M.A.S.L.
(Multi-Agent Simulation Language)

COMSW4115 Programming Languages & Translators

Final Project Report

Jiatian Li Wei Wang Chong Zhang Dale Zhao
j13930 ww2315 cz2276 dz2242

1 INEFOAUCTION ettt ettt ettt e st e s bt e e s bt e e bt e e sabeesabeeesabeesabeesneeesabeeennnes
11 Overview and MOTIVAtIONcoiiiiiiiiiiiieeeee ettt
1.2 (0] oT=Tot {1V TR

D Y V- (VT Y -{ - WU o] o - | FO PPt
2.1 Getting Started with the COmMPIlEr......cooc i

211 EnvVironmMent REQUITEMENTuiiiiiiiiiiiiieeee ettt e e e e e e s s saneee
2.1.2 Working with MASL Source Files and Compiler........cccceeevciieiiiiiee e,
2.2 WritiNg @ MASL PrOgrami. .o i ittt ettt ee eeeeeeeeeees
2.2.1 B 1] 1 Lo TR Yo 1 [e
2.2.2 Basic Data types and Variablesccoccuviiiiiiiii e
2.2.3 FUNCHIONS ettt
224) PP P PR PRPRPRPORT
2.2.5 (O F TR I 0] o =Tl £
2.2.6 Program Structures and Simulation..........ccoociiiiieiiiii e
2.3 PUtting Them All TOZEENENeeiieeeee ettt et e e e et e e e e baeeeeeanes
Computing Greatest Common DiViSOT...........cccccooirirerierieiieiieicesesesese e
2.3.1 Finding Even NUMbErs in @ LiStcooccciiiiiiee ettt e e e e e
2.3.2 ConWay’'s GaME OF Lif@...cccuiiiiecieeeecee e et

3 MASL Language Reference Manualc..eeeieiiiiiiiiie e e e rae e e s saaee e

3.1 OVEIVIBW ..iiiiiiiiiii ittt a e s s b b s e s bbb s e s saaas e e e

3.2 (0] 01771 o] 110 o L3N

............ 5

3.3 (=) (o= | M O] 1YL= 2] 4 o] o LTS 12

331 TOKens and WHiIt@SPACEScuviiiiiiiiiee e e e e sree e et e e s s bee e e sareeas 12
3.3.2 LAENEIFIEIS ettt sttt e b e sae e st s et be s 12
3.3.3 NG AY o] o SRR 13
334 COMMEBNTES ..ttt et a e s s ba e e s ebae e e sarae e e e 13
3.4 TYPES AN VAIUES .eeeeiiiiieeeeie ettt et e e st e e et e e e st e e e e s bbeaesssabeeeesnbeeeeesseeesennrenas 13
341 Data TYPeS @nd LItEralsciiiicuieie ittt sree e e e e s s nabee e s e nareeas 13
3.4.2 VATTADIES. ..t e b e e e e e e sbee e saree s 15
3.4.3 BN 12321 1= 2N 15
3.5 Lo o =13 [N 16
3.5.1 PriMArY EXPIESSIONS ..vvuiiiiiiiiiiiiiti bbb aaaa e aeaaaaaasaasneasasnsnnnnnsnnnnes 16
3.5.2 0T QY4 0 =TT (o o LSRR 16
3.5.3 L8 o= V@ oT=T =1 {0] 3N 16
3.54 L0 1 R = o] =Y (o] o PNt 16
3.5.5 F N F= Lo T a1 o] g a1 (ol @] 01T =1 o) 3PS 17
3.5.6 O Yoo T 1 O] oT=T =Y o] £ U SR 17
3.5.7 o[V 11 AV 0] o T=T - o SRR 17
3.5.8 o T=41or= T N @] o 1] =1 o] -SSP 17
3.5.9 ASSIZNMENT EXPIESSION ..eeviiiiiiiiiiiiiiiiieeee e ettt e e e e s ssitree e e e s s sssabbaaeeeessssssssnraeeeessssssnnnnns 18
3.5.10 MiSCEHANEOUS OPEIAtONS ...ceeeeuriieeieiieeeeetieeeeectte e e e ectteeeeectteeeeeetteeeeebteeeeeaseeeeeestsaaesassasaeanes 18
3.5.11 Precedence and ASSOCIAtIVITY.......uueeiiiiiiiiiiiiieeee e e e 19
3.6 FUNCEIONS ettt et e s s e e s s e e s s e e e s s enbe e e s ennrenes 19
3.6.1 DefiNiNg @ FUNCLION ..eiiiiiiee ettt et e e et e e e e eatae e e s abae e e e naseeas 19
3.6.2 INVOKING @ FUNCLION 1.eiiiiieee ettt e e rbee e e et e e e e entae e e s eabaea e e nareeas 20
3.6.3 Functions as First Class ODJECESuuiiiiiiiiiiiiie ettt e e e e 21
3.7 @SS ettt ettt ettt ettt ettt e sttt e b e bt e b e e e e b e e e b e e e s b et e R et e e R Ee e s b et e e reesreeeanree s reeesareenn 21
3.7.1 C1aSS DEFINITION. ..cetieieieeee ettt ettt ettt e et e sbeesaeesane e 22
3.7.2 MeMDBEr Variables.oo i 22
3.7.3 MEMDBEE FUNCLIONS ...ttt st sr e st sar e e e ne s 22
3.7.4 R3] 1PN 23
3.75 ACCESS CONTIOL.c.uiiiniiiiieiieee ettt sttt ettt e s b e s b e s sar e s bt e b e s meesmeesaneeneees 24

3.8 Y =1 =] 0 0 1= N 24

3.8.1 TYPES Of STALEMENTES eeeiiiieeeee e e et e e e e e e e e b e e ee e e e e e eenas 24

3.8.2 Structure of @ MASL SOUICE File...c..uuiiiieiiiieeiee ettt 26
3.8.3 Y olo] o1 PPNt 27
oY [=Tot Al o =1 o PR 27
4.1 Lo o (=Tl o 0 Yol 1-] YN 27
41.1 Planning and SPeCifiCatioNccoiiuiiiiiiiiii e 27
4.1.2 DLV] (o o7 0 =T o X SRR 27
4.1.3 =T] o = ST PP PP PUPPPPPPTTN 28
4.2 Team ReSPONSIDIITIESeeeiiiiieiciiee e e e e e e e e e e aba e e e eabeee e enreeas 28
4.3 o oY [=Totfl I T o V=1 11 V=TSR 28
4.4 Software Development ENVIFONMENTeiiiiiiiie ettt e e e aae e 29
4.5 [FoJ1=To1 f Ko = ST P PP PPPTPUPTPPROPIN 29
FAN ol YLt AU I D 1T T o T PRSP 30
5.1 Component of the MASL COMPIIEToii ittt e e e ette e e e e bae e e s e beeeaeeanes 30
.. 30
5.2 WOrk of EACh IMEMDIET ...ttt sttt sbe e s s 31
ST PlaN .ttt ettt et e s et e b e bt e e b et e s bt e e hbe e e abe e e be e e s beesbteenabeesreeenareenn 31
LESSONS LEAMNEM ...cuiiiiiiiece ettt ettt sttt et e n e r e s 41
PN] 0 =T o Vo L PSSP 42
8.1 SCANNEIIMIL .ttt ettt ettt e bt e s bt e s bt e saeesateeateebeenbeesbeesanenas 42
8.2 [T Y= o 0 o1 1Y USSR 45
8.3 1 11 1 O T OO TP PRORPPPUPRUPRRROONt 49
8.4 SEMANTIC.MI. ittt et s s e n e et e reesnee e 52
8.5 AFANSIATE.MI e et e e e 67
8.6 Lo o] LA Z=] 1o o PSSR 72

8.7 1 U 01 £ 0 | TR 75

1 Introduction
1.1 Overview and Motivation

The Agent-Based Model (ABM) describes a system where the interactions between
autonomous agents (individuals) are simulated and the global patterns and effects of
such interactions as a whole can be observed and assessed. ABMs have already been
employed in various applications including analyzing traffic congestion, modeling social
networks, predicting species populations and distributions, etc.

To facilitate building ABMs without having to start from scratch or engaging complex
domain toolkits, Multi-Agent Simulation Language, or MASL, is proposed. MASL
provides concise syntax and other convenient facilities for users to better focus on
describing and solving the problems at hand.

More specifically, our language mainly focuses on the simulation of cellular automata,
which is a specific category of ABM. The space of a cellular automaton is a discrete grid,
where agents exist in individual cells of that grid and behave according to their
observations of cells nearby.

1.2 Objective

Before discussing the objectives we expect to achieve with MASL, here is a summary of
essential elements within a single agent in an ABM.

e Properties representing its state

e Actions that may change its properties

e Connections to some other agents in the environment, which may vary over time

e Heuristic rules that trigger certain actions based on the states of other agents
connected to it

Given this, some most important objectives of designing MASL are listed below.

e Provide general programming constructs for specifying the states, actions and
decision making process of agents, so that the ABMs implemented in MASL will
not be limited to certain domains.

e Provide facilities (including succinct syntax and optimized underlying data
storage) to define and access connections among agents efficiently.

e Let the users focus on agents and their connections, and handle the details of
running simulations behind the scene.

2 Language Tutorial

2.1 Getting Started with the Compiler

2.1.1 Environment Requirement

A MASL source program will be finally compiled into a Java .class file. So a compiler of
Java 1.6 or above is required to make the MASL compiler work.

2.1.2 Working with MASL Source Files and Compiler

A MASL source program is stored in a single text file with the suffix ‘.masl’. The
toplevel of the MASL compiler, masl, can be used to compile a .masl file into a
Java .class file, or simply translate it into a .java source file.

To compile a MASL source file into a Java class, use:

masl -c masl prog.masl

The class generated will be named masl_prog, stored in the file masl_prog.class, and
you can run the program with command “java masl_prog”.

To translate a MASL source file into a Java source file, use:

masl -t masl prog.masl

The generated Java source file will be named masl_prog.java.

2.2 Writing a MASL Program
2.2.1 “Hello, world!”

Writing a “hello world” program in MASL is quite easy:

printStr (“Hello,world!”);

This line can then be put into a .masl file and get compiled and run. Though extremely
short, this program implies several important aspects of MASL, which will be
elaborated in the following sections.

2.2.2 Basic Data types and Variables

MASL comes with four data basic types - integer, double, char and bool. To define
variables of these types:

int year = 2008;
double pi = 3.14, earthZ2moon = 3.8eb5;

char letter = ‘a’;
bool flag = true, on = false;

2.2.3 Functions
Functions in MASL is just like those in the C-family languages:

bool greaterThan3 (int a) {
return a > 3;

}

A function takes zero or more arguments and optionally returns a value, and together
they characterize the interface of a function. What is different is that functions in
MASL can be stored in variables and passed around, like:

fun ((int) :bool) f = greaterThan;

somehow in the flavor of a functional language. Some natural usages of this feature
will be discussed below.

2.2.4 List

Lists will come in handy if you want to store an array of elements of the same type in
some logically related container. A list can contain any type of elements, including
functions and lists themselves.

[int] fib = [int] {1, 1, 2, 3, 5, 8, 13, 21};
[[double]] matrix = {

[double] { 1.0, 0.0, 0.0 1},

[double] { 0.0, 1.0, 0.0 }

[double] { 0.0, 0.0, 1.0 }

}i

Strings in MASL are essentially a list of characters. To define a string variable:
[char] greeting = [char] {‘h’, ‘e’, ‘1’, ‘1’, ‘o’};

which 1s equivalent to the shorthand form:

[char] greeting = “hello”;

Lists also provide some useful functions, like:

int s = fib:.size();
[int] above3 = fib:.filter (greaterThan);
[int] aboveb = fib:.filter (fun (int n) :bool { return n > 5 });

In the second, the function greaterThan () previously defined is passed into the list
function filter. This will find all elements in fib that are greater than 3, and store them
in the list above3.

Functions can not only be passed by their name - MASL also supports the concept of
function literals, which can be passed around as well, as illustrated in the third case
above.

2.2.5 Classes & Objects

Besides lists, classes fall in another category of compound types in MASL. A class can
be defined like::

class Rectangle {
double x;
double vy;
double width;
double height;

And then we can create an instance of this class 1.e. an object and access its member
variables like:

class Rectangle rl = class Rectangle();
rl.x = 0;

More sophisticated objects can have functions as member variables as well. However,
the objects cannot access scope of the class where the other members are defined.

An object can have one or more states. A state consists of a name and some code that
defines the behavior of that object under that state. For instance:

class Guard {

state Defend {
if (enemySighted()) this->Attack;
}

state Attack {
if (!enemyEliminated()) shoot();
else this->Defend;

}

bool enemySighted() { /*...*/ }
bool enemyEliminated() { /*...*/ }
}

class Guard g = class Guard():;
g->Defend;

So when a guard (represented by Guard) is in defending state (state Defend), it will
attack any enemies sighted. If it is in attacking state (state Attacking), it will keep
shooting the enemy until it is eliminated, when it will go back to defending mode again.

As shown above, setting an object into a particular state can be done by using the ->
operator. To check if an object is in a certain state, we can use:

g@Defend
which returns true if g is in state Defend, false otherwise.

The code in the current state of an object will be executed to update an object in each
step of a simulation, which will be discussed below.

2.2.6 Program Structures and Simulation

A MASL program is simply a list of statement that will be executed in order. That is
why the single line “hello world” program is able to work.

A MASL program, compiled from a single .masl source file, is essentially a MASL
simulation. A simulation contains a set of agents represented by objects in MASL, and
they will be able to communicate with each other and update themselves according to
their states throughout the simulation.

Almost everything you write in a program is the preparation for actually running the
simulation. To run a simulation, call the run() function from the top level of a program:

run (container) ;

where the argument container is a MASL list of class elements representing the agents
of the simulation. By calling this function, the program will enter an infinite loop where
the simulation described above will keep going.

2.3 Putting Them All Together

Computing Greatest Common Divisor

int gcd(int a, int b) {

if(a == b) return a;

else
if(a > b) return gcd(a - b, Db);
else return gcd(a, b - a);

2.3.1 Finding Even Numbers in a List

bool isEvenNum(int num) { return (num%2 == 0); }
[int] 1list = [int] {1, 2, 3, 4, 5, 6};

[int] evenList = list:.filter (isEvenNum) ;
for(int i : evenlist) printInt(i);

2.3.2 Conway’s Game of Life

// Define the cell in the game as a class.
class Cell {

// If the cell is alive, it will only live on with 2 or 3 live

neighbors.
state Live {

r = 0.0;

g=0.0;

b =10.0;

lastLive = live;

live = true;

int liveNeighborsNum = countLiveNeighbors (neighbors);

if (liveNeighborsNum < 2 || liveNeighborsNum > 3) {
r = 1.0;
g=1.0;
b =1.0;

this->Dead;

}

// If the cell is dead, only when exactly 3 live neighbors will render
it alive.
state Dead {

r = 1.0;

g=1.0;

b =1.0;

lastLive = live;

live = false;

if (countLiveNeighbors (neighbors) == 3) {
r = 0.0;
g = 0.0;
b =10.0;

this->Live;
}

// All neighbors of this cell
[class Cell] neighbors;

// State in last round
bool lastLive = false;
bool live = false;

// A function to used to inspect whether a cell is alive or not
bool isLive(class Cell c) {

if (c.isUpdated) {
return c.lastLive;
} else {
return c.live;
}
}

// A routine counting the number of alive neighbors.
int countLiveNeighbors([class Cell] n) {
return n:.count (islLive) ;

}

nx = 100;
ny = 100;
cellSize = 10;
interval = 100;

// Container of all cells
[class Cell] container;

// Matrix representation of all cells above
[[class Cell]] matrix;

// Initialize cells
for(int 1 = 0; 1 < nx; 1 =1 + 1) {
[class Cell] row;
for (int 3 = 0; j < ny; j =3 + 1) {
class Cell ¢ = class Cell():;
c.Xx = 1;
c.y = 3;
c->Dead;
container:.append(c) ;
row: .append(c) ;
}
matrix:.append (row) ;

}

// Initialize neighbors of each cell
for (class Cell ¢ : container) {

int x = ¢c.x;

int y = c.y;

// Index of all neighbors

[[int]] neighborIdx = [[int]]{

[int]{x - 1, yv - 1}, [int]{x - 1, y}, [int]l{x - 1, y + 1},
[int]{xl Yy -~ 1}, [int]{xl y + 1},

[int]{x + 1, yv - 1}, [int]l{x + 1, y}, [int]l{x + 1, yv + 1}
}

’

// Handle index overflow and underflow, and
// put the corresponding cell into current cell's neighbor list
for([int] list : neighborIdx) {
if(list:[0] < 0) {
list:.set (0, list:[0] + nx);
} else if (1list:[0] > nx - 1) {

list:.set (0, nx - list:[0]);
}
if(list:[1] < 0) {
list:.set (1, list:[1] + ny);
} else if (list:[1] > ny - 1) {
list:.set(l, ny - list:[11]);
}
(c.neighbors) :.append (matrix: [list:[0]]:[1list:[1]11]);

}

// Create initial pattern
[[int]] liveldx = [[int]]{[int] {1, 5}, [int]
6}, [int] {11, 5}, [int] {11, 6}, [int] {11, 7}, [int] {12, 4}, [int] {13, 3}, [int] {14,
3}, [int]1 {12, 8}, [int]{13, 9}, [int]{14, 9}, [int]l{15, 6}, [int] {17, 6}, [int] {17,
5}, [int] {17, 7}, [int]{1l6, 4}, [int]{16, 8}, [int]{18, 6}, [int]{21, 5}, [int] {21,
4}, [int]1{21, 3}, [int]{22, 3}, [int]{22, 4}, [int]{22, 5}, [int]{23, 6}, [int] {23,
[] [] [] [] [] []
[] []

{2z, 5}, [int] {1, 6}, [int]{2,

2}, [int]1 {25, 2}, {25, 1}, [int]1{25, 6}, [int] {25, 7}, [int] {35, 3}, [int] {35,
4}, [int] {36, 3},

int
int] {36, 4}};

for([int] 1 : liveIdx) {
matrix:[1:[0]]:[1:[1]]->Live;
matrix:[1:[0]]:[1:[1]].1live = true;
matrix:[1:[0]]:[1:[1]].lastlLive = true;
}

run (container) ;

3 MASL Language Reference Manual

3.1 Overview

This document serves as a formal description of the Multi-Agent Simulation Language,
or MASL. The lexicon, grammar and semantics of the core language are elaborated in
this reference. However, this document will not provide much information on the
runtime infrastructure and standard libraries for MASL. These topics will appear in
other related documents.

The chapters of this document come as follows.

Chapter 2 discusses the lexical conventions of MASL for identifiers, keywords and
comments. Chapter 3 introduces the data types of MASL. Chapter 3.1 is about the
expressions and operators. Chapter 4.1 and Chapter 5.1 focuses on functions and
classes in MASL respectively, both of which in fact share a lot of features in syntax and
behavior as basic data types. Chapter 7 discusses the control flow facilities of MASL,
and classifies different types of statements and discusses what constitutes a MASL
program. Chapter 8 provides a formal definition for the syntax of MASL using context-
free grammar.

3.2 Conventions

In this text, we will use fixed-width font for MASL code, such as:
int year = 2012;

And a serif font type different from the text for production rules:

control-flow-statement:
if (expression) statement
if (expression) statement else statement
for (expressionopt ; expressionopt ; expressionopt) statement
for (identifier : expression) statement
while (expression) statement
do statement while (expression)

With terminal symbols in bold type and non-terminal symbols in regular type.

3.3 Lexical Conventions

This chapter gives some basic knowledge of MASL lexicon. More lexical issues will be
discussed in appropriate contexts later.

Currently a MASL source program is written with ASCII only, so the characters
mentioned in the following text all refer to those in ASCII.

3.3.1 Tokens and Whitespaces

A token is a sequence of characters that specify an entity or mark a language construct
in MASL. Tokens include identifiers, literals, keywords, operators and separators, each
of which will be discussed later.

Whitespaces, including spaces, tabs and newlines, can be used to separate two adjacent
tokens. Sometimes such separation is optional, but in other cases whitespaces are
mandatory.

3.3.2 ldentifiers
An identifier is used to uniquely name an entity in MASL, such as a variable of some
basic type, a function or a class. A legal identifier is a character sequence of one or more
letters, digits or underscores, the first of which cannot be a digit. So the following 3
identifiers are legal:

month Year Matrix3x3 _message
But the following ones are not:

someone@somewhere 9lives

MASL is a case-sensitive language. So the following 3 identifiers are mutually different:

masl MASL Masl

3.3.3 Keywords

Keywords are tokens with special meanings that should be reserved. A user-defined
identifier should not be one of the MASL keywords, otherwise the compiling may end
up with errors.

All the keywords in MASL are listed below:

boolean break char continue do double else for if int class return state this
while

3.3.4 Comments

Comments are simply treated as whitespaces by the MASL compiler, but may contain
information that helps explains the code nearby. MASL supports two kinds of
comments: single-line comments and multi-line comments.

A single line comment starts with two slashes (/). The two slashes may or may not be
the first of the line, but everything that follows until the end of the line will be part of
the comment.

A multi-line comment starts with a slash and an asterisk, i.e. /¥, and the ends at the
first */ combination. The pair of /* and */ may or may not be on the same line, and
everything in between is part of the comment.

Comments may not be surrounded by quotes (), or they will become part of the string
instead of comments.

3.4 Types and Values

This chapter discusses the data types supported by MASL and the representation of
their literals, as well as how to define variables.

3.4.1 Data Types and Literals
3.4.1.1 Basic Data Types

In MASL, 5 basic data types are supported, namely integers, characters, doubles,
booleans and voids, identified using keywords int, char, double, bool and void,
respectively.

3.4.1.1.1 Integers

An integer in MASL is signed and 32-bit long, and its literal is a decimal number

consisting of one or more digits, such as:
142857

3.4.1.1.2 Characters

A character in MASL is an 8-bit ASCII character. It is written as a single character
surrounded with single quotes, e.g. ‘s’, ‘0’, ‘¢, etc.

MASL provides a few escape sequences for characters that are not easy to read on the
screen or hard to type with a keyboard, including:

\n” New line character
A\t Horizontal table character
N0 Null character

3.4.1.1.3 Floating Numbers

As for floating point numbers, MASL supports the double precision floating number
defined by IEEE 754. A double literal consists of an integer part and a fraction part
separated with a decimal point, followed by an optional exponent part, which has a
letter e or E followed by a signed or unsigned integer. The fraction part may be omitted
with the presence of the exponent, and the integer part may be omitted with the
presence of the fraction part. For instance, the following double literals are valid:

3.14
3.14e-10
0.314
.314
3el4d

3.4.1.1.4 Booleans

Booleans are used to represent the value of logical truths. There are only 2 literals for
the boolean type, i.e. true and false.

3.4.1.1.5 Void

The data type void is used to represent “nothing”. Sometimes a MASL function does not
return a value, and in this case, we say the return type of that function is void,
equivalent to saying the function returns nothing.

There is only one literal for void: void itself.

3.4.1.1.6 Lists

A list is essentially an array of elements of the same type. The literal of a list is written
as zero or more elements surrounded with a pair of curly braces, each adjacent two
separated with a comma:

At runtime, we can read, write or remove any elements of a list, and also add new
elements to a list at specified positions. These will be discussed in Section 4.11.

3.4.1.1.7 Strings

A string in MASL is essentially a list of characters. MASL provides a more convenient
way to write a string literal. That is to write a sequence of characters and surround
them with a pair of double quotes. For example:

“Goodbye, cruel world.”
3.4.1.2 Functions and Classes

Functions and classes are two other important data types of MASL. Since their features
are much more complex than these basic data types, they will be elaborated in Chapter
5 and 6 respectively.

3.4.2 Variables

Generally, a variable is a named memory block containing a value of some data type.
The syntax for defining one or more variables is as follows:

declaration:

type-specifier init-declaration-list
init-declaration-list:
init-declaration-list
init-declaration

init-declaration init-declaration-list
type identifier [= initial_valuel;

For instance, the following two statements define an integer variable and a double
variable respectively:

int x;
double y = 3.14ell;

And the following statement defines an integer list which contains 4 integers:
int[] list = {1, 2, 3, 4};
As a string is just a list of characters, the following code defines a string:

char[] str = ”"This is a string.”;

3.4.3 Type System

MASL will enforce strong and static typing rules on basic data types, functions and lists.
That is, the type check is done at compile time, and there are a lot of restrictions on
intermixing operations between different types of data to prevent runtime errors.

3.5 Expressions

This chapter classifies all forms of expressions in MASL, and gives a formal description
to each of them.

3.5.1 Primary Expressions

Primary expressions can be identifiers, literals or expressions in parentheses.

primary-expression:
identifier
literal
(expression)

3.5.2 Postfix Expressions

Postfix expressions contain operators grouping from left to right.

postfix-expression:
primary-expression
postfix-expression : [expression]
postfix-expression (argument-expression-listopt)
postfix-expression . identifier
postfix-expression :. identifier
postfix-expression @ identifier
postfix-expression -> identifier
argument-expression-list:
argument-expression
argument-expression-list , argument-expression

3.5.3 Unary Operators
Expressions with unary operators group from right to left.
unary-expression:
unary-operator cast-expression

unary-operator: one of
+-!

3.5.4 Casts Expression

Cast expressions are used to convert data of one type to another.

cast-expression:
unary-expression
(type-specifier) cast-expression

3.5.5 Algorithmic Operators

The algorithmic operators can be divided into two categories. The first category
includes multiplicative operators while the second includes additive operators.

multiplicative-expression:
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression
additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

3.5.6 Relational Operators

relational-expression:
additive-expression
relational-expression < additive-expression
relational-expression > additive-expression
relational-expression <= additive-expression
relational-expression >= additive-expression

3.5.7 Equality Operators

equality-expression
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

3.5.8 Logical Operators

logical-AND-expression:

equality-expression

logical-AND-expression && equality-expression
logical-OR-expression:

equality-expression

logical-OR-expression | | equality-expression

3.5.9 Assignment Expression

assignment-expression:
logical-OR-expression
unary-expression = assignment-expression

3.5.9.1 List Operations

3.5.9.1.1 List References

A postfix expression followed by an expression in square brackets denotes a subscripted
list reference. The first expression must have the type a list of T, where T is some type,
and the other expression must be of int type or turn out to be a list of int.

The index is 0 based, which means list[0] returns the reference to the first element in
list.

A list reference subscript has the form

postfix-expression:
postfix-expression [expression]

Some examples of getting list elements are given below:

[int] list = [int] {10, 11, 12, 13, 14, 15};
list:[1]; // Returns 11.

3.5.10 Miscellaneous Operators

There are still some operators not covered in this chapter. Below are some of them,
which will be discussed in detail in the following text.

3.5.10.1.1 Dot operator
A dot operator (.) is used to access a member of a class object.

expression:
expression . identifier

For example:
someObject.someMember;
accesses the member someMember of object someObject.

4.12.1.1 LDot operator

A LDot operator (%)) is used to access the embedded functions of a list.

expression:
expression :. identifier
For example:

somelList :. size();

3.5.11 Precedence and Associativity

The following table lists all operators with their associativity in MASL, in the order of
descending precedence from top to bottom.

Operator Associativity
(expr) [index] . left to right
! right to left

unary operator: + -
*1% left to right
+ - left to right
<<=>>= left to right
=== left to right
&& left to right
|] left to right
= right to left

3.6 Functions
3.6.1 Defining a Function

Much like defining a variable of some basic data type, a function can be defined by
assigning a function literal to a function variable. For instance:

((double, double): double) average =
((double a, double b):double) { return (a + b) / 2.0; }
in which average is the name for the function and (double, double):double is the type of

the function. The whole thing on the right side of = is a function literal:

((double a, double b) :double) { return (a + b) / 2.0; 1},

which specifies a list of parameters followed by the return type of the function
separated by a colon, and then a compound statement which will be executed when the
function is invoked.

To make programmers of C family languages more comfortable, we introduced a syntax
sugar for function definitions as illustrated below:

double average (double a, double b) { return (a + b) / 2.0; }

which is equivalent to the previous style of function definitions.

In conclusion, function definitions have the form:

declaration-statement:
type-name identifier = literal
type-name identifier (parameter-list) compound-statement

where:
type-name:

function-type
literal:

function-literal
parameter-list:
parameter , parameter-list
parameter
function-type:
(parameter-type-list) : type-name
function-literal:
(parameter-list) : type-name compound-statement
parameter:
type-name identifier
parameter-type-list:
type-name, parameter-type-list
parameter, parameter-type-list
type-name
parameter

3.6.2 Invoking a Function

To invoke a function, apply a pair of parentheses, which is considered an operator, to a
function and a list of arguments passed to it.

statement:
expression (argument-list)

where:

argument-list:
expression , argument-list | expression

An example of function invocation is shown below:

average (1.0, 2.0);
3.6.2.1 By-value vs. By-Reference

When passing basic type arguments to a function, what the function access is just a
copy of the arguments passed in. Thus, modification to the arguments inside the
function does not affect the original data.

When passing an argument which is a list, a function or a class, however, what is
actually passed is the copy of the reference to the original data. Thus the code inside a
function is able to modify the value of such an argument, but it cannot modify the
original reference itself, since what it accesses is merely a copy of that reference.

3.6.3 Functions as First Class Objects

Functions are first-class objects in MASL. That is, they can be passed as arguments to
other functions or be returned by other functions, as well as assigned to some function
variable. Thus the following MASL code snippet is allowed:

((double) :double) times (double scale) {
return (double number) :double { return number * scale; };

}
((double) :double) twice = times (2);

double processNumber (double number, (double):double functor) {
return functor (number) ;

}

Since a MASL functions cannot be modified once it is defined, even though a copy of its
reference is passed as an argument, the function passed cannot be modified by the code
in the function it is passed to.

3.7 Classes

In MASL, a class is an entity that encapsulates a set of attributes, behaviors and states,
and relates them together. A class may have different behaviors under different states,
and these behaviors may in turn access the attributes of that class or change its state.
In essence, a class in MASL is a Definitive State Automaton (DFA). Moreover, a class
must be defined in the global scope.

3.7.1 Class Definition

An class in MASL can be defined like this:

class className = {
}

The statement block surrounded by the curly braces is the body of the class, which
consists of the member variables, member functions and states of that class.

3.7.2 Member Variables

Defining a member variable uses almost the same syntax as defining a variable, except
that member variable declaration should only appear in a class body:

class A = { int number; }

To access the variable member in class A, we write:

A.number

Or

A.number = 1

A member variable is a left value. This means that we can read or overwrite the value
of a member variable.

3.7.3 Member Functions

Since the function is also considered a data type in MASL, the way we define a member
function is much the same as we define a member variable of other types.

class A = {
int number = 5;
int timesNumber (int n) {
return number * n;

}

As we can see from the code above, a member function has access to the member
variables defined in the same classes. To invoke that member function, we write:

A.timesNumber (6)

In this way, timesNumber knows that the variable number is in the class A, i.e. A.n. In
timesNumber we can also write number as this.number, with this pointing to the
hidden leading parameter which should be the class the function is called on, that is A
in this case.

3.7.4 States

Every class in MASL has a built-in automaton. A class may behave differently in
different states, and may transfer from one state to another under some conditions. A
class may have one state as its current state. During a simulation step, for each class in
the container for the simulation, the code in its current state gets executed. If a class
does not have a current state, however, all its parts will be defined, but it will not
perform any actions in subsequent simulation process.

Here is a sample that defines several states in a class.

class Warrior {

state watch { if(enemyInSight()) -> attack; }

state attack { fight(); if(!enemyInSight()) -> watch; }
boolean enemyInSight () { .. }

void fight() { .. }

-> 1s called the state transition operator, which sets the current state of the class to the
one on the right side.

You may retrieve the name of the current state of a class using its built-in variable
member state, which is a string. It is automatically updated every time the current
state of the class changes.

The current states can be set upon class creation. Thus we can write:
class Warrior {

state watch { if(liveEnemyInSight()) -> attack; }

state attack { fight(); if(!liveEnemyInSight()) -> watch; }
boolean liveEnemyInSight () { .. }

void fight() { /* Fight with a sword. */ .. }

int health = 100;

int level = 1;

int x;

int y;

The class warrior will go into watch state after creation.

3.7.5 Access Control

In MASL, all members within a class can be accessed from both inside and outside that
class. That is, all class members have a public access level.

3.7.5.1 List Functions

A list has some members that provide useful information or operations on itself.
Suppose list is a list whose elements are of type T. Then:

list.length is a member property that stores the number of elements in the list. Setting
it will have no effect.

list: filter(f) returns a sublist of list that only contains elements which meet a criterion
defined using the parameter f. f is a function of type (T):boolean. The element being
judged will be passed to it as an argument and it returns true when that element meets
the criterion, otherwise returns false.

3.8 Statements
3.8.1 Types of Statements

A statement is a basic execution unit in MASL. In general, statements are executed in
the sequence as they are written in the programs. There are several types of statements.

statement:
declaration-statement
expression-statement
compound-statement
control-flow-statement
jump-statement

3.8.1.1 Declaration Statement

Declaration statements are related to the declaration of variables. There are three
kinds of declaration statements:

declaration-statement:
basictype-declaration;
function-declaration;
class-declaration;
basictype-declaration:
basictype-specifier init-declarator-list;
init-declarator-list:
init-declarator;

init-declarator, init-declarator-list
init-declarator:

declarator

declarator = expression
function-declaration:

function identifier = type-specifier { statement };
type-specifier:

basic-type specifier

function-type-specifier

class
class-declaration:

class identifier = class-literal;

3.8.1.2 Expression Statement

Expression statements are the mostly used statement, most of which are assignments
or function calls.

expression-statement:
expression;

)

3.8.1.3 Compound Statement

In some situations, a block of statements need to be treated as a whole. Such a
statement block is called a compound statement.

compound-statement:

{ statement-list }
statement-list:

statement

statement; statement-list

3.8.1.4 Control Flow Statements

Control flow statements make the execution of statements depend on some conditions.
Such statements includes if, for and while statements.

control-flow-statement:
if (expression) statement
if (expression) statement else statement
for (expressionopt; expressionopt; expressionopt) statement
for (identifier : expression) statement
while (expression) statement
do statement while (expression)

Specifically, in the statement:

for (expressionopt-init; expressionopt-condition; expressionopt-update) statement
Any or all of the three expressions may be omitted. And if expressionopt-condition is
omitted, the condition for iteration will be forever true, creating an infinite loop.
In the other form of for-loop:

for (identifier : expression) statement

The expression should turn out to be an iterable class, i1.e. an class that can return an
iterator, such as a list. And in every iteration of the loop, a variable named with the
1dentifier will hold the value of the element pointed to by the iterator of expression.

3.8.1.5 Jump Statement

There are 3 statements in MASL that can transfer the control flow instantly to another
location.

To go on to the next iteration of the inner-most loop without executing the subsequent
code of the loop body, use the continue statement, which may only appear within the
body of a for or while loop.

To get out of the current loop immediately, use break. To return from anywhere in a
function, use return, followed by an optional return value if the type of the function
indicates one. These 3 kinds of statements all fall under the roof of jump statements.
jump-statement:

continue;
break;
return expressionopt;

A continue statement may appear only within a loop. It causes control to pass to the
loop-continuation portion of the smallest enclosing loop.

A break statement may appear only in a loop, and it will terminate the execution of the
smallest enclosing loop statement. Control will pass to the statement following the
terminated loop statement.

A function returns to its caller by a return statement. When return is followed by an
expression, the value is returned to the caller of the function. The expression is
converted, as by assignment, to the type of the return value of the function it appears in.

3.8.2 Structure of a MASL Source File

In the top level of a MASL source file, where there are no embracing parentheses, the
declaration statements, the expression statements, the control flow statements and
compound statements may appear in any order, as long as the variables in a statement

are still in its scope (see Section 7.3). These statements will be executed in sequence at
runtime.

3.8.3 Scope
3.8.3.1 Lexical Scoping

MASL supports lexical scoping for variable bindings. Thus, the scope of a variable is
effective from the end of its declaration statement till the end of the current block i.e.
the component statement it is defined in.

If a variable is defined in the head of a block, such as a variable defined in the loop-
continuation portion of a loop, or the parameter of a function, then the variable is
accessible in the entire block.

Besides, code in a block is able to access the variables defined in an outer enclosing
block. It 1s not true in reverse, however. This holds true for a state versus a class
definition, a function and the top level of a MASL source file, etc.

3.8.3.2 Class Member Accessibility

While conforming to lexical scoping rules, class member accessibility is also determined
by the way it is created. In Section 6.5 we said that when a class is built based on
another, all the members of the latter one will be copied into the former one. Thus,
when trying to access the member of a class, MASL will first check all the members
defined specifically in that class as well as the base class it is copied from. There is no
inheritance in MASL, and one member name in a class must correspond to at most one
member. If an attempt is made to write to a member with the same name as one from
the base class, that member is simply overwritten instead of being hidden.

4 Project Plan

4.1 Project process
4.1.1 Planning and Specification

After finishing the Language Reference Manual, we had a team meeting on Saturday,
29 Sep. We made an elaborate plan for the whole development process. Every Saturday
evening was chosen as the regular team meeting and we also finalized the architectural
design and devised the project development rough timeline.

4.1.2 Development

With the project plan well-defined and specified, we initiated the project immediately.
We established a repository on Github for version control and swift communication. The
whole project was divided into several modules and every teammate had definite
responsibilities. Thanks to parallel developing, the whole project progressed in a rapid
pace. And due to the great assistance from Github, every member in the team was able
to communicate and collaborate during the whole development process.

4.1.3 Testing

Several days before the presentation, all the modules are almost done and the synthesis
of the whole compiler was started. Although every member in our team paid great
attention to unit test during individual module developing, we ran into a lot of trouble
when synthesizing the whole project. It was at that moment that we all realized that
testing will never be overemphasized for a big group project development. We learned
that if the interfaces between modules were defined better from the beginning and
better unit tests were performed frequently and thoroughly, synthesis and final testing
would be performed more smoothly. Fortunately, with automated testing, we tested our
whole project thoroughly in the end.

4.2 Team Responsibilities

The following table indicates the responsibilities of each team member during the
development process:

Developer Responsibilities

Dale Zhao Overall framework, scanner, parser, AST Generation

Chong Zhang | Semantic

Wei Wang Translate

Jiatian Li Semantic

4.3 Project Timeline

Date Milestone

09-26-2012 | Project proposal completed

10-31-2012 | LRM completed with language grammar specified

11-20-2012 | Scanner and parser completed

12-05-2012 | Semantic analysis completed

12-10-2012 | Code generation completed

12-13-2012 | Testing completed, Compiler fully completed

12-18-2012 | Final report completed

4.4 Software Development Environment

MSAL is written in Objective Caml (OCaml) and Java. The whole project is developed
under Linux-based OS. Ocaml is used to develop the scanner, parser and translator.
The source code will be translated into Java source code. The simulation engine and
libraries are also written in Java.

To compile MSAL, we need the OCaml toolchain available at website:
http://caml.inria.fr/download and Java 1.6.
For version control, GitHub repository was used.

4.5 Project Log

The following table lists actual dates of significant project milestones.

Date Milestone/Feature

09-20-2012 | Project initiated

09-28-2012 | Language proposal completed

10-25-2012 | Language Reference Manual draft completed

10-28-2012 | Language convention and grammar finalized

10-29-2012 | Language Reference Manual completed

10-29-2012 | Architecture designed and teammate responsibilities specified

12-03-2012 | Interfaces between modules defined

12-10-2012 | Scanner and parser completed

12-18-2012 | Semantic analysis completed

12-18-2012 | Code generation completed

12-18-2012 | Testing completed, Compiler fully completed

12-19-2012 | Final report completed

5 Architecture Design

5.1 Component of the MASL Compiler

MASL Source

Code (.masl)
Scanner
\L Tokens
Parser
AST
Semantic Check
\L Semantically
Correct AST
Translator
\L Java Source Code
(java)

Java Compiler

!

Java Bytecode

The compiler has 5 blocks. They are scanner, parser, abstract syntax tree, semantic checker
and translator.

Scanner
The scanner transforms the MASL source code into tokens. At this stage, comments are

omitted. The scanner can also catch illegal characters. This part is written in scanner.mll
file.

Parser

The parser checks syntax correctness using tokens generated by scanner. In addition, with
these tokens the parser generates an abstract syntax tree. This part is written in
parser.mly file.

AST

AST (Abstract Syntax Tree. It is a kind of hierarchy structure whose nodes are related to
productions. It is the interface between the scanner/parser and semantic checker.

Semantic Checker

With the AST, the semantic checker checks the semantic correctness of the program. It
recursively walks over the AST and checks each node. Here are some examples of what
semantic check does. It checks whether a function returns a correct type, whether the
variables are defined before used, whether the both sides of a binary operator is legal, and
S0 on.

Translator

After passing the semantic check, it is guaranteed that the program is semantically correct.
The translator walks over the AST again and translates the each node into into
corresponding Java source code. After all nodes are visited, the translator translate the
MASL program into a Java source.

5.2 Work of Each Member

The scanner, parser and AST parts are written by Dale Zhao. Chong Zhang and Jiatian Li
work on the semantic check part. Wei Wang works on the translator.

6 Test Plan

1. Representative source language programs:

(1) Greatest Common Divisor

a. MASL Source Code:

int gcd(int a, int b) {

while (a != b) {
if (a > b) {
a=a - b;
} else {
b =Db - a;

}

return a;

printInt (gcd(2,14));
printChar ('\n');
printInt (gcd(3,15));
printChar ('\n');
printInt (gcd(99,121));
printChar ('\n');

b. Java Source Code after Translation:

public class gcdl extends MaslSimulation {

MaslFunction<Integer> gcd=new MaslFunction<Integer>() {
@Override
public Integer invoke (Object... args) {
int a = (Integer) args[0];
int b = (Integer) args[l];

{
while (a!=b) {
{
if (a>b) {

a=a-b;

b=b-a;

}
}

return a;

}

public void init () {
printInt.invoke (gcd.invoke (2,14));
printChar.invoke ('\n'");
printInt.invoke (gcd.invoke (3,15));
printChar.invoke ('\n'");
printInt.invoke (gcd.invoke (99,121));
printChar.invoke ('\n'");

}

public static void main(String[] args) {
gcdl sim = new gcdl();
sim.init () ;}

(2) Game of Life - Glider Gun

a. MASL Source Code:

// Define the cell in the game as a class.
class Cell {

// If the cell is alive, it will only live on with 2 or 3 live

neighbors.
state Live {

r = 0.0;

g = 0.0;

b =20.0;

lastLive = live;

live = true;

int liveNeighborsNum = countLiveNeighbors (neighbors);

if(liveNeighborsNum < 2 || liveNeighborsNum > 3) {
r =1.0;
g=1.0;
b =1.0;

this->Dead;

// If the cell is dead, only when exactly 3 live neighbors will render
it alive.
state Dead {

r = 1.0;

g=1.0;

b =1.0;

lastLive = live;

live = false;

if (countLiveNeighbors (neighbors) == 3) {
r = 0.0;
g = 0.0;
b =10.0;

this->Live;

// All neighbors of this cell
[class Cell] neighbors;

// State in last round
bool lastLive = false;
bool live = false;

// A function to used to inspect whether a cell is alive or not
bool isLive(class Cell c) {
if (c.isUpdated) {
return c.lastLive;
} else {
return c.live;

}

// A routine counting the number of alive neighbors.
int countLiveNeighbors([class Cell] n) {
return n:.count (isLive);

}

}

nx = 100;

ny = 100;
cellSize = 10;
interval = 100;

// Container of all cells
[class Cell] container;

// Matrix representation of all cells above
[[class Cell]] matrix;

// Initialize cells
for(int 1 = 0; 1 < nx; 1 =1 + 1) {
[class Cell] row;
for (int 7 =0; j < ny; 3 =3 + 1) {
class Cell ¢ = class Cell();
c.x = 1i;
c.y = 3J;
c->Dead;
container: .append(c);
row: .append(c) ;
}

matrix:.append(row) ;

// Initialize neighbors of each cell
for(class Cell ¢ : container) {

int x = c.x;

int v = c.y;

// Index of all neighbors

[[int]] neighborIdx = [[int]]{

[int]{x - 1, vy - 1}, [int]l{x - 1, vy}, [int]{x - 1, y + 1},
[int]{x, vy - 1}, [int]l{x, y + 1},

[int]{x + 1, v - 1}, [int]l{x + 1, v}, [intl{x + 1, y + 1}
}

’

// Handle index overflow and underflow, and
// put the corresponding cell into current cell's neighbor list
for([int] list : neighborIdx) {
if(list:[0] < 0) {
list:.set (0, list:[0] + nx);
} else if (1list:[0] > nx - 1) {
list:.set (0, nx - list:[0]);
}
if(list:[1] < 0) {
list:.set(l, list:[1] + ny);

} else if (list:[1] > ny - 1) {
list:.set (1, ny - list:[11]);
}
(c.neighbors) :.append (matrix: [list:[0]]:[1list:[1]11]);

// Create initial pattern
[[int]] livelIdx = [[int]]{[int]{1, 5}, [int
6}, [int] {11, 5}, [int] {11, 6}, [int] {11, 7},
3}, [int] {12, 8}, [int] {13, 9},
5}, [int] {17, 7}, [int] {16, 4},
4}, [int]1 {21, 3},

[[

[[

1{2, 5}, lint] {1, 6}, [int]{2,

[int]{12, 4}, [int]{13, 3}, [int]{14,

[int]{14, 9}, [int]{15, 6}, [int]{17, 6}, [int]{17,

[int] {16, 8}, [int]{18, 6}, [int]{21, 5}, [int]{21,

int] {22, 3}, [int]{22, 4}, [int]{22, 5}, [int]{23, 6}, [int]{23,

int] {25, 1}, [int]{25, 6}, [int]{25, 7}, [int]{35, 3}, [int]{35,
int] {36, 4}};

2}, [int] {25, 2},
4}, [int] {36, 3},

for([int] 1 : liveIdx) {
matrix:[1:[0]]:[1:[1]]->Live;
matrix:[1:[0]]:[1:[1]1].1live = true;
matrix:[1:[0]]1:[1:[1]].lastlLive = true;

run (container) ;

b. Java Code after Translation:

public class gliderGun extends MaslSimulation {
public class Cell extends MaslClass {
public void update() {
if ("Live".equals(_curState)) {
Live () ;
} else if ("Dead".equals(_ curState)) {
Dead () ;
} else if(true) {}
isUpdated = true;
}
private void Live () {
{
r=0.;
g=0.;
b=0.;
lastLive=live;
live=true;
int
liveNeighborsNum=countLiveNeighbors.invoke (neighbors) ;
if (liveNeighborsNum<2| |liveNeighborsNum>3) {
{

O‘dﬁ?—i
= = e

this. curState = "Dead";

} else {

}

private void Dead() {

{

b=1.;
lastLive=live;
live=false;

if (countLiveNeighbors.invoke (neighbors)==3) {
{
r=0.;
g=0.;
b=0.;
this. curState = "Live";
}
} else {

public MaslList<Cell> neighbors=new MaslList<Cell>();;

public boolean lastLive=false;

public boolean live=false;

public MaslFunction<Boolean> isLive=new MaslFunction<Boolean> ()

@Override
public Boolean invoke (Object... args) {
Cell ¢ = (Cell) args[0];

{
if (c.isUpdated) {
{

return c.lastLive;

return c.live;

{

public MaslFunction<Integer> countLiveNeighbors=new

MaslFunction<Integer> () {
@Override
public Integer invoke (Object... args) {
MaslList<Cell> n = (MaslList<Cell>) args[0];

{

return n.count (isLive) ;

public String _ curState null;
public String toString() {
return "Cell{x:" + x + ", y:" + y + ", r:" + v + ",g:" + g +
",b:" + b + "}@" + curState;
}
}
public void init () {
nx=100;
ny=100;
cellSize=10;
interval=100;
MaslList<Cell> container=new MaslList<Cell>();:;
MaslList<MaslList<Cell>> matrix=new MaslList<MaslList<Cell>>();;
for (int 1i=0;
i<nx;i=i+1) {

MaslList<Cell> row=new MaslList<Cell>();;
for (int 3=0;
Jj<ny;j=J+1) {

Cell c=new Cell();
c.x=1i;

c.y=3;

c. curState = "Dead";
container.append(c) ;
row.append(c) ;

}

matrix.append (row) ;

}
for(Cell c:container) {
{
int x=c.x;
int y=c.y;
MaslList<MaslList<Integer>> neighborIdx=new

MaslList<MaslList<Integer>> (new MaslList<Integer>(x-1,y-1),new
MaslList<Integer>(x-1,vy),new MaslList<Integer>(x-1,y+1l),new
MaslList<Integer>(x,y-1),new MaslList<Integer> (x,y+1l),new
MaslList<Integer>(x+1l,y-1),new MaslList<Integer> (x+1l,y),new
MaslList<Integer>(x+1,y+1));
for (MaslList<Integer> list:neighborIdx) {
{
if(list.get (0)<0) {
{
list.set (0,1list.get (0) +nx);
}
} else {
if(list.get (0)>nx-1) {
{
list.set (0, nx-
list.get (0));

} else {

}
if(list.get (1)<0) {
{
list.set(l,list.get (1) +ny);
}
} else {
if(list.get (1)>ny-1) {
{
list.set (1l,ny-
list.get (1)),

} else {

c.neighbors.append (matrix.get (list.get (0)) .get(list.get (1)));
}

}

MaslList<MaslList<Integer>> liveIdx=new
MaslList<MaslList<Integer>>(new MaslList<Integer>(1l,5),new
MaslList<Integer> (2, 5) new MaslList<Integer>(1l,6),new

MaslList<Integer> ,new MaslList<Integer>(1l1l,5),new
MaslList<Integer> ll 6 ,new MaslList<Integer>(1l1l,7),new
MaslList<Integer> (12,4 w MaslList<Integer>(13,3),new

(2

(

(
MaslList<Integer>(14,3),

(

(

(

)

)4 ()

) ynew MaslList<Integer>(12,8),new
MaslList<Integer>(13,9),new MaslList<Integer>(14,9)

) yne ()

) ()

,new
MaslList<Integer>(15,6),new MaslList<Integer>(l17,6),new
MaslList<Integer>(17,5),new MaslList<Integer>(17,7),new

MaslList<Integer>(16,4),new MaslList<Integer>(16,8),new
MaslList<Integer>(18,6),new MaslList<Integer>(21,5),new
MaslList<Integer>(21,4),new MaslList<Integer>(21,3),new
MaslList<Integer>(22,3),new MaslList<Integer>(22,4),new
MaslList<Integer>(22,5),new MaslList<Integer>(23,6),new
MaslList<Integer>(23,2),new MaslList<Integer>(25,2),new
MaslList<Integer>(25,1),new MaslList<Integer>(25,6),new
MaslList<Integer>(25,7),new MaslList<Integer>(35,3),new
MaslList<Integer>(35,4),new MaslList<Integer>(36,3),new
MaslList<Integer>(36,4));
for (MaslList<Integer> 1l:livelIdx) {
{
matrix.get (l.get (0)).get(l.get(1l)). curState =

"Live";
matrix.get(l.get(0)).get(l.get(l)) .live=true;
matrix.get(l.get(0)).get(l.get(l)) .lastlLive=true;

}
run.invoke (container) ;

}

public static void main (String[] args) {
gliderGun sim = new gliderGun() ;
sim.init () ;}

2. Test Suites

(1) Unit Testing

To limit the scope of a bug and make it easy to debug, we carried out intensive unit
testing. We have following test suites and they cover every basic element of our
language:

(All unit test suites can be found in tests directory)

block.masl
classl.masl
class2.masl
dowhile.masl
expr.masl
forl.masl
for2.masl
for3.masl
foreachl.masl

foreach2.masl
fun.masl
gcdl.masl
ifl.masl
listl.masl
whilel.masl
while2.masl

(2) Integration Testing

We have several large demos written in our language to perform a comprehensive
testing. The two integration test suites are gamOfLife.masl and gliderGun.masl.

3. Test Suites Justification

We iterated all nodes in our AST, identified basic elements of our language and tried to
create test cases that cover all basic structures of our language. With the set of test
suites, we can make sure that every basic element in our language is tested. With an
automation testing script, we can easily perform regression testing after we add or
modify some features in our project. With regression testing based on a set of unit test
suites, we can easily locate a bug if we get one, because the scope of a bug is limited in a
very small module.

4. Automation Testing

A simple shell script test.sh (in root directory of submission) is written to automate the
test suites above. It iterates each test case, checks translation and compilation of the
source code, runs the program and compares the program output to expected output. If
some steps of some test cases result in errors, the automation script will print the
errors to console.

5. Who did What

Wei Wang (ww2315): wrote gameOfLife.masl, gliderGun.masl, test.sh and part of unit
test suites.

Jiatian Li (j13930): wrote part of unit test suites.

{ Lessons Learned

Chong Zhang

I have learned a lot from the project and get a better understanding of the knowledge 1
learned in the class. In addition, I get more familiar with OCaml.

However, it is miserable during the implementation. We could have started early.
Actually, we just put everything to the end of the term. It is really a nightmare. To
make things even worse, the features of MASL are too complicated. My suggestion to
the future students is that design an easier and more specific language.

Dale Zhao

Developing a working compiler of our own devise is a great way to relate theories
taught in class to coding practice. By doing this final project, I have gained a more
comprehensive insight on various data structures and algorithms used in the compiling
process, as well as how different components of a compiler support each other and work
as a whole.

As the group leader, I also learned how to better dispatch the work for different parts of
the project to individual teammates. A set of well designed interfaces and a solid code
framework in the early stage can greatly expedite this process. We also decided to use
GitHub to establish our shared code repository, which greatly facilitate team
collaboration.

As a word for future students doing this project, starting early and simple is always the
best strategy to make room for unexpected difficulties during the project cycle. Also,
sufficient unit tests can save you a lot of time from debugging in times of integration.

Wei Wang

The most important lesson I learned is that designing a language with beautiful and
unambiguous grammar is not easy. We came up with a design of grammar that we
thought was beautiful. However, when implementing the abstract syntax tree based on
the syntax, we got numerous shift/reduce and reduce/reduce errors. We tried a lot of
alternatives and most of them failed. At last, we gave up some features to make the
grammar unambiguous. It made the language not as beautiful as we expected.
Designing beautiful and unambiguous language is like making a blade which is sharp
and safe to use. We should carefully keep balance between the two factors.

Advice for Future Teams:

1) Using version control system is really beneficial when you are working in a team.
2) Start early and enjoy the process. Leaving all the work in final week leads to a
disaster.

3) Make sure all members in your team have consistent development environment.
Devise a programming style guide before you start.

Jiatian Li

Language implementation is a huge challenge. Having lived through it, I learned a

lot. First, start early and better planning is very important. Language development is
not a simple process. One should never expect to finish this job over night. Second, the
feedback from the TA is extremely valuable. After evaluating our proposal and LRM,
the TA warned us several time that there are only several weeks to implement the
whole project and it is almost impossible to finish all the ideas in such a short time. In
retrospect, if we followed the TA’s suggestion and started simple, we would not have to
suffer the nightmare in the last few days. What’s more, we should well define the
interfaces between modules from the beginning and perform unit tests frequently and
thoroughly. If we do so, we would not run into trouble when we synthesize every
module in the end. Finally, the Microc should be deemed as a ticket to Noah's Ark
throughout the whole project. Because we didn’t convert the raw AST to SAST, we ran
into lots of trouble and inconvenience when implementing the semantic check and code
generation part.

8 Appendix

8.1 Scanner.mll

(* Primary Author: Dale zhao (dz2242) *)
(* Scanner for MASL. *)

(* Header section. *)
{
open Parser
(* TODO Keep track of character position. *)
let inc lnum lexbuf =
let pos = lexbuf.Lexing.lex curr p in
lexbuf.Lexing.lex curr p <- {pos with
Lexing.pos_lnum = pos.Lexing.pos lnum + 1;
Lexing.pos _bol = pos.Lexing.pos_cnum;

let explode s =
let rec exp i 1 =
if i < 0 then 1 else exp (1 - 1) (s.[i]::1) in
exp (String.length s - 1) [];;
}

(* Definition section *)

let whitespace = [' ' "\t' '"\r' '"\n']
let nonwhitespace = #whitespace

let digit = ['0'-'9"]

let letter = ['a'-'z' "A'-'Z"]

let input char = #['\r' '\n']

let common escape sequence = "\\t" | "\\r" | "\\n" | "\\0O"
let single char = input char#['\'' '"\\']

let escape sequence char = common escape sequence | "\\'"
let single char string = input char#['"' '\\']

let escape sequence string = common escape sequence | "\\\""

(* Rule section. *)
rule single comment parser = parse

'\n' { inc_lnum lexbuf; token parser lexbuf }
| #['\n'] { single comment parser lexbuf }

and multiline comment parser = parse
"x/" { token parser lexbuf }
| as char { if char == '\n' then inc lnum lexbuf;

multiling_comment_parser lexbuf }

and token parser = parse
(* Whitespaces. *)
whitespace as char { 1f char == '\n' then inc lnum lexbuf;
token parser lexbuf }
(* Comments. ¥*)
"/ /" { single comment parser lexbuf }
VA { multiline comment parser lexbuf }
(* Separators. *)
| ':' { COLON }
| ';'" { SEMICOLON }
| ','" { COMMA }
| { LPAREN }

RPAREN

)" A }

'{'" { LBRACE }

'}'" { RBRACE }

'"['" { LSQBRA }

'1" { RSQBRA }
* Keywords. *)

"int" { INT }
"double" { DOUBLE }
"char" { CHAR }
"bool" { BOOL }
"class" { CLASS }
"object" { OBJECT }
"fun" { FUN }

"void" { VOID }
"if" { IF }
"else" { ELSE }
"for" { FOR }
"while" { WHILE }
"do" { DO }
"continue" { CONTINUE }
"break" { BREAK }
"return" { RETURN }
"this" { THIS }
"state" { STATE }

*

Operators. *)
'+' { PLUS }

'—' { MINUS }

'k { MULT }

'/'" { DIV }

'$' { MOD }

UFA { AND }
" { OR }
"I' { NOT }

'>' { GT }

U { GE }
== { EQ)
np=n { NEQ }
ne—n { LE }
'<' { LT }

'=' { ASSIGN }
'.' { DOT }

@' { AT }

mosw { TRANS }

* Literals (for basic data types). *)
digit+ as 1lxm { INT LITERAL(int of string lxm) }
digit+ ('.' digit*)? (['e' 'E'] ['+' '-']1? digit+)
digit+ ('.' digit*) (['e'" 'E'] ['+' '-']? digit+)?
| digit* '.' digit+ (['e' 'E'] ['+' '-']? digit+)? as 1xm
{ DOUBLE LITERAL(float of string lxm) }
| '\'' single char '\'' as lxm { CHAR LITERAL (lxm. [1]) }
| "\''" escape sequence char '\'' as lxm { CHAR LITERAL(Scanf.sscanf
("\"" A Ixm N "\"M) "$SS!"™ (fun u -> u.[1]1)) }
| "true" | "false" as 1lxm { BOOL_ LITERAL (bool of string lxm) }
| '"'" (single char string | escape_ sequence_string)* '"' as lxm
{ STRING LITERAL (explode (Scanf.sscanf ("\"" * (String.sub lxm 1
(String.length 1xm - 2)) ~ "\"") "&S%!" (fun u -> u))) }
(* Identifiers. *)

!
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
!
|
|
!
!
!
|
|
(
!
!
|
|
!
!
!
|
|
!
!
!
|
|
!
!
!
|
(
!
\
\

| (letter | ' ') (letter | ' ' | digit)* as 1lxm { ID(lxm) }

| as lxm { raise (Failure("illegal token" "~ (Char.escaped 1lxm))); }
| eof { EOF }

(* TODO Handle EOF and invalid input. *)

(* Trailer section. *)
{
}

8.2 parser.mly

/* Primary Author: Dale zhao (dz2242) */
/* Parser for MASL. */

Header section. */

open Ast;;

/* Declaration section. */
/* Declaring tokens. */

/* Separators. */
%$token COLON SEMICOLON COMMA LPAREN RPAREN LBRACE RBRACE LSQBRA RSQBRA EOF

/* Keywords. */

/* Type specifiers. */

%token INT DOUBLE CHAR BOOL CLASS OBJECT FUN VOID
/* Control flow. */

%$token IF ELSE FOR WHILE DO CONTINUE BREAK RETURN
/* Object definitions. */

$token STATE

$token THIS

/* Operators. */

/* Arithmetic operators. */
%token PLUS MINUS MULT DIV MOD
/* Logic operators. */
%token AND OR NOT

/* Relational operators. */
$token GT GE EQ NEQ LE LT
/* Assignment operators. */
%token ASSIGN

/* Object manipulations. */
%$token DOT AT TRANS

/* Identifiers. */
%token <string> ID

/* Literals (for basic data types). */
$token <int> INT LITERAL

$token <float> DOUBLE LITERAL

$token <char> CHAR LITERAL

$token <bool> BOOL LITERAL
$token <char list> STRING_ LITERAL

/* Associativity and precedence of operators. */
snonassoc NOELSE
snonassoc ELSE

$right ASSIGN

%$left OR

%$left AND

%$left EQ NEQ

%left GT GE LE LT
%$left PLUS MINUS

%$left MULT DIV MOD
%$left UPLUS UMINUS NOT
%left DOT

%left AT TRANS

%left LPAREN RPAREN
%$left COLON

%$left LSQBRA RSQRBRA

$start program
stype <Ast.program> program

o
o

/* Rule section. */

program:
stmt list { Program($1l) }

stmt_list:
/* Empty. */ { []1 }
| stmt nonempty list { List.rev $1 }

stmt nonempty list:
stmt { [$1] }
| stmt nonempty list stmt { $2 :: $1 }

stmt:
SEMICOLON { NoStmt }
/* Declaration statement. */
| basic type decl SEMICOLON { $1 }
| func_decl { S1 }
| class decl { $1 }
/* Expression statement. */
| expr SEMICOLON { Expr($1l) }
/* Compound statement. */
| comp stmt { S$1 }
/* Control flow statement. */
IF LPAREN expr RPAREN stmt %$prec NOELSE { If($3, $5, NoStmt) }
IF LPAREN expr RPAREN stmt ELSE stmt { If($3, $5, $7) }
FOR LPAREN stmt expr opt SEMICOLON expr opt RPAREN stmt { For($3, $4,
}
FOR LPAREN type specifier ID COLON expr RPAREN stmt { ForEach($3, $4,
}
WHILE LPAREN expr RPAREN stmt { While($3, $5) }
DO comp stmt WHILE LPAREN expr RPAREN { DoWhile ($2, $5) }

$6, $

$6, S

[ee] (00
e~ — ~ —

/* Jump statement. */
| CONTINUE SEMICOLON { Continue }
| BREAK SEMICOLON { Break }
RETURN expr opt SEMICOLON ({ Return($2) }

basic_type decl:
type specifier basic _init decl list { BasicDecl($1, List.rev $2) }

type specifier:
INT { Int }

| DOUBLE { Double }

| CHAR { Char }

| BOOL { Bool }

| VOID { Void }

| LPAREN param type list RPAREN COLON type specifier { FuncType($5,
$2) 1}

| CLASS ID { Class($S2) }

| LSQBRA type specifier RSQBRA { ListType ($2) }

basic_init decl list:
basic _init decl { [$1] }
| basic init decl list COMMA basic_init decl { $3 :: $1 }

basic_init decl:
ID { BasicInitDefault(S$1) }
| ID ASSIGN expr { BasicInitAssign($1l, $3) }

func decl:
FUN LPAREN type specifier RPAREN ID ASSIGN expr { FuncDecl ($3, S5,
$7) 1}
| type specifier ID LPAREN param list RPAREN comp stmt
{ FuncDecl (FuncType ($1, List.map fst $4), $2, FuncLit($1, $4, $6)) }

param list:
/* Empty. */ { [1 }
| nonempty param list { List.rev $1 }

nonempty param list:
param { [$1] }
| nonempty param list COMMA param { $3 :: $1 }

param:
type specifier ID { (S1, $2) }

param type list:
/* Empty. */ { [1 }
| nonempty param list { List.rev (List.map fst $1) }
| nonempty unnamed param type list { List.rev $1 }

nonempty unnamed param type list:
type specifier { [$1] }
| nonempty unnamed param type list COMMA type specifier { $3 :: $1 }

func literal:
FUN LPAREN param list RPAREN COLON type specifier comp stmt { ($6, $3,

$7) '}

class decl:
CLASS ID LBRACE state decl list stmt list RBRACE { ClassDecl($2,
List.rev $4, $5) }

object literal:
type specifier LPAREN RPAREN { ObjectLit ($1) }

list literal:
LSQBRA type specifier RSQBRA LBRACE list elems RBRACE { ListLit (S2,
$5) }
| STRING_LITERAL { ListLit(Char, List.map (fun c ->
BasicLit (CharLit (c))) $1) }

list elems:
/* Empty */ { [1 }
| nonempty list elems { List.rev $1 }

nonempty list elems:
expr { [S1] }
nonempty list elems COMMA expr { $3 :: $1 }

state decl list:
/* Empty. */ { [] }
| state decl list state decl { $2:: $1 }

state decl:
STATE ID comp_ stmt { ($2, $3) }

basic_literal:
INT LITERAL { IntLit ($1) }
| DOUBLE LITERAL { DoubleLit ($1) }
| CHAR LITERAL { CharLit ($1) }
| BOOL LITERAL { BoolLit($1) }
| object literal { $1 }
| list literal { $1 }

| ID { Id($1) }

| basic literal { BasicLit ($1) }

| func literal { FuncLit ($1) }

| THIS { This }

| LPAREN expr RPAREN { $2 }

| expr LPAREN arg list RPAREN { FuncCall($1l, $3) }
| PLUS expr S%$prec UPLUS { UnaryOp (Plus, $2) }

| MINUS expr $%$prec UMINUS { UnaryOp (Minus, $2) }
| expr MULT expr { BinaryOp ($1, Mult, $3) }

| expr DIV expr { BinaryOp($1, Div, $3) }

| expr MOD expr { BinaryOp($1, Mod, $3) }

| expr PLUS expr { BinaryOp($1, Plus, $3) }

| expr MINUS expr { BinaryOp($1, Minus, $3) }

| expr GT expr { BinaryOp($1l, Gt, $3) }

| expr GE expr { BinaryOp($1l, Ge, $3) }

| expr EQ expr { BinaryOp($1, Eg, $3) }

| expr NEQ expr { BinaryOp($1, Neg, $3) }

| expr LE expr { BinaryOp($1l, Le, $3) }

| expr LT expr { BinaryOp($1l, Lt, $3) }

| NOT expr { UnaryOp (Not, $2) }

expr AND expr { BinaryOp($1, And, $3)
expr OR expr { BinaryOp($1, Or, $3) }
expr DOT expr { BinaryOp ($1, Dot, $3)

\ }
\

\

| expr AT expr { BinaryOp($1, At, $3) }

\

\

\

\

}

expr TRANS expr { BinaryOp($1l, Trans, $3) }

expr ASSIGN expr { BinaryOp($1l, Assign, $3) }

expr COLON LSQBRA expr RSQBRA { BinaryOp ($1, Index, $4)
expr COLON DOT expr { BinaryOp($1l, LDot, $4) }

expr_ opt:
/* Empty. */ { NoExpr }
| expr { $1 }

arg list:
/* Empty */ { [1 }
| nonempty arg list { List.rev $1 }

nonempty arg list:
expr { [S1] }
nonempty arg list COMMA expr { $3 :: $1 }

comp stmt:
LBRACE stmt list RBRACE { CompStmt ($2) }

o
o

(* Trailer section. *)

8.3 ast.ml

(* Primary Author: Dale zhao (dz2242) *)

(*** Tokens. ***)

(* Operators. ¥*)
type op =
Plus | Minus | Mult | Div | Mod
| And | Or | Not
| Gt | Ge | Eg | Neg | Le | Lt
| Assign

| Dot | At | Trans | Index | LDot

(* Basic type literals. *)
and basic literal =
IntLit of int
| DoublelLit of float
| CharLit of char
| BoolLit of bool
| ObjectLit of object literal

| ListLit of type spec * expr list

(*** Productions. ***)

(* Type specifiers. ¥*)
and type spec =
Int
| Double
| Char
| Bool
| Void
| Class of string
| FuncType of type spec * type spec list

| ListType of type spec

(* Expressions. *)
and expr =
Id of string
| BasicLit of basic literal
| FuncLit of func literal
| This

| UnaryOp of op * expr

| BinaryOp of expr * op * expr
| FuncCall of expr * expr list

NoExpr

(* Statements. *)

(* Basic type declaration. ¥*)

and basic_init decl =
BasicInitDefault of string

BasicInitAssign of string * expr

(* Function declaration. *)

and param = type spec * string

and func_literal = type spec * param list * stmt

(* Object declaration. *)

and state = string * stmt

and object literal = type spec

(* Overall structures of statements. *)

and stmt =

(* Declaration statements. *)

BasicDecl of type spec * basic _init decl list

FuncDecl of type spec * string * expr

| ClassDecl of string * state list * stmt list

(* Expression statement. *)

Expr of expr

(* Compound statement. *)

| CompStmt of stmt list
(* Control flow statement. *)
| If of expr * stmt * stmt
| For of stmt * expr * expr * stmt
| ForEach of type spec * string * expr * stmt
| While of expr * stmt
| DoWhile of stmt * expr
(* Jump statement. *)
| Continue
| Break
| Return of expr

| NoStmt

(* input *)

and program = Program of stmt list;;

8.4 semantic.ml

(* Primary Author: Chong Zhang (cz2276), Jiatian Li (3j13930) *)
(*Semantic Check*)
open Ast;;

module NameMap = Map.Make (struct

type t = string

let compare x y = Pervasives.compare x y
end)

(*check program*)

(*Environment Details:*)
(*0: Outer Environment*)
(*1: class¥*)

(*2: while Loop*)

(*3: compond statement*)
(*4: state*)

(*5: 1if¥*)

(*6: function¥*)

(*7: for loop¥*)

let rec check semantic program =

match program with

| Program(stmt list) -> ignore(List.fold left (check stmt 0 [(0,"")])

(

List.fold right2

(fun id t -> NameMap.add id t)

["printInt"; "printDouble"; "printChar"; "printBool";
"printStr";"nx";"ny";"cellSize";"interval"]

[

(FuncType (Void, [Int]), [(0,"")]); (FuncType (Void, [Double]), [(0,""™)]);

(FuncType (Void, [Char]), [(0,"")]); (FuncType(Void, [Bool]l), [(0,"")]);
(FuncType (Void, [ListType (Char)]), [(0,"™)1);
(Int, [(O,"")]); (Int, [(O,"")]); (Int, [(0,"")1); (Int, [(0,"")])

]

NameMap.empty,
NameMap.empty, NameMap.empty
)

stmt_list);true
(*check statements¥*)

and check stmt env level (v_table, c table, s table) stmt =
match stmt with (*match all types of statements¥*)
| BasicDecl (type spec, basic_init decl) ->
let rec check basic init decl v table list = (*recursively check
the basic declaration list¥*)
match list with
| [1 -> (v_table, c_table, s table)
| head::tail ->
match head with
| BasicInitDefault (id) ->
check basic init decl (check redefine id
type spec level v_table c table env) tail
| BasicInitAssign(id, expr) ->
if (type compatable type spec (check expr v table
c_table s table env level expr)) then
check basic init decl (check redefine id
type spec level v_table c_table env) tail
else
raise (Failure("Basic Assignment Check Fails"))
in check basic init decl v table basic init decl
FuncDecl (type spec, id, expr) ->
ignore (
if id = "run" && env = 0 then
raise (Failure ("Cannot Define Run Function"))

);
if (check expr (check redefine id type spec level v _table c table
env) c_table s table env ((6, id)::level) expr) = type spec then
(check redefine id type spec level v_table c_table env,
c_table, s table)
else
raise (Failure ("Function Type Mismatch"))
| ClassDecl(id, state list, stmt list) ->
ignore (check redefine id Void level v _table c_table env);
if env = 0 then
match add s c table
(List.fold right2 (fun x y -> NameMap.add X vy)
["x";"y";"r";"g";"b";"isUpdated"]

[(Int, (1,id) ::1level); (Int, (1,1id) ::1level); (Double, (1,1id) ::1level); (Double, (1,id
) ::level); (Double, (1,id)::level); (Bool, (1,id)::1level)] v_table)
(NameMap.add id [("x", Int); ("y",
Int); ("r",Double); ("g",Double); ("b", Double); ("isUpdated", Bool)] c_table)
(NameMap.add id [] s _table) id state list stmt list ((1, id)::level) with
| (c_table', s table') -> (v_table, c table', s table')
else
raise (Failure ("Cannot Define Class"))

| Expr (expr) ->
ignore (check expr v _table c table s _table env level expr);
(v_table, c_table, s table)
| CompStmt (stmt list) ->
let rec check comp stmt v table' list =
match list with
| [1 -> (v_table, c _table, s table)
| head::tail ->
match check stmt 3
(
match level with
| (6,)::
[(7,):: -> level
| => (3, "")::level
)
(v_table', c_table, s _table) head with
| (v_table'', c table, s table) -> check comp stmt
v_table'' tail
in check comp stmt v table stmt list
| If(expr, stmtl, stmt2) ->

ignore (check stmt env ((5, "")::level) (v_table, c_ table,
s_table) stmtl);

ignore (check stmt env ((5, "")::level) (v_table, c table,
s_table) stmt2);

if (check expr v _table c_table s table env level expr) = Bool

then
(v_table, c_table, s table)
else
raise (Failure("If Statement Error"))
| For(stmtl, exprl, expr2, stmt2) ->
(
match stmtl with
| BasicDecl(,) | Expr(_) | NoStmt ->
(
match check stmt env ((7, ""):: level) (v_table, c table,
s_table) stmtl with
| (v_table, c table, s table) ->
if (check expr v table c table s table env level

exprl) = Bool then

match check expr v_table c table s table env
level exprl with

| _ —> check stmt env ((7, ""):: level)
(v_table, c table, s table) stmt2

else
raise (Failure ("Expect a Bool Expr in For"))
)

| —> raise(Failure("Cannot Define Such Stmt in For"))

ForEach (type spec, iterator, expr, stmt) ->

(

match (check expr v table c table s table env level expr) with

| ListType(t) ->

if t = type spec then
check stmt env ((7, ""):: level) ((check redefine

iterator type spec level v _table c _table env), c_table, s table) stmt
else

raise (Failure ("Iterator Type Mismatch"))

)
| While (expr, stmtl) ->

ignore (check stmt env ((2, "")::level) (v_table, c_ table,
s_table) stmtl);
if (check expr v table c table s table env level expr) = Bool
then
(v_table, c_table, s table)
else
raise (Failure ("Expect a Bool Expr in While"))
| DoWhile (stmt, expr) ->
ignore (check stmt env ((2, "")::level) (v_table, c_ table,
s_table) stmt);
if (check expr v _table c _table s table env level expr) = Bool
then

(v_table, c _table, s table)
else
raise (Failure ("Expect a Bool Expr in Dowhile"))
| Continue ->
let rec helper list =
match list with
| [] -> raise(Failure("Continue Must Be in Loop"))
| (env,)::tail ->
if env = 2 || env = 7 then
(v_table, c_table, s table)
else
helper tail
in helper level
| Break ->
let rec helper list =
match list with
| [] -> raise(Failure("Continue Must Be in Loop"))
| (env,)::tail ->
if env = 2 || env = 7 then
(v_table, c_table, s table)
else
helper tail
in helper level
| Return (expr) ->
(
let rec find func type list =
match list with
| [] -> raise(Failure ("Unkown Error"))
| head::tail ->
match head with
| (environment, name) ->
if environment = 6 then
match NameMap.find name v_table with
| (FuncType (func_type,),) —->

if func type = Void then
raise (Failure ("Function Has
No Return"))
else
if (check expr v _table
c_table s table env level expr) = func type then
(v_table, c_table,
s_table)
else
raise (Failure ("Function
Return Type Mismatch"))
| _ —-> raise(Failure(name™" is not a
Function Type"))
else
find func type tail
in find func_type level
)
| NoStmt -> (v_table, c table, s table)
| -> raise (Failure("Not Finished"))

(*check expression*)

and check expr v _table c table s table env level expr =
match expr with (*match all types of expressions*)
| Id(id) ->
if NameMap.mem id v_table then
match NameMap.find id v_table with

| (some type,) -> some type
else
raise (Failure ("Cannot Find Identifier " #~ id))
| BasicLit (basic_literal) ->

(
match basic literal with
| IntLit(t) -> Int
| DoubleLit (t) -> Double
| CharLit(t) -> Char
| BoolLit (t) -> Bool
| ObjectLit (object literal) -> object literal
| ListLit(type spec, expr list) ->
let rec check expr list list =
match list with
| [] -> ListType (type spec)
| head::tail ->
if type compatable type spec (check expr
v_table c _table s table env level head) then
check expr list tail
else
raise (Failure ("List Element Type
Mismatch"))
in check expr list expr list
)
| FuncLit (type spec, param list, stmt) ->
let rec get func param type spec list list v_table' =
match list with
I
ignore (check stmt env level (v_table', c table,
s_table) stmt);

FuncType (type spec, List.rev type spec list)
| head::tail ->
match head with
| (t, name) -> get func param (t::type spec list)
tail (check redefine name t level v_table' c_table env)
in get func param [] param list v_table
| This ->
let rec helper list flg=
(
match list with
| [] -> raise(Failure ("Cannot Use This Operator Here"))
| head::tail ->
(
match head with
[(1, id) ->
if flg = 1 then Class(id) else
raise (Failure ("Cannot Use This Operator Here"))
| (4,) -> helper tail 1
| _ -> helper tail flg
)
)
in helper level 0
| UnaryOp (op, expr) ->
(
match op with
| Plus
| Minus ->
(
let helper t =
judge alg type t t
in helper (check expr v_table c table s table env level

expr)
)
| Not ->
match check expr v _table c table s table env level expr
with
| Bool -> Bool
| -> raise(Failure("Type Mismatch"))
)
| BinaryOp(el, op, e2) ->
(
match op with
| Plus | Minus | Mult
| Div -> judge alg type (check expr v table c_table s table env
level el) (check expr v table c table s table env level e2)
| Mod ->
(
match ((check expr v table c table s table env level el),
(check expr v _table c _table s _table env level e2)) with
| (Int, Int)
(Int, Char)

(Char, Int) -> Int
_ —-> raise(Failure("Type Mismatch"))

\
\
|
)

match ((check expr v_table c table s table env level el),
(check expr v _table c_table s _table env level e2)) with
| (Bool, Bool) -> Bool
| -> raise(Failure("Type Mismatch"))
)
| Gt | Ge | Egq | Negq | Le

| Lt ->
judge logic type (check expr v table c table s table env
level el) (check expr v _table c table s table env level e2)

| Assign ->
let check left type el =
(*only when the left is an identifier, A.B or A:[B]
can the assignment success*)
match el with
| Id(id) ->
if (NameMap.mem id v_table) then
match (NameMap.find id v_table) with
| (Class(name),) —->
if (check expr v _table c_ table

s_table env level e2) = Class(name) then
Class (name)
else
raise (Failure ("Class
Assignment Fails"))
| (FuncType (argl, arg2),) —->
if (check expr v _table c_ table
s_table env level e2) = FuncType(argl, arg2) then
FuncType (argl, arg2)
else
raise (Failure ("Function
Assignment Fails"))
| (ListType(arg), _) ->
if (check expr v _table c table
s _table env level e2) = ListType(arg) then
ListType (arg)
else
raise (Failure ("List
Assignment Fails"))
| (type spec,) ->

match (type spec, (check expr
v_table c_table s _table env level e2)) with
(Double, Int) | (Double, Char) |

(Double, Double) -> Double
| (Int, Char) | (Int, Int) -> Int
| (Char, Char) -> Char
| (Bool, Bool) -> Bool
| —> raise(Failure("Basic
Assignment Fails"))
else
raise (Failure ("Cannot Find Identifier
"rid))
| BinaryOp(el', op', e2') ->
(
match op' with
| Dot ->
(

match ((check expr v_table c_ table
s_table env level el'), e2') with
| (Class(c_name), Id(id2)) ->
if (find cls mem c_table c name id2) =
check expr v_table c _table s table env level e2 then
(find cls mem c_table ¢ _name id2)

else
raise (Failure ("Cannot Find Class
Member"))
| _ -> raise(Failure("Dot Operation Error
1"))
)
| Index ->
(
match ((check expr v_table c_ table
s_table env level el'), e2') with
| (ListType(t), _) ->
if (check expr v _table c_ table
s _table env level e2) = Int then
t
else
raise (Failure ("List Type
Mismatch"))
| -> raise (Failure("Index Operation
Error 1"))
)
| -> raise(Failure("Assignment Fails"))
)
| -> raise(Failure("Assignment Error"))
in check left type el
| Index ->
(
match ((check expr v table c table s table env level el),
e?2) with
| (ListType(t), _) —->
if (check expr v _table c table s table env
level e2) = Int then

t
else
raise (Failure ("List Type Mismatch"))
| -> raise(Failure("Index Operation Error 2"))
)
| Trans ->
(
match (el, e2) with
| (el, Id(id2)) ->
let c_type = check expr v _table c table s table env
level el in
(
match c_type with
| Class(c_name) ->
if find cls state s _table c name id2 then
(*
match NameMap.find idl v_table with
| (type spec,) -> type spec
*)

Void

else
raise (Failure ("Cannot Find State "7id2))
)
| -> raise(Failure("Trans Operation Error"))
)
| At ->
(
match (el, e2) with
| (el, Id(id2)) ->
let c_type = check expr v _table c table s table env
level el in
(
match ¢ type with
| Class(c_name) ->
if find cls state s _table c_name id2 then
(*
match NameMap.find idl v_table with
| (type spec,) —-> type spec
*)
Bool
else
raise (Failure ("Cannot Find State ""id2))
)
| _ -> raise(Failure("At Operation Error"))
)
| Index ->
(
match check expr v table c table s _table env level el with
| ListType(t) ->
if (check expr v _table c_table s _table env level e2)

= Int then
ListType (t)
else
raise (Failure ("Index Number Must Be an
Integer"))
| -> raise(Failure("Index Operation Error 3"))
)
| Dot ->
(
match ((check expr v _table c table s table env level el),
e?2) with
| (Class(class name), Id(id2)) -> find cls mem c_table
class _name 1id2
| (Class(class name), FuncCall(f id, e list)) ->

(
match f£f id with
| Id(id) ->
ignore (find cls mem c_table class name id);
(

let rec helper list =

(
match list with
| [] -> raise(Failure ("Cannot Find
Function in Class"))
| head::tail ->
match head with
| (£ name, f type) ->

if £ name = id then
(
match f type with
| FuncType (type spec,
type list) ->
let rec
check param type list expr list =
match
(type list, expr list) with

-> type_ spec

| (t::taill,
e::tail2) ->
if
(check expr v _table c _table s table env level e) = t then
check param taill tail2
else
raise (Failure ("Function Parameter Type Mismatch"))
| ->

raise (Failure ("Function Parameter Mismatch"))
in check param

type list e list

)

else
helper tail
)
in helper (NameMap.find class name c_table)

)

| -> raise(Failure("Function Call Format Error"))

| -> raise(Failure("Dot Operation Error 2"))
)
| LDot ->
(
match ((check expr v _table c table s table env level el),
e2) with
| (ListType(list type), FuncCall(name, e list)) ->
(
match (name, e list) with
| (Id("insert"), [el; e2]) | (Id("set"™), [el; e2]) -—>
(
match ((check expr v table c table s table env level el),
(check expr v _table c _table s _table env level e2)) with
| (Int, t) -> if t = list type then Void else
raise (Failure ("Function Argument Type Mismatch"))
| _ -> raise(Failure("Function Argument Type Mismatch"))
)
| (Id("append"), [el]l) ->
(
match (check expr v table c table s table env
level el) with
| £t -> if t = list type then Void else
raise (Failure ("Function Argument Type Mismatch"))
| —> raise(Failure("Function Argument Type
Mismatch"))

)
(Id("remove™), [el]l) | (Id("get"), [el]) ->
(
match (check expr v table c table s table env
level el) with
| Int -> list type
| -> raise(Failure("Function Argument Type
Mismatch"))
)
| (Id("filter"™), [el]) ->
(
match (check expr v _table c table s table env
level el) with
| FuncType (return type, arg list) ->
(
match arg list with
| te:e[] >
if t = list type && Bool =
return type then ListType (list type) else raise(Failure ("Function Argument
Type Mismatch"))
| > raise (Failure ("Function
Argument Mismatch"))
)
| -> raise(Failure("Function Argument Type
Mismatch"))
)
| (Id("count"), [el]) ->
(
match (check expr v table c table s table env
level el) with
| FuncType (return type, arg list) ->
(
match arg list with
| t::[] —>
if t = list type && Bool =
return type then Int else raise(Failure("Function Argument Type Mismatch"))
I > raise (Failure ("Function
Argument Mismatch"))
)
| -> raise(Failure("Function Argument Type
Mismatch"))
)
| (Id("size™), []) -> Int
| _ -> raise(Failure("No Such Function"))
)
| —> raise(Failure("LDot Operation Error"))
)
)
| FuncCall(el, expr list) ->
(
match el with
Id(id) ->
if id = "run" && env = 0 then
match expr list with
| hd::[] —->
(

match check expr v_table c table s table env
level hd with
| ListType(t) -> (match t with | Class(t) ->
Void | _ -> raise(Failure("Run Function Error")))
| _ -> raise(Failure("Run Function Error"))
)
| _ -> raise(Failure("Run Function Error"))
else
if NameMap.mem id v_table then
match NameMap.find id v_table with
| (FuncType (type spec, type list),) ->
let rec check param type list expr list =
match (type list, expr list) with
[([1, [1) -> type spec
| (t::taill, e::tail2) ->
if (check expr v_table c_table
s_table env level e) = t then
check param taill tail2
else
raise (Failure ("Function
Parameter Type Mismatch"))
| _ -> raise(Failure("Function Parameter
Mismatch"))
in check param type list expr list
| -> raise(Failure(id™" is not an Function"))
else
raise (Failure ("Cannot Find Function ""id))
| _ -> raise(Failure("Function Call Format Error"))
)
| NoExpr -> Void
(*find the state of the object in state tablex)

and find cls_ state s _table id id' =
if NameMap.mem id s _table then
let rec find state list id =
match list with
| [] -> raise(Failure ("Cannot Find State "7id))
| head::tail ->
if head = id then
true
else
find state tail id
in find state (NameMap.find id s_table) id'
else
raise (Failure ("Cannot Find Class ""id))

and find cls_state2 v _table s table id id' =
if NameMap.mem id v_table then

let (c_type,) = NameMap.find id v _table in
match c_type with
| Class(c_name) -> find cls state s table c name id'

| -> raise(Failure(id™" is not an object"))
else
raise (Failure ("Cannot Find Object "7id))

(*find the member of the object in Class table*)

and find cls mem c_table id id' =
if NameMap.mem id c table then
let rec find mem list id =
match list with
| [] -> raise (Failure ("Cannot Find Member ""id))
| head::tail ->
match head with
| (m_id, m type) ->
if m id = id then
m_type
else
find mem tail id
in find mem (NameMap.find id c_ table) id'
else
raise (Failure ("Cannot Find Class ""id))

(*add states and stmts to the table*)

and add s c table v _table c_table s table id state list stmt list level =
match add c table v_table c_table s table id stmt list level with
| (v_table', c _table') ->
match add s table v _table' c table' s table id state list level
with
| (s_table') ->
if check state v _table' c table' s table' id state list level
then
(c_table', s table')
else
raise (Failure ("States Error"))

(*check states of the class¥)
and check state v_table c table s table id state list level =
let rec check each state list =
match list with
| [1 -> true
| head::tail ->
match head with
| (s_id, c_stmt) ->
match c_stmt with
| CompStmt (t) ->
(
match check stmt 4 ((4, "")::level) (v _table,

c_table, s table) c_stmt with
| (, ,) —> check each state tail
)
| -> raise (Failure("Need a Compound Stmt"))
in check each state state list

(*add states to the state tablex)

and add_s table v_table c_table s table id state list level =
let rec add _state s _table' list =
match list with
Il =>
if NameMap.mem id s_table' then

s_table'))

s_table'

else

head:

NameMap.add id [] s_table'

ttail ->

match head with
(s_id, c_stmt) ->

s_table'

match

c_stmt with

| CompStmt (t) ->

add state
(
if NameMap.mem id s _table' then
NameMap.add id (s_id:: (NameMap.find id

else

NameMap.add id [s_id] s_table'
)
tail

| -> raise (Failure("Need a Compound Stmt"))
in add state s table state list

(*add class to the class table¥*)

and add _c table v _table c table s table id stmt list level =
let rec add class v_table c_table list =
match list with

(1 ->
(v_table,
if NameMap.mem id c_table then
c_table
else
NameMap.add id [] c_table
)
head::tail ->

match head with

BasicDecl (

(

,) | FuncDecl(, ,) ->

match check stmt 1 (level) (v_table, c table, s table)

head with
| (v_table', ,) ->
let rec add _to table c_table listl list2 =
match (listl, 1list2) with
| ([1 ,[]1) -> add class v _table' c table
tail
[([1, (id2, (t2, 12))::t1l2) ->
add to_ table
(
if NameMap.mem id c_table then
NameMap.add id ((id2,
t2) :: (NameMap.find id c_table)) c_table
else
NameMap.add id [(id2, t2)]
c_table
)
listl tl2

| (hdl::tl1ll, hd2::t12) ->
if hdl = hd2 then
add to table c table tll tl2

else
(
match (hdl, hd2) with
| ((idl, (t1, 11)), (id2, (t2z,

if idl = id2 then
add to_table
(
if NameMap.mem id
c_table then
NameMap.add
id ((id2, t2)::(NameMap.find id c_table)) c_table
else
NameMap.add
id [(id2, t2)] c_table
)
tll tl12
else
add to table
(
if NameMap.mem id
c_table then
NameMap.add
id ((id2, t2)::(NameMap.find id c_table)) c_table
else
NameMap.add
id [(id2, t2)] c_table
)
listl tl2
)

| -> raise(Failure ("Unknown Error"))

in add to table c_table (NameMap.bindings
v_table) (NameMap.bindings v_table')
)
| -> add class v_table c table tail
in add class v_table c_table stmt list

(*judge what type should be returned*)

and judge alg type tl t2 =

match (tl, t2) with

| (Int, Int) -> Int

| (Double, Double) -> Double

| (Char, Char) -> Char

| (Int, Double) -> Double

| (Int, Char) -> Int

| (Double, Int) -> Double

| (Double, Char) -> Double

| (Char, Int) -> Char

| (Char, Double) -> Double

| —> raise(Failure("Type Mismatch"))
and judge logic_ type tl t2 =

match (tl, t2) with

| (Int, Int)

| (Double, Double)

| (Char, Char)
| (Int, Double)
| (Int, Char)
| (Double, Int)
| (Double, Char)
| (Char, Int)
| (Char, Double) -> Bool
| -> raise(Failure("Type Mismatch"))
and type compatable left right =

match (left, right) with

| (Char, Char)

| (Int, Char) | (Int, Int)

| (Double, Char) | (Double, Int) | (Double, Double) -> true

| (a, b) -=> a =0>b

(*check whether there is a name conflict*)

and check redefine id type spec level v _table c table env =
if NameMap.mem id v_table then
match NameMap.find id v_table with
| (., level') ->
if level = level' then
raise (Failure ("Name Conflict"))
else
if NameMap.mem id c_table && env = 0 then
raise (Failure ("Name Conflict"))
else
NameMap.add id (type spec, level) v_table
else
if NameMap.mem id c table && env = 0 then
raise (Failure ("Name Conflict"))
else
NameMap.add id (type spec, level) v_table

8.5 translate.ml

Author: Wei Wang (ww2315), Dale Zhao (dz2242)*)
Create translation environment: *)

create env parent env -> child env *)

Check if current position is contained *)

in some loop. ¥*)

Linked symbol table. *)

*)

~ o~~~ o~~~
Xk X ok X o X

open Ast;;
open Str;;

(* translate: string -> Ast.program -> (string * string) list *)
let rec translate sim name node =

match node with
| Program(stmts) ->

(* A MASL program is actually translated into *)
(* a subclass of MaslSimulation in Java. *)

A

"public class "
{\nu A

sim name

N " extends MaslSimulation

(* Make the definition of all MASL classes as nested

Java class, *)

(* and make all MASL functions as Java class method.

*)

(List.fold left

(fun acc stmt -> acc ©~ (translate stmt "

stmt)) ""
(List.filter
(fun stmt -> match stmt with
| ClassbDecl(, ,) —-> true
FuncDecl(, ,) -> true
| —-> false) stmts)) ~*
" public void init () {\n" *
(* Everything other than class definition goes into *)
(* the method init (). *)
(List.fold left
(fun acc stmt -> acc ©~ (translate stmt " "
stmt)) ""
(List.filter
(fun stmt -> match stmt with
| ClassbDecl(, ,) -> false
FuncDecl(, ,) -> false
| —-> true) stmts)) *
" J}\npublic static void main(String[] args) {\n" *
sim name ~ " sim = new " * sim name "();\nsim.init (); }\n" *
"I\n"
and translate type spec obj node = match node with
| Int -> "Integer"
| Double -> "Double"
| Bool -> "Boolean"
| Char -> "Character"
| FuncType (return type, param types) -> "MaslFunction<" *

(translate type spec obj return type) ~ ">"
(*| Class(id) -> "class " ~ id*)
| Class(id) -> id
(*| Object -> "object"*)

| ListType (type spec) -> "MaslList<" ~ (translate type spec obj type spec)

A H>"
| Void -> "Void"
and translate type spec node = match node with
| Int -> "int"
| Double -> "double"
| Bool -> "boolean"
| Char -> "char"

| FuncType (return_ type, param types) -> "MaslFunction<"

(translate type spec obj return type) ~ ">"
(*| Class(id) -> "class " ~ id*)
| Class(id) -> id
(*] Object -> "object"¥*)

A

| ListType (type spec) -> "MaslList<" ~ (translate type spec obj type spec)

AT

| Void -> "wvoid"

and translate stmt indent node = match node with

(* decl stmt *)
| BasicDecl (type spec, decl list) ->
let str =
(List.fold left
(fun acc decl -> acc * (translate decl type spec decl)

M
4
"" decl list) in
let decls = String.sub str 0 (String.length str - 1) in
indent ”~ translate type spec type spec ©~ " " © decls *
"; \nu
| FuncDecl (type spec, 1id, expr) -> let return type =
begin
match type spec with
| FuncType(rt,) -> rt
| _ -> Void (*Impossible, used to suppress warning*)
end
in "MaslFunction<" * (translate type spec obj return type) ~ "> " *
id ~ "=" ~ (translate expr expr) ~ ";\n"
| ClassDecl (id, states, stmts) -> indent * "public class " *
id ~ " extends MaslClass {\n" * (generate state update states) ©

(translate states states) ~
(* Add "public" before each statement*)
(List.fold left
(fun acc stmt -> acc *~ "\npublic " *~ (translate stmt " " stmt))
"" stmts
) ~ "\npublic String _ curState = null;\n" "
"public String toString() {\nreturn \"" ~ id * "{x:\" + x + \",y:\" + y +
\",r:\" + r + \",g:\" + g+ \",b:\" + b + \"}@\" + curState;\n}\n}\n"
(*] ObjectDecl (id, expr) -> indent ”~ "objectdecl\n"%*)
(* expr stmt *)
| Expr(expr) -> indent ”~ translate expr expr ~ ";\n"
(* comp stmt *)
| CompStmt (stmts) ->
indent ~ "{\n" %
(List.fold left
(fun acc stmt -> acc * (translate stmt (" " ~ indent)

stmt))
"" stmts)
indent ~ "}\n"
(* control flow stmt ¥*)
| If(pred, then body, else body) ->

indent ~ "if (" ”~ translate expr pred ~ ") {\n" "
translate stmt (" " ~ indent) then body *
indent ~ "} else {\n" *

translate stmt (" " ~ indent) else body *

indent ~ "}\n"
| For(init, pred, update, body) ->

indent ~ "for (" ~ translate stmt "" init *
translate expr pred ~ ";" 7
translate expr update ~ ") {\n"
translate stmt (" " * indent) body *
indent ~ "}\n"
| ForEach(type spec, iter, container, body) -> indent *~ "for(" *
(translate type spec type spec) ~ " " * iter ~ ":" ©
(translate expr container) ~ ") {\n" ~ (translate stmt (" " ” indent)

body) A "}\n"
| While (pred, body) -> indent »~ "while(" *

translate expr pred © ") {\n" *
translate stmt (" " ~ indent) body ~ "}\n"
| DowWhile (body, pred) -> indent ~ "do {" ~ translate stmt (" " ~ indent)
body * "}while(" ~ translate expr pred ~ ");\n"
(* Jjump_stmt *)
| Continue -> indent »~ "continue;\n"
| Break -> indent ~ "break;\n"
| Return (expr) -> indent * "return " * translate expr expr ~ ";\n"
| NoStmt -> indent ~ ""
and translate expr node =
match node with
\ Id(id) -> id
| BasicLit (lit) ->
begin
match 1lit with
IntLit (1it) -> string of int 1lit
Doublelit (1it) -> string of float 1lit
CharLit(lit) -> "'" ~ (Char.escaped 1lit) ~ "'"
BoolLit (1it) -> string of bool 1lit
ObjectLit (1it) -> "new " ~ (translate type spec lit) ~ "()"

A

| ListLit (type spec, exprs) -> "new MaslList<"
(translate type spec obj type spec) *

" (moA (translate_arg_list eXprs) A mym
end
| FuncLit (type_spec, param list, comp_stmt) -> "new MaslFunction<" *

A

(translate type spec obj type spec)
">() {\n@Override\npublic " " (translate type spec obj type spec)

A

" invoke (Object... args) {\n" %
let idxs = List.rev (List.fold left (fun acc para -> (List.length
acc) ::acc) [] param list) in

(List.fold left2
(fun acc param idx -> acc ©~ (translate type spec (fst param))
~ (snd param) *
" = (" ~ (translate type spec obj (fst param) ~ ") args["
(string of int idx) ~ "1;\n")
)
"" param list idxs
)y A
(translate stmt " " comp stmt) ~ (match type spec with Void ->
"return null;" | _ -> "") ~ "}\n}\n"
(*] ObjectLit(lit) -> "ObjectLit"*)
| This —-> "this"
| UnaryOp (op, expr) ->

(*u (u Ak

AT

A

begin
match op with
| Plus -> "+"

Minus -> "-"

} Not -> "!I"
| —>n""
end *
translate expr expr (** ")"¥*)
| BinaryOp (exprl, op, expr2) =-> (*" (" ~*)
begin
match op with
| At -> (translate expr exprl) ~ ". curState.equals(\"" *

(translate expr expr2) ~ "\")"

| Trans -> (translate expr exprl) "~ ". curState = \"" %
(translate expr expr2) ~ "\""

| Index -> (translate expr exprl) ~ ".get(" ~ (translate expr expr2) *
")"
| LDot -> (translate expr exprl) ~ "." ~ (
begin
match expr2 with
| FuncCall (func, args) -> (translate expr func) ~ "(" ~
(translate arg list args) ~ ")"
| _ -> "#Impossible#" (*Impossible, used to suppress warning¥*)
end)
Il >
(translate expr exprl) *
begin
match op with
| Plus -> "+"
| Minus -> "-"
| Mult -> "*x"
| Div -> "/"
| Mod -> "&"
| And -> "&&"
| Or -> "[|"
| Gt -> ">"
| Ge => ">="
| Eq -> "=="
| Neq -> "!="
| Le —> "<="
| Lt -> "<
| Assign -> "="
| Dot -> "."
| _ >
end "
(translate expr expr2)
end (*/\ u)u*)
| FuncCall (func, args) -> (translate expr func) "~ ".invoke(" *
(translate arg list args) ~ ")"
| NoExpr -> ""

and translate decl type spec decl = match decl with
BasicInitDefault (id) ->

id ~ ="~

begin

match type spec with
Int -> "O"

Double -> "0.0"
Bool -> "false"
Char -> "'\\0'"
FuncType (return type, param types) -> "null"
Class (id) => "new " ~ id ~ "()"
| ListType (type spec) -> "new MaslList<" " (translate type spec obj
type spec) ~ ">();"
(*| Object -> "#0ObjectDefaultValue#"*)
| Void -> "void"

end
| BasicInitAssign(id, expr) ->
id ~ "=" ~ translate expr expr

and translate states states =
(List.fold left

(fun acc state -> acc ” "private void " * (fst state)
{\n" ~
translate stmt " " (snd state) ~ "}\n")
"" states

)

(*Generate _ update function*)

and generate state update states = "public void _ update() {\n if(" *
(List.fold left
(fun acc state -> acc ~ "\"" ~ (fst state) *
"\".equals(__curState)) {\n" *
(fst state) ~ "();\n} else 1f (")
"" states
) ~ "true) {}\nisUpdated = true;\n}\n"
and translate arg list arg list = let str =
(List.fold left
(fun acc arg -> acc ~ "," *~ (translate expr arg))
"" arg list
) in replace first (regexp ",") "" str

8.6 toplevel.ml

(* Primary Author: Dale zhao (dz2242) *)

type action = Ast | Translate | Compile | Version

let print ast ast = Astutils.print program ast;;

let translate ast translate name ast = Translate.translate translate name
ast;;
let compile ast ast = ();;

let print version () =

print string (

"\n**** Multi-Agent Simulation Language Compiler v 0.0.1 ****

\n\n" *
"Usage:\n\n" "
" masl -a | -t | -¢ | -v source file\n\n" "
" -a Print the AST of a program.\n\n" "
" -t Translate a MASL source program into a

Java\n" *

A

" source file (.java).\n\n"

-c Compile a MASL source program into a Java\n"

program.\n\n" *

" class (.java).\n\n" *
" -v Display the version and usage of this
" source file The MASL source file.\n\n");;

print string "\n";;

let main =

let action =

try
if Array.length Sys.argv > 1 then
List.assoc
Sys.argv. (1)

[("-a", Ast); ("-t", Translate); ("-c", Compile); ("-

v", Version)]

else Version

with Not found -> Version in

let src _name =

match

| Ast

if Array.length Sys.argv > 2 then Sys.argv. (2)
else "stdin" in

action with

->

A

print string ("Printing AST of program " src_name ~ " ...\n");
let lexbuf =
if Array.length Sys.argv > 2 then

Lexing.from channel (open in Sys.argv. (2))

else

Lexing.from channel stdin in

let ast = Parser.program Scanner.token parser lexbuf in
print ast ast;

| Compile

| Translate as flag —->

A

print string ("Translating program " src_name ~ " ...\n");
let lexbuf =
if Array.length Sys.argv > 2 then
Lexing.from channel (open in Sys.argv. (2))
else
Lexing.from channel stdin in
let ast = Parser.program Scanner.token parser lexbuf in

let translate name =

String.sub Sys.argv. (2) 0 (String.index Sys.argv. (2) '.

let java _src =
begin
try
Semantic.check semantic ast;
with Failure msg —-> print string msg; exit 0;
end;
translate ast translate name ast in
let translate chn = open out (translate name ~ ".java") in
output string translate chn java src;

flush translate chn;

print string ("Written to " ~ translate name ~ ".java.\n");
if flag == Compile then

begin
print string ("Compiling program " * src name ~ " ...\n");

flush stdout;

Unix.system ("javac " "~ translate name * ".java; rm -rf "

translate name ~ ".java"); ()
end
else ()
| Version -> print version ();;

8.7 astutils.ml

(* Primary Author: Dale zhao (dz2242) *)

open Ast;;

(* A utility that prints out the AST. *)

let rec print program node = match node with
| Program(stmts) ->
print string "Program {\n";
List.iter (print stmt " ") stmts;
print string "}\n"
and print type spec indent node = match node with
| Int -> print string (indent ~ "Int\n")
| Double -> print string (indent ~ "Double\n")
| Bool -> print string (indent *~ "Bool\n")
| Char -> print string (indent ~ "Char\n")
| FuncType (return type, param types) ->

print string (indent #~ "FuncType {\n");

print type spec (" " ~ indent) return type;

List.iter

(print_type spec (" " * indent))

print string (indent ~ "}\n")

| Class(id) -> print string (indent * "Class {

"

A

param_ types;

id

A

"

F\n")

A

| ListType (elem type) ->
print string (indent ~ "ListType {\n");
print type spec (" " ~ indent) elem type;
print string (indent ~ "}\n")
| Void -> print string (indent *~ "Void\n")
and print stmt indent node = match node with
| BasicDecl (type spec, decl list) ->
print string (indent ~ "BasicDecl {\n");
print type spec (" " ~ indent) type spec;
List.iter (print basic init decl (" " » indent)) decl list;
print string (indent ~ "}\n")
| FuncDecl (type spec, id, expr) ->

print string (indent #~ "FuncDecl {\n");

print type spec (" " ~ indent) type spec;
print string (" " ~ indent ~ " Id { " ~ id ~ " }\n");
print expr (" " %~ indent) expr;

print string (indent ~ "}\n")
| ClassDecl (id, states, stmts) ->

print string (indent ~ "ClassDecl {\n");

print string (" " ~ indent ~ " Id { " ~ id ~ " }\n");
List.iter (print state (" " ~ indent)) states;
List.iter (print stmt (" " #* indent)) stmts;

print string (indent ~ "}\n")

| Expr (expr) ->
print string (indent ~ "Expr {\n");
print expr (" " ~ indent) expr;
print string (indent ~ "}\n")

| CompStmt (stmts) ->

print stri
List.iter
print stri
If (pred,
print stri
print expr
print stmt
print stmt
print stri
For (init,

pred, up

print string

print stmt
print expr
print expr

print stmt

print string

ForEach (type spec,

print string
print type spec

print string

print expr

print stmt

print string

While (pred, body)

print string

print expr

print stmt

print string

DoWhile (body, pred

then body,

ng

(print stmt

ng

ng

(" woA

(" LL AN

(" nwoA

ng

date,

(" woA
(" nwoA
(" nwoA

(" woA

iter,

("

(" "

(" LLEEAN

(" " A

->

(" LLEEAN

(" " N

) —>

(indent *

(indent *

else body)

(indent

(indent *
body)

(indent *

(indent

(indent

(indent

(indent *

(indent

("

->

indent)
indent)

indent)

->

indent)
indent)
indent)

indent)

container,

nwoA

A

indent)

indent)

indent)

indent)

indent)

indent

"CompStmt {\n");

~ indent))

" } \nn)

A qu {\n");

pred;
then body;

else body;

" } \nu)

"For {\nn) H

init;
pred;
update;

body;

A "}\nu)

body) ->

A~ "ForEach {\n");

A

iter) ;
container;

body;

A "}\nu)

"While {\n");

pred;

body;

A "}\nu)

stmts;

type spec;

print string (indent ~ "DoWhile {\n");
print expr (" " 7~ indent) pred;
print stmt (" " 7~ indent) body;
print string (indent ~ "}\n")
| Continue -> print string (indent ~ "Continue\n")
| Break -> print string (indent ~ "Break\n")
| Return (expr) ->
print string (indent ~ "Return {\n");
print expr (" " %~ indent) expr;
print string (indent ~ "}\n")
| NoStmt -> print string (indent *~ "NoStmt\n")
and print expr indent node = match node with
| Id(id) -> print string (indent ~ "Id {" ~ id ~ "}\n")
| BasicLit(lit) ->
print string (indent #~ "BasicLit {\n");
begin
match 1it with
| IntLit(lit) ->

A

print string (" "
(string of int 1lit) ~ " }\n")

indent ~ "IntLit { " *
| DoubleLit(lit) -> print string (" " » indent ~ "DoubleLit { "
~ (string of float 1it) ~ " }\n")

| CharLit(lit) -> print string (" " » indent ~ "CharLit { " *
(Char.escaped 1it) ~ " }\n")

| BoolLit (lit) -> print string (" " * indent ”~ "BoolLit { " *
(string of bool 1lit) ~ " }\n")

| ObjectLit (lit) ->
print string (" " ~ indent * "ObjectLit {\n");
print object 1lit (" " A indent) 1lit;

print string (" " ~ indent ~ "}\n")

| ListLit (elem type, elems) ->

A

print string (" " indent ~ "ListLit {\n");
print string (" " ~ indent ~ " ElemType {\n");
print type spec (" " 7~ indent) elem type;

A

print string (" " indent ~ "}\n");
List.iter
(print expr (" " ~ indent)) elems;
print string (" " ~ indent ~ "}\n")
end;
print string (indent ~ "}\n");
| FuncLit (lit) ->
print string (indent ~ "FuncLit {\n");
print func lit (" " %~ indent) 1lit;
print string (indent ~ "}\n")
| This -> print string (indent ~ "This\n")

| UnaryOp (op, expr) ->

begin
match op with
| Plus -> print string (indent ~ "Plus {\n");
| Minus -> print string (indent ~ "Minus {\n");
| Not -> print string (indent ~ "Not {\n");
I => 0
end;
print expr (" " ~ indent) expr;

print string (indent ~ "}\n")
| BinaryOp (exprl, op, expr2) ->
begin
match op with

| Plus -> print string (indent ~ "Plus {\n")

and print basic init decl indent node

| Minus -> print string (indent

| Mult -> print string (indent

A

| Div -> print string (indent

A

| Mod -> print string (indent

| And -> print string (indent *
| Or -> print string (indent "
| Gt -> print string (indent *
| Ge -> print string (indent *
| Eq -> print string (indent *
| Neg -> print string (indent *
| Le -> print string (indent "

A

| Lt -> print string (indent

| Assign -> print string

A

| Dot -> print string (indent

A

| At -> print string (indent

| Trans -> print string (indent

end;

" A

print expr (" indent) exprl;

print expr (" " * indent) expr2;

A

(indent "}I\n")

print string

| FuncCall (func, args) ->

A

print string (indent "FuncCall {\n"

print expr (" " % indent) func;

LLEEAN

List.iter (print expr (" indent)

A

print string (indent "I\n")

| NoExpr -> print string (indent »~ "NoExpr"
P P _ g P

A

"Minus {\n")
A "Mult {\n")
"Div {\n")
"Mod {\n")
"And {\n")
"Or {\n")

"Gt {\n")

"Ge {\n")
"Eq {\n")
"Neq {\n")
"Le {\n")

"Lt {\nn)

(indent ~ "Assign {\n")

"Dot {\nn)

"At {\nn)

A

"Trans {\n")

) 7

) args;

);

match node with

| BasicInitDefault (id) ->
print string (indent ~ "BasicInitDefault {\n");
print string (" " ~ indent ~ id ~ "\n");
print string (indent ~ "}\n")

| BasicInitAssign(id, expr) ->
print string (indent ”~ "BasicInitAssign {\n");
print string (" " * indent ~ " Id { " ~ id ~ " }\n");
print expr (" " % indent) expr;
print string (indent ~ "}\n")

and print func lit indent node = match node with
| (return type, params, body) ->

A

print string (indent " ReturnType {\n");
print type spec (" " ~ indent) return type;
print string (indent ~ "}\n");
List.iter

(fun (param type, param id) ->

A

print string (indent " Param {\n");

print type spec (" " ” indent) param type;

A

print string (" " *~ indent param_id ~ "\n");
print string (indent ~ "}\n"))
params;
print stmt indent body
and print state indent node =
print string (indent ~ " State {\n");
begin
match node with
| (state_id, body) ->
print string (" " © indent ~ " Id { " © state id ~ " }\n");

print stmt (" " 7~ indent) body

end;
print string (indent ~ "}\n")
and print object 1lit indent class_id =

A

print type spec (" " indent) class id;

	1 Introduction
	1.1 Overview and Motivation
	1.2 Objective

	2 Language Tutorial
	2.1 Getting Started with the Compiler
	2.1.1 Environment Requirement
	2.1.2 Working with MASL Source Files and Compiler

	2.2 Writing a MASL Program
	2.2.1 “Hello, world!”
	2.2.2 Basic Data types and Variables
	2.2.3 Functions
	2.2.4 List
	2.2.5 Classes & Objects
	2.2.6 Program Structures and Simulation

	2.3 Putting Them All Together
	Computing Greatest Common Divisor
	2.3.1 Finding Even Numbers in a List
	2.3.2 Conway’s Game of Life

	3 MASL Language Reference Manual
	3.1 Overview
	3.2 Conventions
	3.3 Lexical Conventions
	3.3.1 Tokens and Whitespaces
	3.3.2 Identifiers
	3.3.3 Keywords
	3.3.4 Comments

	3.4 Types and Values
	3.4.1 Data Types and Literals
	3.4.1.1 Basic Data Types
	3.4.1.1.1 Integers
	3.4.1.1.2 Characters
	3.4.1.1.3 Floating Numbers
	3.4.1.1.4 Booleans
	3.4.1.1.5 Void
	3.4.1.1.6 Lists
	3.4.1.1.7 Strings

	3.4.1.2 Functions and Classes

	3.4.2 Variables
	3.4.3 Type System

	3.5 Expressions
	3.5.1 Primary Expressions
	3.5.2 Postfix Expressions
	3.5.3 Unary Operators
	3.5.4 Casts Expression
	3.5.5 Algorithmic Operators
	3.5.6 Relational Operators
	3.5.7 Equality Operators
	3.5.8 Logical Operators
	3.5.9 Assignment Expression
	3.5.9.1 List Operations
	3.5.9.1.1 List References

	3.5.10 Miscellaneous Operators
	3.5.10.1.1 Dot operator

	3.5.11 Precedence and Associativity

	3.6 Functions
	3.6.1 Defining a Function
	3.6.2 Invoking a Function
	3.6.2.1 By-value vs. By-Reference

	3.6.3 Functions as First Class Objects

	3.7 Classes
	3.7.1 Class Definition
	3.7.2 Member Variables
	3.7.3 Member Functions
	3.7.4 States
	3.7.5 Access Control
	3.7.5.1 List Functions

	3.8 Statements
	3.8.1 Types of Statements
	3.8.1.1 Declaration Statement
	3.8.1.2 Expression Statement
	3.8.1.3 Compound Statement
	3.8.1.4 Control Flow Statements
	3.8.1.5 Jump Statement

	3.8.2 Structure of a MASL Source File
	3.8.3 Scope
	3.8.3.1 Lexical Scoping
	3.8.3.2 Class Member Accessibility

	4 Project Plan
	4.1 Project process
	4.1.1 Planning and Specification
	4.1.2 Development
	4.1.3 Testing

	4.2 Team Responsibilities
	4.3 Project Timeline
	4.4 Software Development Environment
	4.5 Project Log

	5 Architecture Design
	5.1 Component of the MASL Compiler
	5.2 Work of Each Member

	6 Test Plan
	7 Lessons Learned
	8 Appendix
	8.1 Scanner.mll
	8.2 parser.mly
	8.3 ast.ml
	8.4 semantic.ml
	8.5 translate.ml
	8.6 toplevel.ml
	8.7 astutils.ml

