
Design Review: Reception, Processing, and Display of Stock Market

Data Using the Solarflare SFA6900 FPGA Board

Team Name: We Love Money
Naman Parashar (np2437), Miles Sherman (ms4543), Pranav Sood (ps2729), Kevin Wong (kw2500),

and Art Iakovlev (ai2283)

March 26, 2013

1 Overview

As was discussed in class, a major obstacle for stock markets around the world is the management of market data
that is continuously growing in quantity and complexity. Classically, the transmission, receipt, and processing of
this data has been handled by software. However, because of the exponential growth in data as well as latency
requirements, hardware is quickly making its way into the industry. The most notable example of this would be
the way data is transmitted from the NASDAQ stock exchange. The NASDAQ currently transmits market data
both from classical software platforms and more recently from a high speed FPGA platform for extremely low
latency.

For our project, we plan to utilize the Solarflare AoE FPGA card to design a system to receive stock market
data, log it in real time, and broadcast the data (to an x86 software we will develop). Thanks to this new card,
which can receive and transmit data at up to 10Gbits/s, we will be able to maintain the L3 market data book
for a number of stock symbols in real time (assuming access to real time NASDAQ market data as provided by
David Lariviere, otherwise the market data stream will be simulated based on previous market snapshots), build
a human-readable L2 book for each stock symbol we track, and output the information to a broadcast.

An L3 market book maintains up to date information on every open order associated with a certain stock.
Each order contains information such as ticker symbol, order reference number, order price, bid or ask indicator,
and order size (number of shares).

An L2 market book references the L3 book and maintains up to date information on the status of every
stock in a certain exchange. For each stock, this information includes ticker symbol, the last traded price, and
information regarding a limited number of bid and ask price levels.

2 Functionality

The high level block diagram of our design can be seen in Figure 1.
Data will initially be inputted in an 8-byte wide stream to the packetizer module. This module strips the IP

header and feeds the UDP payload to the next module. The MoldUDP packetizer module will do a number of
things. First, it will strip the Nasdaq MoldUDP header which contains information on the payload length as well
as the number of messages contained within the payload. It will then parse the MoldUDP payload into individual
24-byte Nasdaq ITCH formatted messages. Each time a message is accumulated, it outputs it on a 24-byte wide
bus to the L3 Book Builder module. This module controls the sorting and organization of the L3 Book RAM. The
message is passed to the correct location in the L3 RAM and an enable signal is also fed to the L2 Book Builder
module. The L2 book builder module grabs any changes in the L3 book and updates the necessary locations in
the L2 Book RAM. Finally, the broadcaster is a simple x86 software that reads the L2 Book RAM and displays
the information on the host client’s monitor for human access.

1



Packetizer MoldUDP 
Packetizer & Parser L3 Book Builder

L3 Book RAM

L2 Book BuilderL2 Book RAMBroadcaster (simple 
software for output)

Data In
(1-Byte Wide)

UDP Packet 
Transmission (1-

Byte Wide)

ITCH Message 
Transmission (24-

Bytes Wide)

M
es

sa
ge

 
Tr

an
sm

is
si

on
 (2

4-
By

te
s 

W
id

e)

Ad
dr

es
s 

(3
2-

By
te

s 
W

id
e)

L2
 E

na
bl

e

Ad
dr

es
s 

(3
2-

By
te

s 
W

id
e)

M
es

sa
ge

 
Tr

an
sm

is
si

on
 (2

4-
By

te
s 

W
id

e)

L2 Book (TBD 
Bytes

Address (32-Bytes)

L2 Book (184 
Bytes

Address (32-Bytes)
To GUI

Figure 1: Top Level Block Diagram

3 Memory Requirements

Our system will require two significant blocks of memory, the L3 Book RAM and the L2 Book RAM. We plan to
implement these two blocks using the on-chip memory of the Stratix V FPGA chip. The total memory is on the
order of 7MB which should suffice if we limit the number of stocks we track.

The L3 Book RAM will have the largest size requirement because it must maintain every open order for each
tracked stock. While the exact memory requirements for this block will be determined by the amount of activity
during a certain day for the chosen stocks, we can make an estimate. In addition, we have determined the exact
structure of the memory including the width of the array. Figure 2 shows an example of how the memory will be
organized. This configuration will require a RAM array that is 352 bits wide (22 bytes for the bid columns and
22 bytes for the ask columns). We estimate that if we track three low-volume stocks, the L3 book for each stock
will reach a maximum of 5k bid or ask orders. This would give us a total requirement of 1.76Mb for the L3 Book
RAM.

2



Address Bid(Order(Number Bid(Stock Bid(Price Bid(Shares Ask(Order(Number Ask(Stock Ask(Price Ask(Shares
0 100 AAPL 449 400 200 AAPL 451 267
1 105 AAPL 449 200 210 AAPL 451 133
2 234 AAPL 449 600 468 AAPL 451 400
3 521 AAPL 449 235 1042 AAPL 451 157
4 539 AAPL 448 544 1078 AAPL 451 363
5 956 AAPL 448 582 1912 AAPL 452 388
6 42 AAPL 447 2745 84 AAPL 452 1830
7 595 AAPL 447 833 1190 AAPL 452 555
8 582 AAPL 447 348 1164 AAPL 453 232
9 4 AAPL 447 830 8 AAPL 454 553
10 282 AAPL 446 929 564 AAPL 454 619
11 590 AAPL 446 729 1180 AAPL 454 486
12 820 AAPL 445 575 1640 AAPL 455 383
13 950 AAPL 444 822 1900 AAPL 455 548
14 99 AAPL 444 272 198 AAPL 455 181
15 2 AAPL 444 999 4 AAPL 455 666
16 456 AAPL 444 482 912 AAPL 455 321
17 929 AAPL 444 2000 1858 AAPL 456 1333
18 485 AAPL 444 100 970 AAPL 456 67
19 582 AAPL 444 2000 1164 AAPL 456 1333
20 100 GOOG 449 400 200 GOOG 451 267
21 105 GOOG 449 200 210 GOOG 451 133
22 234 GOOG 449 600 468 GOOG 451 400
23 521 GOOG 449 235 1042 GOOG 451 157
24 539 GOOG 448 544 1078 GOOG 451 363
25 956 GOOG 448 582 1912 GOOG 452 388
26 42 GOOG 447 2745 84 GOOG 452 1830
27 595 GOOG 447 833 1190 GOOG 452 555
28 582 GOOG 447 348 1164 GOOG 453 232
29 4 GOOG 447 830 8 GOOG 454 553
30 282 GOOG 446 929 564 GOOG 454 619
31 590 GOOG 446 729 1180 GOOG 454 486
32 820 GOOG 445 575 1640 GOOG 455 383
33 950 GOOG 444 822 1900 GOOG 455 548
34 99 GOOG 444 272 198 GOOG 455 181
35 2 GOOG 444 999 4 GOOG 455 666
36 456 GOOG 444 482 912 GOOG 455 321
37 929 GOOG 444 2000 1858 GOOG 456 1333
38 485 GOOG 444 100 970 GOOG 456 67
39 582 GOOG 444 2000 1164 GOOG 456 1333

Figure 2: L3 Book RAM Configuration

The L2 Book RAM will have a much smaller size requirement and this requirement will be fixed depending
on the number of tracked stocks as well as the number of bid and ask price levels outputted. The L2 Book RAM
will be 184 bits wide and will be configured according to Figure 3 and its size will be determined by

L2 RAM Size Requirement =
(Number of Tracked Stocks) ∗ (1 + 2 ∗ (Number of Tracked Bid/Ask Levels)) ∗ 184 bits.

For a system tracking 3 stocks with 10 levels of bid/ask pricing, this will result in an L2 Book RAM memory
requirement of only 11kb.

3



Address Field Stock Price #0of0Orders
0 Last&Trade AAPL 450 X
1 Ask&Level&10 AAPL 460 200
2 Ask&Level&9 AAPL 459 600
3 Ask&Level&8 AAPL 458 235
4 Ask&Level&7 AAPL 457 544
5 Ask&Level&6 AAPL 456 582
6 Ask&Level&5 AAPL 455 2745
7 Ask&Level&4 AAPL 454 833
8 Ask&Level&3 AAPL 453 348
9 Ask&Level&2 AAPL 452 830
10 Ask&Level&1 AAPL 451 929
11 Bid&Level&1 AAPL 449 729
12 Bid&Level&2 AAPL 448 575
13 Bid&Level&3 AAPL 447 822
14 Bid&Level&4 AAPL 446 272
15 Bid&Level&5 AAPL 445 999
16 Bid&Level&6 AAPL 444 482
17 Bid&Level&7 AAPL 443 2000
18 Bid&Level&8 AAPL 442 100
19 Bid&Level&9 AAPL 441 2000
20 Bid&Level&10 AAPL 440 400
21 Last&Trade GOOG 450 X
22 Ask&Level&10 GOOG 460 200
23 Ask&Level&9 GOOG 459 600
24 Ask&Level&8 GOOG 458 235
25 Ask&Level&7 GOOG 457 544
26 Ask&Level&6 GOOG 456 582
27 Ask&Level&5 GOOG 455 2745
28 Ask&Level&4 GOOG 454 833
29 Ask&Level&3 GOOG 453 348
30 Ask&Level&2 GOOG 452 830
31 Ask&Level&1 GOOG 451 929
32 Bid&Level&1 GOOG 449 729
33 Bid&Level&2 GOOG 448 575
34 Bid&Level&3 GOOG 447 822
35 Bid&Level&4 GOOG 446 272
36 Bid&Level&5 GOOG 445 999
37 Bid&Level&6 GOOG 444 482
38 Bid&Level&7 GOOG 443 2000
39 Bid&Level&8 GOOG 442 100
40 Bid&Level&9 GOOG 441 2000
41 Bid&Level&10 GOOG 440 400

Figure 3: L2 Book RAM Configuration

4



4 Critical Path

Our design has a number of small bottlenecks and one large bottleneck. The two most significant small bottlenecks
are the accumulation of ITCH messages at the output of the MoldUDP packetizer and the refreshing of the L2
book. The large bottleneck is the algorithm to find the correct address for new orders added to the L3 Book (this
takes place in the L3 Book builder). As a result of these bottlenecks, our critical data path is as follows (this is
for an add-order operation):

Data In→ Data To MoldUDP Packetizer →Message Accumulates→Message To L3 Builder →
Message Routed To Add Order Module (within L3 Builder)→ Add Order Module Runs→
Order Routed To L3 RAM → Order Read By L2 Builder → L2 Book Refreshed→
L2 Book Routed To L2 RAM → L2 Book Routed To Broadcaster

5 Module-Level Functionality

5.1 Packetizer

The packetizer module is our system’s interface to the raw incoming data (see Figure 4 for the block diagram).
The module inputs a serial connections that is one byte wide. The data first interfaces with a multiplexer that
routes the byte either to the IP Header register if it is one of the first 42 bytes of the sequence or directly to the
output (also one byte wide) if the IP header has already been striped and the byte is determined to be part of
the UDP payload.

To determine if the incoming byte is part of the header or the payload, the packetizer uses a comparator
between the byte counter’s output (the byte number of the current sequence) and the literal ’42’ (the length of
the IP header. Once the IP header is striped, the module switches the multiplexer at the input and feeds the
bytes through to the output until the sequence byte counter reaches the total which is indicated by the IP header.
Once this condition is met, the system resets and inputs the next IP Header.

5



	  	  	  	  	  	  	  Counter	  
Packet	  byte	  
number-‐	  
max	  =	  9000	  

	  	  	  	  	  	  	  Reset_all	  

	  	  	  	  	  	  	  	  	  	  	  	  	  Clk	  

	  	  	  reset	  

a	  

b	  =42	  

Comparator	  (	  a<=	  b)	  

	  	  	  MUX	  

1	  

0	  

Data_in	  1byte	  	  

Data	  1	  byte	  

Data	  

	  	  	  	  	  Enable*	  

Enable*	  
	  	  	  IP	  Header	  
	  	  	  	  	  Register	  

Payload_length	  (	  a	  )	  2bytes	  
	  	  	  	  	  	  	  	  	  	  	  Enable*	  

	  	  	  	  	  	  	  	  	  	  	  	  	  Comparator	  (	  a	  =	  b)	  
b	  	  	  	  	  	  count	  2	  bytes	  

Reset_all	  

Reset_all	  

Counter	  
(	  Payload
_length	  )	  

Enable	  *	  

Data_out	  1	  
byte	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  PACKETIZER	  

Figure 4: Packetizer Block Diagram

5.2 MoldUDP Packetizer & Parser

The MoldUDP module takes as input 1 byte of data and outputs a 24-byte long message.
The MoldUDP Header counter keeps track of the number of bytes that has been received by the module for

each UDP payload packet. Once the packet is completely received, the counter resets itself to 0. The only use
for this counter is to separate the MoldUDP header from the payload, as inferred by the comparator that the
counter feeds into only switching once per UDP packet.

Comparator 1 controls the mux which data-in directly feeds into. The purpose of this comparator and mux is
to solely separate the MoldUDP header and MoldUDP message. The length of the MoldUDP header is constant
so the comparator evaluates 20 > b, where b is the MoldUDP Header counter value. Initially, Comparator 1 will
evaluate for true as long as the header is still being loaded. When the header length is exceeded, as indicated
by the counter, the comparator output will flip and remain to 0 for the duration of the MoldUDP packet. The
comparator output also serves as an enable signal for the Message Length counter, which will be described later.

The first twenty bytes of data that enters the module will be the header of the packet and as such, will be
routed to the block labeled MoldUDP Header Register. The two bytes in the header corresponding to the total
amount of messages included in the packet will be sent to Comparator 2.

After the first twenty bytes of data is routed to the MoldUDP Header Register, the rest of the message bytes
will be sent to the MoldUDP Message Register. The first two bytes of each message contains the length of that
message, and as such will be extracted to a comparator (a = b?) which compares said value to the value of the
Message Length Counter. The output of the comparator is a single bit signal back to the MoldUDP Message

6



Register which enables the register to send the 42-byte message to the Message Compressor block.
The third byte of the MoldUDP Message Register, which indicates the message type, is fed to the Message

Type Lookup Table. The Message Type Lookup Table determines the type of message that is in the Message
Register, and send the value to the Message compressor.

The Message Length counter keeps count of the amount of bytes corresponding to a message. This is accom-
plished by disabling the counter when the MoldUDP header is being loaded, and resetting the counter back to 0
every time a message is sent out (signal controlled by Message Compressor).

The Message Compressor takes in the 42-byte message in parallel from the Message register when a message
is fully loaded into the registers (comparator a = b? evaluates to 1). The compressor also takes in the message
type and based on the message type value, crops out the unneeded portions of the message, as well as ensuring
that the message output is 24 bytes long. When the Message compressor is sends the data to the L3 Builder, it
also sends a reset signal to Message Length Counter as well as an enable signal to Message Counter.

The Message Counter keeps count of the number of messages that has been launched by the Message Com-
pressor. This counter also takes a reset signal whenever Comparator 2 becomes high, indicating that the total
amount of messages in the UDP packet has been reached.

The function of comparator 2 is to send a signal when the number of messages that the module has processed
is equal to the number of messages indicated in the MoleUDP Header (end of packet). The output signal resets
Message Counter as explained above, and also resets the MoldUDP header counter so that the next MoldUDP
packet can be read in properly.

7



Data-In (1-Byte 
Wide

Message_Out
24-Bytes Wide

Reset
MoldUDP 

Header Counter 
(max = 9000… 

max packet 
length)

Comparator 
1

a >= b?

Count (5-
bits) a

D
em

ux

Router Cntl 
(1-bit)

MoldUDP 
Header 
Register

MoldUDP 
Message 
Register

a = b?

a

Message 
Length 
Counter 

(max = 42)

Not Counter 
Enable

b

Message 
Compressor

Message 
Type Lookup 

Table

Header Data
(1-Byte)

Message 
Data

(1-Byte) Message 
Data

(42-Byte)

Message 
Counter

To
ta

l 
M

es
sa

ge
 

C
ou

nt
 (2

-
By

te
s)

Comparator 
2

a=b?

M
es

sa
ge

 
R

ea
dy

Reset

Enable

a b

R
es

et

'2
0'R

es
et

M
es

sa
ge

 
Le

ng
th

 (2
-

By
te

s)

b

Register
Out Enable

M
es

sa
ge

 
Ty

pe

Figure 5: MoldUDP Packetizer & Parser Block Diagram

5.3 L3 Book Builder

The L3 Book Builder module is an integral part of the book building process. The purpose of this module, who’s
block diagram can be seen in Figure 6 is to input a pre-parsed Nasdaq ITCH message, determine the message
type (this could be add order, remove order, modify order, transaction, etc), and perform all necessary memory
modifications to update the L3 Book RAM appropriately. The first stage of the module detects the message type
which is always contained in the first byte of the message. It strips this byte from the bus and uses a Demux
(controlled by the message type) to route the data to the appropriate submodule.

For add-order messages, the buy/sell (bid/ask) indicator is striped from the message and controls an output
signal called Ask Enable. The Ask Enable signal tells the L3 RAM whether to use the left (bid) or right (ask)
columns of the array. The new order is then passed to the add order lookup algorithm which does a number of
things. It first finds the correct address for the new order using a pseudo binary tree approach, it then shifts all
of the orders above that address up by one address in RAM, and finally it inserts the new order in the correct
position in RAM.

For delete-order messages, the message is passed directly to the remove order algorithm. This submodule first
finds the correct address of the order to be removed using the order’s reference number as a test condition for
indexing. It then shifts all orders above that address down by one, effectively removing the correct order from

8



memory. The execute-order message does the same as the delete-order message except it passes information on
the executed order to the L2-Book Builder to update the last-trade price.

For order-executed with price orders, the message is passed directly to the L2 Book Builder to update the
last-trade price. This operation is the equivalent of adding an order and immediately executing it so no action is
necessary on the L3 book.

For order-replace and order-cancel messages, we use an algorithm called the replace order algorithm. This
submodule simply finds the correct address based on the order reference number, and replaces that address with
the new order inputted if the message is for order replace. If the message is order-cancel (removing shares from
the order), then the order currently at the calculated address is read into a temporary register, the quantity of
shares is modified, and the order is written back to that same memory location.

The ports of this module interface only with other hardware modules including the MoldUDP Packetizer, the
L3 Book RAM, and the L2 Book Builder.

The pseudo codes for the three submodules in the L3 Book Builder can be seen in Figures 7, 8, and 9.

Msg_In
24-Bytes Wide

Data_Out
22-Bytes Wide

Temp_Data_In
(22-Bytes Wide)

Address (32-Bits)

Read_Enable

Write_Enable

Demux (else=0)Msg_Type

Message [1:23]

Ad
d_

O
rd

er
 (2

3-
By

te
s)

Order_Executed (13-Bytes)

Order_Executed_With_Price (17-Bytes)

Order_Cancel (13-Bytes)

Order_Delete (9-Bytes)

Order_Replace (25-Bytes)

M
ux

Bu
y/

Se
ll 

In
di

ca
to

r

'1'

'0'
Ask_Enable

Ask_Enable

New Order (22-Bytes)

Data_Out_Bus (22-Bytes)

New or Shifted Order (22-Bytes)

Book Order (22-Bytes)

Add Order 
Lookup 

Algorithm (See 
Pseudo Code 

1) Calculated Address (Either Temp or Final for New Order)

This Logic Value Tells the RAM to Use the Left (when '0') or Right (when '1') Columns of Ram

Add_Write_Enable

Remove Order 
Algorithm (See 
Pseudo Code 

2) Execution Order 
(17-Bytes to 
L2_Builder)

Replace Order 
Algorithm (See 
Pseudo Code 

3)

M
ux

'0'

New_Exec (17-Bytes)

M
ux

Read_Enable

Book Order (22-Bytes)

Shifted Order (22-Bytes)

Remove_Write_Enable

Book Order (22-Bytes)

Read_Enable

Read_Enable

Updated Order (22-Bytes)

Replace_Write_Enable

M
ux

Calculated Address (Either Temp or Final)

Calculated Address

Execute_Enable 
(To L2_Builder)

L2_Enable

Execute Enable

Figure 6: L3 Book Builder Block Diagram

9



Figure 7: Pseudo Code 1: The Add Order Lookup Algorithm

10



Figure 8: Pseudo Code 2: The Remove Order Lookup Algorithm

11



Figure 9: Pseudo Code 3: The Replace Order Lookup Algorithm

5.4 L2 Book Builder

The L2 Book Builder module is the interface between the raw sorted data of the L3 Book RAM and the L2 book
which will present data that is easily understood and utilized by the user. This module (block diagram shown
in Figure 10) has a number of inputs. First it inputs the execution order and if the execute enable signal (from
the L3 Book Builder) is high, extracts the price of the execution order and writes it to the last trade field for the
correct stock (fixed address for each stock) in the L2 Book RAM.

When execute enable is low, the L2 Builder operates as a slave to the L2 Enable signal which is sent from the
L3 Book Builder. When this signal is high, the module sweeps through all of the orders in the L3 Book for each
stock. It completely builds the updated version of the L2 book by totaling the number of orders at each price
level for each stock. This algorithm is represented in Figure 10 as the Levels for Ask/Bid submodule and can be
seen in the pseudo code of Figure 11.

Similar to the L3 Book Builder, this module interfaces only to hardware modules. These modules include the
L3 Book RAM and the L2 Book RAM.

12



Last	  Trade	  Price	  (	  4	  Bytes	  )	  

	  	  	  	  	  Ask	  Data	  22	  bytes	  

Bid	  Data	  22	  bytes	  

Address	  32	  bytes	  

Write	  Enable_L2	  

	  	  	  	  	  	  	  L2	  Enable	  

	  	  	  	  	  EE	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Execu?on	  Order	  (	  17	  Bytes	  )	  

	  	  	  	  	  	  	  MUX	  
4	  Bytes	  

Levels	  for	  Ask/	  Bid	  

22	  Bytes	  

Ask_Enable_2	  

Data_In_L3	  (	  22	  Bytes	  )	  

Read_Enable_L3	  

Address	  (	  32	  Bytes	  )	  

	  	  	  	  DE-‐MUX	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Z	  

Figure 10: Block Diagram for the L2 Book Builder

13



Figure 11: Pseudo Code 4: The L2 Book Building Algorithm (Part 1)

14



Figure 12: Pseudo Code 4: The L2 Book Building Algorithm (Part 2)

5.5 Broadcaster

This module is strictly a software module that shares the L2 Book RAM using memory-mapped IO. This software
simply reads the contents of this RAM block every five seconds or so and outputs its contents into a graphic user
interface on the host computer’s monitor. This GUI will contain information sorted by stock and then price level
for the bids and asks.

15


