks*)
(match op with
BeatAdd -> VBeat(x+y),env2
| BeatSub ->
if x > y
then VBeat (x-y),env2
else interp_error ("First operand must be greater than second in Beat subtraction
ll)
BeatLess -> VBool (x<y),env2
BeatLeq -> VBool(x<=y),env2
BeatGreater -> VBool(x>y),env2
BeatGeq -> VBool(x>=y),env2
| _ -> interp_error ("Not expected op for Beats"))
| VBeat(x), VInt(y) ->
(match op with
| BeatAdd ->
if List.mem y [1;2;4;8;16]
then VBeat(x + ticks.(y)),env2
else interp_error ("Ints used in Beat operation must be power of 2 " =
"between 1 & 16")
| BeatSub ->
if List.mem y [1;2;4;8;16] then
if x > ticks.(y)
then VBeat(x - ticks.(y)),env2
else interp_error ("First operand must be greater than second in Beat

subtraction")
else interp_error ("Ints used in Beat operation must be power of 2 " -
"between 1 & 16")
| BeatMul ->
if y>0
then VBeat (x*y),env2
else interp_error ("Must multiple Beat by positive Int")
| BeatDiv ->
if y>0 then
if x>y
then VBeat (x/y),env2
else interp_error ("First operand must be greater than second in Beat
division")
else interp_error ("Must divide Beat by positive Int")
| BeatLess ->VBool(x < ticks.(y)),env2
| BeatLeq ->VBool(x <= ticks.(y)),env2
| BeatGreater -> VBool(x > ticks.(y)),env2
| BeatGeq -> VBool(x >= ticks.(y)),env2
| _ -> interp_error ("Not expected op for Beats"))
), VBeat(y) -> if not (List.mem x [1;2;4;8;16]) then
interp_error ("Ints used in Beat operation must be power of 2 " ~ "

| VInt(x

between 1 & 16")
else
(match op with
| BeatAdd -> VBeat(ticks.(x) + y),env2
| BeatSub -> if ticks.(x) > y
then VBeat (ticks.(x) - y),env2
else interp_error ("First operand must be greater than second in Beat
subtraction")
BeatLess -> VBool(ticks.(x) < y),env2
BeatLeq -> VBool(ticks.(x) <= y),env2
BeatGreater -> VBool(ticks.(x) > y),env2
BeatGeq -> VBool(ticks.(x) >= y),env2
| _ -> interp_error ("Not expected op for Beats"))
| VBool(x), VBool(y) ->
(match op with
And -> VBool(x && y),env2
| 0r -> VBool(x || y),env2
| _ -> interp_error ("Not expected op for Bools"))
| VList([]), x ->
(match x with
VList (m) ->
(match op with
Concat -> VList(m),env2
| Cons -> (match m with
[VSystem(sys)] ->
VList ([VSystem (VChord ([VNote (VInt (-1) ,VInt (-1),VBeat(-1))1)::sys)

1),env2
| _ -> VList(VList ([]1)::m),env2)
| _ -> interp_error ("Not expected op between empty list and List"))
| VChord(m) -> (match op with
Concat -> VChord(m),env2
| Cons -> VChord((VNote(VInt(-1),VInt(-1),VBeat(-1))) :: m),env2
| _ -> interp_error ("Not expected op between empty list and Chord"))
| VSystem(m) -> (match op with

38

¥
)

302

string_of_value v1)

x, Viist
(match

Concat -> (VSystem(n),env2)
| Cons -> (VSystem(VChord([VNote (VInt (-1),VInt(-1),VBeat(-1))1)::n),env2)
| _ -> interp_error ("Not expected op between empty list and System"))
-> interp_error ("Empty list being applied to nonlist operand in binary operation"

(1 ->
op with

Concat -> x, env2

| Co
(.

VList (1x
(match

ns -> VList([x]), env2
-> interp_error ("Not expected op given two lists with second being the empty list"

), VList(ly) ->

op with
Concat -> VList(lx @ ly),env2
Cons -> (match (List.hd 1ly) with

string_of_value v2)))

string_of_value v2)))

false)

in

VChord (vl

VNote (a,
Co

1st)

(string_of_value v2)

(.
VChord (a
Co

(-
VChord (a
Co
|
X, y ->
(match

operands")))

)

Sast.SPrefix (op,
(let (vl,envl)
match vl with

)

VBool (x)
| Not
| _ ->

Viist (1s
| Retr
| Inv

| _ ->
-> int

Sast.SIf(el, e2,
(match eval env symtab el with

VList (_) -> VList(vl :: ly),env2
|VChord (_) -> (match (List.hd 1x) with
VNote(_,_,_) -> VList(vl :: ly)
| _ -> interp_error ("Cannot cons non-note " = (
~ " onto chord")),env2

I _ -> interp_error ("Cannot cons " ~ (string_of_value v1) =~ " onto " ~ (
_ -> interp_error ("Not expected op for Lists: " ~ (string_of_value v1) ~ " " ~ (
b,c), (VList(lst) | VChord(lst)) -> (match op with
ns -> let notetester = (fun note-> match note with VNote(d,e,f) -> f =c | _ ->

(match (List.hd 1st) with
VNote(_,_,_) -> (match v2 with
VChord(_) -> if List.for_all notetester 1lst then
else interp_error ("One of the notes in "

" does mnot have the same duration as

(string_of_value v1))

| _ -> VList(vl :: 1lst)), env2
_ -> interp_error annot cons a note to a list of non-notes
| > interp ("c t te t list of tes"))
-> interp_error ("Not expected op given a note and a list"))

), VList(lst)-> (match op with
ns -> (match (List.hd 1lst) with
VChord(_) -> VList(vl :: 1st), env2
| VList (VNote(_,_,_) :: _) -> VList(vl :: 1lst), env2

| _ -> interp_error ("Cannot cons a chord to a list of non-chords"))
-> interp_error ("Note expected op given a chord and a list"))

), VSystem(lst) -> (match op with

ns -> VSystem(vl :: 1st), env2
-> interp_error ("Note expected op given a chord and a system"))

op with
BoolEq -> VBool(x=y),env2
_ -> interp_error ((string_of_value x) -~ " " ~(string_of_value y) ~ ": Not expected

e) -> (*Incompletex)
= eval env symtab e in

-> (match op with
-> VBool(not x),envl
interp_error ("Unexpected op for Bool"))
t) -> (match op with
o -> VList(List.rev 1lst),envl
-> if List.for_all (fun v -> match v with VInt(x) ->
if x > 0 || x <= 11 then true
else interp_error ("Non pitch class integer found in inversion list")
| _ -> false) 1st then
let row = List.map (fun v -> match v with
VIint (x) -> x
| _ -> interp_error ("Non int found in a list of int")) 1lst in

let base = List.hd row in

let transrow = List.map (fun v -> v - base) row in
let invrow = List.map (fun v -> 12 - v) transrow in
let finalrow = List.map (fun v -> v + base) invrow in

VList (List.map (fun v -> VInt(v)) finalrow), envl
else interp_error ("Inversion called on non-tone row")

interp_error ("Unexpected op for list"))
erp_error ("Unexpected operand for prefix op")

e3) ->

39

e
¥

402

407

412

| VBool(true), env -> eval env symtab e2
| VBool(false), env -> eval env symtab e3
| _ -> interp_error ("error in If expr"))
| Sast.SList(el) -> if el = [] then (VList ([]), env) else (¥updating evironment after eval every
expression*)
(let (env?’,lst)=(List.fold_left (fun (env,lst) e ->
let v, env’ = eval env symtab e in (env’,v::1lst))
(env,[]) el) in VList(List.rev 1lst), env?’)
| Sast.SChord(el) ->
(let (env?’,lst)=(List.fold_left (fun (env,lst) e ->
let v, env’ = eval env symtab e in (env’,v::1lst))
(env,[]) el) in VChord(List.rev 1lst), env’)
| Sast.SSystem(el) ->
(let (env?’,lst)=(List.fold_left (fun (env,lst) e ->
let v, env’ = eval env symtab e in (env’,v::1st))
(env,[]) el) in VSystem(List.rev 1lst), env’)

| Sast.SCall(el, e2) ->
let sid_1st = List.find_all (fun f -> f.name = el) symtab.identifiers in

let sid =
try
List.find (fun sid -> let flag,_ = bind_pat_arg env symtab sid.pats e2 in flag) sid_lst

with Type_error x -> type_error x
| Not_found -> interp_error ("Matched patern not found!")
in
let flag,newE = bind_pat_arg env symtab sid.pats e2 in
(match sid.v_expr with

Some(e) -> (*print_string ("The expression we ended up with is: "~ (string_of_sexpr e) ~"\n"); *)
(match (eval newE symtab e) with v, _ -> v,env)
| None -> (#print_string "WE GOT NONE\n"; *)interp_error ("Function declaration without

expression"))

| Sast.SLet(s_prog,e) -> (% reutrn the original env x*)

let local_env = st_to_env (Some env) s_prog.symtab in
let local_envl = List.fold_left exec_decl local_env s_prog.decls in
show_env local_envl; let v,local_env2 = (eval local_envl symtab e) in v,env

| Sast.SRandom -> Random.self_init (); (VInt(Random.int r_max), env)
| Sast.SPrint(el) -> (*print_string ("\n"~"(string_of_value (fst (eval env symtab el)))~"\n") ;*) eval
env symtab el

(¥ environment -> pattern list -> arg list -> (Bool,environment ?) *)
and bind_pat_arg env symtab patl argl =
if (List.length patl) <> (List.length argl) then
type_error ("number of arguments does not match number of patterns")
else

(¥print_string (String.concat " "

(List.map string_of_pattermns patl));

print_string ("\n" ~ String.concat " and " (List.map string_of_sfargs (List.rev argl)) ~ "\n");*)
let combl = List.combine patl (List.rev argl) in
let flag,nmp = List.fold_left (fun (flag,mp) (p,a) -> let b,mp’ = is_pat_arg_matching env symtab p a

mp in (*print_string (string_of_bool b); *)
(flag&&b,mp’)) (true,NameMap.empty) combl
in (#print_string "RETURNING FROM BIND_PAT\n";#*) flag,{parent=Some(env); ids=nmp}

and gen = function
as v -> {nm_expr = None; nm_value=v}

(* pattern -> value -> NameMap -> (Bool, NameMap ’) *)
and is_pat_val_matching env symtab pat value mp =
match pat with
Patconst (pi) -> (match value with
VInt(ai) -> if pi = ai then true,(mp) else false,mp
| _ -> false,(mp))
| Patbool(pb) -> (match value with
VBool(ab) -> if pb = ab then true,(mp) else false,mp
| _ -> false,mp)
| Patvar(ps) -> (#print_string "IN PAT_VAL MATCHING\n\n\n";#*) (match value with
VInt (ai) -> true,(NameMap.add ps (gen (VInt(ai))) mp)
| VBool(ab) -> true,(NameMap.add ps (gen (VBool(ab))) mp)
| VBeat (i) -> true, (NameMap.add ps (gen value) mp)
| VNote(_,_,_) | VChord(_) | VSystem(_) | VList(_) -> true,(NameMap.add ps (gen
value) mp)
| _ -> interp_error ("We have an unknown value in the interpreter...\n"))
| Patwild -> true, (mp)
| Patcomma(pl) -> (match value with
| VList(al) | VChord(al) | VSystem(al) -> (if List.length pl <> List.length al
then
false ,mp
else
let 1st = List.combine pl al in
List.fold_left (fun (b,m) (p,a) -> let rl,r2 = match_pat_value env symtab p a

40

477

m in (b&&rl),r2) (true,mp) 1st)

I
| Patcons (pl,p2)
|

,rd)

->

-> false,mp)
(match value with

VList (al) -> (if List.length al = O then

false ,mp
else
(match al with
h::tl ->
(let rl,r2 = match_pat_value env symtab pl h mp in
let r3,r4 = is_pat_val_matching env symtab p2 (VList(tl)) r2 in (r1&&r3)

| _ -> false,mp))
-> false,mp)

(* pattern -> argument -> NameMap -> (Bool,NameMap’) *)
and is_pat_arg_matching env symtab pat arg mp =

match pat with

Patconst (pi) -> (match arg with
SArglit(ai) -> if pi = ai then true,(mp) else false,mp
SArgparens (expr) -> (let v,_ = eval env symtab expr in

(match v with
VInt (ai) -> if pi = ai then true, (mp) else false,mp
| _ -> false,mp))

SArgvar (id) -> let v,_ = resolve_name env symtab id in if (match v with

Vint (ai) -> pi = ai
| _ -> false) then true, (mp) else false,mp
-> false, (mp))

| Patbool(pb) -> (match arg with
SArgbool (ab) -> if pb = ab then true,(mp) else false,mp

-> false ,mp)

| Patvar(ps) -> (*print_string "Patvar\n"; x)(match arg with

SArglit (ai) -> true,(NameMap.add ps (gen (VInt(ai))) mp)

SArgbool (ab) -> true,(NameMap.add ps (gen (VBool(ab))) mp)

SArgvar (str) -> (*#print_string ("In is_pat_arg_matching we’re trying to match

pattern "

(string_of_patterns (Patvar(ps))) ~

" with argument " =~ str);*) let v,_

resolve_name env symtab str in true,(NameMap.add ps (gen v) mp)
SArgbeat (e,i) ->

|
e in (res::1),env?)
|
e in (res::1),env?)
|
e in (res::1),env?)

string_of_sexpr expr)

(match (eval env symtab (SBeat(e,i))) with
(VBeat (aa),_) -> true,(NameMap.add ps (gen (VBeat(aa))) mp)
| _ -> false,(mp))

SArgnote (p,r,b) ->

(match eval env symtab (SNote(p,r,b)) with
VNote(vl,v2,v3),_ -> true,(NameMap.add ps (gen (VNote(vl,v2,v3))) mp)
| _ -> false,mp)

SArgchord(el) ->

(let vl,env = List.fold_left (fun (l,env) e -> let res,env’ = eval env symtab

([1,env) el in

true, (NameMap.add ps (gen (VChord(vl))) mp))

SArgsystem(el) ->

(let vl,env = List.fold_left (fun (l,env) e -> let res,env’ = eval env symtab

([1,env) el in

true , (NameMap.add ps (gen (VSystem(vl))) mp))

SArglist (el) ->

(let vl,env = List.fold_left (fun (l,env) e -> let res,env’ = eval env symtab

([1,env) el in

true , (NameMap.add ps (gen (VList(vl))) mp))

SArgparens (expr) -> (*print_string ("Dealing with parens expr: " =~ (
T "M\n") ;)
(let v,_ = eval env symtab expr in true,(NameMap.add ps (gen v) mp)))

| Patwild -> true, (mp)
| Patcomma(pl) -> (#print_string "Patcommal\n'";*) (match arg with
SArglist (al) -> (if List.length pl <> List.length al then

false ,mp

else

let 1st = List.combine pl al in

List.fold_left (fun (b,m) (p,a) -> let rl,r2 = match_pat_expr env symtab p a

m in (b&&rl),r2) (true,mp) 1lst)
SArgvar (id) -> (*print_string ("For patcomma, we have an argument var named " -

I
id ~ "\n");*)

mp)

List.hd pl) hd mp in

let v,_ = resolve_name env symtab id in (match v with
VList (1st) -> (match 1lst with
| [0 -> if pl = []1 then true,(mp) else false,(

| hd::tl -> if pl = [] then false,(mp) else
(let rl,r2 = match_pat_value env symtab (

let r3,r4 = is_pat_val_matching env

symtab (Patcomma((List.tl pl))) (VList(tl)) r2 in (r1 &&r3),r4))

| _ -> interp_error ("Not working right now"))
-> false,mp)

41

497

502

507

| Patcons(pl,p2) -> (match arg with
| SArglist(al) | SArgchord(al) | SArgsystem(al)-> (if List.length al = O then
false ,mp
else
(match al with
h::tl ->
(let rl,r2 = match_pat_expr env symtab pl h mp in
let r3,r4 = is_pat_arg_matching env symtab p2
(match arg with
SArglist(_) -> SArglist(tl)
ISArgchord(_) -> SArgchord(tl)
ISArgsystem(_) -> SArgsystem(tl)
| _ -> interp_error("Not acceptable")) r2 in (r1&&r3),r4)
| _ -> false,mp))
| SArgvar(id) -> (#print_string ("For patcons, we have an argument var named "
id ~ u\n") ;%)

let v,_ = resolve_name env symtab id in (match v with
VList (1st) | VChord(lst) | VSystem(lst) -> (match 1lst with
h::tl1 ->

(let r1,r2 = match_pat_value env symtab
pl h mp in
let r3,r4 = is_pat_val_matching env
symtab p2
(match v with
VList () -> VList(tl)
|VChord(_) -> VChord(tl)
|VSystem(_) -> VSystem(tl)
| _-> interp_error ("Not acceptable"))
r2 in (r1 &&r3),r4)
| _ -> false, mp)
| _ -> false, mp)
| SArgparens (exp) -> let rl,r2 =match_pat_expr env symtab pat exp mp in ri,r2
| _ -> false,mp)
(*
*)

and match_pat_expr env symtab pat expr mp =
let arg,env = eval env symtab expr in (*print_string (string_of_value arg);*)
match pat with
Patconst (pi) -> (match arg with
VInt(ai) -> if pi = ai then true,(mp) else false,mp
| _ -> false,(mp))
| Patbool(pb) -> (match arg with
VBool(ab) -> if pb = ab then true,(mp) else false,mp
| _ -> false,mp)
| Patvar(ps) -> true,(NameMap.add ps (gen arg) mp)
Patwild -> true, (mp)
| Patcons(pl,p2) -> (match arg with VList(lst) -> (match lst with

h::t1 ->
(let rl1,r2 = match_pat_value env symtab
pl h mp in
let r3,r4 = is_pat_val_matching env

symtab p2 (VList(tl)) r2 in (rl &&r3),r4)
| _ -> false, mp)
| _ -> false, mp)

| _ -> false,mp

(¥ same as match_pat_expr but matches pattern against value, which occurs when we’re comparing
a list pattern with a variable argument in is_pat_arg_matching *)
and match_pat_value env symtab pat value mp =
match pat with
Patconst (pi) -> (match value with
VInt(ai) -> if pi = ai then true,(mp) else false,mp
| _ -> false,(mp))
| Patbool(pb) -> (match value with
VBool(ab) -> if pb = ab then true,(mp) else false,mp
| _ -> false,mp)
| Patvar(ps) -> (#print_string "TRUE!";#*)true,(NameMap.add ps (gen value) mp)
| Patwild -> true,(mp)
| _ -> false,mp

(¥ exec_decl : env -> decl -> env’ *)

(¥ execute the top-level declaration, in the global enviroment,

* return the updated global environment. Seems several decls needn’t
* be execed as we only evaluate the dependencies of main *)

(* environment -> Sast.s_dec -> environment’ *)

42

and exec_decl env = function
(*
Sast.STypesig(sid) -> (* signature will generate a new fun %)
(let vfun = VFun(sid.name,s_id,[]) in update_env env str vfun)
| Sast.SFuncdec(f_decl) -> (% fun decl will be added to current x*)
(match NameMap.mem f_decl.fname env.ids with
true -> (match (NameMap.find f_decl.fname env.ids) with
| {nm_value=VFun(name,fsig,def)} ->
let vfun = VFun(name, fsig, f_decl::def) in update_env env name vfun
| _ -> interp_error ("Not defined as a signature"))
| false -> interp_error ("Function definition without a signature"))
572 | Sast.SVardef (sid,se) ->
let v,env’ = eval env se in
update_env env’ sid.name v
| Sast.SMain(e) ->
(let v, env’ = eval env e in
577 write_to_file bytecode_name v; update_env env’ "main" v)
*)

| _ -> trace ("Unsupported!") env

©

N

582| (x The entry of evaluation of the program *)
(* environment -> configuration -> unit %)
let exec_main symtab config =
let globalE=(st_to_env None symtab) in
let main_entry =NameMap.find "main" globalE.ids in
587 let main_expr = (match main_entry.nm_expr with
None -> interp_error "main has no defimition!"
| Some expr -> expr) in

let v, env’ = eval globalE symtab main_expr in
let _ = write_to_file config.bytecode_name v; update_env env’ "main" v in
592 let cmd = ("java -jar " - config.lib_path =~ " " ~ config.bytecode_name ~ " " ~ config.midi_name) in
print_string (cmd ~ "\n");
let result_code = Sys.command cmd
in (match result_code with
0 ->
597 print_string (" Program Successfully Finished =====\n");
print_string "= Result Writen to " config.midi_name = " =====\n")
| _ as error_code -> print_string ("Error: *%*x% Program Terminates With Code " ~ string_of_int
error_code ~ "\n")
)
602
(¥ run : program -> () *)

(x run the program. original one, depreciated x)
let run program s_prog =

607| let decls = program in

let globalE = {parent = Nomne;
ids = List.fold_left (fun mp lst ->
NameMap.add 1lst.name {nm_value=VUnknown; nm_expr=None} mp)
NameMap.empty s_prog.symtab.identifiers}

612 in let _ = show_env globalE in

(¥ top-level declarations always run in global environment x*)
List.fold_left exec_decl globalE decls

../../Code/interpreter.ml

open Ast
open Printf
open Util

:| open Values
open Random

exception Qutput_error of string
let output_error msg = raise (Dutput_error msg)

let default_velocity = 90

(* Write the head of each smurf file, returns the number of tracks *)

(¥ write_head : out_channel -> value -> int *)
14| let write_head oc value =
let header = "*x*x*x Generated by SMURF x*x*xx" in
let number_of_track = (match value with
VList (1st) -> (
try
19 match List.hd 1st with
VSystem(_) | VList(VChord(_)::_) |
V0List (VList (VNote(_,_,_)::_)::_)-> List.length 1lst (* list of system x*)

43

44

49

84

| -> 1

with
Failure _ -> 0 (* Empty list *)
)
| _ -> 1) in
let resolution = 4 in
fprintf oc "%s\n" header;
fprintf oc "number of trace: %d\n" number_of_track;
fprintf oc "Time Resolution (pulses per quarter note),%d,\n" resolutiomn;
Random.init O;
for i=1 to number_of_track
do fprintf oc "track %d,%d," i 48
done ;
fprintf oc "\n";
for i=1 to number_of_track
do fprintf oc "Tick, Note (0-127), Velocity (0-127), "
done ;
fprintf oc "\n";
number_of_track
(*

(x get the number of ticks of a beat *)
(¥ VBeat -> Int *)
let ticks_of_beat = function
VBeat (VInt (il), -1) -> il
| VBeat (VInt(il),i2) ->
(int_of_float

((2.0 *. (16.0/.(float_of_int il1l))) -. ((16.0/.float_of_int il) /.
((match i2 with
0 -> 1.0
|1 -> 2.0
| 2 -> 4.0
| 3 -> 8.0
| 4 -> 16.0
| _ -> output_error ("Error in ticks_of_beat: Not valid numbers"))
))))
| _ -> output_error ("Error in ticks_of_beat: Not a beat")
*)

(x figure how many ticks are there in the output, so that an array with suitable size can be generated x)
(* value -> Int *)
let rec ticks_of_output value =
match value with
VNote (pc,reg,beat) ->
(match beat with
| VBeat(-1) -> 0
| VBeat (1) -> 2
| VBeat(beat) -> beat
| VInt(beat) -> beat
| -> interp_error ("Invalid Beat value")

)
| VChord(nlst) -> List.fold_left (fun acc ch -> acc + ticks_of_output ch) 0 nlst
| VSystem(slst) | VList ((VList(VList(VNote(_,_,_) :: _) :: _) :: _) as slst)
| VList ((VList (VChord(_) :: _) :: _) as slst)
| VList ((VSystem(_) :: _) as slst) | VList((VList(VNote(_,_,_) :: _) :: _) as slst) -> List.
fold_left (fun acc ch -> acc + ticks_of_output ch) 0 slst
| VList((VNote(_,_,_) :: _) as nlst) | VList((VChord(_) ::_) as nlst) -> List.fold_left (fun acc ch

-> acc + ticks_of_output ch) 0 nlst
| -> output_error ("Error in ticks_of_output")

(¥ Write a note into an array, return the next postion to be writen, and the next tick to begin with *)
(¥ Value -> Array -> Int -> Int -> Int -> (Int, Int, Int) *)
let rec write_to_array value arr ix iy tic =

(match value with

| VNote(VInt(pc),VInt(reg),VBeat(beat)) ->if (pc = -1 && reg = -1 && beat = -1) then ix,iy,tic else
let note = (match pc with
-1 -> -1
I _ -> pc+12x(reg+3)) in (
arr.(ix).(iy) <- tic; (x tick *)
arr.(ix).(iy+1) <- note; (* note *)
arr.(ix).(iy+2) <- default_velocity; (¥ velocity *)

arr.(ix+1) .(iy) <- tic+beat;
arr.(ix+1) .(iy+1) <- note;
arr. (ix+1).(iy+2) <- 0;
if beat = 1 then ix+beat+1l,iy,tic+beat else ix+beat,iy,tic+beat)
(¥ A1l notes in a chord should fills same set of ticks *)
| VChord ((VNote(_,_,VBeat (ticks))::xs) as nlst) | VList ((VNote(_,_,VBeat(ticks))::xs) as nlst) ->
let actlst = if ticks = -1 then List.tl nlst else nlst in
(let resx, resy, restic =
(List.fold_left (fun (x,y,ntic) note ->

44

let (nx,ny,ntic) = write_to_array note arr x y ntic
in (nx,ny,tic)) (ix,iy,tic) actlst) in resx, resy, (if ticks = -1 then resti
ticks))
| VSystem(clst) | VList ((VChord(_) :: _) as clst) | VList((VList(VNote(_,_,_) :: _)
(let resx, resy, resz =
List.fold_left (fun (x,y,ntic) chord ->
let (nx,ny,ntic) = write_to_array chord arr x y ntic
in (nx,ny,ntic)) (ix,iy,tic) clst in (0,resy+3,0))
| VList((x::xs) as slst) -> (match x with
VSystem(_) | VChord(_) | VNote(_,_,_) | VList(VChord(_)::_) | VList(VList (VNot
->
List.fold_left (fun (x,y,ntic) sys ->
let (nx,ny,ntic) = write_to_array sys arr x y ntic
in (nx,ny,ntic)) (ix,iy,tic) slst
| _ -> output_error ("Error in write_to_array: Expression bound to MAIN must
"be the empty list, a note, or a list of systems, chords,
| _ -> output_error ("Error in write_to_array: Input is not a valid value")

(¥ Write a Chord or a System or a list of Systems to file with smurf specified format x)
(* write_to_file : string -> value -> unit *)
let write_to_file filename value =
let oc = open_out filename in
let number_of_track = write_head oc value in
match number_of_track with
0 -> close_out oc; print_string ("===== main = [] Program Exits Normally =====
- >«
let dimx = ticks_of_output value in
let dimy = number_of_track * 3 in
let resArr = (Array.make_matrix (dimx+1) (dimy) (-1)) in
let _ = (write_to_array value resArr 0 O 0) in
for i=0 to dimx-1 do
for j=0 to (number_of_track -1) do
if resArr.(i).(3*j+1) <> (-1) then
ignore (fprintf oc "%d,%d,%d," resArr.(i).(3*j) resArr.(i).(3*j+1) resArr

c else restic+

_) as clst)->

e(_,_,_)::_)::)

or notes"))

(1) . (3% j+2))

else
ignore (fprintf oc ",,,")
done ;
ignore (fprintf oc "\n")
done ;
close_out oc
)
../../Code/output.ml
let _ =
let lexbuf = Lexing.from_channel stdin in
let program = Parser.program Scanner.token lexbuf in

let listing = Ast.string_of_program program
in print_string listing

../../Code/parser _ test.ml

open Ast
open Util

exception Multiple_declarations of string

exception Multiple_type_sigs of string

exception Multiple_patterns of string

exception Pattern_list_type_mismatch of string
exception Cons_pattern_type_mismatch of string
exception Multiple_identical_pattern_lists of string
exception No_type_signature_found of string
exception No_func_dec of string

exception Pattern_num_mismatch of int * int
exception Type_mismatch of string

exception Main_wrong_scope

exception Main_type_mismatch of string

exception Main_missing

exception Function_used_as_variable of string
exception Missing_variable_definition of string
exception Function_not_defined of string

exception Wrong_number_of_arguments of string
exception Function_arguments_type_mismatch of string
exception Type_error of string

let type_error msg = raise (Type_error msg)

45

Int | Bool | Note | Beat |

Poly of string | Unknown |

type s_program = {
mutable decls
symtab

type s_type

s_dec list;
symbol_table;

and s_expr
SLiteral of int

| SBoolean of bool

| SVariable of string

| SBeat of s_expr * int

| SNote of S_eXpr * S_eXpr * S_expr

| SBinop of s_expr #* operator * s_expr

| SPrefix of prefix_operator * s_expr

| SIf of s_expr * s_expr * S_expr

| SList of s_expr list

| SChord of s_expr list

| SSystem of s_expr list

| SCall of string * s_arg list

| SLet of s_program * sS_eXpr

| SRandom

| SPrint of s_expr

and s_arg
SArglit of int

| SArgbool of bool
| SArgvar of string

| SArgbeat of s_expr * int
| SArgnote of
| SArgchord of s_expr list
| SArgsystem of s_expr list
| SArglist of s_expr list

|

SArgparens of s_expr

and s_dec
SFuncdec of s_func_decl
| SVardef of s_ids * s_expr
| SMain of s_expr
and = {
string;
s_type 1list;
pattern list;
S_expr;
symbol_table;

s_func_decl
s_fname
type_sig
s_args
s_value
scope

s_ids = {
name
pats
v_type
v_expr

and

string;

pattern list;
s_type list;
s_expr option;

and symbol_table = {
parent symbol_table option;

mutable identifiers s_ids list;

S_eXpr * S_eXpr * S_expr

Chord |
Num |

Still_unknown |

System | List of s_type |

Empty

(% 42 %)
(* True x)
(* bar x)

(x

(*

(*
(*
(*
(*
(*

(*
(%
(*
(*
(*
(*
(*
(*
(*

2.
(*

(% a
! a
(x if b ==
[1,2,3,4] *)
[(11,3)84., (5,2)8$4.]1%)
[[(11,3)84.,(5,2)%4.],
foo a b *)

let x 4 in x + 2 %)

*)

2) 4. *)

4 then True else False *)

[(-1,0)%$2] 1%)

integer *)

boolean *)

identifiers =)

2. x)

(11, 2)~4. *)
[(11,3)84., (5,2)84.]1 %)
[[(11,3)8$4.,(5,2)8%4.1,
expression %)
parenthesized expressions *)

[C-1,0)82] 1

let rec string_of_sexpr

function

SLiteral(l)
| SBoolean(b)

-> string_of_int 1
-> string_of_bool b

SVariable(s) -> s
| SBinop(el, o, e2)
string_of_sexpr el
(match o with

->

Add -> "+" | Sub -> "-" | Mul -> "%" | Div -> "/" | Mod -> "%"
| BeatAdd -> "$+" | BeatSub -> "$-" | BeatMul -> "$*" | BeatDiv -> "$/"
| PCAdd -> "%+" | PCSub -> "%-"
| Less -> "<" | Leq -> "<=" | Greater -> ">" | Geq -> ">="
| BeatLess -> "$<" | Beatleq -> "$<=" | BeatGreater -> "$>" | BeatGeq ->
| And -> "&&" | Or -> "||" | BoolEq -> "=="
| Concat -> "++" | Cons -> ":" | Trams -> "~~")
~omen string_of_sexpr e2
| SPrefix(o, e) ->

46

ngy=n

and

and

and

and

and

and

let

(match o with Not -> "!" | Inv -> """ | Retro -> "<>")
S~ " "~ string_of_sexpr e
SIf(el, e2, e3) -> "if " ~ string_of_sexpr el ~ " then " ~ string_of_sexpr e2
" else " ~ string_of_sexpr e3
SBeat (i1, i2) -> string_of_sexpr il
let rec repeat n s =
if n>0 then
repeat (n-1) ("." = s)
else s in repeat i2 ""
SNote (pc, reg, bt) -> " (" = string_of_sexpr pc ~ ", " - string_of_sexpr reg ~ ")$" - (
string_of_sexpr bt)

SList(el) -> "[" ~ (String.concat ", " (List.map string_of_sexpr el)) =~ "1"

SChord(el) -> "[" ~ (String.comncat ", " (List.map string_of_sexpr el)) ~ "]"

SSystem(el) -> "[" ~ (String.concat ", " (List.map string_of_sexpr el)) -~ "]"

SCall (fname ,args) -> fname ~ " " =~ (String.concat " " (List.map string_of_sfargs args))

SLet (decs, exp) -> "let " -~ (String.concat " " (List.map string_of_s_dec decs.decls)) =
" in " ~ string_of_sexpr exp

SRandom -> '"random"

SPrint (e) -> "print " "~ string_of_sexpr e

string_of_sfargs = function

SArglit (1) -> string_of_int 1
SArgbool(b) -> string_of_bool b
SArgvar(s) -> s
SArgbeat (i1, i2) -> string_of_sexpr il ~
let rec repeat n s =
if n>0 then

repeat (n-1) ("." =~ s)
else s in repeat i2 ""
SArgnote (pc, reg, bt) -> " (" - string_of_sexpr pc ~ ", " ~ string_of_sexpr reg ~ ")$" ~ (
string_of_sexpr bt)
SArgchord(el) -> "[" =~ (String.concat ", " (List.map string_of_sexpr el)) ~ "I"

SArgsystem(el) -> "[" -~ (String.concat ", " (List.map string_of_sexpr el)) ~ "]"

SArglist(el) -> "[" ~ (String.concat ", " (List.map string_of_sexpr el)) ~ "1"
SArgparens (p) -> "(" =~ (string_of_sexpr p) =~ ")"

string_of_s_dec = function

| SFuncdec(f) -> "SFuncdec: \n\t\t" - string_of_s_func_decl f

| SVardef (i, e) -> "SVardef: \n\t\t" =~ string_of_s_ids i =~ "\n\t" ~ string_of_sexpr e
| SMain(e) -> "SMain: " ~ string_of_sexpr e

string_of_s_ids i =

let str = if (i.pats <> []) then String.concat " " (List.map string_of_patterns i.pats)
else "" in
"ID: " ~ i.name ~ " " =~ str ~ " :: " ~ String.concat " -> "

(List.map string_of_s_type i.v_type) ~ "\n"

string_of_s_func_decl f =

f.s_fname ~ " (" -~ String.comncat ") ("
(List.map Ast.string_of_patterns f.s_args) =~ ") :: " =
String.concat " -> " (List.map string_of_s_type f.type_sig) ~ " = "

string_of_sexpr f.s_value ~ "\n" -~ string_of_symbol_table f.scope

string_of_s_type = function
Int -> "Int"
| Bool -> "Bool"
| Note -> "Note"
| Beat -> "Beat"
| Chord -> "Chord"
| System -> "System"
| List(t) -> "[" - string_of_s_type t =~ "]"
| Empty -> " e
| Poly(s) -> s
| Unknown -> "Unknown"
| Num -> "Num"
| Still_unknown -> "Still Unknown"
string_of_symbol_table symtab =

if symtab.parent = None then "Global Scope: \n\t" =~

String.concat "\t" (List.map string_of_s_ids symtab.identifiers) ~ "\n"
else (*(string_of_env p) ~ *)"\tNew Scope: \n\t\t" -~

String.concat "\t\t" (List.map string_of_s_ids symtab.identifiers) ~"\n\t"

string_of_s_arg = function

SArglit (i) -> string_of_int i

SArgbool(b) -> string_of_bool b

SArgvar(s) -> s

SArgbeat (e,i) -> (string_of_sexpr e) ~"~"~string_of_int i

SArgnote(el,e2,e3) -> "("~(string_of_sexpr el)~",""(string_of_sexpr e2)~")$"~(string_of_sexpr

47

e3)

SArgchord(el) -> (string_of_sexpr (SChord(el)))
SArgsystem(el) -> (string_of_sexpr (SSystem(el)))
SArglist (el) -> (string_of_sexpr (SList(el)))
SArgparens(e) -> (string_of_sexpr e)

189 let string_of_s_program p =

"Program: \n\t" ~ String.concat "\n\t"
(List.map string_of_s_dec p.decls) ~ "\n" =
string_of_symbol_table p.symtab

../../Code/sast.ml

open Sast
open Ast
open Util

module StringMap = Map.Make (String)

let rec types_to_s_type = function

8 TInt -> Sast.Int

| TBool -> Sast.Bool

| TNote -> Sast.Note

| TBeat -> Sast.Beat

| TChord -> Sast.Chord

| TSystem -> Sast.System

| TList (1) -> Sast.List(types_to_s_type 1)
| TPoly(s) -> Sast.Poly(s)

(¥ Return a list of equivalent types to vl *)

15| let equiv_type vl = match vl with

Sast.Chord -> [Sast.List(Sast.Note); Sast.Chord]

| Sast.System -> [Sast.List(Sast.List(Sast.Note)); Sast.List(Sast.Chord); Sast.System]
I x -> [x]

(¥ Return true if vl and v2 are different types x*)
let rec diff_types vl v2 = match vl, v2 with
| Sast.List(x)::tl, Sast.List(y)::t2 -> diff_types (x::tl) (y::t2)

| x::tl, y::t2 -> if ((List.mem x (equiv_type y)) || (List.mem y (equiv_type x)))
28 then diff_types t1 t2 else true

I 1, [1 -> false

I [0, _::_ -> true

I _::_, [1 -> true

(¥ Check if an int is a valid beat *)
let beat_as_int value = if List.mem value [1;2;4;8;16] then true else false

(¥ Returns true if two types are just ints, beats, or nested ints or beats wher the number of nestings
for
38 both types is equivalent *)
let rec beats_and_ints tyl ty2 = match ty2, ty2 with
Sast.List(t1), Sast.List(t2) -> beats_and_ints t1 t2
| Sast.Beat, Sast.Int -> true
| Sast.Int, Sast.Beat -> true
43 | Sast.Int, Sast.Int -> true
| Sast.Beat, Sast.Beat -> true
| -> false

- -

48| (¥ Return true if argument is a system type or a nested system x)

let rec eventual ty = function

Sast.System | Sast.List(Sast.Chord) | Sast.List(Sast.List(Sast.Note)) ->
ty = "system"
| Sast.Beat -> ty = "beat"
53 | Sast.Int -> ty = "int"

| Sast.Unknown -> ty = "unknown"
| Sast.Empty -> ty = "empty"
|

Sast.List (x) -> if (match ty with
"system" -> List.mem x (equiv_type Sast.System)
| "beat" -> x = Sast.Beat
| "int" -> x = Sast.Int
| "unknown" -> x = Sast.Unknown
|
|

"empty" -> x = Sast.Empty
-> true)

then true else eventual ty x
| _ -> false

(¥ Check if a type signatures exists for an id in the current scope *)
let rec exists_typesig id = function

48

88

103

108

138

[1 -> false

| sym_entry rest -> if sym_entry.name = i
if sym_entry.v_type
else false

else exists_typesig i

(x Get the type
let get_typesig

signature for an identifier in t
id ids (List.find (fun t -> t.

(¥ Get type signature for function id in current
let rec get_types_p id symtab
if exists_typesig id symtab.identifiers then
else match symtab.parent with
| Some(psym) -> get_types_p id psym
| None -> raise (No_type_signature_found

(* Check if a vardef or funcdec exists for an id

let rec exists_dec id ty = function
[1 -> false
| SVardef (x, _) rest -> if x.name = id th
| SFuncdec (f) rest -> (match ty with
"func" -> exists_de
| _ -> if f.s_fname
| _ :: rest -> exists_dec id ty rest
(¥ Only checks current scope (might not be neede
let is_declared_here id symtab = List.exists (fu

(* checks all scopes if id has been declared *)
let rec is_declared id symtab
try
List.exists (fun v
with Not_found ->
match symtab.parent with
Some (parent) -> is_declared id paren
| _ -> false

-> v.name id)

(¥ Add new entry into symbol table or modify exi
let mod_var entry symtab
if is_declared_here entry.name symtab then
let preventries List.filter (fun v ->
let newsym List.filter (fun v -> v.nam
let firsten List.hd preventries in
match entry with
(* Entry is type signature x*)
{v_expr None } ->
if List.length preventries 1 then
let newen {name entry.name;
V_expr firsten.v_
List.map (fun en -

else let newens

preventr
(* Entry is vardef *)
| {pats = [1 } ->
let newen = {name = entry.name; pats
vV_expr = entry.v_exprl}
(¥ Entry is funcdec x)
| - ->
let newen = {name = entry.name; pats

v_expr = entry.v_ex
if List.length preventries = 1 && fi
else newen symtab.identifiers
else entry symtab.identifiers

(¥ Update type of variable definition in our sym
let replace_vardef program var oldvar
| SVardef (ids, s_expr) ->

let newdecls List.filter (fun dec -> d
let newsym List.filter (fun v -> v.nam
let newentry {name ids.name; pats
program.symtab.identifiers <- newentry
program.decls <- (var newdecls); prog
-> program

(* program->string->s_func_decl *)
let rec find_f_def program f_name
let decl List.filter
(fun dec ->

d then
<> [Unknown] then true

d rest

he current scope *)
name id) ids).v_type

or higher scope *)

get_typesig id symtab.identifiers

id)

in the current scope *)

en true else exists_dec id ty rest

¢ id ty rest
id then true else exists_dec id ty rest)

d)
n v

*)

-> v.name

= id) symtab.identifiers

symtab.identifiers

t

sting one if necessary (First Pass work) *)

vV.name entry.name) symtab.identifiers in
e <> entry.name) symtab.identifiers in

pats = firsten.pats; v_type = entry.v_type;
expr} in newen newsym
> let result = {name = en.name; pats = en.pats;
v_type = entry.v_type;
Vv_expr = en.v_expr} in result)

ies in newens @ newsym

= entry.pats; v_type = firsten.v_type;
in newen newsym

= entry.pats; v_type = firsten.v_type;
pr} in

rsten.v_expr = None then newen newsym

bol table and our list of declarations *)

match var with

ec != oldvar) program.decls in

e <> ids.name) program.symtab.identifiers in

[J; v_type = ids.v_type; v_expr = ids.v_expr}
newsym;

ram

49

in

§)
\)

§)

match dec with SFuncdec(x)-> x.s_fname = f_name | _ -> false)
program.decls in decl
(x*with Not_found -> raise (Function_not_defined f_name) in
match decl with
SFuncdec(x) -> x
| _ -> raise (Function_not_defined f_name)

*)
(x Update type and scope of function declaration in our symbol table and our list of declarations x)
let replace_funcdec program func oldfunc = match func with
| SFuncdec (info) ->
let newdecls = List.filter (fun dec -> dec != oldfunc) program.decls in
let newsym = List.filter (fun v -> v.name <> info.s_fname || v.pats <> info.s_args)
program.symtab.identifiers in
let newentry = {name = info.s_fname; v_type = info.type_sig;
pats = info.s_args; v_expr = Some(info.s_value)l} in
program.symtab.identifiers <- newentry :: newsym;
program.decls <- (func :: newdecls); program

| _ -> program

let replace_main program new_main =

let newsym = List.filter (fun v -> v.name <> new_main.name) program.symtab.identifiers in
program.symtab.identifiers <- new_main :: newsym;
program

(¥ Start with an empty symbol table, except for library functions *)
let print_var = { name="print";
pats = [Patvar("x")];
v_type = [Poly("a"); Poly("a")];
v_expr = Some (SPrint(SVariable("x")))}
let random_var = { name = "random";
pats = [1;
v_type = [Int];
v_expr = Some(SRandom) }
{ identifiers = [print_var; random_var]; parent = None 1}

let global_env

(x So far, just used to check for pattern errors in collect_pat_vars %)
let rec get_pat_type = function
Patconst(_) -> Sast.Int
| Patbool(_)-> Sast.Bool
| Patvar(_)| Patwild -> Sast.Unknown
| Patcomma 1 -> if 1 = [] then Sast.List(Empty)
else let hd = List.hd 1 in
let match_type_or_fail x y =
let tx = (get_pat_type x) in
let ty = (get_pat_type y) in
if tx <> ty && tx <> Sast.Unknown && ty <> Sast.Unknown then
raise (Pattern_list_type_mismatch
(string_of_s_type tx ~ " doesn’t match " ~ string_of_s_type ty))
else () in List.iter (match_type_or_fail hd) 1; Sast.List(get_pat_type hd)
| Patcons (el, e2) ->
let tyl = get_pat_type el in
let ty2 = get_pat_type e2 in
(match ty2 with
Sast.Unknown -> Sast.List(tyl)
| Sast.List(els) -> if eventual "empty" els then Sast.List(tyl)
else if tyl <> els && tyl <> Sast.Unknown && els <> Sast.Unknown
then raise (Pattern_list_type_mismatch (string_of_s_type tyl
~ " doesn’t match string_of_s_type els))
else if tyl <> Sast.Unknown then Sast.List(tyl)
else Sast.List(els)
| _ -> raise (Cons_pattern_type_mismatch (string_of_patterns e2)))

(¥ Collect Variables in pattern *)

let rec collect_pat_vars = function
[->1
| Patvar(s) :: rest -> s :: collect_pat_vars rest
| (Patcomma(pl) as 1) :: rest -> (match (get_pat_type 1) with _ -> collect_pat_vars pl)
@ collect_pat_vars rest
| (Patcons(pll, pl2) as c) :: rest -> (match (get_pat_type c¢) with _ ->

((collect_pat_vars [pll]l) @ (collect_pat_vars [pl2])))
@ collect_pat_vars rest
| :: rest -> collect_pat_vars rest

(¥ Check if there exist 2 function declarations with the same ids and pattern lists *)

let rec same_pats func = function
[1 -> false
| SFuncdec (info) :: rest ->

if (info.s_fname <> func.s_fname) then same_pats func rest

50

else if (List.length info.s_args <> List.length func.s_args) then same_pats func rest
else let rec compare_pats argl arg2 = match argl, arg2 with
| Patconst(x), Patconst(y) -> if x <> y then false else true
| Patbool(x), Patbool(y) -> if x <> y then false else true
| Patvar(_), Patvar(_) -> true
| Patwild, Patwild -> true
| Patcomma(ll), Patcomma(l2) ->
if (List.length 11 <> List.length 12) then false else
238 if (List.length 11 = 0 && List.length 12 = 0) then true else
if (List.length 11 = 0 || List.length 12 = 0) then false else
if (List.for_all (fun v -> v = true) (List.map2 compare_pats 11 12))
then true else false
| Patcons(pl, p2), Patcons(p3, p4) ->
243 if (compare_pats pl p3 && compare_pats p2 p4) then true else false
| Patcomma(l1l), Patcons(pl, p2) | Patcons(pl, p2), Patcomma(ll) ->
if (List.length 11 = 0) then false else
if (compare_pats (List.hd 11) pl) then compare_pats (Patcomma(List.tl 11)) p2
else false

248 | _, _ -> false
in let result = List.map2 compare_pats info.s_args func.s_args in
List.for_all (fun v -> v = true) result

| :: rest -> same_pats func rest

(¥ Set up a new scope given a set of variables to put into scope *)

let rec gen_new_scope = function
1 -> 11
| pat :: rest -> if List.exists (fun p -> p = pat) rest then raise (Multiple_patterns pat)
258 else {name = pat; pats = []; v_type = [Unknownl];
v_expr = Nonel} :: gen_new_scope rest

let rec find_var_entry symtab v =
try (List.find (fun t -> t.name = v) symtab.identifiers)
with Not_found ->
(match symtab.parent with
Some (p) -> find_var_entry p v
| None -> raise (Missing_variable_definition ("find_var'"~v)))

268| let rec find_func_entry symtab f =
let func_list = List.filter (fun t -> t.name = f) symtab.identifiers
in if (List.length func_list) >0 then func_list
else (match symtab.parent with
Some (p) -> find_func_entry p f
273 | None -> raise (Function_not_defined f))

let change_type symtab old_var n_type =

let new_var = {name = old_var.name;
pats = old_var.pats;
278 v_type = [n_typel;
v_expr = old_var.v_expr} in
let other_vars = List.filter

(fun vs -> vs.name <> old_var.name)
symtab.identifiers in
283 { parent = symtab.parent; identifiers = new_var :: other_vars}

let rec check_type_equality tl1 t2 =
match t1 with
288 Sast.Chord -> (match t2 with
Sast.List(b) -> b = Sast.Note
| Sast.Chord -> true
| Unknown -> true
| -> false)
293 | Sast.System -> (match t2 with
Sast.List(b) -> check_type_equality b Sast.Chord
| Sast.System -> true
| Unknown -> true
| -> false)
298 | Sast.List(a) -> (match t2 with
Sast.List(b) -> check_type_equality a b
| Sast.Empty -> true
| Unknown -> true
| -> false)
303 | Sast.Empty -> (match t2 with
Sast.List(b) -> true
| Sast.Empty -> true
| Unknown -> true
| -> false)
308 | Sast.Poly(a) -> true (% shouldn’t be used with poly types x)
| Sast.Unknown -> true (* should only be used with known types *)
| Sast.Still_unknown -> raise (Type_error "having trouble resolving types'")

o1

318

| Sast.Int -> (match t2 with
Sast.Int -> true
| Sast.Unknown -> true
| Sast.Poly(b) -> true
| Sast.Beat -> true
| _ -> false)
Sast.Beat -> (match t2 with
Sast.Beat -> true
| Sast.Unknown -> true
| Sast.Poly(b) -> true
| Sast.Int -> true
| -> false)
| _ -> (match t2 with
Sast.Poly(b) -> true (* shouldn’t be used with poly types *)
| Sast.Unknown -> true (* should only be used with known types *)
| Sast.Still_unknown -> raise (Type_error "having trouble resolving types")
| -> tl = t2)

let rec try_get_type pm ts tr = match ts with
Sast.Poly(a) -> if StringMap.mem a pm then StringMap.find a pm
else if (tr = Unknown) then ts else tr
| Sast.List(a) -> (match tr with
Sast.List(b) -> Sast.List(try_get_type pm a b)
| _ -> if (tr = Unknown) then ts else tr)
I _ -> ts

(¥ Returns a type from an expressionx)
let rec get_type short symtab = function
SLiteral(l) -> Int
| SBoolean(b) -> Bool
| SVvariable(s) ->
let var = find_var_entry symtab s in
let ts = var.v_type in
if (List.length ts <> 1) then raise (Function_used_as_variable s)
else let t = List.hd ts in
if (t <> Unknown) then t
else
(match var.v_expr with
Some (expr) ->
let symtab = (change_type symtab var Still_unknown) in
get_type short symtab expr

| None -> if(short) then Sast.Unknown else (raise (Missing_variable_definition ("SVariable

s))))
| SBinop(el, o, e2) -> (¥ Check type of operator *)
let tel = get_type short symtab el
and te2 = get_type short symtab e2 in
(match o with
Ast.Add | Ast.Sub | Ast.Mul | Ast.Div | Ast. Mod |
Ast .PCAdd | Ast.PCSub ->
(x Arithmetic Operators *)
if (short) then Sast.Int
else
if tel <> Sast.Int && (match tel with Poly(_) -> false | _ -> true)
then type_error ("First element of an arithmetic binary operation " -
"must be of type Int but element was of type " =~
Sast.string_of_s_type tel)
else
if te2 <> Sast.Int && (match tel with Poly(_) -> false | _ -> true
then type_error ("Second element of an arithmetic binary operation
"must be of type Int but element was of type " ~
Sast.string_of_s_type te2)
else Sast.Int
| Ast.Less | Ast.Leq | Ast.Greater | Ast.Geq ->
(¥ Comparison Operators x*)
if (short) then Sast.Bool
else
if tel <> Sast.Int
then type_error ("First element of a comparison binary operation " =~
"must be of type Int but element was of type " =~
Sast.string_of_s_type tel)
else
if te2 <> Sast.Int
then type_error ("Second element of a comparison binary operation
"must be of type Int but element was of type " ~
Sast.string_of_s_type te2)
else Sast.Bool
| Ast.BeatAdd | Ast.BeatSub | Ast.BeatDiv | Ast.BeatMul ->
(x Beat Arithmetic Operators *)
if (short) then Sast.Beat
else
if tel <> Sast.Int && tel <> Sast.Beat

52

)

403

408

413

418

then type_error ("First element of a Beat arithmetic binary " ~
"operation must be of types Int or Beat but element was of type " =~
Sast.string_of_s_type tel)

else
if te2 <> Sast.Int && te2 <> Sast.Beat
then type_error ("Second element of a Beat arithmetic binary " -~
"operation must be of types Int or Beat but element was of type " =~

Sast.string_of_s_type te2)
else Sast.Beat
| Ast.BeatLess | Ast.Beatleq | Ast.BeatGreater | Ast.BeatGeq ->
(¥ Beat Comparison Operators *)
if (short) then Sast.Bool
else
if tel <> Sast.Int && tel <> Sast.Beat
then type_error ("First element of a Beat comparison binary "
"operation must be of types Int or Beat but element was of type " -~
Sast.string_of_s_type tel)

else
if te2 <> Sast.Int && te2 <> Sast.Beat
then type_error ("Second element of a Beat comaprison binary " =
"operation must be of types Int or Beat but element was of type " ~
Sast.string_of_s_type te2)
else Sast.Bool
| Ast.And | Ast.0Or -> (¥ Boolean 0Operators: Bool && Bool, Bool || Bool *)
if (short) then Sast.Bool
else

if tel <> Sast.Bool

then type_error ("First element of a boolean binary operation "
"must be of type Bool but element was of type " ~
Sast.string_of_s_type tel)

else
if te2 <> Sast.Bool
then type_error ("Second element of a boolean binary operation " ~
"must be of type Bool but element was of type " ~
Sast.string_of_s_type te2)
else Sast.Bool
| Ast .BoolEq -> (* Structural Comparision: Element == Element %)
if (short) then Sast.Bool
else
if tel <> te2 && (match tel, te2 with Poly(_), _ | _, Poly(_.) -> false | _ -> true)

then type_error ("Elements must be of same type for
"structural comparison. First element has type " ~
Sast.string_of_s_type tel " and second element has type "
Sast.string_of_s_type te2)
else Sast.Bool
| Ast.Concat -> (% Concat: List ++ List *)
if (short) then Sast.Empty (% fix *)
else
(x Not sure this checks the correct thing *)
(match tel with
Sast.List(tl) -> (match te2 with
Sast.List(t2) -> if tl1 <> t2 then
(try
let x = get_type short symtab (SList([el;e2])) in
(fun v -> match v with Sast.List(x) -> x | _ -> type_error ("PROBLEM")) x
with (Type_error x) ->
type_error ("Operands of a concat operator have different types"))
else tel
| Sast.Empty -> tel
| _ -> type_error "Concat operator can only used between lists")
| Sast.Chord -> (match te2 with
Sast.Chord | Sast.Empty | Sast.List(Sast.Note) -> Sast.Chord
| type_error ("Operands of a concat operator have different types"))
| Sast.System -> (match te2 with
Sast.System | Sast.List(Sast.Chord) | Sast.List(Sast.List(Sast.Note))
| Sast.Empty -> Sast.System
| type_error ("Operands of a concat operator have different types"))
| Sast.Empty -> (match te2 with
Sast.List (t2) -> te2
| Sast.Empty -> Sast.Empty
| Sast.Chord -> Sast.Chord
| Sast.System -> Sast.System
| -> type_error "Concat operator can only used between lists")
| _ -> type_error "Concat operator can only used between lists")

| Ast.Cons -> (% Cons: Element : List *)
if (short) then Sast.Empty (% 7 x)
else
(match te2 with
Sast.List (t2) -> (if diff_types [tel] [t2] && tel <> Sast.Empty then
(try

33

473

478

508

let x = get_type short symtab (SList([el;e2])) in
(match e2 with
SCall(_,_) -> x
| _ -> (fun v -> match v with Sast.List(x) -> x | _ -> type_error("

PROBLEM")) x)

with (Type_error x) ->
type_error (x))
else te2)
| Sast.Chord -> (if tel <> Sast.Empty && tel <> Sast.Note && tel <> Sast.Empty then
type_error ("The types of the lhs and rhs of a cons operator don’t match")
else te2)
| Sast.System -> (if tel <> Sast.Empty && tel <> Sast.Chord && tel <> Sast.List(Sast

.Note) then

type_error ("The types of the lhs and rhs of a cons operator don’t match")
else te2)
| Sast.Empty -> (match tel with
Sast.Note -> Sast.Chord
| Sast.Chord -> Sast.System
| _ -> Sast.List(tel))
| -> type_error ("The second operand of a cons operator was: "
~ (Sast.string_of_s_type te2) -~ ", but a type of list was expected"))
| Ast.Trans -> (* Trans: Int ~~ List %)
if (short) then Sast.List(Sast.Int)

else

if tel <> Sast.Int

then type_error ("First element in a Trans expression " ~
"must be of type Int but element was of type " =
Sast.string_of_s_type tel)

else
if te2 <> Sast.List(Sast.Int)
then type_error ("Second element in a Trans expression " =~

"must be a List of type Int but element was of type " ~
Sast.string_of_s_type te2)
else te2
)
SPrefix (o, e) -> (% Prefix Operators *)
let te = get_type short symtab e in
(match o with

Ast .Not -> (% Not: ! Bool)
if te <> Sast.Bool
then type_error ("Element in Not operation must be of type Bool " -
"but element was of type " ~ Sast.string_of_s_type te)
else te
| Ast.Inv | Ast.Retro -> (% Row Inversion: ~ List, Row Retrograde: <> Listx*)
if te <> Sast.List(Sast.Int)
then type_error ("Element in Prefix operation must be a List of " -
"type Int but element was of type " ~ Sast.string_of_s_type te)
else te

)

SIf(el, e2, e3) -> (* Check both e2 and e3 and make sure the same *)
let tel = get_type short symtab el in
if tel <> Sast.Bool then

type_error (string_of_sexpr el
~ " but is used as if it has type
else let te2 = get_type short symtab e2 in
let te3 = get_type short symtab e3 in
if te2 <> te3 && (match te2, te3 with Sast.Empty, Sast.List(_) |
Sast.List(_), Sast.Empty -> false
| _, _ -> true) then
type_error (string_of_sexpr e2 ~ " has type " ~ string_of_s_type te2

has type " ~ string_of_s_type tel
string_of_s_type Sast.Bool)

= " but " ~ string_of_sexpr e3 - " has type " ~ string_of_s_type te3
~ " wyhich is not allowed in conditional statement')
else te2

SBeat (i1, i2) ->
let til = get_type short symtab il in
if til <> Sast.Int
then type_error ("First element in a Beat must be of type Int "

"and a power of 2 between 1 and 16. The given element was of type " ~
Sast.string_of_s_type til)
else
(¥ Checked more thoroughly in interpreter *)
if i2 < 0 [i2 > 4

then type_error ("Dots may not increase Beat value past 16th")
else Sast.Beat
SNote (pc, reg, b) ->

let tpc = get_type short symtab pc

and treg = get_type short symtab reg

and tb = get_type short symtab b in

if tpc <> Sast.Int

then type_error ("First element in Note (pitch class) must be of type Int " ~
"between -1 and 11 but element was of type " ~ Sast.string_of_s_type tpc)

o4

608

613

618

else
if treg <> Sast.Int
then type_error ("Second element in Note (register) must be of type Int " -
"between 0 and 3 but element was of type " - Sast.string_of_s_type tpc)
else
if tb <> Sast.Int && tb <> Sast.Beat
then type_error ("Third element in Note (Beat) must be of type Beat " =
"but element was of type " ~ Sast.string_of_s_type tb)
else Sast.Note
SList (el) -> (* Check all elements have same type#*)
(match el with
[-> Sast.Empty
| _ -> let hd = List.hd el in
let match_type_or_fail x y =
let tx = (get_type short symtab x) in
let ty = (get_type short symtab y) in

if diff_types [tx] [tyl && (not (beats_and_ints tx ty) || not (contains_beat symtab
then type_error (string_of_sexpr x ~ " has type of "
~ Sast.string_of_s_type tx -~ " but "
~ string_of_sexpr y -~ " has type "
~ Sast.string_of_s_type ty ~ " in a same list")
else ()

in List.iter (match_type_or_fail hd) el;
if contains_beat symtab el then Sast.List(powers_of_two symtab el)
else Sast.List(get_type short symtab (hd)))
SChord(el) -> (x Check all elements have type of TNote *)
let hd = List.hd el in
let match_type_or_fail x y =
let tx = (get_type short symtab x) in
let ty = (get_type short symtab y) in
if tx <> ty
then type_error ("Elements in Chord should all have type of "
~ Ast.string_of_types Ast.TNote ~ " but the element of "
string_of_sexpr y ~ " has type of " ~ Sast.string_of_s_type ty)
else () in List.iter (match_type_or_fail hd) el;
let hd = List.hd el in
let match_duration_or_fail x y = match x, y with
SNote (pl,rl,btl), SNote(p2,r2,bt2) ->
(if (string_of_sexpr btl) <> (string_of_sexpr bt2)
then type_error ("The time durating of " ~ string_of_sexpr btil
~ " is not the consistent with that of " - string_of_sexpr bt2)
else ())
| _s_ -> type_error ("Not Expected Exception'")
in List.iter (match_duration_or_fail hd) el; Sast.Chord
SSystem(el) -> (* Check all elements have type of TChord x)
let hd = List.hd el in
let match_type_or_fail x y =
let tx = (get_type short symtab x) in
let ty = (get_type short symtab y) in
if tx <> ty
then type_error ("Elements in Chord should all have type of "
~ string_of_s_type Sast.Chord =~ " but the element of "
string_of_sexpr y -~ " has type of " ~ string_of_s_type ty)
else () in List.iter (match_type_or_fail hd) el; Sast.System
SLet (decs, exp) -> get_type short decs.symtab exp
SRandom -> Sast.Int
SPrint (e) -> get_type short symtab e
SCall(f, args) ->
if (short) then let f_vars = find_func_entry symtab f in
try (List.hd (List.rev ((List.hd f_vars).v_type)))

with _ -> Unknown
else
let poly_map = StringMap.empty in
let f_vars = find_func_entry symtab f in
let f_entrys = match_args symtab [] f_vars args in

let f_entry = if(List.length f_entrys)>0 then
if (List.length f_entrys) = 1 then List.hd f_entrys
else (let st = try
List.find (fun t -> (List.length t.v_type)>0) f_entrys with
_ ->raise (Type_error ("function not found " ~ f)) in
{name = st.name; pats = []; v_type = st.v_type; v_expr=None})
(*(try List.find (fun t ->
has_pattern (Patconst(0)) t.pats|]|
has_pattern (Patbool(true)) t.patsl|l|
has_pattern (Patcomma([])) t.pats) f_entrys with _ ->
(try List.find (fun t ->
has_pattern (Patcomma([Patconst(0)])) t.pats ||

has_pattern (Patcons(Patconst (0),Patconst(0))) t.pats) f_entrys with _ ->
(try List.find (fun t ->
has_pattern (Patvar("a")) t.pats) f_entrys with _ ->

(try List.find(fun t ->

35

el))

has_pattern Patwild t.pats) f_entrys with ->

633 raise (Type_error ("you have to have some pattern")))))) *)

else raise (Type_error ("function not found " ~ f£))
in
let ts_id = try List.find (fun t-> (List.length t.v_type)>0) f_entrys with
_ -> raise (Type_error ("function not found " ~ f)) in
638 let tsig = List.hd (List.rev ts_id.v_type) in
let pm = StringMap.add "print" Unknown poly_map in
let return_type = (match f_entry.v_expr with

Some (e) -> if not (is_recursive f e) then (
try(get_type false symtab e) with _-> Unknown)

643 else Unknown | None -> Unknown) in
let polymap = map_return f pm
tsig

return_type in
let full_map = check_arg_types f symtab polymap args f_entry.v_type in
648 try_get_type full_map tsig return_type
(¥ check all args against f type sig *)
(¥ check expr matches last type *)

and is_recursive func = function
653 SBeat(e,i) -> is_recursive func e
| SNote(el,e2,e3) -> is_recursive func el || is_recursive func e2 || is_recursive func e3
SBinop(el, op, e2) -> is_recursive func el || is_recursive func e2
SPrefix(op, e) -> is_recursive func e
SIf(el,e2,e3) -> is_recursive func el || is_recursive func e2 || is_recursive func e3

SList (elist)
SSystem(elist)
SChord(elist) -> List.fold_left (]||) false (List.map (is_recursive func) elist)
SCall(f, args) -> let b = f = func in b
SLet(p, e) -> is_recursive func e
SPrint (e) -> is_recursive func e
-> false

and has_pattern pat pat_list =
List.fold_left (||) false (List.map (fun p -> match p with

668 Patconst (i) -> (match pat with
Patconst (i2) -> true
| _ -> false)

| Patbool(b) -> (match pat with
Patbool(b2) -> true
673 | _ -> false)
| Patvar(v) -> (match pat with
Patvar (v2) -> true
| _ -> false)
| Patwild -> (match pat with
678 Patwild -> true
| _ -> false)
| Patcomma(l) -> (match pat with
Patcomma ([1)-> 1 = []
| Patcomma(l) -> 1 <> []
683 | _ -> false)
| Patcons(pl,p2) -> (match pat with
Patcons (p3,p4) -> true
| _ -> false)) pat_list)

688| and map_return f pm ts ret = match ts with
Sast.Poly(a) -> (match ret with
Unknown -> pm (* is argument to function? x)
| Still_unknown -> pm
| Sast.Poly(b) -> map_return f pm ret ret
| _ -> StringMap.add a ret pm)
I _ ->
if check_type_equality ts ret
then pm
else type_error ("Mismatch return type "~f)

and get_arg_type f prog a = match a with
SArglit (i) -> Sast.Int
SArgbool(b) -> Sast.Bool
SArgvar(v) -> (try(get_type false prog (SVariable(v))) with _-> Sast.Unknown)
SArgbeat (e,i) -> Sast.Beat
SArgnote(el,e2,e3) -> Sast.Note
SArgchord(elist) -> Sast.Chord
SArgsystem(elist) -> Sast.System
SArglist (elist) -> get_type false prog (SList(elist))
SArgparens(e) -> try (get_type true prog e)
with _ -> Sast.Unknown

and map_args_with_t name poly_map (a_t, t) =

56

72

match t with
Poly(t_n) -> if StringMap.mem t_n poly_map then
let typ = StringMap.find t_n poly_map in
if (check_type_equality typ a_t)
then poly_map
else raise (Function_arguments_type_mismatch ("1.""name~" "~ (string_of_s_type t)))
else StringMap.add t_n a_t poly_map
| Sast.List(1l) -> (match a_t with
Sast.List (1t) -> map_args_with_t name poly_map (1t, 1)
| Sast.Chord -> map_args_with_t name poly_map (Sast.Note, 1)
| Sast.System -> map_args_with_t name poly_map (Sast.Chord, 1)
| Sast.Empty -> poly_map
| _ -> raise (Function_arguments_type_mismatch ("2.""name~" "~ (string_of_s_type t)~ " "~ (
string_of_s_type a_t))))
| _ -> if check_type_equality t a_t then poly_map
else raise (Function_arguments_type_mismatch ("3.""name~" "~ (string_of_s_type t)~" "~ (
string_of_s_type a_t)))

and map_args name prog poly_map (a,t) =
match t with
Poly(t_n) -> if StringMap.mem t_n poly_map then
let typ = StringMap.find t_n poly_map in
if (check_type_equality typ (get_arg_type name prog a))
then poly_map
else raise (Function_arguments_type_mismatch (name ~ " "~ (string_of_s_arg a)))
(* check types *)
else StringMap.add t_n (get_arg_type name prog a) poly_map
| Sast.List(1l) -> (match a with
SArglit (i) -> raise (Function_arguments_type_mismatch (name ~ " "~ (string_of_s_arg a)))
| SArgbool(b) -> raise (Function_arguments_type_mismatch (name =~ " "~(string_of_s_arg a)))
| SArglist(e) ->let typ = get_arg_type name prog a in
if (typ = Unknown) then poly_map
else(match typ with
Sast.List (1t) -> map_args_with_t name poly_map (1lt, 1)
| Sast.Chord -> map_args_with_t name poly_map (Sast.Note, 1)
| Sast.System -> map_args_with_t name poly_map (Sast.Chord, 1)
| Sast.Empty -> poly_map
| _ -> poly_map)
| SArgparens(e) ->let typ = get_arg_type name prog a in
if (typ = Unknown) then poly_map
else(match typ with
Sast.List (1t) -> map_args_with_t name poly_map (1t, 1)
| Sast.Chord -> map_args_with_t name poly_map (Sast.Note, 1)
| Sast.System -> map_args_with_t name poly_map (Sast.Chord, 1)
| Sast.Empty -> poly_map
| _ -> poly_map)
| SArgvar(e) -> let typ = get_arg_type name prog a in
if (typ = Unknown) then poly_map
else(match typ with
Sast.List(1lt) -> map_args_with_t name poly_map (1t, 1)
| Sast.Chord -> map_args_with_t name poly_map (Sast.Note, 1)
| Sast.System -> map_args_with_t name poly_map (Sast.Chord, 1)
| Sast.Empty -> poly_map
| _ -> poly_map)
| SArgchord(elist) -> map_args_with_t name poly_map(Sast.Note, 1)
| SArgsystem(elist) -> map_args_with_t name poly_map(Sast.Chord, 1)

| _ -> raise (Function_arguments_type_mismatch ("List "~“name~ " "~ (string_of_s_arg a))))
- ->
if check_type_equality t (get_arg_type name prog a) then poly_map
else raise (Function_arguments_type_mismatch ("Other "~“name ~ " "~(string_of_s_arg a)))

(¥ If an Int is in the given list of s_exprs, make sure it’s a power of two and return Beat type if so x)

and powers_of_two program = function
I [1 -> Sast.Beat
| SList(sexpr) :: rest -> Sast.List(powers_of_two program (sexpr @
(let rec delist = function
[->1
|SList (sexpr)::r -> sexpr @ delist r
|SVariable(s)::r -> delist r (* Ignoring vars...resolve this

in interp! *)
|_ -> type_error ("Found a list of nested elements
with non-equal number of nestings")
in delist rest)))

| SLiteral(i) :: rest -> if beat_as_int i then powers_of_two program rest else
type_error ("Non-power of 2 entity " = (string_of_int i) -~
" in list of beat elements'")
I x :: rest -> let tyx = get_type false program x in (match tyx with
Sast.Beat | Sast.Int -> powers_of_two program rest
| 'y -> if eventual "beat" tyx || eventual "int" tyx then powers_of_two program rest

else type_error ("Element in list of beats and/or ints is neither a beat

a7

nor an int (string_of_sexpr x)))

(¥ Check if we have a Beat expression in a list of s_exprs x*)

and contains_beat program = function
[1 -> false
| SList(sexpr)::rest -> if contains_beat program sexpr then true else contains_beat program rest
| SBeat(_,_)::rest -> true
| x :: rest -> if eventual "beat" (get_type false program x) then true else contains_beat program
rest

and check_arg_types name prog poly_map a_list t_list =
if ((List.length a_list) +1) <> (List.length t_list) then
raise (Wrong_number_of_arguments name)
else let t_list = List.rev (List.tl (List.rev t_list)) in
let a_list = List.rev a_list in
let tup = List.combine a_list t_list in
let poly_map = (List.fold_left (map_args name prog) poly_map tup) in poly_map

and match_pat_expr pat e_t =
match pat with
Patconst (il) -> (match e_t with
Sast.Int -> true
| Unknown -> true
| Sast.Still_unknown -> true
| Sast.Poly(a) -> true
| _ -> false)
|Patbool(bl) -> (match e_t with
Sast.Bool -> true
| Unknown -> true
| Sast.Still_unknown -> true
| Sast.Poly(a) -> true
| _ -> false)
|Patvar(s) -> true
|Patwild -> true
|Patcomma (pl) -> (match e_t with
Sast.List (1t) -> if List.length pl > O
then match_pat_expr (List.hd pl) 1t
else false
| Sast.Chord -> if List.length pl > 0
then match_pat_expr (List.hd pl) Sast.Note
else false
| Sast.System -> if List.length pl > 0O
then match_pat_expr (List.hd pl) Sast.Chord
else false
| Sast.Empty -> if List.length pl = O then true else false
| Sast.Unknown -> true
| Sast.Still_unknown -> true
| Sast.Poly(a) -> true
| _ -> false)
|Patcons (pl,p2) -> (match e_t with
Sast.List (1t) ->(match_pat_expr pl 1lt)&&(match_pat_expr p2 e_t)
| Sast.Chord->(match_pat_expr pl Sast.Note)&&(match_pat_expr p2 Sast.Chord)
| Sast.System->(match_pat_expr pl Sast.Chord)&&(match_pat_expr p2 Sast.System)
| Sast.Unknown -> true
| Sast.Still_unknown -> true
| Sast.Poly(a) -> true
| _ -> false)

and match_arg prog (pat, arg) =
match pat with
Patconst (il) -> (match arg with
SArglit(i2) -> i1 = i2
| SArgvar(s) -> let typ = (try(get_type false prog (SVariable(s))) with
check_type_equality typ Sast.Int
| SArgparens(el) -> check_type_equality (get_type false prog el) Sast.Int
| _ -> false)
| Patbool(bl) -> (match arg with
SArgbool(b2) -> bl = b2
| SArgvar(s) -> check_type_equality (try(get_type false prog (SVariable(s))) with _ -> Sast.Unknown
) Sast.Bool
| SArgparens(el) ->check_type_equality (get_type false prog el) Sast.Bool
| _ -> false)
| Patvar(vl) -> true
Patwild -> true
| Patcomma(pat_list) -> (match arg with
SArgchord(el) -> match_pat_expr pat Sast.Chord
| SArgsystem(el) -> match_pat_expr pat Sast.System
| SArglist(el) -> match_pat_expr pat (get_type false prog (SList(el)))
| SArgparens(s_expr) -> match_pat_expr pat (get_type false prog s_expr)
| SArgvar(s) -> match_pat_expr pat (get_type false prog (SVariable(s)))

-> Sast.Unknown)in

58

I _ -> false)
| Patcons(patl,pat2) -> (match arg with
SArglist (el) -> match_pat_expr pat (get_type false prog (SList(el)))
| SArgchord(el) -> match_pat_expr pat Sast.Chord
| SArgsystem(el) -> match_pat_expr pat Sast.System
| SArgparens(e) -> match_pat_expr pat (get_type false prog e)
| SArgvar(s) -> match_pat_expr pat (get_type false prog (SVariable(s)))
|

-> false)
and match_args prog 1 id_list args = let args = List.rev args in match id_list with
1 ->1
|(a::b) ->
let comb = (try List.combine a.pats args with _ -> []) in

let is_match = List.fold_left (&&) true
(List.map (match_arg prog) comb) in
if(is_match) then a :: (match_args prog 1 b (List.rev args))
else match_args prog 1 b (List.rev args)

let rec type_is_equal t1 t2 =
if(t1 = t2) then true
else match tl with
893 Sast.List(a) -> (match t2 with
Sast.List(b) -> type_is_equal a b
| Sast.Chord -> type_is_equal a Sast.Note
| Sast.System -> type_is_equal a Sast.Chord
| Sast.Poly(b) -> true
898 | Empty -> true
I _ -> false)
| Sast.Poly(a) -> true
| Sast.Empty -> (match t2 with
Sast.List(b) -> true
903 | _ -> false)
| _ -> (match t2 with
Sast.Poly(b) -> true
| _ -> false)

o

let check_ret_type symtab types info =
(* Check that function value has correct type *)
let typ_sig = (List.hd (List.rev types)) in
let get_t_typ = (get_type true symtab info.s_value) in
if not(type_is_equal typ_sig get_t_typ)
913 then raise (Type_mismatch ("Expression of function "
String.concat " "

info.s_fname
(List.map string_of_patterns info.s_args)))

else symtab.identifiers <- {name = info.s_fname; pats = info.s_args; v_type = info.type_sig; v_expr =
Some (info.s_value)} :: symtab.identifiers;
symtab
918| let rec matching_patterns polypats expected actual = match expected, actual with
| ex::rest, act::rest2 -> if ex = act then matching_patterns polypats rest rest2 else
(match ex with
Poly(id) -> if List.exists (fun (poly,ty) -> poly = id && ty != act) polypats
then false else matching_patterns ((id,act) :: polypats) rest
rest2
923 | Sast.List(_) -> if (eventual "empty" act) || (eventual "unknown" act) then

matching_patterns polypats rest rest2
else false
| _ -> if eventual "unknown" act then matching_patterns polypats rest rest2
else false)
| [1, [0 -> true
| _, _ -> false

let rec check_pat_types types info =
let exp_pattypes = (List.rev (List.tl (List.rev types))) in
let act_pattypes = (List.map get_pat_type info.s_args) in
if not (matching_patterns [] exp_pattypes act_pattypes) then

raise (Type_mismatch ("Patterns don’t match type signature for " ~ info.s_fname
" " ~ String.concat " " (List.map string_of_patterns info.s_args)))
else let pat_pairs = List.combine info.s_args exp_pattypes in
let rec gen_scope = function
m->10

938 | (p, ty) :: rest ->

(match p, ty with

Patvar(s), _ -> {name = s; pats = []; v_type = [ty]l;

v_expr = None} :: gen_scope rest

| Patcomma(l), Sast.List(lty) ->

943 let tups = List.map (fun v -> (v, 1lty)) 1 in
(gen_scope tups) @ gen_scope rest

| Patcomma(l), Sast.Poly(s) ->
let tups = List.map (fun v -> (v, Sast.Unknown)) 1 in

39

(gen_scope tups) @ gen_scope rest
| Patcons(1l1,12), Sast.List(lty) ->
(gen_scope [(11, 1ty)]l) @ (match 12 with

| Patvar(s) -> [{name = s; pats = [];
v_type = [tyl;
v_expr = Nonel]

| _ -> (gen_scope [(12, ty)1))
@ gen_scope rest
| Patcons(11,12), Sast.Poly(s) ->
(gen_scope [(11, Sast.Unknown)]) @ (match 12 with

| Patvar(s) -> [{name = s; pats = [];
v_type = [tyl;
v_expr = Nonel}]

| _ -> (gen_scope [(12,ty)]))
| _ -> gen_scope rest) in
info.scope.identifiers <- gen_scope pat_pairs;info.scope

let rec main_type_check = function
Sast.Empty -> true
| Sast.Note -> true
| Sast.Chord -> true
| Sast.System -> true
| Sast.List(sys) -> main_type_check sys
| -> false

(* First pass walk_decl -> Try to construct a symbol table *)
let rec walk_decl prog = function
Ast.Tysig(id,types) ->
let entry = {name=id; pats = []l; v_type = (List.map types_to_s_type types);
v_expr = Nonel} in
if (exists_typesig id prog.symtab.identifiers)
then raise (Multiple_type_sigs id)
else prog.symtab.identifiers <- mod_var entry prog.symtab; prog
| Ast.Vardef (id, expr) ->
let var = {name=id; pats = []1; v_type = [Unknownl;
v_expr = Some(to_sexpr prog.symtab expr)} in
if (exists_dec id "var" prog.decls)
then raise (Multiple_declarations id)
else prog.symtab.identifiers <- mod_var var prog.symtab;
{ decls = SVardef(var, (to_sexpr prog.symtab expr)) :: prog.decls ;
symtab = prog.symtabl}
| Ast.Funcdec(fdec) ->
if (exists_dec fdec.fname "func" prog.decls)
then raise (Multiple_declarations fdec.fname)

else
let f_vars = collect_pat_vars fdec.args in
let new_scope = {parent=Some(prog.symtab); identifiers = gen_new_scope f_vars} in
let funcdef = SFuncdec({s_fname = fdec.fname;
type_sig = [Unknownl];
s_args = fdec.args;
s_value = to_sexpr new_scope fdec.value;
scope = new_scope;}) in
let var = {name = fdec.fname; pats = fdec.args; v_type = [Unknown];
v_expr = Some(to_sexpr prog.symtab fdec.value)l} in
prog.symtab.identifiers <- mod_var var prog.symtab;
{ decls = funcdef :: prog.decls; symtab = prog.symtab }

| Main(expr) ->
if (prog.symtab.parent = None) then
if(is_declared "main" prog.symtab)
then raise (Multiple_declarations "main")

else let mainvar = {name = "main";
pats = [];
v_type = [Unknownl;
v_expr = Some(to_sexpr prog.symtab expr)}

in prog.symtab.identifiers <- (mod_var mainvar prog.symtab);
{ decls = (prog.decls @ [SMain(to_sexpr prog.symtab expr)]); symtab = prog.symtab }
else raise Main_wrong_scope

(¥ Convert Ast expression nodes to Sast s_expr nodes (so we can have nested scopes) %)
and to_sexpr symbol = function
| Ast.Literal(i) -> SLiteral(i)
| Ast.Boolean(b) -> SBoolean(b)
| Ast.Variable(s) -> SVariable(s)
| Ast.Beat(e, i) -> SBeat(to_sexpr symbol e, i)
| Ast.Note(el, e2, e3) -> SNote(to_sexpr symbol el, to_sexpr symbol e2, to_sexpr symbol e3)
| Ast.Binop(el, op, e2) -> SBinop(to_sexpr symbol el, op, to_sexpr symbol e2)
| Ast.Prefix(pop, e) -> SPrefix(pop, to_sexpr symbol e)
| Ast.If(el,e2,e3) -> SIf(to_sexpr symbol el, to_sexpr symbol e2, to_sexpr symbol e3)
| Ast.List(elist) -> SList(List.map (fun s -> to_sexpr symbol s) elist)

60

Ast.Chord(elist) -> SChord(List.map (fun s -> to_sexpr symbol s) elist)
Ast.System(elist) -> SSystem(List.map (fun s -> to_sexpr symbol s) elist)
Ast.Call(el, e2) -> SCall(el, (List.map (fun s -> to_sarg symbol s) e2))
Ast.Let (decs, e) -> let sym = {parent=Some(symbol); identifiers=[]} in
let nested_prog = List.fold_left walk_decl {decls=[]; symtab=sym} decs

1033 in SLet(nested_prog, to_sexpr sym e)
| Ast.Print (e) -> SPrint (to_sexpr symbol e)
and to_sarg symbol = function
| Ast.Arglit (i) -> SArglit (i)
1038 | Ast.Argbool(b) -> SArgbool(b)
| Ast.Argvar(s) -> SArgvar(s)
| Ast.Argbeat (e, i) -> SArgbeat (to_sexpr symbol e, i)
| Ast.Argnote(el, e2, e3) -> SArgnote(to_sexpr symbol el, to_sexpr symbol e2, to_sexpr symbol e3)
| Ast.Argchord(elist) -> SArgchord(List.map (fun s -> to_sexpr symbol s) elist)
1043 | Ast.Argsystem(elist) -> SArgsystem(List.map (fun s -> to_sexpr symbol s) elist)
| Ast.Arglist(elist) -> SArglist(List.map (fun s -> to_sexpr symbol s) elist)
| Ast.Argparens (p) -> SArgparens(to_sexpr symbol p)

(* Second pass -> use symbol table to resolve all semantic checks *)
1048| and walk_decl_second program = function
| SVardef(s_id, s_expr) as oldvar ->
let new_sexpr = (match s_expr with
SLet (prog, exp) -> SLet(List.fold_left walk_decl_second prog prog.decls, exp)
| x -> x) in

1053 let texpr = [get_type false program.symtab new_sexpr] in
if (s_id.v_type = [Unknown]) then
let new_type = if (exists_typesig s_id.name program.symtab.identifiers) then
let set_type = get_typesig s_id.name program.symtab.identifiers in
if diff_types set_type texpr then
1058 (match (List.hd set_type) with

Poly(_.) -> texpr
| _ -> raise (Type_mismatch s_id.name))
else set_type
else texpr in
1063 let newvar = SVardef ({name = s_id.name; pats = []; v_type = new_type;
v_expr = s_id.v_expr}, new_sexpr) in
replace_vardef program newvar oldvar
else if diff_types s_id.v_type texpr then
raise (Type_mismatch s_id.name)
1068 else program
| SFuncdec(info) as oldfunc ->
let types = get_types_p info.s_fname program.symtab in
let argl = List.length info.s_args in
let tyl = List.length types in
1073 let info = {s_fname = info.s_fname; type_sig = info.type_sig; s_args = info.s_args;
scope = info.scope; s_value = (match info.s_value with
SLet (prog, exp) -> SLet(List.fold_left walk_decl_second prog prog.decls, exp)
| x -> x)} in
if (argl <> tyl - 1) then raise (Pattern_num_mismatch(argl, tyl - 1))
1078 else let search_decls = List.filter (fun v -> v != oldfunc) program.decls in
if (List.length search_decls < (List.length program.decls) - 1)
|l (same_pats info search_decls)
then raise (Multiple_identical_pattern_lists
(String.concat " " (List.map string_of_patterns info.s_args)))

1083 else
let symtab = (check_pat_types types info) in
let newscope = check_ret_type symtab types info in
let newfunc = SFuncdec({s_fname = info.s_fname; type_sig = types;
s_args = info.s_args; s_value = info.s_value;
1088 scope = newscope;}) in

replace_funcdec program newfunc oldfunc
| SMain(expr) ->

let e_type = get_type false program.symtab expr in
let new_main = {name = "main"; pats = []; v_type = [e_typel; v_expr = Some(expr)} in
1093 let program = replace_main program new_main in
program

(¥ if main_type_check e_type then program else
raise (Main_type_mismatch (string_of_sexpr expr))
*)
1098
let has_main program =
if (is_declared "main" program.symtab) then program
else raise Main_missing

1103| (# Right now gets called by smurf *)

let first_pass list_decs =
let program = List.fold_left walk_decl {decls=[]; symtab = global_env} list_decs
in program

1108| let second_pass list_decs =

61

[

let program = first_pass list_decs in
let real_program = List.fold_left walk_decl_second (has_main program) program.decls in
(print_string "PASSED SEMANTIC CHECKS\n"); real_program.symtab

../../Code/semanalyze.ml

open BSast

open Util
let _ =
let lexbuf = Lexing.from_channel stdin in
let program = Parser.program Scanner.token lexbuf in

Semanalyze.second_pass program

../../Code/semantic_test.ml

(¥ File: toplevel.ml
* the toplevel execuatable for SMURF
*)

open Util

open Interpreter
open Output

open Values

open Lexing

exception Fatal_error of string
let fatal_error msg = raise (Fatal_error msg)

exception Shell_error of string
let shell_error msg = raise (Shell_error msg)

let exec_file config =
let read_file filename =
let lines = ref [] in
let chan = open_in filename in
(try
while true; do
lines := input_char chan :: !lines
done; []
with End_of_file ->
close_in chan;
List.rev !'lines) in
let fh = read_file config.smurf_name in
let stdlib = read_file config.std_lib_path in
let linkedprog = string_of_charlist (stdlib @ fh) in
let lexbuf = Lexing.from_string linkedprog inmn

let pos = lexbuf.lex_curr_p in
lexbuf.lex_curr_p <- {pos with pos_fname = config.smurf_name};
try
let program = Parser.program Scanner.token lexbuf in
let symtab = Semanalyze.second_pass program in
(exec_main symtab config)
with
Parsing.Parse_error -> fatal_error ("Syntax Error: " ~ string_of_position lexbuf.lex_curr_p)
let _ =
let interactive = ref false in
let config = { smurf_name = "smurf.sm";
bytecode_name = "a.csv'";
midi_name = "a.midi";
1lib_path = "./Lib/CSV2MIDI. jar";
std_lib_path = "./Standard_Lib/List.sm"
} in
Arg.parse
[("-i", Arg.Set interactive, "Interactive model");

("-0", Arg.String (fun f -> config.midi_name <- f), "Specify output MIDI name");
("-1", Arg.String (fun f -> config.lib_path <- f), "Specify the path to the library converting
bytecode to MIDIs")]
(fun f -> config.smurf_name <- f)
"Usage: toplevel [options] [filel";
match !interactive with
false -> exec_file config
| true -> O

../../Code/toplevel.ml

62

1| (¢ File: util.ml
* defines some useful stuffs that might be used by other modules

*)

open Printf
6| open Lexing

(¥ If you doing want to see the annoy debug information,
* simply set debug to be false, the world will be peace
*)

11| let debug = false

let trace s = function
a -> if debug then
ignore (printf "xx* %s\n" s)
16 else (); (a)

(¥ Errors can be handled and will cause the program to terminate *)
exception Fatal_error of string

21| let fatal_error msg = raise (Fatal_error msg)
type configruation = {
mutable smurf_name : string;
26 mutable bytecode_name : string;
mutable midi_name : string;

mutable 1lib_path : string;
mutable std_lib_path : string;
}

let rec string_of_charlist = function
| [1 => " n
| 1st -> String.make 1 (List.hd 1lst) -~ (string_of_charlist (List.tl 1st))

36| let string_of_position {pos_fname=fn; pos_lnum=1n; pos_bol=bol; pos_cnum=cn} =

let ¢ = c¢cn - bol in
if fn = "" then
"Character " ~ string_of_int c
else
41 "File \"" =~ fn =~ "\", line " ~ string_of_int 1n =~ ", character " -~ string_of_int c

../../Code/util.ml

-

(¥ File: values.ml
* defines the intermediate values smurf evaluates to *)

open Ast
open Sast
open Util
open Printf

exception Interp_error of string
11| let interp_error msg = raise (Interp_error msg)

module NameMap = Map.Make (struct

type t = string

let compare x y = Pervasives.compare x y
16| end)

(* The value of returned by each expression x*)
type value =
| VInt of int
| VBool of bool
| VBeat of int
| VNote of value * value * value
| VList of value list
| VChord of value list
| VSystem of value 1list
(¥]| VFun of pattern list pattern x)
| VUnknown

and nm_entry = {
31 nm_expr : s_expr option;
nm_value : value;

}

type enviroment = {

63

8

N)

1

¥

)

parent : enviroment option;
mutable ids : nm_entry NameMap.t;

let rec string_of_value = function
I VInt(x) -> string_of_int x
| VBool(x) -> string_of_bool x
| VBeat(x) -> string_of_int x
(%
string_of_value il
let rec repeat n s =
if n>0 then
repeat (n-1) ("." =~ s)
else s in repeat i2 ""
*)
| VNote(pc, reg, beat) -> "(" =~ string_of_value pc
~ ", " ~ string_of_value reg ~ ")$"
(string_of_value beat)
VList (vl) -> "[" - (String.concat "," (List.map string_of_value v1)) ~ "]"
VChord(vl) -> "[" -~ (String.concat "," (List.map string_of_value vl1l)) =~ "]"
VSystem(vl) -> "[" ~ (String.concat "," (List.map string_of_value v1)) ~ "1"

|
|
|
(*
| VFun(name,fsig,fdecl) ->
(match fsig with

Tysig (name , types) -> (name B

String.concat " -> " (List.map Ast.string_of_types types) ~ "\n\t

| _ -> interp_error ("Unexpected type for Tsig"))
~ (String.concat "\t " (List.map Ast.string_of_fdec fdecl))

*)

| _ -> "Unresolved"

(* show the environment to std out *)
let rec show_env env = match debug with
true ->
(match env.parent with
None -> printf "GlobalE: \n"; NameMap.iter

(fun key {nm_value=v} -> print_string ("\t" ~ key ~ " -> "
~ string_of_value v ~ "\n")) env.ids

| Some x -> printf "LocalE: \n"; NameMap.iter
(fun key {nm_value=v} -> print_string ("\t" =~ key ~ " -> "

string_of_value v "\n")) env.ids; show_env x)

| false -> ()

let rec string_of_env env = (match env.parent with
None -> "GlobalE: \n"
~ (NameMap.fold (fun key {mm_value=v} str -> str =~ ("\t" ~ key ~ " -> "
~ string_of_value v ~ "\n")) env.ids "")
| Some par -> "LocalE: \n"
~ (NameMap.fold (fun key {mnm_value=vl} str -> str =~ ("\t" ~ key -~ " -> "
~ string_of_value v "\n")) env.ids "") ~ string_of_env par)

"y

../../Code/values.ml

SOURCES = scanner.mll \
parser.mly \
sast.ml \
ast.ml \
semanalyze.ml \
parser.ml \
scanner.ml \
parser_test.ml \
semantic_test.ml \
interpreter.ml \
util.ml \
toplevel.ml \
values.ml \
output.ml

OCAMLBUILD = ocamlbuild

all:
$ (0CAMLBUILD) parser_test.native semantic_test.native toplevel.native

clean:
$ (0CAMLBUILD) -clean
rm -f a.csv a.midi

../../Code/makefile

64

For those machine doesn’t have ocamlbuild, build the project with this makefile

0BJ=ast.cmo \
sast.cmo \
semanalyze.cmo \
scanner.cmo \
parser.cmo \
util.cmo \
parser_test.cmo \
semantic_test.cmo \
interpreter.cmo \
toplevel.cmo \
values.cmo \
output.cmo \
printer.cmo

SMURF=semantic_test
FLAGS:=-g

$ (SMURF) : $(0BJ)
ocamlc -g -o parser_test util.cmo parser.cmo scanner.cmo ast.cmo parser_test.cmo
ocamlc -g -o semantic_test util.cmo parser.cmo scanner.cmo ast.cmo sast.cmo semanalyze.cmo
semantic_test.cmo
ocamlc -g -o toplevel util.cmo parser.cmo scanner.cmo ast.cmo sast.cmo semanalyze.cmo values.cmo output
.cmo interpreter.cmo toplevel.cmo

printer: $(0BJ)
ocamlc -o printer.cma -a util.cmo ast.cmo sast.cmo values.cmo printer.cmo

.SUFFIXES: .ml .cmo .cmi .mll .mly .mli
.PRECIOUS: %.ml %.mli %.cmo

.ml.cmo:
ocamlc -c $(FLAGS) $<

.mli.cmi:
ocamlc -c¢ $(FLAGS) $<

.mll.ml:
ocamllex $<

.mly.ml:
ocamlyacc -v $<

.mly.mli:
ocamlyacc -v $<

clean:
rm -f *.cmi *.cmo parser.ml scanner.ml *.output parser.mli parser_test semantic_test toplevel *.cma

parser_test: $(SMURF)
./parser_testall.sh

Generated by ocamldep

ast.cmo:

ast.cmx:

interpreter.cmo: values.cmo util.cmo sast.cmo output.cmo ast.cmo

interpreter.cmx: values.cmx util.cmx sast.cmx output.cmx ast.cmx

output.cmo: values.cmo util.cmo ast.cmo

output.cmx: values.cmx util.cmx ast.cmx

parser.cmo: util.cmo ast.cmo parser.cmi

parser.cmx: util.cmx ast.cmx parser.cmi

parser.cmi: ast.cmo

sast.cmo: util.cmo ast.cmo

sast.cmx: util.cmx ast.cmx

scanner .cmo: parser.cmi

scanner.cmx: parser.cmx

semanalyze.cmo: util.cmo sast.cmo ast.cmo

semanalyze.cmx: util.cmx sast.cmx ast.cmx

semantic_test.cmo: util.cmo semanalyze.cmo scanner.cmo sast.cmo parser.cmi

semantic_test.cmx: util.cmx semanalyze.cmx scanner.cmXx sast.cmx parser.cmx

parser_test.cmo: scanner.cmo parser.cmi ast.cmo

parser_test.cmx: scanner.cmx parser.cmx ast.cmx

toplevel.cmo: values.cmo util.cmo semanalyze.cmo scanner.cmo parser.cmi \
output.cmo interpreter.cmo

toplevel.cmx: values.cmx util.cmx semanalyze.cmx scanner.cmx parser.cmx \
output.cmx interpreter.cmx

util.cmo:

65

[util.cmx:

\values.cmo: util.cmo sast.

*1\va1ues.cmx: util.cmx sast.
‘printer.cmo: util.cmo ast.
‘printer.cmx: util.cmx ast.
L

ast.cmo
ast.cmx
sast.cmo values.cmo
sast.cmx values.cmx

../../Code/build.mk

66

References

[1] A. Appleby, “Accidentals.” http://www.music-mind.com/Music/mpage4.HTM, Sept. 2013.

[2] M. DeVoto, “Twelve-tone technique: A primer.” http://www.tufts.edu/ “mdevoto/12TonePrimer.pdf,
Sept. 2013.

[3] L. J. Solomon, “Symmetry as a compositional determinant.” solomonsmusic.net/diss7.htm#Webern,
1997.

[4] S. Steffes, “Csv2midi.” https://code.google.com/p/midilc/source/browse/trunk/CSV2MIDI/
CSV2MIDI. java, June 2003.

67

