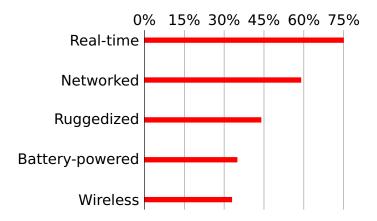
Embedded System Design

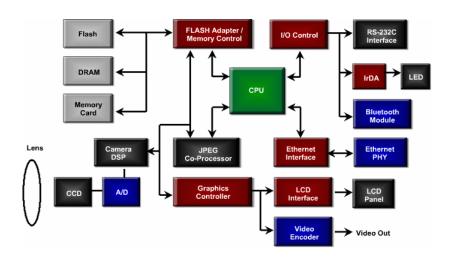
Stephen A. Edwards

Columbia University

Spring 2013

Spot the Computer


Embedded Systems: Ubiquitous Computers


Is Your Current Embedded Project...

0%	159	% 30	0%	45%	60%	75%
Real-time						
Networked						
Ruggedized						
Battery-powered						
Wireless						

Is Your Current Embedded Project...

Digital Camera Block Diagram

Design An Optimal Device that Meets Constraints On

Price

Functionality

Performance

Size

Power

Time-to-market

Maintainability

Safety

Embedded System Technologies

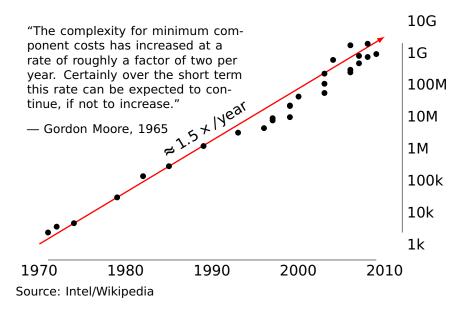
Integrated Circuits

Processing elements

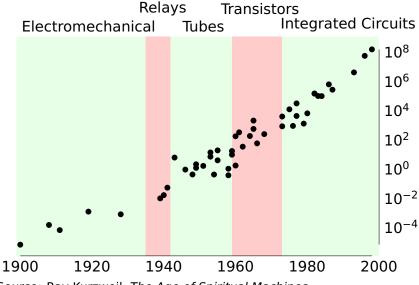
IC Technology

1947: First transistor (Shockley, Bell Labs)

1958: First integrated circuit (Kilby, TI)



1971: First microprocessor (4004: Intel)



Today: eight wire layers, 45 nm features

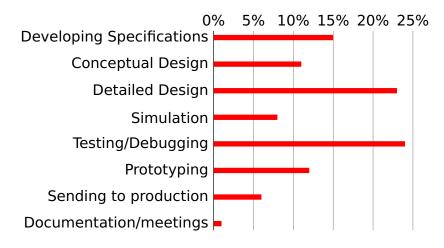
Moore's Law: Transistors per chip



\$1000 Buys You This Many Cycles per Second

Source: Ray Kurzweil, The Age of Spiritual Machines

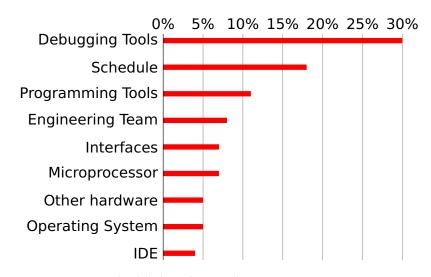
1918 Sears Roebuck Catalog



From Donald Norman, The Invisible Computer, 1998.

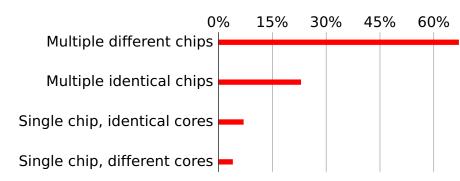
What Percentage of Time Do You Spend...

0%	%	5%	10%	15%	20%	25%
Developing Specifications						
Conceptual Design						
Detailed Design						
Simulation						
Testing/Debugging						
Prototyping						
Sending to production						
Documentation/meetings						


What Percentage of Time Do You Spend...

If You Could Improve One Thing...

0% Debugging Tools	5%	10%	15%	20%	25%	30%
Schedule						
Programming Tools						
Engineering Team						
Interfaces						
Microprocessor						
Other hardware						
Operating System						
IDE						


If You Could Improve One Thing...

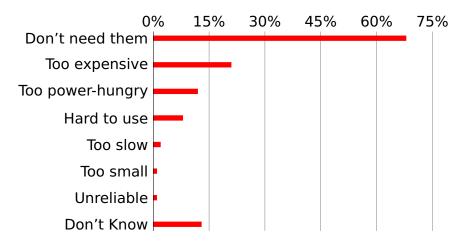
If Your System Has More Than One Processor, Does It Use...

0.	% 15	5% 30	0% 45	5% 60	%
Multiple different chips					
Multiple identical chips					
Single chip, identical cores					
Single chip, different cores					

If Your System Has More Than One Processor, Does It Use...

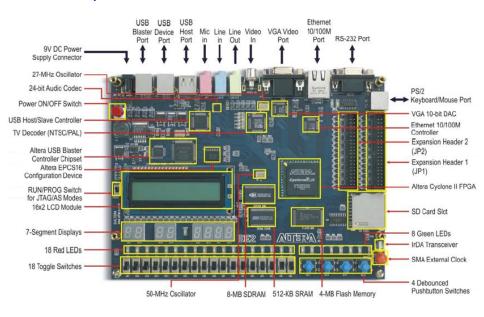
Does Your Current Project Contain FPGAs?

Does Your Current Project Contain FPGAs?


45% Yes

55% No

Why Won't Your Next Project Use FPGAs?


09	% 15 %	6 30%	45%	60%	75%
Don't need them					
Too expensive					
Too power-hungry					
Hard to use					
Too slow					
Too small					
Unreliable					
Don't Know					

Why Won't Your Next Project Use FPGAs?

Your Nemesis: The Altera DE2

DE2 Peripherals

Class Structure

Three Introductory Labs: 2 weeks each

- 1. Access, modify, and display memory in VHDL
- 2. An Ethernet chat client (software only)
- 3. Either
 - an FM audio synthesizer; or
 - a video bouncing ball.

The project: **Design-your-own**

Custom Project Ideas

Broadly: C + VHDL + peripheral(s)

Video game (e.g., Pac-Man)

Video effects processor

Digital photo frame

Very fancy digital clock

More Ideas

Digital tone control

Real-time audio spectrum analyzer

Internet radio

Speech Synthesizer

MIDI synthesizer

Line-following robot with video vision

SAE student vehicle telemetry system

Stereo video vision system

Internet video camera

Pac-man-like video game

Scrabble Timer

Scorched Earth

SAE Auto Shifter

Internet Radio Broadcaster

3D Maze Game

VoIP Telephone

JPEG decoder

Rally-X video game

Video-guided Lego Robot

360° camera de-warper

Videogame with accelerated line-drawing

Voice recorder

JPEG decoder

Pac-Edwards

Button Hero Videogame

Digital Picture Frame: SD card with JPEG to VGA

Networked game of Clue

Conway's Game of Life (60 gps)

Real-time ray tracer

Video-camera-controlled pool game

Real-time video decryption

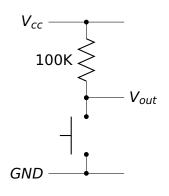
WiiMote-controlled maze game

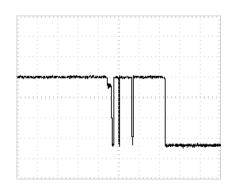
Lightsaber video overlay

Networked Video Phone

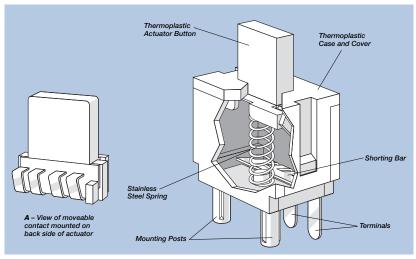
Sound-controlled videogame

Visual object tracker


The Three Main Challenges of Embedded Systems

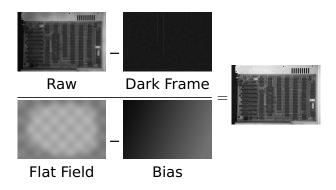

- Coping with Real-world Sensor Data
- Algorithm Design
- Implementation Details

What Does this Circuit Do When You Press the Switch?



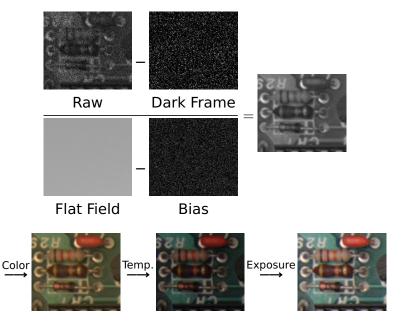
What Does this Circuit Do When You Press the Switch?

Inside a Pushbutton Switch



Source: Cherry CS series data sheet

Raw Data from a CCD (zoomed in)


Corrected Image (zoomed in)

Correcting Data from CCDs

Correcting Data from CCDs

Where Does This Noise Come From?

Digital camera sensors are remarkably sensitive.

My high-end Nikon D300 has a 23.6 mm \times 15.8 mm 12.3 megapixel CMOS sensor whose pixels are 5.5 μ m on a side. When each pixel is sampled with the 12-bit A/D converter, the sensor efficiency is

ISO:	LO	200	400	800	1600	3200
G	7.1	5.5	2.7	1.3	0.65	0.33
В	5.8	4.6	2.3	1.1	0.55	0.27
R	4.7	4.5	2.2	1.1	0.54	0.26

The units: *electrons per ADU* (digital unit).

Emil Martinec, A comparison of the Nikon D300 and Canon 40D sensors, 2007.

Development Plan

- 1. Obtain some representative raw sensor data
- 2. Develop an algorithmic prototype using your favorite language (e.g., Java, C, Matlab)
- 3. Plan how to implement it
- 4. Implement while constantly testing