Optical Mouse Scanner

CSEE4840: Embedded Systems Design

David Calhoun Kishore Padmaraju Serge Yegiazarov

An Overview

- Our project was...
 - Relatively balanced in terms of SW/HW.
 - Relatively simple in terms of HW.
- Our project has become...
 - Much more HW than SW because of speed concerns.
 - More UI and visual aid-centric.
- Systems engineering played a key role, since both HW and SW are largely indispensable.
- Reverse engineering was heavily used, as the ADNS-2051 datasheet needed to be converted entirely into usable logic.

Inside the FPGA: RTL Viewer

GPIO I/O

The Architecture: As We Designed It

SRAM I/O

Compilation Report

<	Compilation Report - full_project	
Table of Contents	Flow Summary	
Table of Contents Image: Flow Summary Image: Flow Settings Image: Flow Non-Default Global Settings Image: Flow Non-Default Global Settings Image: Flow Collapsed Time Image: Flow OS Summary Image: Flow Log Image: Prove Settings Image: Flow Flow Settings Image: Flow Log Image: Flow Flow Flow Settings Image: Flow Flow Settings Image: Flow Flow Flow Settings Image: Flow Flow Settings Image: Flow Flow Flow Settings Image: Flow Flow Flow Settings Image: Flow Flow Flow Flow Flow Flow Flow Flow	Flow Summary Flow Status Quartus II 32-bit Version Revision Name Top-level Entity Name Family Device Timing Models Total logic elements Total combinational functions	Successful - Thu May 16 09:44:02 2013 12.1 Build 177 11/07/2012 SJ Web Edition full_project full_project Cyclone II EP2C35F672C6 Final 3,235 / 33,216 (10 %) 3,060 / 33,216 (9 %)
 TimeQuest Timing Analyzer EDA Netlist Writer 	Dedicated logic registers Total registers Total pins Total virtual pins Total memory bits Embedded Multiplier 9-bit elements Total PLLs	1,407 / 33,216 (4 %) 1407 424 / 475 (89 %) 0 115,712 / 483,840 (24 %) 0 / 70 (0 %) 0 / 4 (0 %)

- Image storage and aggregation memory
 - Internal to FPGA using ALTSYNCRAM megafunction
 - Actual memory storage uses 128*128*6 + 16*16*6*4 = 104448 bits
 - Compilation reports 115,712 bits, which means some other bits were used for other peripheral registers

Image Acquisition and Aggregation

Software Implementation

- We had implemented this algorithmic version to test the optical processor
- □ Works, but very slow

Algorithmic Procedure

- 1. Polls for Mouse motion
- 2. Retrieve coordinates of movement
- 3. Retrieve image from mouse

Finite State Machine

- Implemented as an FSM with 75 states
- Runs much faster than software implementation

Mouse Optical Processor (ADNS-2051) interfaced using SPI protocol

- □ SCLK line always driven by FGPA
- □ Control of SDIO line toggled during read/write operations
- Additional PD (power-down) line was required to initialize and resync communication

Datasheet Waveforms

Simulated Waveforms

 ▼	Msgs			
 SCLK SDIO 	1			

Captured Waveforms using Logic Analyzer

Software

- The software performs/assists with the following tasks:
 - Coordinates the left/right click functionality.
 - Ensures new samples are unique.
 - Performs aggregation by telling hardware where to write the next samples.
 - Coordinates the location/color of highlight box.
 - Checks various boundary conditions and allows for/tracks out of bounds traversal.

Ensuring Uniqueness

- Read 16 bit "select number" from hardware on every loop iteration.
- If this number is equivalent to the last such number, ignore and continue to next iteration.
- If it's not equivalent, figure out which portion of the value differs, and write that to the hardware's "read select".
- This value determines the next sample.

Aggregation

- Since deltaX and deltaY are relative movement coordinates, software needs to keep track of absolute coordinates.
- Reads deltaX and deltaY, adds them to global position, checks boundaries, and writes back.
- The value written back is normalized to the following form in order to map to RAM: ycoordinate+(xcoordinate*128)

Boundary Checking

- Firstly, checks when user is about to leave boundaries and warns with red box.
- Secondly, allows out of bounds traversal.
- Thirdly, tracks the out of bounds movement by moving red box along edge.
- Prevents strange bugs (such as splitting and syncing) with some corner case handling.

Experiences

- Power of the ADNS-2051
 - Or lack thereof...
 - dx and dy are calculated based on an image gradient, but they are also rounded arbitrarily
 - Consider dx of 0.625 => 1
 - This skews the image, although it provides sensitivity for mouse movement
 - Image blurring adds skew
 - Quick movements are not supported

Slow Movement

Fast Movement

- Hardware interfacing is simple using the DE2
 - Several ways to approach this project
 - Could have created our own microprocessor core
 - Set up digital I/O pins (GPIO) with buffers, multiplexers, etc. for communicating with the mouse
 - Same memory on FPGA still required
 - This would enable a "fully software-defined" implementation
- Timing diagrams are a good aid, however...
 - They do not always reflect what will happen in real time
 - Simulation vs. synthesizable
 - Heed the warnings given by Quartus II
 - Jitter
 - Latches
 - Timing concerns, etc.

ADNS-2051 Optical Processor, Agilent/Avago Technologies

Issues Experienced

- Timing and synchronization
 - Image acquisition and software control are difficult to synchronize
 - Need to remove bottlenecks in software to get smooth acquisition and aggregation
 - It's hard to determine the response time of software with respect to our clock speed on the FPGA (our queue system helped resolve any issues we would face from this issue)
- State machine
 - Specification
 - Need to consider all conditions outlined in ADNS-2051 datasheet
 - Timing required between sending and receiving commands
 - Timing required between different types of commands
 - Layout of the state machine in an efficient way
 - Toggling Power-Down pin in order to reset and synchronize the serial communication
 - Timing
 - Data handling (outputs, changes) based on state changes vs. clock pulses
 - Simulations showed perfect behavior, actual communication generated by FPGA completely wrong [cannot trust simulation, had to use logic analyzer to verify what was going on]