Review for the Midterm

Stephen A. Edwards
Columbia University

Fall 2013

()

pt.* W DON'T PANIC

\
/.
¢ -

1ne vilaterim

Structure of a Compiler
Scanning
Languages and Regular Expressions
NFAs
Translating REs into NFAs
Building a DFA from an NFA: Subset Construction
Parsing
Resolving Ambiguity
Rightmost and Reverse-Rightmost Derivations
Building the LR(0) Automaton
FIRST and FOLLOW
Building an SLR Parsing Table
Shift/Reduce Parsing
Name, Scope, and Bindings
Activation Records

Static Links for Nested Functions

The Midterm

75 minutes

4 problems

Closed book

One double-sided sheet of notes of your own devising
Comprehensive: Anything discussed in class is fair game
Little, if any, programming

Details of O’Caml/C/C++/Java syntax not required

Compiling a Simple Program

int gcd(int a, int b)

while (a !'= b) {
if (a > b) a -= b;
else b -= a;

}

return a;

3

What the Compiler Sees
int gcd(int a, int b)

while (a !'= b) {
if (a > b) a -= b;

else b -= a;

}

return a;
}
in tsp g cd (i n tsp a ,
n tsp b)nl {nlspsp w h i 1
(asp ! =sp b) sp { nl spsp sp
fsp (asp >sp b)sp asp - =

; nl spspspsp e 1 s esp b sp
;nl spsp }nlspsp r e t u
;nl } nl

o o

Text file is a sequence of characters

r

sp i
e sp
sp i
sp b
= sp
n sp

Lexical Analysis Gives Tokens

int gcd(int a, int b)

while (a != b) {
if (a > b) a -= b;

else b -= a;

}

return a;

-
=}
=+

et
Eloj
=ie

A stream of tokens. Whitespace, comments removed.

T
=
o]
Elcs
-
=
El
=
=]
=
E.
-
(]
e
B

Parsing Gives an Abstract Syntax Tree

func
args seq
VRN
arg arg while return
/ \ / \ yd \ |
int a int b a
/ \ / \ AN
int gcd(int a, int b)
; A WANAY
while (a != b) {
if (a > b) a -= b;
else b -= a;
}
return a;

3

Semantic Analysis Resolves Symbols and Checks Types

func
args seq
VRN
arg arg while return
/ \ / \ / \ |
int a int b a

Symbol Table

Translation into 3-Address Code

LO: sne $1, a, b
0

seq $0, $1,
btrue $0, L1 # while (a != b)
sl $3, b, a
seq $2, $3, 0
btrue $2, 14 # if (a < b)
sub a, a, b#a-=">
jgmp L5
IL4: sub b, b, a#b -=a
L5: jmp LO
L1: ret a

int gcd(int a, int b)

while (a != b) {

if (a> b) a -= b; Idealized assembly language w/
) LU Sl infinite registers
return a;

3

Generation of 80386 Assembly

ged:

.L8:

.L5:

.L3:

pushl
movl
movl
movl
cmpl
Jje
jle
subl
Jmp
subl
Jjmp
leave
ret

%ebp
%esp,%ebp

#

8(%ebp) ,%eax #
12(%ebp) ,%edx #

%edx,%eax
.L3
L5
%edx,%eax
L8
%eax,%edx
L8

#
#
#
#

#

Save BP

Load a from stack
Load b from stack

while (a != b)

if (a < b)
a-=>b
b -= a

Restore SP, BP

Describing Tokens

Alphabet: A finite set of symbols

Examples: {0,1}, {A, B, C, ..., Z}, ASCII, Unicode
String: A finite sequence of symbols from an alphabet
Examples: € (the empty string), Stephen, afy
Language: A set of strings over an alphabet

Examples: ¢ (the empty language), {1, 11,111, 1111}, all English
words, strings that start with a letter followed by any sequence of
letters and digits

Operations on Languages

Let L={€e,wo}, M ={man, men}

Concatenation: Strings from one followed by the other
LM = { man, men, woman, women }

Union: All strings from each language

LU M = {¢, wo, man, men }

Kleene Closure: Zero or more concatenations

M*={cfUMUMMUMMM---=
{e, man, men, manman, manmen, menman, menmen,
manmanman, manmanmen, manmenman, ...}

Regular Expressions over an Alphabet

A standard way to express languages for tokens.

1. eisaregular expression that denotes {e}
2. Ifae X, ais an RE that denotes {a}
3. If r and s denote languages L(r) and L(s),

> (r) | (s) denotes L(r) U L(s)
» (r)(s) denotes {tu:te L(r),uc L(s)}
> (r)* denotes U L' (L° = {e} and L' = LL'™")

Nondeterministic Finite Automata

1. Set of states

“All strings containing an S:{ @ @ }

even number of 0'sand 1’s”

N

Set of input symbols X : {0, 1}
3. Transition function o : S x £, — 25
state ‘ e 0 1

A | o (B} {C
B | ¢ {A} (D}
C |o {D} {4
D | ¢ {Ct (B}

4. Start state sg :
5. Set of accepting states F : {}

The Language induced by an NFA

An NFA accepts an input string x iff there is a path from the start
state to an accepting state that “spells out” x.

Show that the string “010010” is accepted.

Translating REs into NFAs

a H(}—a>C>> Symbol

rr (ﬁ@ Sequence

r|r Choice

Translating REs into NFAs

Example: Translate (a | b)* abb into an NFA. Answer:

D4EE1W)

Show that the string “aabb” is accepted. Answer:

ULV OEONOROSOSOK

Simulating NFAs

Problem: you must follow the “right” arcs to show that a string is
accepted. How do you know which arc is right?

Solution: follow them all and sort it out later.

“Two-stack” NFA simulation algorithm:

1. Initial states: the e-closure of the start state
2. For each character c,

» New states: follow all transitions labeled ¢
» Form the e-closure of the current states

3. Accept if any final state is accepting

Simulating an NFA: -aabb, Start

— 0 %®) @) %0

Hb
€ 6 €
b

€

Simulating an NFA: a-abb

wa b
b

€

Simulating an NFA: aa-bb

wa b
b

€

Simulating an NFA: aab-b

Simulating an NFA: aabb-, Done

Deterministic Finite Automata

Restricted form of NFAs:

» No state has a transition on €

» For each state s and symbol q, there is at most one edge
labeled a leaving s.

Differs subtly from the definition used in COMS W3261 (Sipser,
Introduction to the Theory of Computation)

Very easy to check acceptance: simulate by maintaining current
state. Accept if you end up on an accepting state. Reject if you end
on a non-accepting state or if there is no transition from the current
state for the next symbol.

Deterministic Finite Automata

{
type token = ELSE | ELSEIF

rule token =
parse "else" { ELSE }
| "elseif" { ELSEIF }

Deterministic Finite Automata

{ type token = IF | ID of string | NUM of string }

rule token =
parse "if" { IF }
| [’a’-’z’] ['a’-’z’ ’0’-"9’]% as 1it { ID(lit) }
as num { NUM(num) }

| [105_19!]+

Building a DFA from an NFA

Subset construction algorithm

Simulate the NFA for all possible inputs and track the states that
appear.

Each unique state during simulation becomes a state in the DFA.

Subset construction for (a | b)*abb

Subset construction for (a | b)*abb

Subset construction for (a | b)*abb

Subset construction for (a | b)*abb

Subset construction for (a | b)*abb

Result of subset construction for (a | b)*abb

Is this minimal?

Ambiguous Arithmetic

Ambiguity can be a problem in expressions. Consider parsing

3-4+%2+5
with the grammar

e—e+ele—elexele/e|N

VANNVAN oSN
/ / \ - + /\
\ 5 /\ /\ 4 +

/\ /\ 3 42 5 /\
2 5

/\
* 5
/\
+ o2

/\
3 4

Operator Precedence

Defines how “sticky” an operator is.

17‘:2+3~k4

+
* at higher precedence than +: VAR
(1%2) + (3 +4) VANEEAN
1 2 3 4
/\
+ at higher precedence than »: * 4
/\
1 * (2 + 3) * 4 1 +
/\

2 3

Associativity
Whether to evaluate left-to-right or right-to-left

Most operators are left-associative

1-2-3-4

/\ /\

N\ A

A /\
/\ /\
1 2 3 4
(1-2)-3)—4 1-(2-(3-4))

left associative right associative

Fixing Ambiguous Grammars

A grammar specification:

expr :
expr PLUS expr
expr MINUS expr
expr TIMES expr
expr DIVIDE expr
NUMBER

Ambiguous: no precedence or associativity.

Ocamlyacc’s complaint: “16 shift/reduce conflicts.”

Assigning Precedence Levels

Split into multiple rules, one per level

expr : expr PLUS expr
| expr MINUS expr
| term

term : term TIMES term
| term DIVIDE term
| atom

atom : NUMBER

Still ambiguous: associativity not defined

Ocamlyacc’s complaint: “8 shift/reduce conflicts.”

Assigning Associativity

Make one side the next level of precedence

expr : expr PLUS term
| expr MINUS term
| term

term : term TIMES atom
| term DIVIDE atom
| atom

atom : NUMBER

This is left-associative.

No shift/reduce conflicts.

Rightmost Derivation of Id * Id + Id

l:e—t+e [+ e
2:e—t r+1
3:t—Id ¢ t+1d
4:t—1d
Id = ¢t + Id
d«Id+Id

At each step, expand the rightmost nonterminal.

nonterminal

“handle”: The right side of a production

Fun and interesting fact: there is exactly one rightmost expansion if
the grammar is unambigious.

Rightmost Derivation: What to Expand

e

l:e—t+e rt+te
2:e—t L+
3:t—1d =t t+1d
4:t—1Id dxt+1d
Id = Id + Id
e
t+ e
t+t
t+1d
Id « ¢t + 1d
Id = Id + Id

Expand here 1 Terminals only

Reverse Rightmost Derivation

e
l:e—t+e t+ e
2:e—t I+ 1
3:t—1d =t t+1d
4:t—1Id Id « t + Id

Id « Id + Id
Id «Id + Id I‘d
Id«t+1d Id = ¢t
NI/
t+1d t I‘d
t+1 ‘t
r+e + e
//
e e

viable prefixes terminals

Shift/Reduce Parsing Using an Oracle

e

l:e—t+e rt+te
2:e—t L+
3:t—1d =t t+1d
4:1—1d Id « r + Id
Id«Id+Id

Id = Id + Id shift

Id «Id + Id shift

Id x Id + Id shift
Id « Id + Id reduce 4
Id x ¢ +Id reduce 3

t+1Id shift

t+1Id shift
t+1Id reduce 4
r+1 reduce 2
I+te reduce 1

e accept

stack input

Handle Hunting

Right Sentential Form: any step in a rightmost derivation

Handle: in a sentential form, a RHS of a rule that, when rewritten,
yields the previous step in a rightmost derivation.

The big question in shift/reduce parsing:
When is there a handle on the top of the stack?

Enumerate all the right-sentential forms and pattern-match against
them? Usually infinite in number, but let’s try anyway.

The Handle-Identifying Automaton

Magical result, due to Knuth: An automaton suffices to locate a
handle in a right-sentential form.

Id«Id*---+ Id*t---
Id«Id*---xId ---
fHttttte
t+t+--+t+1d
t+t+--+t+Id«Id* -+ Id* ¢
t+t+--+ 1t -

Building the Initial State of the LR(0) Automaton

e —-e

l:e—t+e
2:e—t
3:t—Id ¢

4:t—1Id

Key idea: automata identify viable prefixes of right sentential forms.
Each state is an equivalence class of possible places in productions.

At the beginning, any viable prefix must be at the beginning of a
string expanded from e. We write this condition “e’ — -¢”

Building the Initial State of the LR(0) Automaton

e —-e
e—-t+e
lie—t+e e—-t
2:e—t
3:t—Id =t
4:t—1Id

Key idea: automata identify viable prefixes of right sentential forms.
Each state is an equivalence class of possible places in productions.

At the beginning, any viable prefix must be at the beginning of a
string expanded from e. We write this condition “e’ — -¢”

There are two choices for what an e may expand to: ¢+ e and t. So
when e’ — -e, e — -1+ e and e — -t are also true, i.e., it must start
with a string expanded from t.

Building the Initial State of the LR(0) Automaton

e —-e

e—-t+e
lie—t+e e—-t
2:e—t t—-Id=*t
3:t—1Id ¢ t—-Id

4:t—1Id

Key idea: automata identify viable prefixes of right sentential forms.
Each state is an equivalence class of possible places in productions.

At the beginning, any viable prefix must be at the beginning of a
string expanded from e. We write this condition “e’ — -¢”

There are two choices for what an e may expand to: ¢+ e and t. So
when e’ — -e, e — -1+ e and e — -t are also true, i.e., it must start
with a string expanded from t.

Similarly, t must be either Id * t orId, so t — -Id * f and ¢ — -Id.

This reasoning is a closure operation like e-closure in subset
construction.

Building the LR(0) Automaton

The first state suggests a viable
prefix can start as any string
derived from e, any string derived

e —.e from ¢, or Id.

e—-t+e
SO0:e— -t

t— Idx*t

t—-Id

Building the LR(0) Automaton

“Just passed a
string derived

from ¢ The first state suggests a viable
.l .
st 4 5 prefix can start as any string
us assed a prefix . . .
e P P derived from e, any string derived
ending in a string
e — e derived from t” from ¢, or Id.
S0 e= ,;+ € t 52:¢~ t-+e The items for these three states
e — - > . .
M e—t come from advancing the - across
f—1d each thing, then performing the
closure operation (vacuous here).
'Id
t—1Id-xt
S1: /- 1Id-
“Just passed a prefix

that ended in an Id”

Building the LR(0) Automaton

e

e —-e e—t+-e
e—-t+e +
SO:e— -t t—SZ:e_'t'Jre/—‘

f— Idxt et

t—-1d

S4:

Id

Y

s1: 1~ Id- =t In S2, a + may be next. This gives
‘r—1d [+-e.

1* In S1, * may be next, giving Id * - ¢
t—Id*-t
S3:

Building the LR(0) Automaton

'Y

e
e —-e e—r+-e
e—-t+e + e—-t+e
SO:e— -t t—SZ:e_'t'+e/—‘S4:e—>-t
t— Idxt e-r r—Id =t
t—-Id t—-Id
'Id
S1: t—Id-xt In S2, a + may be next. This gives
t—1Id- t +-e. Closure adds 4 more items.
1* In S1, * may be next, giving Id * - ¢
t—Id=*-t and two others.
S3:r—-Idx=t
t—-Id

Building the LR(0) Automaton

(87: ¢ ~c]
'Y

e
e —-e e— t+-e
e—-t+e ; ot 1o + e—-t+e
SO:e— -t —SZ:e_’t‘ S4:e— -t
t—-Id=t t t—-Id=t
t—-Id t—-Id
Y Y
t—1d -+t
Sl't—»ld-
IdH*
t—Id=*-t ;
S3:r—-Idx=t S5: t—Id =t
t—-Id

The FIRST function

If you can derive a string that starts with terminal ¢ from some
sequence of terminals and nonterminals «, then ¢ € FIRST(a).

1. Trivially, FIRST(X) = {X} if X is a terminal.
2. If X — ¢, then add € to FIRST(X).
3. For each production X — Y ---, add FIRST(Y) — {¢} to FIRST(X).

If X can produce something, X can start with whatever that
starts with

4. For each production X — Y; -+ Y Z--- where € € FIRST(Y;) for
i=1,...,k, add FIRST(Z) — {€} to FIRST(X).
Skip all potential €’s at the beginning of whatever X produces

FIRST(Id) = {Id}

l:e—t+e

2:e—t FIRST(t) = {Id} because t — Id = rand ¢t — Id
3:—Id =t FIRST(e) = {Id} because e — t+ ¢, e — t, and
4:t—1Id

FIRST(?) = {Id}.

The FOLLOW function

If t is a terminal, A is a nonterminal, and --- A¢--- can be derived,
then t € FOLLOW(A).

1. Add $ (“end-of-input”) to FOLLOW(S) (start symbol).
End-of-input comes after the start symbol

2. For each production — --- Aa, add FIRST(a) — {€} to FOLLOW(A).
A is followed by the first thing after it

3. For each production A — ---B or a — --- Ba where € € FIRST(a),
then add everything in FOLLOW(A) to FOLLOW(B).
If B appears at the end of a production, it can be followed by
whatever follows that production

l:e—t+e FOLLOW(e) = {$}
2:e—t FOLLOW(?) = { }
3:t—Id xt

1. Because e is the start symbol
4:1—1Id

FIRST(¢) = {Id}
FIRST (e) = {Id}

The FOLLOW function

If t is a terminal, A is a nonterminal, and --- A¢--- can be derived,
then t € FOLLOW(A).

1. Add $ (“end-of-input”) to FOLLOW(S) (start symbol).
End-of-input comes after the start symbol

2. For each production — --- Aa, add FIRST(a) — {€} to FOLLOW(A).
A is followed by the first thing after it

3. For each production A — ---B or a — --- Ba where € € FIRST(a),
then add everything in FOLLOW(A) to FOLLOW(B).
If B appears at the end of a production, it can be followed by
whatever follows that production

l:e—t+e FOLLOW(e) = {$}
2:e—t FOLLOW(?) ={+ }
3:t—Id xt

2. Because e — t+ e and FIRST (+) = {+
4:t—1Id -) =+

FIRST(¢) = {Id}
FIRST (e) = {Id}

The FOLLOW function

If t is a terminal, A is a nonterminal, and --- A¢--- can be derived,
then t € FOLLOW(A).

1. Add $ (“end-of-input”) to FOLLOW(S) (start symbol).
End-of-input comes after the start symbol

2. For each production — --- Aa, add FIRST(a) — {€} to FOLLOW(A).
A is followed by the first thing after it

3. For each production A — ---B or a — --- Ba where € € FIRST(a),
then add everything in FOLLOW(A) to FOLLOW(B).
If B appears at the end of a production, it can be followed by
whatever follows that production

l:e—t+e FOLLOW(e) = {$}
2:e—t FOLLOW(?) ={+,$}
3:t—Id xt

3. Because e — t and $ € FOLLOW(e
4:t—1d - $ (@)

FIRST(¢) = {Id}
FIRST (e) = {Id}

The FOLLOW function

If t is a terminal, A is a nonterminal, and --- A¢--- can be derived,
then t € FOLLOW(A).

1. Add $ (“end-of-input”) to FOLLOW(S) (start symbol).
End-of-input comes after the start symbol

2. For each production — --- Aa, add FIRST(a) — {€} to FOLLOW(A).
A is followed by the first thing after it

3. For each production A — ---B or a — --- Ba where € € FIRST(a),
then add everything in FOLLOW(A) to FOLLOW(B).
If B appears at the end of a production, it can be followed by
whatever follows that production

l:e—t+e FOLLOW(e) = {$}
2:e—t FOLLOW(?) ={+,$}
3:t—Id xt

Fixed-point reached: applying any rule does

4:1—1d not change any set

FIRST(¢) = {Id}
FIRST (e) = {Id}

Converting the LR(0) Automaton to an SLR Parsing Table

l:e—t+e
[sze=e] 557
.e‘ ¢ 3:t—Id *¢ State Action Goto
4:t—1d

Id + * $ e t
%50}—{\32 e—1t] 0 sl |7 2

I

From S0, shift an Id and go to S1; or
cross a t and go to S2; or cross an e
and go to S7.

Converting the LR(0) Automaton to an SLR Parsing Table

l:e—t+e
2:e—t
3:t—Id xt State Action Goto
4:t1—1d d + = $ e ¢
sl 7 2
1 4 s3 14

From S1, shift a * and go to S3; or, if
the next input could follow a ¢,
reduce by rule 4. According to rule 1,
+ could follow t; from rule 2, $ could.

Converting the LR(0) Automaton to an SLR Parsing Table
l:e—t+e
2:e—t
3:t—Id =t State Action Goto
4:t—1d

d + *= $ e t

sl 7 2

._.
-
S
w
w
=
S

From S2, shift a + and go to S4; or, if
the next input could follow an e
(only the end-of-input $), reduce by
rule 2.

Converting the LR(0) Automaton to an SLR Parsing Table

l:e—t+e

2:e—t

3:t—Id xt State Action Goto

4:t1—1d d + = $ e ¢
0 sl 7 2
1 4 s3 14
2 s4 r2

S1: t—1Id- 3 sl 5

Id

t

S5: t— Id * t- cross a t and go to S5.

From S3, shift an Id and go to S1; or

Converting the LR(0) Automaton to an SLR Parsing Table

l:e—t+e

2:e—t

3:t—Id xt State Action Goto

4:t1—1d d + = $ e ¢
0 sl 7 2
1 4 s3 14
2 s4 r2
3 sl 5
4 sl 6 2

From $4, shift an Id and go to S1; or
crossaneorat.

Converting the LR(0) Automaton to an SLR Parsing Table

l:e—t+e

2:e—t

3:t—Id ¢ State Action Goto

4:1—1d d + * $ e ¢
0 sl 7 2
1 4 s3 14
2 s4 r2
3 sl 5
4 sl 6 2
5 13 3

From S5, reduce using rule 3 if the

S5: £ — Id * t- next symbol could follow a ¢ (again,

+and$).

Converting the LR(0) Automaton to an SLR Parsing Table

l:e—t+e

2:e—t

3:t—Id ¢ State Action Goto

4:1—1d d + * $ e ¢
0 sl 7 2
1 4 s3 14
2 s4 r2
3 sl 5
4 sl 6 2
5 13 3

° r

From S6, reduce using rule 1 if the
next symbol could follow an e ($
only).

Converting the LR(0) Automaton to an SLR Parsing Table

l:e—t+e
r
: 3:t—Id ¢ State Action Goto
4:1—1d d + + §$ e ¢
0 sl 7 2
1 4 s3 14
2 s4 r2
3 sl 5
4 sl 6 2
5 13 3
6 rl
7 v

If, in S7, we just crossed an e, accept
if we are at the end of the input.

Shift/Reduce Parsing with an SLR Table

Stack Input Action

l:e—t+e

2:e—t

3:t—Id =t

4:t—1Id

State Action Goto

d + * $ e t

0 sl 7 2
1 4 s3 14
2 s4 12
3 sl 5
4 sl 6 2
5 13 13
6 rl
7 v

0 | 1d«1d+1d$ Shift, goto 1

Look at the state on top of the stack
and the next input token.

Find the action (shift, reduce, or error)
in the table.

In this case, shift the token onto the
stack and mark it with state 1.

Shift/Reduce Parsing with an SLR Table

Stack Input Action

l:e—t+e

2:e—t

3:t—Id =t

4:t—1Id

State Action Goto

d + * $ e t

0 sl 7 2
1 4 s3 14
2 s4 12
3 sl 5
4 sl 6 2
5 13 13
6 rl
7 v

Id*Id+Id$ Shift, goto 1
Id

01 | x1d+1d$ Shift, goto 3

Here, the state is 1, the next symbol is
%, so shift and mark it with state 3.

Shift/Reduce Parsing with an SLR Table

l:e—t+e

2:e—t

3:t—Id =t

4:t—1Id

State Action Goto

d + * $ e t

0 sl 7 2
1 4 s3 14
2 s4 12
3 sl 5
4 sl 6 2
5 13 13
6 rl
7 v

Stack Input Action

0 | 1d«1d+1d$ Shift, goto 1

0 Id
1 *Id+1d$ Shift, goto 3

0 Id *
13 | id+1d$ Shift, goto 1

0 Id * Id

131 | +1d$ Reduce 4

Here, the state is 1, the next symbol is
+. The table says reduce using rule 4.

Shift/Reduce Parsing with an SLR Table

Stack Input Action
l:e—~t+e O | [d«Id+1d$ Shift, goto 1
2:e—t . Id
3. t—Id 1 1 | xId+Id$ Shift, goto 3
Id *
4:1—1d 0713 | 1d+1d$ Shift, goto 1
0 Id * Id
State Action Goto 131 | +1d$ Reduce 4
Id *
d + =+ $ e t & E +1ds$
0 sl 7 2
1 r4 s3 r4 Remove the RHS of the rule (here, just
2 s4 r2 Id), observe the state on the top of the
3 sl 5 stack, and consult the “goto” portion
4 sl 6 2 of the table.
5 r3 r3
6 rl
7 v

Shift/Reduce Parsing with an SLR Table

l:e—t+e

2:e—t

3:t—Id =t

4:t—1Id

State Action Goto

d + * $ e t

0 sl 7 2
1 4 s3 14
2 s4 12
3 sl 5
4 sl 6 2
5 13 13
6 rl
7 v

Stack Input Action
0 | 1d«1d+1d$ Shift, goto 1
0 Id
1 *Id+1d$ Shift, goto 3
0 Id *
13 | id+1d$ Shift, goto 1
0 Id * Id
131 | +1d$ Reduce 4
Id * ¢
07135 | +1d$ Reduce 3

Here, we push a ¢ with state 5. This
effectively “backs up” the LR(0)
automaton and runs it over the newly
added nonterminal.

In state 5 with an upcoming +, the
action is “reduce 3.”

Shift/Reduce Parsing with an SLR Table

Action

l:e—t+e

2:e—t

3:t—Id =t

4:t—1Id

State Action Goto

d + * $ e t

0 sl 7 2
1 4 s3 14
2 s4 12
3 sl 5
4 sl 6 2
5 13 13
6 rl
7 v

Stack Input
0 | [d+1d+1d$
o 1d
1 *Id+1Id$
o 1d x
1 3 | Id+Id$
o 1dx1d
131 | +1d$
d* ¢
0135 | +1d$
t
02 | t1ds

Shift, goto 1
Shift, goto 3
Shift, goto 1
Reduce 4
Reduce 3

Shift, goto 4

This time, we strip off the RHS for rule
3,1d * t, exposing state 0, so we push a

t with state 2.

Shift/Reduce Parsing with an SLR Table

l:e—t+e

2:e—t

3:t—Id =t

4:t—1Id

State Action Goto

d + * $ e t

0 sl 7 2
1 4 s3 14
2 s4 12
3 sl 5
4 sl 6 2
5 13 13
6 rl
7 v

Stack Input Action
0 | 1d«1d+1d$ Shift, goto 1
0 Id
1 *Id+1d$ Shift, goto 3
0 Id *
13 | [d+Id$ Shift, goto 1
0 Id * Id
131 | +1d$ Reduce 4
Id * ¢
07135 | 41d$ Reduce 3
t
02 | +1d$ Shift, goto 4
t +
024 Id$ Shift, goto 1
t +1d
0241 $ Reduce 4
t + t
0242 $ Reduce 2
r + e
0246 |3 Reduce 1
e
0 7 $

Accept

Names, Objects, and Bindings

Object 4
Name 1
binding

Name 2

Name 3

Name 4

Typical Stack Layout

1 higher addresses

argument 2

argument 1

return address

old frame pointer

saved registers
local variables

temporaries/arguments

— frame pointer

— stack pointer

| growth of stack

Executing fib(3)

int fib(int n) {

L1:

L2:

L3:

int tmpl, tmp2, tmp3;
tmpl = n < 2;
if (!tmpl) goto L1;

return 1;

tmpl = n - 1;
tmp2 = fib(tmpl);
tmpl = n - 2;
tmp3 = fib(tmpl);

tmpl = tmp2 + tmp3;
return tmpl;

n=3

Executing fib(3) \

m return address e
last frame pointer e—
tmpl =2
tmp2 =
int fib(int n) { tmp3 =
int tmpl, tmp2, tmp3; n=2
tmpl = n < 2; ml}
if (!tmpl) goto L1;
return 1;
L1: tmpl = n - 1;
tmp2 = fib(tmpl);
L2: tmpl = n - 2;
tmp3 = fib(tmpl);

L3: tmpl = tmp2 + tmp3;
return tmpl;

Executing fib(3) \

n=3
return address)
last frame pointer
tmpl =2
tmp2 =
int fib(int n) { tmp3 =
int tmpl, tmp2, tmp3; n=2
tmpl = n < 2; ml}
if (!tmpl) goto L1;
return 1;
L1: tmpl = n - 1; *///////////
tmp2 = fib(tmpl);
L2: tmpl = n - 2;
tmp3 = fib(tmpl); @

L3: tmpl = tmp2 + tmp3;
return tmpl;

Executing fib(3)

int fib(int n) {

n=3 AN

int tmpl, tmp2, tmp3;

tmpl = n < 2;

return address)

last frame pointer o
tmpl =2

tmp2 =

tmp3 =

n=2

if (!tmpl) goto L1;

return 1;
L1: tmpl = n - 1;
tmp2 = fib(tmpl);
L2: tmpl = n - 2;
tmp3 = fib(tmpl);

—

FP o

L3: tmpl = tmp2 + tmp3;

return tmpl;

[SP 2

return address ~ *

last frame pointer e
tmpl =1

tmp2 =

tmp3 =

Executing fib(3)

int fib(int n) {

int tmpl, tmp2, tmp3;

tmpl = n < 2;

if (!tmpl) goto L1;

return 1;
L1: tmpl = n - 1;
tmp2 = fib(tmpl);
L2: tmpl = n - 2;
tmp3 = fib(tmpl);

n=3 N

return address)

last frame pointer
tmpl =2

tmp2 =

tmp3 =

n=2

return address

last frame poi
tmpl =
p2=1

‘///////////Unp3=

[SP 2

L3: tmpl = tmp2 + tmp3;

return tmpl;

n=0

Executing fib(3)

int fib(int n) {

L1:

L2:

L3:

int tmpl, tmp2, tmp3;

tmpl =

n < 2;

if (!tmpl) goto L1;

return
tmpl
tmp?2
tmpl
tmp3
tmpl =
return

1;

n-1; *//////,////
fib(tmpl);

n - 2;

fib(tmpl); v_ﬁ

tmp2 + tmp3;
tmpl;

n=3 AN

return address)

last frame pointer o
tmpl =2

tmp2 =

tmp3 =

n=2

[SP 4

return address

n=0

feturn address ~ *

last frame pointer
tmpl =1

tmp2 =

tmp3 =

Executing fib(3)

int fib(int n) {

int tmpl, tmp2, tmp3;

tmpl = n < 2;

if (!tmpl) goto L1;

return 1;
L1: tmpl = n - 1;
tmp2 = fib(tmpl);
L2: tmpl = n - 2;
tmp3 = fib(tmpl);

n=3 N

return address)

last frame pointer
tmpl =2

tmp2 =

tmp3 =

n=2

return address

last frame poi
tmpl =
p2=1

‘///////////Unp3=1

SP 14

L3: tmpl = tmp2 + tmp3;

return tmpl;

Executing fib(3) . \

m return address ~
last frame pointer e—
tmpl =1
tmp2 = 2
int fib(int n) { tmp3 =
int tmpl, tmp2, tmp3; n=1
tmpl = n < 2; @
if (!tmpl) goto L1;
return 1;
L1: tmpl = n - 1;
tmp2 = fib(tmpl);
L2: tmpl = n - 2;
tmp3 = fib(tmpl);
L3: tmpl = tmp2 + tmp3;

return tmpl;

Executing fib(3) \

n=3
return address e
last frame pointer
tmpl =1
tmp2 = 2
int fib(int n) { tmp3 =
int tmpl, tmp2, tmp3; n=1
tmpl = n < 2; m return address
if (!tmpl) goto L1; last frame pointér
return 1; tmpl =1
I1: tmpl = n - 1; tmp2
tmp2 = fib(tmpl); pHps3 =
L2: tmpl = n - 2; ‘ﬂ
tmp3 = fib(tmpl);

L3: tmpl = tmp2 + tmp3;
return tmpl;

Executing fib(3) \

n=3
m return address e
last frame pointer e—
tmpl = 3— result
tmp2 = 2
int fib(int n) { tmp3 =1
int tmpl, tmp2, tmp3; @
tmpl = n < 2;
if (!'tmpl) goto L1;

return 1;
L1: tmpl = n - 1;
tmp2 = fib(tmpl);
L2: tmpl = n - 2;
tmp3 = fib(tmpl);

L3: tmpl = tmp2 + tmp3;
return tmpl;

Dynamic Storage Allocation

IS s
| tree D
S [T
 na1oc D

Dynamic Storage Allocation

Rules:
Each allocated block contiguous (no holes)
Blocks stay fixed once allocated

malloc()
Find an area large enough for requested block
Mark memory as allocated

free()

Mark the block as unallocated

Simple Dynamic Storage Allocation

Maintaining information about free memory
Simplest: Linked list

The algorithm for locating a suitable block
Simplest: First-fit

The algorithm for freeing an allocated block

Simplest: Coalesce adjacent free blocks

Simple Dynamic Storage Allocation

[S|N] (SN[]
malloc(-)
TN
[SIN| | HINE

/

free(+)

\>

—
ISHR s [N] |

Implementing Nested Functions with Static Links

(static link) °
a.|x=5
let a x s = s =42

let by =
let cz=2z+ s in
let d w = ¢ (w+l) in
d (y+1) in (+ b =*)
let e g = b (g+1) in

e (x+1) (* a =)

What does “a 5 42” evaluate to?

Implementing Nested Functions with Static Links

(static link)
a:|x=95
let a x s = s =42
let by = o (static link)
. "lq=6
let c z =2z + s in

let d w = c (w+l) in
d (y+1) in (= b =*)
let e g = b (g+1) in

e (x+1) (* a =)

What does “a 5 42” evaluate to?

Implementing Nested Functions with Static Links

(static link) °

a:|x=5

let a x s = s =42
let by = o (static link)

Hq=6

let c z =2z + s in

let d w= c (w+l) in b: (Stat7ic link)
y =

d (y+1) in (+ b =*)
let e g = b (g+1) in

e (x+1) (» a =)

What does “a 5 42” evaluate to?

Implementing Nested Functions with Static Links

(static link) °
a:|x=5
let a x s = s =42
let by = o, | (static link)
q) q-= 6
let c z =2z + s in
let d w = c (w+l) in b (static link)
Hy=7
d (y+1) in (+ b %)
let b Cel) J. | (static link) 4
et e g q in we8
e (x+1) (* a =)

What does “a 5 42” evaluate to?

Implementing Nested Functions with Static Links

(static link) °

a:|x=5

let a x s = s =42
let by = o (static link)

Hq=6

let c z =2z + s in

let d w= c (w+l) in b: (stat71c link)
y =

d (y+1) in (= b =)

(static link) 4

let =b 1) i d:
et e g (g+l) in w=8

e (X+l) (:‘r a :':)

(static link)
What does “a 5 42” evaluate to? z=9

Static vs. Dynamic Scope

program example;
var a : integer; (+ Outer a =)

procedure seta;
begin

a := 1 (x Which a does this change? =)

end

procedure locala;
var a : integer; (» Inner a *)
begin
seta
end

begin
a = 2;
if (readln() = ’b’)
locala
else
seta;
writeln(a)
end

	The Midterm
	Structure of a Compiler
	Scanning
	Languages and Regular Expressions
	NFAs
	Translating REs into NFAs
	Building a DFA from an NFA: Subset Construction

	Parsing
	Resolving Ambiguity

	Rightmost and Reverse-Rightmost Derivations
	Building the LR(0) Automaton
	FIRST and FOLLOW
	Building an SLR Parsing Table
	Shift/Reduce Parsing

	Name, Scope, and Bindings
	Activation Records
	Static Links for Nested Functions

