
COMSW4115: Programming Languages and Translators

The DJ Language: MIDI Synthesizer Language Proposal

William Falk-Wallace (wgf2104), Hila Gutfreund (hg2287),
Emily Lemonier (eql2001), Thomas Elling (tee2103)

September 25, 2013

Contents

1 Purpose 2

2 Overview 2

3 Features 2

4 Syntax 3
4.1 Primitives . 3
4.2 Operators . 3
4.3 Functions . 4
4.4 Reserved Words and Conditionals . 4

5 Examples 5
5.1 Example 1: Arpeggio . 5
5.2 Example 2: Loop With Effects . 5
5.3 Example 3: Add/Remove Notes & Chords . 6

1

1 Purpose

The goal of our project is to create a programmatic control interface for the Musical Instrument Digital Interface
Specification (MIDI). MIDI is a technology standard that allows a wide variety of electronic musical instruments,
computers, and other related devices to connect and communicate with one another.1 Through the specification of
this programming language, called The DJ Language (extension .dj), we are able to bring synthesized electronic
music production as well as musical score design capabilities directly to an artist’s computer.

2 Overview

We propose a procedural scripting language, DJ, which provides a programming paradigm for algorithmic music
production. Through its utilization of themes and motifs, music is naturally repetitive and often dynamic. DJ
provides control-flow mechanisms, including for and loop functions, which simplify the development of structured
iterative music. The DJ Language also makes use of conditional logic and offers built-in effects (including pitch bend,
tremolo and vibrato). Moreover, it supports extensible sound banks to facilitate the production of deeply textured
musical compositions. Our goal in the specification of The DJ Language is to abstract away the intricacies and
limitations of the MIDI specification, including channeling, patch-maps and instrumentation, allowing the artist to
focus on her or his work: composing songs.

3 Features

• Note, Chord, and Track are defined as primitives and are hierarchical. The hierarchy is as follows: Tracks are
composed of Chords, which are composed of Notes and Rests.

• Notes are represented by ordered seven-tuples defining characteristic attributes, including pitch, instrumen-
tation, volume, duration (in beats), the presence of effects including tremolo, vibrato, and pitch bend. The
primitive Rest object allows for a pause in a Track.

• Tracks, Chords, and Notes may be added in series or parallel. A new Track is produced by adding Tracks in
series or parallel. Chords produce Tracks when added in series. Notes added produce Chords when added in
parallel.

• Several mutative operators exist for manipulating Note attributes at the Note, Chord, and Track level.

• All programs consist of a single main function, called SONG, that returns an array of tracks, intended to start
simultaneously and be played in parallel. Each array element can be considered as a polyphonic MIDI channel.
This array of tracks is compiled into a bytecode file containing the complete set of MIDI-messages required to
produce the programmed song. A third party bytecode-to-MIDI interpreter will be used to produce the final
sound file.

• Song-wide properties are specified to the compiler. Attributes such as tempo/beats per minute and channel
looping are available as compiler options.

• This structure, as well as the use of the MIDI specification and interface, allows for a fairly extensible language
and production capability. For example, through the manipulation or linking of sound banks, new sounds and
samples are able to be incorporated to produce rich and interesting programmatic music.

1“MIDI Overview” MIDI.org, 21 Sep 2013. Web. 24 Sep 2013. <http://www.midi.org/aboutmidi/tut midimusicsynth.php>.

2

4 Syntax

The following subsections and tables represent the primitives, operators, and functions defined in the DJ Language
specification.

4.1 Primitives

Integer Used for addressing and specifying Note/Chord/Track attributes.
Array Fixed-length collection of elements (int, Note, Chord, Track), each identi-

fied by at least one array index.
Note Ordered tuple containing pitch (pitch), instrument (instr), volume (vol),

duration (dur), tremolo (trem), vibrato (vib), pitch bend (pb) (n.b. pitch
number is sequentially numbered in tonal half-step increments; tremolo
and vibrato attributes are boolean).

Rest A durational note with no volume and no pitch and which is not responsive
to pitch, volume, or effect operations.

Chord Vector of Notes (size ≥ 1).
Track Vector of Chords (size ≥ 1).

4.2 Operators

>, < Pitchbend: changes the pitch bend of a Note, the Notes of a Chord, or
all Notes of a Track. (binary)

+, − Increase/Decrease pitch of an individual note, all Notes in a Chord, or all
Notes in a Track, respectively, by a specified amount. (binary)

++, −− Increase/Decrease respective pitch of Notes, either atomically or in a
Chord or Track by a single integer increment (tonal half-step). (unary)

[<int>] Address Array, Chord, or Track element at given index. (unary)
∼ Creates a tremelo effect on the individual note, all Notes in the Chord,

or all Notes in the Track that it operates on. (unary)
∧ Creates a vibratro effect on the individual note, all Notes in the Chord,

or all Notes in the Track that it operates on. (unary)
: Parallel Add: adds Notes, Chords, or Tracks in parallel. When used on

Notes, returns a new Chord containing both Notes; when used on Chords,
returns a new Chord representing the union of both original Chords; when
used with Tracks, returns a new Track such that Chords are added in
parallel by corresponding time tick, with no added offset. (binary)

. Serial Add: both operands must be Tracks. The right operand is con-
catenated to the first, and a third, new Track is returned. Notes are
elevated to size-one Chords and Chords are elevated to Tracks before
concatenating. (binary)

= Assignment operator. (binary)
+ = Integer Add-in-place. (binary)
| Conditional OR. (binary)
& Conditional AND. (binary)

== Logical equality (deep). (binary)

3

4.3 Functions

vol(<int>) Change Chord/Note/Track volume (integer value 0-99). (abso-
lute)

dur(<int>) Change Chord/Note duration (number of beats). (absolute)
loop(<int>) Loops a given Note, Chord, or Track the over number of beats

specified. If given a number of beats fewer than the total track
size (n.b. implicit elevation occurs as necessary), first <int> beats
will be included.

repeat(<int>) Repeats a given Note, Chord, or Track <int> times, returning a
new Track.

add(<chord>) Adds a Chord to a Track.
strip(<chord>) Removes all instances of Chord from a Track.
remove(<int>) Removes Chord from Track at designated location.

4.4 Reserved Words and Conditionals

if (expr) {...} else {...} Paired control flow statement that acts upon
the logical expression within the if statement
parentheses. If the expression evaluates to
true, the control flow will continue to the code
contained within the braces of the if body. If
the argument is false, then control flow moves
on to the code in the braces of the else body.

return Terminates control flow of the current func-
tion and returns control flow to the call-
ing function, passing immediately subsequent
primitive to calling function.

null Undefined object identifier; used in declaring
non-returning functions.

int, Array Note, Rest, Chord, Track Type declaration specifiers.
SONG {} Conventional ”main” function declaration,

with unspecified return type, which indicates
program outset to the compiler.

4

5 Examples

5.1 Example 1: Arpeggio

1 // the main func t i on
2 SONG {
3 s = Track [1] ;
4 s [0] = t ;
5

6 num beats = 1 ;
7 c = 60 ;
8 vo l = 50 ;
9 piano = 1 ;

10

11 //a f o r loop
12 f o r (i = 0 ; i <= 8 ; i++) {
13 //make a new note with incrementa l p i t ch
14 Note n = {c + i , piano , vol , num beats , 0 , 0 , 0} ;
15 // concatenate that note to the f i r s t (only) t rack o f the song
16 s [0] . n ;
17 }
18 }

5.2 Example 2: Loop With Effects

1 Track l o o p E f f e c t s () {
2

3 i n t pitchA = 60 ; // p i t ch o f a w i l l be middle C
4 i n t pitchB = 62 ; //up a f u l l s t ep f o r b
5 i n t pitchC = 65 ; // up a step and a h a l f f o r a minor/ d i s sonant something
6 i n t volume = 50 ; //volume 50 − r i g h t in the middle
7 i n t i n s t r = 1 ; // use a piano −− mapped instrument 1
8 i n t durat ion = 2 ;
9

10 Note a , b , c ;
11 a = {pitchA , i n s t r , volume , durat ion , 0 , 0 , 0} ;
12 b = {pitchB , i n s t r , volume , durat ion , 0 , 0 , 0} ;
13 c = {pitchC , i n s t r , volume , durat ion , 0 , 0 , 0} ;
14

15 Chord ch = a : b : c ;
16

17 Track t = ch . repeat (5 0) ;
18

19 f o r (i n t i = 0 ; i < t . s i z e () ; i += 2) { // i t e r a t e over every other chord in t
20 t [i] [0] ˜ ; // f o r every other chord in t , add a tremolo to the 0 th Note
21 t [i + 1] [0] . vo l (t [i + 1] [0] . vo l + 5) ; // f o r the r e s t o f the chords , i n c r e a s e i t s volume by 5
22 }
23 re turn t ;
24 }

5

5.3 Example 3: Add/Remove Notes & Chords

1 n u l l reverseAddFancy{
2 // c r e a t e t r a ck s track , adds and remove chords
3 Note a , b , c , d , e , f ;
4

5 // the note p i t c h e s
6 i n t midC = 60 ; // p i t ch 60 i s u s u a l l y around middle C
7 i n t upabit = 62 ;
8 i n t downabit = 40 ;
9 i n t sumthinElse = 88 ;

10 i n t l y f e = 42 ;
11

12 //some other note a t t r i b u t e s
13 i n t volume = 20 ; // n i c e and qu i e t
14 i n t oh = 47 ; // use an Orches t ra l Harp −− General MIDI mapping
15 i n t s h o r t i s h = 2 ;
16 i n t l onge r = 5 ;
17

18 // d e f i n e the notes
19 a = {midC , oh , volume , s h o r t i s h } ;
20 b = { l y f e , oh , volume , l onge r } ;
21 c = { sumthinElse , oh , volume , l onge r } ;
22

23 d = {upabit , oh , volume , s h o r t i s h } ;
24 e = {downabit , oh , volume , l onge r } ;
25 f = {midC , oh , volume , s h o r t i s h } ;
26

27

28 Chord newChord = a : b : c ; // p a r a l l e l add to make a chord
29 Chord oldChord = d : (f : e) ;
30 Track newTrack = newChord . oldChord ; //add track with s e r i a l add
31 newTrack . s t r i p (newChord) ; // remove a l l i n s t a n c e s o f s p e c i f i c chord
32 newTrack . newChord ; // add newChord back ;
33 newTrack . remove (0) ; // removes oldChord ;
34 newTrack [0] < 5 ; // pitchbend newChord up 5
35 }

6

