
Proposal: File and Directory Manipulation
Language (FDL)

Rupayan Basu
Columbia University
rb3034@columbia.edu

Pranav Bhalla
Columbia University
pb2538@columbia.edu

Cara J. Borenstein
Columbia University
cjb2182@columbia.edu

Daniel Garzon
Columbia University
dg2796@columbia.edu

Daniel L. Newman
Columbia University
dln2111@columbia.edu

September 25, 2013

1 Motivation

With the proliferation of storage devices, and the rise of mobile and cloud computing, users must now manage
a large number of files scattered across several locations. Furthermore, with the availability of inexpensive
storage options, users do not feel the need to delete files, often leading to an unmanageable accumulation of
files. Thus the problem of accessing and organizing multiple files quickly and easily across diverse storage
media is becoming increasingly important.

While the GUI offered by various operating systems is inefficient for handling large number of files and
directories at the same time, the command line interface on the other hand requires users to learn complex
Swiss-knife like commands and their innumerable options, even to perform basic operations. What is required
is a programming language, that allows users to write simple programs that perform both specialized as well
as routine tasks to efficiently and easily organize their files and directories.

2 Description

File and Directory Manipulation Language (FDL, pronounced fiddle) solves this problem by providing a
simple and intuitive syntax for managing files and directories. By providing the user with new data types,
and an extensive list of mathematical and logical operators, what used to be tedious and time consuming
will now be easy and fast.

Users can write programs that organize their file systems by conveniently copying files and directories to
different locations, and removing files and directories from specific file paths, through the use of mathematical
operators. Users can loop through subdirectories and files contained within a chosen directory, with a
template to browse the file/directory tree stemming from that directory by specifying different levels. One
example is the ability to perform a function on all nodes of the tree at a certain level away from the root
directory.

Files can be organized in this manner by the attributes spanning from last modified date to size, and
additional, customized tags can be added to files for organizational purposes. Customized tags can be
serialized and stored on the machine in XML format, to be loaded when users are navigating the file system.

1



3 Syntax

3.1 Basic Data Types

primitive Description

int The set of all positive natural numbers: N0 = {0, 1, 2, 3, . . . , k}

bool
Used to compare two files or directories for equality. Returns 1 for true and 0
for false.

string A sequence of characters surrounded by quotes.

dir Object that holds the path to a collection of 0 or more files in memory. Di-
rectories can contain any number of files and any number of sub-directories.

file
Object that has a file type, modified date, created date, and 0 or more cus-
tomized tags.

3.2 File and Directory Attributes

attribute Description

created date Field that holds the date when a file or directory was created.

modified date Field that holds the date of the last time a file or directory was modified.

file type Field that holds the type of a file. (ex. ’txt’, ’jpeg’).

tag Field that holds a customized association of a file.

path Field that holds the path of the file or directory.

name Field that holds the name of the file or directory.

level
Field that tracks the depth (an integer) at which a given file or directory is
with respect to the root.

2



3.3 Mathematical Operators

operator Description

+ Used to add files to directories and also to append strings.

− Used to remove 1 or more files from a directory.

,
Used to specify multiple objects that should be evaluated separately by the
previous operator.

= Assignment operator.

+ =
For a directory it is used to add a file or sub-directory to the directory. For
integers, it is the addition and assignment operator.

− =
For a directory it is used to remove a file or sub-directory to from directory.
For integers, it is the substraction and assignment operator.

3.4 Logical Operators

operator Description

== Equality operator.

! = Inequality operator.

>
Used for checking the level of a sub-directory (select files at a level greater than
the current directory), and for comparing integers.

>=
Used for checking the level of a sub-directory (select files at a level greater than
or equal to the current directory), and for comparing integers.

<
Used for checking the level of a sub-directory (select files at a level less than
the current directory), and for comparing integers.

<=
Used for checking the level of a sub-directory (select files at a level less than
or equal to the current directory), and for comparing integers.

3



3.5 Control Statements

3.5.1 if-then-else

if <condition> then
<expression>

else
<expression>

end

3.5.2 while

while <condition> then
<expression>

end

3.5.3 for

for <identifier> in <directory> level <logical operator> <integer: default = all> do
<expression>

end

3.6 Function Definition

def <identifier> (<parameter list>)
<expression>

end

4



4 Example Programs

4.1 Case 1:

Write a program that can pickup all .jpg files in a directory, or sub-directory, and create new folders by date
and save copies in the respective folder.

1 def main()
2 dir D1 = ’/SAMPLE_PATH’ //path to the source directory
3 string str = ’’ //path to the destination folder
4

5 // we expect file_temp will loop over all files in "D1" including subfolders
6 for file_temp in D1 do
7 if file_temp.type == ’jpeg’ then
8 // we wish to name the folders with date on which images were created
9 // the below stmt creates(in case it didnt exist) or points dtemp to the folder.

10 dir dir_temp = str + file_temp.Date
11 dir_temp += file_temp
12 end
13 end
14 end

4.2 Case 2:

A user has downloaded several project folders from a course website and would like to separate the code
and document files in these folders and organize them into two folders.

1 def main()
2 //Assuming project folders were unzipped in directory W4115
3 dir desktop = ’˜/Desktop’
4 dir projects = desktop.path + ’/W4115’
5

6 //Create new directories in the desktop
7 dir project_code = desktop.path + ’/projectCode’
8 dir project_docs = desktop.path + ’/projectDocs’
9

10 for dir_temp in projects do
11 for file_temp in dir_temp level <= 3 do
12 if file_temp.type == ’ml’ then
13 projectCode += file_temp
14 else if file_temp.type == ’pdf’
15 projectDocs += file_temp
16 end
17 end
18 end
19 end

5



4.3 Case 3:

Suppose there is a group of peers who want to share pictures, or any other file, amongst themselves. One of
them should be able to take the shared files, and copy them, but some duplicates may exist. That individual
should be able to write a program that deletes the duplicates and copies all the distinct files to a new
directory.

1 def main()
2 dir D1 = ’’ //path to the first source directory
3 dir D2 = ’’ //path to the second source directory
4 dir D3 = ’’ //path to the destination directory with no duplicates
5 string duplicate_file_path //list of comma separated duplicate files paths
6

7 //We wish to compare files in the two folder(and subfolders)
8 for file_temp1 in D1 do
9 bool flag = true

10 for file_dest in D3 do
11 if file_temp1.type == ’jpeg’ then
12 if file_temp1.name == file_dest.name then
13 // duplicate file found
14 flag = false
15 duplicate_file_path += ’, ’ + file_temp1.path
16 D1 -= file_temp1 // delete duplicate from original
17 break
18 end
19 end
20 end
21 if flag == true then
22 D3 += file_temp1
23 end
24 end
25

26 for file_temp2 in D2 do
27 bool flag = true
28 for file_dest in D3 do
29 if file_temp.type == ’jpeg’ then
30 if file_temp2.name == file_dest.name then
31 flag = false
32 duplicate_file_path += ’, ’ + file_temp1.Path
33 D1 -= file_temp2
34 break
35 end
36 end
37 end
38 if flag == true then
39 D3 += file_temp2
40 end
41 end

6



4.4 Case 4:

User has copied 500 image files from his camera to a folder Canon, and would like to rename all of them to
something meaningful.

1 def main()
2 dir camera = input(’Enter device path: ’)
3 string name_prefix = input(’Enter name prefix: ’)
4 dir myPictures = ’˜/Desktop/MyPictures’
5

6 int count = 1
7 for file in camera do
8 if file.type == ’jpeg’ then
9 file.name = name_prefix + string(count) //Convert int to string

10 count = count + 1
11 myPictures += file
12 end
13 end
14 end

4.5 Case 5:

Using custom tags to list all ebooks that have been read from a folder containing ebooks organized into
subfolders A-Z, and add the wishlist tag to all other ebooks.

1 def main()
2 dir library = ’˜/Desktop/Ebooks’
3 print ’List of books read: \n’
4 for file in library level=’all’ do
5 if file.tag == ’read’ then
6 print file.name + ’\n’
7 else
8 file.tag = ’wishlist’
9 end

10 end
11 end

7


