

Quartus II Version 7.2 Handbook Volume 3: Verification

101 Innovation Drive San Jose, CA 95134 www.altera.com

QII5V3-7.2

Copyright © 2007 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make

changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Contents

hapter Revision Dates	 xxix
hapter Revision Dates	

About this Handbook	xxxi
How to Contact Altera	. xxxi
Third-Party Software Product Information	. xxxi
Typographic Conventions	xxxii

Section I. Simulation

Chapter 1. Quartus II Simulator

Introduction	1–1
Simulation Flow	1–1
Functional Simulation	1–3
Timing Simulation	1 - 4
Timing Simulation Using Fast Timing Model Simulation	1 - 4
Waveform Editor	1–5
Creating VWFs	1–5
Count Value 1-	-11
Clock1-	-11
Arbitrary Value1-	-12
Random Value1-	-13
Generating a Testbench1-	-13
Grid Size 1-	-14
Time Bars1-	-14
Stretch or Compress a Waveform Interval 1-	-15
End Time	-16
Arrange Group or Bus in LSB or MSB Order1-	-17
Simulator Settings 1-	-17
Simulation Verification Options1-	-21
Simulation Output Files Options1-	-24
Simulation Report 1-	-25
Simulation Waveform 1-	-25
Simulating Bidirectional Pin1-	-26
Logical Memories Report 1-	-27
Simulation Coverage Reports 1-	-27
Comparing Two Waveforms1-	-28
Debugging with the Quartus II Simulator1-	-29
Breakpoints 1-	-29
Updating Memory Content 1-	-30

Altera Corporation

Last Simulation Vector Outputs	1–30
Conventional Debugging Process	1–30
Accessing Internal Signals for Simulation	1–30
Scripting Support	1–32
Conclusion	1–33
Referenced Documents	1–33
Document Revision History	
•	

Chapter 2. Mentor Graphics ModelSim Support

Introduction	. 2–1
Background	. 2–1
Software Compatibility	. 2–3
Altera Design Flow with ModelSim or ModelSim-Altera Software	. 2–3
Functional RTL Simulation	. 2–5
Functional Simulation Libraries	. 2–5
lpm Simulation Models	. 2–5
Altera Megafunction Simulation Models	. 2–6
Low-Level Primitive Simulation Models	. 2–7
Simulating VHDL Designs	. 2–7
Create Simulation Libraries	. 2–7
Create Simulation Libraries Using the ModelSim GUI	. 2–8
Create Simulation Libraries Using the ModelSim Command Prompt	. 2–8
Compile Simulation Models into Simulation Libraries	. 2–8
Compile Simulation Models into Simulation Libraries Using the ModelSim GUI	. 2–8
Compile Simulation Models into Simulation Libraries at the ModelSim Command	
Prompt	. 2–9
Compile Testbench and Design Files into Work Library	. 2–9
Compile Testbench and Design Files into Work Library Using the ModelSim Comm	and
Prompt	. 2–9
Loading the Design	. 2–9
Loading the Design Using the ModelSim Command Prompt	2–10
Running the Simulation	2–10
Running the Simulation Using the ModelSim Command Prompt	2–10
Simulating Verilog HDL Designs	2–10
Create Simulation Libraries	2–10
Create Simulation Libraries Using the ModelSim GUI	2–11
Create Simulation Libraries Using the ModelSim Command Prompt	2–11
Compile Simulation Models into Simulation Libraries	2–11
Compile Simulation Models into Simulation Libraries Using the ModelSim GUI	2–11
Compile Simulation Models into Simulation Libraries Using the ModelSim Comma	nd
Prompt	2–12
Compile Testbench and Design Files into Work Library	2–12
Compile Testbench and Design Files into Work Library Using the ModelSim Comm	and
Prompt	2–12

Loading the Design	. 2–12
Loading a Design Using the ModelSim Command Prompt	. 2–13
Running the Simulation	. 2–13
Running the Simulation Using the ModelSim Command Prompt	. 2–13
Verilog HDL Functional RTL Simulation with Altera Memory Blocks	. 2–13
Post-Synthesis Simulation	. 2–16
Generating a Post-Synthesis Simulation Netlist	. 2–16
Simulating VHDL Designs	. 2–17
Create Simulation Libraries	. 2–17
Create Simulation Libraries Using the ModelSim GUI	. 2–17
Create Simulation Libraries Using the ModelSim Command Prompt	. 2–18
Compile Simulation Models into Simulation Libraries Using the ModelSim GUI	. 2–18
Compile Simulation Models into Simulation Libraries Using the ModelSim Comm	and
Prompt	2–18
Compile Testbench and VHDL Output File into Work Library	2-18
Compile Testbench and VHDL Output File into Work Library Using ModelSim	
Command Prompt	2_19
Loading the Design	2_19
Loading the Design Using the ModelSim Command Prompt	2_19
Running the Simulation	· 2 17
Running the Simulation Using the ModelSim Command Prompt	2_20
Simulating Verilog HDL Designs	2_20
Create Simulation Libraries	2_20
Create Simulation Libraries Using the ModelSim CUI	2_20
Create Simulation Libraries Using the ModelSim Command Prompt	2_20
Compile Simulation Models into Simulation Libraries Using the ModelSim GUI	2_21
Compile Simulation Models into Simulation Libraries Using the ModelSim Comm	and
Prompt	2_21
Compile Testbench and Verilog Output File into Work Library	2_21
Compile Testbench and Verilog Output File into Work Library Using the ModelSi	. 2 21 m
Command Prompt	2_21
Loading the Design	2_22
Loading the Design Using the ModelSim Command Prompt	2_22
Running the Simulation	· 2 22
Running the Simulation Using the ModelSim Command Prompt	2_23
Gate-Level Timing Simulation	2_23
Concrating a Gate-Level Timing Simulation Netlict	2_23
Generating a Different Timing Model	2_24
Operating Condition Example: Generate All Timing Models for Stratix III Devices	2_25
Perform Timing Simulation Using Post-evolthesis Notlist	2_26
CateJ evel Simulation Libraries	2_27
Simulating VHDL Designs	2_29
Create Simulation Libraries	2_30
Create Simulation Libraries Using the ModelSim CUI	2_30
Create Simulation Libraries Using the ModelSim Command Prompt	2_30
Compile Simulation Models into Simulation Libraries Using the ModelSim CUI	2_31
Compile Simulation Models into Simulation Libraries Using the ModelSim Comm	. <u>2</u> -01 and
Prompt	2_31
110mpt	. 2 01

Compile Testbench and VHDL Output File into Work Library	2–31
Compile Testbench and VHDL Output File into Work Library Using the ModelSi	m
Command Prompt	2–32
Loading the Design	2–32
Loading a Design Using the ModelSim Command Prompt	2–33
Running the Simulation	2–33
Running a Simulation Using the ModelSim Command Prompt	2–33
Simulating Verilog HDL Designs	2–33
Create Simulation Libraries	2–33
Create Simulation Libraries Using the ModelSim GUI	2–34
Create Simulation Libraries Using the ModelSim Command Prompt	2–34
Compile Simulation Models into Simulation Libraries Using the ModelSim GUI.	2–34
Compile Simulation Models into Simulation Libraries Using the ModelSim Comm	nand
Prompt	2–35
Compile Testbench and Verilog Output File into Work Library	2–35
Compile Testbench and Verilog Output File into Work Libraries Using the Model	Sim
Command Prompt	2–35
Loading the Design	2–35
Loading the Design Using the ModelSim Command Prompt	2–36
Running the Simulation	2–36
Running the Simulation Using the ModelSim Command Prompt	2–36
Simulating Designs that Include Transceivers	2–37
Stratix GX Functional Simulation	2–37
Example: Performing Functional Simulation for Stratix GX in Verilog HDL	2–37
Example: Performing Functional Simulation for Stratix GX in VHDL	2–37
Stratix GX Post-Fit (Timing) Simulation	2–38
Example: Performing Timing Simulation for Stratix GX in Verilog HDL	2–38
Example: Performing Timing Simulation for Stratix GX in VHDL	2–39
Stratix II GX Functional Simulation	2–39
Example: Performing Functional Simulation for Stratix II GX in Verilog HDL	2–40
Example: Performing Functional Simulation for Stratix II GX in VHDL	2–41
Stratix II GX Post-Fit (Timing) Simulation	2–41
Example: Performing Timing Simulation for Stratix II GX in Verilog HDL	2–42
Example: Performing Timing Simulation for Stratix II GX in VHDL	2–42
Transport Delays	2–43
+transport_path_delays	2–43
+transport_int_delays	2–43
Using the NativeLink Feature with ModelSim	2–44
Setting Up NativeLink	2–44
Performing an RTL Simulation Using NativeLink	2–44
Performing a Gate-Level Simulation Using NativeLink	2–47
Setting Up a Testbench	2–48
Creating a Testbench	2–49
Scripting Support	2–50
Generating a Post-Synthesis Simulation Netlist for ModelSim	2–50
Tel Commands	2–50
Command Prompt	2–50
Generating a Gate-Level Timing Simulation Netlist for ModelSim	2–51
Tcl Commands	2–51

Command Line	2–51
Software Licensing and Licensing Setup	2–51
LM LICENSE FILE Variable	2–52
Conclusion	2–52
Referenced Documents	2–52
Document Revision History	2–53

Chapter 3. Synopsys VCS Support

Introduction	3–1
Software Requirements	3–1
Using VCS in the Quartus II Design Flow	3–3
Using VCS in the Quartus II Design Flow	3–3
Functional Simulations	3–4
Megafunctions Requiring Atom Libraries	3–5
Functional RTL Simulation with Altera Memory Blocks	3–5
Compiling Functional Library Files with Compiler Directives	3–5
Post-Synthesis Simulation	3–6
Generating a Post-Synthesis Simulation Netlist	3–6
Gate-Level Timing Simulation	3–8
Generating a Gate-Level Timing Simulation Netlist	3–8
Generating Different Timing Model	3–9
Operating Condition Example: Generate All Timing Models for Stratix III Devices	3–10
Perform Timing Simulation Using Post-Synthesis Netlist	. 3–11
Common VCS Software Compiler Options	. 3–11
Using VirSim	. 3–12
Debugging Support Command-Line Interface	. 3–12
Simulating Designs that Include Transceivers	. 3–13
Stratix GX Functional Simulation	. 3–13
Example of Compiling Library Files for Functional Stratix GX Simulation in Verilog F	HDL.
	3–13
Stratix GX Post-Fit (Timing) Simulation	. 3–13
Example of Compiling Library Files for Timing Stratix GX Simulation in Verilog HDI	· · · · · · · · · ·
	3–14
Stratix II GX Functional Simulation	. 3–14
Example of Compiling Library Files for Functional Stratix II GX Simulation in Verilog	HDL
	3–15
Stratix II GX Post-Fit (Timing) Simulation	. 3–16
Example of Compiling Library Files for Timing Stratix II GX Simulation in Verilog H	DL
	3–16
Using PLI Routines with the VCS Software	. 3–16
Preparing and Linking C Programs to Verilog HDL Code	. 3–16
Transport Delays	. 3–17
+transport_path_delays	. 3–17
+transport_int_delays	. 3–17
Using NativeLink with the VCS Software	. 3–18
Setting Up NativeLink	. 3–18
Performing an RTL Simulation Using NativeLink	. 3–18

Performing a Gate-Level Simulation Using NativeLink	3–20
Setting Up a Testbench	3–21
Creating a Testbench	3–22
Scripting Support	3–23
Generating a Post-Synthesis Simulation Netlist for VCS	3–23
Tcl Commands	3–23
Command Prompt	3–23
Generating a Gate-Level Timing Simulation Netlist for VCS	3–23
Tcl Commands	3–24
Command Prompt	3–24
Conclusion	3–24
Referenced Documents	3–24
Document Revision History	3–25

Chapter 4. Cadence NC-Sim Support

Introduction	
Software Requirements	
Simulation Flow Overview	
Operation Modes	
Quartus II Software and NC Simulation Flow Ov	erview 4–5
Functional and RTL Simulation	
Create Libraries	
Basic Library Setup	
Using Multiple cds.lib Files	
Create a cds.lib File in Command-Line Mo	de 4–8
Create a cds.lib File in GUI Mode	
LPM Functions, Altera Megafunctions, and A	ltera Primitives Libraries 4–9
Megafunctions Requiring Atom Libraries	
Simulating a Design with Memory	
Compile Source Code and Testbenches	
Compilation in Command-Line Mode	
Compilation in GUI Mode	
Elaborate Your Design	
Elaboration in Command-Line Mode	
Elaboration in GUI Mode	
Add Signals to View	
Adding Signals in Command-Line Mode	
Adding Signals in GUI Mode	
Simulate Your Design	
Functional/RTL Simulation in Command-Lin	e Mode 4–21
Functional/RTL Simulation in GUI Mode	
Post-Synthesis Simulation	
Quartus II Simulation Output Files	
Create Libraries	

Compile Project Files and Libraries	4–23
Elaborate Your Design	4–23
Add Signals to the View	4–23
Simulate Your Design	4–24
Gate-Level Timing Simulation	4–24
Generating a Gate-Level Timing Simulation Netlist	4–24
Generating a Different Timing Model	4–25
Operating Condition Example: Generate All Timing Models for Stratix III and	
Cyclone III Devices	4–26
Perform Timing Simulation Using Post-Synthesis Netlist	4–27
Quartus II Timing Simulation Libraries	4–27
Create Libraries	4–28
Compile the Project Files and Libraries	4–28
Elaborate Your Design	4–28
Compiling the Standard Delay Output File (VHDL Only)	
in Command-Line Mode	4–29
Compiling the Standard Delay Output File (VHDL Only) in GUI Mode	4–30
Add Signals to View	4–30
Simulate Your Design	4–31
Simulating Designs that Include Transceivers	4–31
Stratix GX Functional Simulation	4–31
Example of Compiling Library Files for Functional Stratix GX Simulation in Verilog	HDL .
	4–31
Example of Compiling Library Files for Functional Stratix GX Simulation in VHDL	4–31
Stratix GX Post-Fit (Timing) Simulation	4–32
Example of Compiling Library Files for Timing Stratix GX Simulation in Verilog HD	DL
	4–32
Example of Compiling Library Files for Timing Stratix GX Simulation in VHDL	4–32
Stratix II GX Functional Simulation	4–33
Example of Compiling Library Files for Functional Stratix II GX Simulation in Verilog	g HDL
	4–34
Example of Compiling Library Files for Functional Stratix II GX Simulation in VHD	L 4–35
Stratix II GX Post-Fit (Timing) Simulation	4–35
Example of Compiling Library Files for Timing Stratix II GX Simulation in Verilog F	HDL
	4–35
Example of Compiling Library Files for Timing Stratix II GX Simulation in VHDL	4–36
Pulse Reject Delays	4–36
-PULSE_R	4–36
-PULSE_INT_R	4–36
Using the NativeLink Feature with NC-Sim	4–37
Setting Up NativeLink	4–37
Performing an RTL Simulation Using NativeLink	4–37
Performing a Gate Level Simulation Using NativeLink	4–40
Setting Up a Testbench	4–40
Creating a Testbench	4–42
Incorporating PLI Routines	4–43
Dynamically Link a PLI Library	4–43

Dynamically Load a PLI Library 4-4
Statically Link the PLI Library with NC-Sim 4-4
Scripting Support
Generate NC-Sim Simulation Output Files
Tcl Commands:
Command Prompt
Conclusion
Referenced Documents
Document Revision History 4-5

Chapter 5. Simulating Altera IP in Third-Party Simulation Tools

Introduction	5–1
IP Functional Simulation Flow	5–1
Verilog and VHDL IP Functional Simulation (IPFS) Models	5–2
Instantiate the IP in Your Design	5–3
Perform Simulation	5–4
Simulating Altera IP Using the Quartus II NativeLink Feature	5–4
Set up a Quartus II Project	5–5
Select the Third-Party Simulation Tool	5–5
Specify the Path for the Third-Party Simulator	5–7
Specify the Testbench Settings	5–7
Analyze and Elaborate the Quartus II Project	5–9
Run RTL Functional Simulation	5–9
Simulating Altera IP Without the Quartus II NativeLink Feature	5–9
Design Language Examples	5–11
Verilog HDL Example: Simulating the IPFS Model in the ModelSim Software	5–11
VHDL Example: Simulating the IPFS Model in the ModelSim Software	5–12
NC-VHDL Example: Simulating the IPFS Model in the NC-VHDL Software	5–14
Verilog HDL Example: Simulating Your IPFS Model in VCS	5–15
Single-Step Process	5–15
Two-Step Process (Compilation and Simulation)	5–16
Conclusion	5–16
Referenced Documents	5–16
Document Revision History	5–17

Section II. Timing Analysis

Chapter 6. The Quartus II TimeQuest Timing Analyzer

Introduction	6–1
Getting Started with the Quartus II TimeQuest Timing Analyzer	6–2
Setting Up the Quartus II TimeQuest Timing Analyzer	6–2
Compilation Flow with the Quartus II TimeQuest Timing Analyzer Guidelines	6–3
Running the Quartus II TimeQuest Timing Analyzer	6–4
Directly from the Quartus II Software	6–4
Stand-Alone Mode	6–5

Command-Line Mode	6–5
Timing Analysis Overview	6–7
Clock Analysis	. 6–11
Clock Setup Check	. 6–11
Clock Hold Check	. 6–13
Recovery and Removal	. 6–15
Multicycle Paths	. 6–16
Specify Design Timing Requirements	. 6–19
Create a Timing Netlist	. 6–19
Specify Timing Constraints	. 6–20
Generate SDC Constraint Reports	. 6–21
The Quartus II TimeQuest Timing Analyzer Flow Guidelines	. 6–22
Create a Timing Netlist	. 6–22
Read the Synopsys Design Constraints File	. 6–22
Update Timing Netlist	. 6–23
Generate Timing Reports	. 6–23
Collections	. 6–23
Application Examples	. 6–25
Constraints Files	. 6–25
Fitter and Timing Analysis SDC Files	. 6–26
Specifying SDC Files for Place-and-Route	. 6–26
Specifying SDC Files for Static Timing Analysis	. 6–26
Synopsys Design Constraints File Precedence	. 6–27
Clock Specification	. 6–28
Clocks	. 6–28
Generated Clocks	. 6–29
Virtual Clocks	. 6–32
Multi-Frequency Clocks	. 6–33
Automatic Clock Detection	. 6–34
Derive PLL Clocks	. 6–35
Default Clock Constraints	. 6–37
Clock Groups	. 6–37
Clock Effect Characteristics	. 6–39
Clock Latency	. 6–39
Clock Uncertainty	. 6–40
Derive Clock Uncertainty	. 6–41
Inter-Clock Transfers	. 6–42
Intra-Clock Transfers	. 6–43
I/O Interface Clock Transfers	. 6–43
I/O Specifications	. 6–45
Input and Output Delay	. 6–45
Set Input Delay	. 6–45
Set Output Delay	. 6–47
Timing Exceptions	. 6–48
Precedence	. 6–49
False Path	. 6–49
Minimum Delay	. 6–50

Maximum Delay	6-52
Multicycle Path	6–53
Clock-as-Data Analysis	6-55
Application Examples	6–55
Constraint and Exception Removal	6-57
Timing Reports	6–58
report_timing	6–58
report_clock_transfers	6-62
report_clocks	6-63
report_min_pulse_width	6-63
report_net_timing	6-65
report_sdc	6–66
report_ucp	6–66
report_path	6–68
report_datasheet	6–69
report_rskm	6-70
report_tccs	6-70
report_path	6–71
check timing	6–73
report clock fmax summary	6–75
create_timing_summary	6–76
Timing Analysis Features	6–77
Multi-Corner Analysis	6–77
Advanced I/O Timing and Board Trace Model Assignments	6–79
Wildcard Assignments and Collections	6–79
Resetting a Design	6-81
The TimeQuest Timing Analyzer GUI	6-82
The Quartus II Software Interface and Options	6-83
View Pane	6-85
View Pane: Splitting	6-85
View Pane: Removing Split Windows	6-86
Tasks Pane	6-87
Opening a Project and Writing a Synopsys Design Constraints File	6-87
Netlist Setup Folder	6-88
Reports Folder	6-88
Macros Folder	6-89
Console Pane	6–90
Report Pane	6–90
Constraints	6–90
Name Finder	6–92
Target Pane	6–94
SDČ Editor	6–94
Conclusion	6–95
Referenced Documents	6–95
Document Revision History	6–96

Chapter 7	. Switching	to the	Quartus II	TimeQuest	Timing	Analyzer
-----------	-------------	--------	------------	-----------	--------	----------

Introduction	7–1
Benefits of Switching to the Quartus II TimeQuest Analyzer	7–1
Chapter Contents	7–2
Switching to the Quartus II TimeQuest Analyzer	7–2
Compile Your Design	7–2
Create an SDC File	7–3
Conversion Utility	7–3
Perform Timing Analysis with the Quartus II TimeQuest Timing Analyzer	7–4
Run the Quartus II TimeQuest Analyzer	7–4
Set the Default Timing Analyzer	7–4
Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers	7–5
Terminology	7–5
Netlist	7–6
Collections	7–7
Constraints	7–7
Constraint Files	7–7
Constraint Entry	7–8
Time Units	7–9
MegaCore Functions	7–9
Bus Name Format	. 7–10
Constraint File Priority	. 7–10
Constraint Priority	. 7–11
Ambiguous Constraints	. 7–12
Clocks	. 7–13
Related and Unrelated Clocks	. 7–13
Clock Offset	. 7–14
Clock Latency	. 7–15
Offset and Latency Example	. 7–15
Clock Offset Scenario	. 7–16
Clock Latency Scenario	. 7–17
Clock Uncertainty	. 7–18
Derived and Generated Clocks	. 7–19
Automatic Clock Detection	. 7–19
derive_clocks Command	. 7–20
derive_pll_clocks Command	. 7–22
Hold Relationship	. 7–23
Clock Objects	. 7–23
Hold Multicycle	. 7–24
Fitter Behavior	. 7–27
Fitter Performance	. 7–27
Reporting	. 7–27
Paths and Pairs	. 7–28
Default Reports	. 7–28
Netlist Names	. 7–29
Non-Integer Clock Periods	. 7–29
Other Features	. 7–30

Scripting API	. 7–32
Timing Assignment Conversion	. 7–33
Setup Relationship	. 7–33
Hold Relationship	. 7–34
Clock Latency	. 7–34
Clock Uncertainty	. 7–34
Inverted Clock	. 7–35
Not a Clock	. 7–35
Default Required f _{MAX} Assignment	. 7–35
Virtual Clock Reference	. 7–36
Clock Settings	. 7–37
Multicycle	. 7–37
Clock Enable Multicycle	. 7–38
I/O Constraints	. 7–38
Input and Output Delay	. 7–39
t _{SU} Requirement	. 7–40
t _H Requirement	. 7–43
t _{CO} Requirement	. 7–45
Minimum t _{CO} Requirement	. 7–48
t _{PD} Requirement	. 7–50
Combinational Path Delay Scenario	. 7–50
Minimum t _{PD} Requirement	. 7–51
Cut Timing Path	. 7–52
Maximum Delay	. 7–52
Minimum Delay	. 7–52
Maximum Clock Arrival Skew	. 7–53
Maximum Data Arrival Skew	. 7–53
Constraining Skew on an Output Bus	. 7–53
Conversion Utility	. 7–55
Unsupported Global Assignments	. 7–56
Recommended Global Assignments	. 7–56
Clock Conversion	. 7–58
Instance Assignment Conversion	. 7–59
PLL Phase Shift Conversion	. 7–61
t _{CO} Requirement Conversion	. 7–62
Entity-Specific Assignments	. 7–63
Paths between Unrelated Clock Domains	. 7–63
Unsupported Instance Assignments	. 7–64
Reviewing Conversion Results	. 7–64
Warning Messages	. 7–64
Ignored QSF Variable <assignment></assignment>	. 7–65
Global <name> = <value></value></name>	. 7–65
QSF: Expected <name> to be set to <expected value=""> but it is set to <actual value=""></actual></expected></name>	,
OSF: Found Global Fmax Requirement. Translation will be done using derive close	2ks
~	7–65
TAN Report Database not found. HDL based assignments will not be migrated	. 7–65

Ignored Entity Assignment (Entity <entity>): <variable> = <value> -from <from></from></value></variable></entity>	-to
<to></to>	. 7–65
Ignoring OFFSET_FROM_BASE_CLOCK assignment for clock <clock></clock>	. 7–66
Clock <clock> has no FMAX_REQUIREMENT - No clock was generated</clock>	. 7–66
No Clock Settings defined in QSF file	. 7–66
Clocks	. 7–66
Clock Transfers	. 7–66
Path Details	. 7–67
Unconstrained Paths	. 7–67
Bus Names	. 7–68
Other	. 7–68
Re-Running the Conversion Utility	7–68
Notes	. 7–68
Output Pin Load Assignments	. 7–68
Constraint Target Types	. 7–69
DDR Constraints with the DDR Timing Wizard	7–69
HardCopy Stratix Device Handoff	. 7–69
Unsupported SDC Features	. 7–69
Constraint Passing	. 7–70
Optimization	. 7–70
Clock Network Delay Reporting	. 7–70
PowerPlay Power Analysis	7-70
Project Management	7-71
Conversion Utility	7-71
top and Minimum top Requirement Conversion	7_71
Referenced Documents	7-72
Document Revision History	7-72

Chapter 8. Quartus II Classic Timing Analyzer

Introduction	
Timing Analysis Tool Setup	
Static Timing Analysis Overview	8–2
Clock Analysis	8–4
Clock Setup Check	8–4
Clock Hold Check	8–6
Multicycle Paths	8–7
Clock Settings	8–8
Individual Clock Settings	8–8
Default Clock Settings	8–8
Clock Types	8–9
Base Clocks	8–9
Derived Clocks	8–9
Undefined Clocks	8–9
PLL Clocks	8–10
Clock Uncertainty	8–11
Clock Latency	8–12
Timing Exceptions	8–15

Multicycle	8-15
Destination Multicycle Setup Exception	8-15
Destination Multicycle Hold Exception	8-16
Source Multicycle Setup Exception	8-17
Source Multicycle Hold Exception	8-18
Default Hold Multicycle	8–19
Clock Enable Multicycle	8–19
Setup Relationship and Hold Relationship	8-22
Maximum Delay and Minimum Delay	8-24
False Paths	8-24
I/O Analysis	8-26
External Input Delay and Output Delay Assignments	8-26
Input Delay Assignment	8-26
Output Delay Assignment	8-28
Virtual Clocks	8-29
Asynchronous Paths	8-30
Recovery and Removal	8-30
Recovery Report	8-31
Removal Report	8_32
Skew Management	8_34
Maximum Clock Arrival Skew	8_34
Maximum Data Arrival Skow	8_35
Cenerating Timing Analysis Reports with report timing	8-36
Other Timing Analyzer Features	8_38
Wildcard Assignments	8_38
Assignment Crouns	8_38
Fast Corpor Analysis	8_40
Fast Conter Analysis	8 40
Timing Constraint Checker	8 41
Latch Analyzic	8 42
Timing Analysis Lloing the Quartus II CUI	0-42 8 12
Assignment Editor	0-43 8 42
Timing Settings	0-43 8 11
Clark Settings Dialag Pay	0-44
Clock Settings Dialog Dox	0-40
Timing Departs	0-40
A lower lift to be the	8-4/
Advanced List Path	0-49
Early Timing Estimate	0-01
Assignment Groups	8-51
Scripting Support	8-52
Creating Clocks	8-53
Base Clocks	8-53
Derived Clocks	8-53
Clock Latency	8-53
Clock Uncertainty	8-54
Cut Timing Paths	8-54
Input Delay Assignment	8–54

Maximum and Minimum Delay	8–55
Maximum Clock Arrival Skew	8–55
Maximum Data Arrival Skew	8–55
Multicycle	8–56
Output Delay Assignment	8–56
Report Timing	8–57
Setup and Hold Relationships	8–57
Assignment Group	8–57
Virtual Clock	8–58
MAX+PLUS II Timing Analysis Methodology	8–58
f _{MAX} Relationships	8–58
Slack	8–58
I/O Timing	8-60
t _{su} Timing	8-60
t _H Timing	8–60
t _{CO} Timing	8–61
Minimum t _{CO} (min t _{CO})	8–62
t _{PD} Timing	8–62
$Minimum t_{PD} (min t_{PD}) \dots$	8–62
The Timing Analyzer Tool	8–62
Conclusion	8–63
Referenced Documents	8–63
Document Revision History	8–64

Chapter 9. Synopsys PrimeTime Support

Introduction	9–1
Quartus II Settings for Generating the PrimeTime Software Files	
Files Generated for the PrimeTime Software Environment	
The Netlist	9–3
The SDO File	
Generating Multiple Operating Conditions with TimeQuest	
The Tcl Script	9–7
Generated File Summary	9–9
Running the PrimeTime Software	
Analyzing Quartus II Projects	
Other pt_shell Commands	
PrimeTime Timing Reports	
Sample of the PrimeTime Software Timing Report	
Comparing Timing Reports from the Quartus II Classic Timing Analyzer and the I	PrimeTime
Software	9–13
Clock Setup Relationship and Slack	9–13
Clock Hold Relationship and Slack	9–17
Input Delay and Output Delay Relationships and Slack	
Static Timing Analyzer Differences	
The Quartus II Classic Timing Analyzer and the PrimeTime Software	
Rise/Fall Support	
Minimum and Maximum Delays	

Recovery/Removal Analysis	9–23
Encrypted Intellectual Property Blocks	9–24
Registered Clock Signals	9–24
Multiple Source and Destination Register Pairs	9–25
Latches	9–25
LVDS I/O	9–25
Clock Latency	9–26
Input and Output Delay Assignments	9–26
Generated Clocks Derived from Generated Clocks	9–26
The Quartus II TimeQuest Timing Analyzer and the PrimeTime Software	9–26
Encrypted Intellectual Property Blocks	9–26
Latches	9–27
LVDS I/O	9–27
The Quartus II TimeQuest Timing Analyzer SDC File and PrimeTime Compatibility .	9–27
Clock and Data Paths	9–27
Inverting and Non-Inverting Propagation	9–28
Multiple Rise/Fall Numbers For a Timing Arc	9–28
Virtual Generated Clocks	9–28
Generated Clocks Derived from Generated Clocks	9–28
Conclusion	9–28
Referenced Documents	9–29
Document Revision History	9–30

Section III. Power Estimation and Analysis

Chapter 10. PowerPlay Power Analysis

Introduction	10–1
Quartus II Early Power Estimator File	10–2
PowerPlay Early Power Estimator File Generator Compilation Report	10–5
Types of Power Analyses	10–6
Factors Affecting Power Consumption	10–6
Device Selection	10–6
Environmental Conditions	10–7
Air Flow	10–7
Heat Sink and Thermal Compound	10–7
Ambient Temperature	10–8
Board Thermal Model	10–8
Design Resources	10–8
Number, Type, and Loading of I/O Pins	10–8
Number and Type of Logic Elements, Multiplier Elements, and RAM Blocks .	10–8
Number and Type of Global Signals	10–9
Signal Activities	10–9
PowerPlay Power Analyzer Flow	
Operating Conditions	10–11
Signal Activities Data Sources	10–12

Simulation Results	10-13
Using Simulation Files in Modular Design Flows	.10–15
Complete Design Simulation	10–16
Modular Design Simulation	10–16
Multiple Simulations on the Same Entity	10 - 17
Overlapping Simulations	10–18
Partial Simulations	10–18
Node Name Matching Considerations	10–18
Glitch Filtering	10–19
Node and Entity Assignments	10–21
Timing Assignments to Clock Nodes	10-22
Default Toggle Rate Assignment	10-22
Vectorless Estimation	10-23
Using the PowerPlay Power Analyzer	10-23
Common Analysis Flows	10–23
Signal Activities from Full Post-Fit Netlist (Timing) Simulation	10-23
Signal Activities from RTL (Functional) Simulation, Supplemented by Vectorless	
Estimation	10–24
Signal Activities from Vectorless Estimation, User-Supplied Input Pin Activities	10–24
Signal Activities from User Defaults Only	10–24
Generating a SAF or VCD File Using the Quartus II Simulator	10–24
Generating a VCD File Using a Third-Party Simulator	10–28
Running the PowerPlay Power Analyzer Using the Quartus II GUI	10–31
PowerPlay Power Analyzer Compilation Report	10–39
Summary	10–39
Settings	10–39
Simulation Files Read	10–39
Operating Conditions Used	10–39
Thermal Power Dissipated by Block	10–39
Thermal Power Dissipation by Block Type (Device Resource Type)	10–39
Thermal Power Dissipation by Hierarchy	10-40
Core Dynamic Thermal Power Dissipation by Clock Domain	10-40
Current Drawn from Voltage Supplies	10-40
Confidence Metric Details	10-40
Signal Activities	10–41
Messages	10–41
Specific Rules for Reporting	10–41
Scripting Support	10–41
Running the PowerPlay Power Analyzer from the Command Line	10–42
Conclusion	10–43
Referenced Documents	10–43
Document Revision History	10–44

Section IV. Signal Integrity

Chapter 11. Signal Integrity Analysis with Third-Party Tools

Introduction 11–1
The Need for FPGA to Board Signal Integrity Analysis 11-3
The Double Counting Problem for FPGA Output Timing 11-4
Defining the Double Counting Problem
The Solution to Double Counting 11-5
I/O Model Selection: IBIS or HSPICE 11-7
FPGA to Board Signal Integrity Analysis Flow 11-8
Create I/O and Board Trace Model Assignments 11-10
Enable Output File Generation 11–10
Generate the Output Files 11–10
Customize the Output Files 11-11
Set Up and Run Simulations in Third-Party Tools 11–11
Interpret Simulation Results 11–12
Simulation with IBIS Models 11-12
Elements of an IBIS Model 11-12
Creating Accurate IBIS Models 11-13
Download IBIS Models 11-13
Generate Custom IBIS Models with the IBIS Writer 11-14
Design Simulation Using the Mentor Graphics HyperLynx Software 11-17
Configuring LineSim to Use Altera IBIS Models 11-20
Integrating Altera IBIS Models into LineSim Simulations 11-21
Running and Interpreting LineSim Simulations 11-24
Simulation with HSPICE Models 11-25
Supported Devices and Signaling 11-26
Creating Accurate HSPICE Models 11-26
Creating HSPICE Model Files Using the Quartus II GUI 11-27
Creating HSPICE Model Files Using Tcl Scripting and the Command Line 11-28
Customizing HSPICE Model Files 11-29
Design Simulation Using Synopsys HSPICE 11-30
Running HSPICE Simulations 11-30
Viewing and Interpreting Tabular Simulation Results 11-31
Viewing Graphical Simulation Results 11-31
Making Design Adjustments Based on HSPICE Simulations 11-33
Conclusion 11–35
Referenced Documents 11-36
Document Revision History 11-36

Section V. In-System Design Debugging

Chapter 12. Quick Design Debugging Using SignalProbe		
Introduction	12 - 1	

On-Chip Debugging Tool Comparison	12–2
Debugging Using the SignalProbe Feature	12–4
Reserve the SignalProbe Pins	12–4
Perform a Full Compilation	12–6
Assign a SignalProbe Source	12–6
Add Registers to the Pipeline Path to SignalProbe Pin	12–7
Perform a SignalProbe Compilation	12–9
Analyze the Results of the SignalProbe Compilation	12–10
Generate the Programming File	12–11
SignalProbe ECO flows	12–11
SignalProbe ECO Flow with Quartus II Incremental Compilation	12–11
SignalProbe ECO Flow without Quartus Incremental Compilation	12–12
Common Questions About the SignalProbe Feature	12–14
Why Did I Get the Following Error Message, "Error: There are No Enabled Signal	Probes to
Process"?	12–14
How Can I Retain My SignalProbe ECOs during Re-compilation of My Design?.	12–14
Why Did My Signal Probe Source Disappear in the Change Manager?	12–14
What is an ECO and Where Can I Find More Information on ECO?	12–15
How Do I Migrate My Previous SignalProbe Assignments in the Ouartus II Softw	are
Versions 5.1 and below to Versions 6.0 and Higher?	12–15
What are all the Changes for the SignalProbe Feature between the Ouartus II Soft	ware
Version 5.1 and Earlier, and Version 6.0 and Later?	12–16
Scripting Support	12–17
Make a SignalProbe Pin	12–17
Delete a SignalProbe Pin	12–17
Enable a SignalProbe Pin	12–18
Disable a SignalProbe Pin	12–18
Perform a SignalProbe Compilation	12–18
Migrating Previous SignalProbe Pins to the Quartus II Software Versions 6.0 and	Later
Script Example	12–18
Using SignalProbe with the APEX Device Family	12–19
Adding SignalProbe Sources	12–19
Performing a SignalProbe Compilation	12–20
Running SignalProbe with Smart Compilation	12–21
Understanding the Results of a Signal Probe Compilation	12–21
Analyzing SignalProbe Routing Failures	12-23
SignalProbe Scripting Support for APEX Devices	12–23
Reserving SignalProbe Pins	12-24
Adding Signal Probe Sources	12-24
Assigning I/O Standards	12-24
Adding Registers for Pinelining	12_21
Run SignalProbe Automatically	12_21
Run SignalProbe Manually	12 20
Enable or Disable All SignalProbe Routing	12 25
Running SignalProbe with Smart Compilation	12 20 12_26
Allow Signal Probe to Modify Fitting Results	12-20 12_26
mow orginal root to would rating results	12-20

Conclusion	12-26
Referenced Documents	12–26
Document Revision History	12-27

Chapter 13. Design Debugging Using the SignalTap II Embedded Logic Analyzer

Introduction	13–1
Hardware and Software Requirements	13–3
On-Chip Debugging Tool Comparison	13–5
Design Flow Using the SignalTap II Logic Analyzer	13–7
SignalTap II Logic Analyzer Task Flow	13–8
Add the SignalTap II Logic Analyzer to Your Design	13–9
Configure the SignalTap II Logic Analyzer	13–9
Define Triggers	13–9
Compile the Design	13–9
Program the Target Device or Devices	13–9
Run the SignalTap II Logic Analyzer	13–10
View, Analyze, and Use Captured Data	13–10
Add the SignalTap II Logic Analyzer to Your Design	13–10
Creating and Enabling a SignalTap II File	13–10
Creating a SignalTap II File	13–10
Enabling and Disabling a SignalTap II File for the Current Project	13–11
Using the MegaWizard Plug-In Manager to Create Your Embedded Logic Analyzer	13–12
Creating an HDL Representation Using the MegaWizard Plug-In Manager	13–12
SignalTap II Megafunction Ports	13–16
Instantiating the SignalTap II Logic Analyzer in Your HDL	13–16
Embedding Multiple Analyzers in One FPGA	13–17
Monitoring FPGA Resources Used by the SignalTap II Logic Analyzer	13–17
Configure the SignalTap II Logic Analyzer	13–18
Assigning an Acquisition Clock	13–18
Adding Signals to the SignalTap II File	13–19
Signal Preservation	13–21
Assigning Data Signals	13–22
Node List Signal Use Options	13–23
Untappable Signals	13–23
Adding Signals with a Plug-In	13–23
Specifying the Sample Depth	13–25
Capturing Data to a Specific RAM Type	13–26
Choosing the Buffer Acquisition Mode	13–26
Circular Buffer	13–27
Segmented Buffer	13–27
Managing Multiple SignalTap II Files and Configurations	13–28
Define Triggers	13–30
Creating Basic Trigger Conditions	13–30
Creating Advanced Trigger Conditions	13–31
Examples of Advanced Triggering Expressions	13–32
Trigger Condition Flow Control	13–34
Sequential Triggering	13–34

Custom State-Based Triggering	13–36
State Diagram Pane	13–39
State Machine Pane	13–39
Resources Pane	13-39
SignalTap II Trigger Flow Description Language	13-40
State Labels	13-41
Boolean_expression	13–41
Action_list	13-42
Resource Manipulation Action	13-43
Buffer Control Action	13-43
State Transition Action	13–44
Specifying the Trigger Position	13-44
Creating a Power-Up Trigger	13–45
Enabling a Power-Up Trigger	13-45
Managing and Configuring Power-Up and Runtime Trigger Conditions	13-46
Using External Triggers	13-47
Trigger In	13-47
Trigger Out	13-48
Using the Trigger Out of One Analyzer as the Trigger In of Another Analyzer	13-48
Compile the Design	13-50
Faster Compilations with Quartus II Incremental Compilation	13-51
Enabling Incremental Compilation for your Design	13–51
Using Incremental Compilation with the SignalTap II Logic Analyzer	13-52
Preventing Changes Requiring Recompilation	13-54
Timing Preservation with the SignalTap II Logic Analyzer	13-54
Performance and Resource Considerations	13-55
Program the Target Device or Devices	13–57
Programming a Single Device	13–57
Programming Multiple Devices to Debug Multiple Designs	13–58
Run the SignalTap II Logic Analyzer	13–59
Running with a Power-Up Trigger	13-60
Running with Runtime Triggers	13-60
Performing a Force Trigger	13–61
SignalTap II Status Messages	13-62
View, Analyze, and Use Captured Data	13-63
Viewing Captured Data	13-63
Creating Mnemonics for Bit Patterns	13–64
Automatic Mnemonics with a Plug-In	13-64
Locating a Node in the Design	13–65
Saving Captured Data	13–66
Converting Captured Data to Other File Formats	13–66
Creating a SignalTap II List File	13–67
Other Features	13–67
Using the SignalTap II MATLAB MEX Function to Capture Data	13–67
Using SignalTap II in a Lab Environment	13–69
Remote Debugging Using the SignalTap II Logic Analyzer	13–69
Equipment Setup	13–70

Software Setup on the Remote PC	13-70
Software Setup on the Local PC	13–71
SignalTap II Setup on the Local PC	13–72
SignalTap II Scripting Support	13–72
SignalTap II Command Line Options	13–73
SignalTap II Tcl Commands	13–75
Design Example: Using SignalTap II Logic Analyzers in SOPC Builder Systems	13–77
Custom Triggering Flow Application Examples	13–77
Design Example 1: Specifying a Custom Trigger Position	13–77
Design Example 2: Trigger When triggercond1 Occurs Ten Times between triggercond2	and
triggercond3	13–78
Conclusion	.13-80
Referenced Documents	13-80
Document Revision History	13-81

Chapter 14. In-System Debugging Using External Logic Analyzers

Introduction	14–1
Choosing a Logic Analyzer	14–2
Required Components	14–3
FPGA Device Support	14–3
Debugging Your Design Using the Logic Analyzer Interface	14–4
Creating a Logic Analyzer Interface File	14–4
Creating a New Logic Analyzer Interface File	14–5
Opening an Existing External Analyzer Interface File	14–6
Saving the External Analyzer Interface File	14–7
Configuring the Logic Analyzer Interface File Core Parameters	14–7
Mapping the Logic Analyzer Interface File Pins to Available I/O Pins	14–9
Mapping Internal Signals to the Logic Analyzer Interface Banks	14–9
Using the Node Finder	14–10
Enabling the Logic Analyzer Interface Before Compiling Your Quartus II Project	14–11
Compiling Your Quartus II Project	14–12
Programming Your FPGA Using the Logic Analyzer Interface	14–13
Using the Logic Analyzer Interface with Multiple Devices	14–14
Configuring Banks in the Logic Analyzer Interface File	14–15
Acquiring Data on Your Logic Analyzer	14–15
Advanced Features	14–15
Using the Logic Analyzer Interface with Incremental Compilation	14–15
Creating Multiple Logic Analyzer Interface Instances in One FPGA	14–16
Conclusion	14–17
Document Revision History	14–18

Chapter 15. In-System Updating of Memory and Constants

Introduction	15–1
Overview	15–1
Device Megafunction Support	15–2
Using In-System Updating of Memory Constants with Your Design	15–3
Creating In-System Modifiable Memories Constants	15–3

Running the In-System Memory Content Editor 15-4
Instance Manager 15-5
Editing Data Displayed in the Hex Editor 15-7
Importing Exporting Memory Files 15-7
Viewing Memories Constants in the Hex Editor 15-7
Scripting Support 15-9
Programming the Device Using the In-System Memory Content Editor 15-10
Example: Using the In-System Memory Content Editor with the SignalTap II Embedded Logic
Analyzer
Conclusion 15-11
Referenced Documents 15-11
Document Revision History 15-12

Chapter 16. Design Debugging Using In-System Sources and Probes

Introduction	
Overview	16–1
Hardware and Software Requirements	16–3
Design Flow Using In-System Sources and Probes	16–4
Configuring the altsource_probes Megafunction	16–6
Instantiating the altsource_probe Megafunction	16–8
Compiling the Design	16–8
Running the	
In-System Sources and Probes Editor	16–9
Programming Your Device Using the JTAG Chain Configuration Window	16–11
Instance Manager	16–12
Sources and Probes Editor Window	16–13
Reading Probe Data	16–13
Writing Data	16–13
Data Organization	
TCL Support	
Design Example: Dynamic PLL Reconfiguration	16–18
Conclusion	
Referenced Documents	
Document Revision History	

Section VI. Formal Verification

Chapter 17. Cadence Encounter Conformal Support

Introduction	17–1
Formal Verification Versus Simulation	17–2
Formal Verification: What You Need to Know	17–2
Formal Verification Design Flow	17–2
Quartus II Integrated Synthesis	17–3
EDA Tool Support for Quartus II Integrated Synthesis	17–3
Synplify Pro	17–3

EDA Tool Support for Synplify Pro 17-4
RTL Coding Guidelines for Quartus II Integrated Synthesis 17-5
Synthesis Directives and Attributes 17-5
Stuck-at Registers
ROM, LPM_DIVIDE, and Shift Register Inference 17-8
RAM Inference 17–8
Latch Inference
Combinational Loops
Finite State Machine Coding Styles 17-10
Generating the Post-Fit Netlist Output File and the Encounter Conformal Setup Files 17-10
Tcl Command 17–15
GUI
The Quartus II Software Generated Files, Formal Verification Scripts, and Directories 17-16
Understanding the Formal Verification Scripts for Encounter Conformal 17-18
The Encounter Conformal Commands within the Quartus II Software-Generated Scripts
Comparing Designs Using Encounter Conformal 17–21
Black Boxes in the Encounter Conformal Flow 17-21
Running the Encounter Conformal Software 17–22
Running the Encounter Conformal Software from the GUI 17-22
Running the Encounter Conformal Software From a System Command Prompt 17-24
Known Issues and Limitations
Conclusion
Black Box Models 17–28
Conformal Dofile/Script Example
Referenced Documents
Document Revision History 17-33

Chapter 18. Synopsys Formality Support

Introduction	
Formal Verification	
Equivalence Checking	
Formal Verification Support	
EDA Tools and Device Support	
Formal Verification Between RTL and Post-Synthesis Netlist	
Generating Post-Synthesis Netlist for Formal Verification	
DC FPGA Software Settings	
Generating the VO File and Formality Script	
Handling Black Boxes	
Tcl Command	
GUI	
Quartus II Scripts for Formality	
Comparing Designs Using the Formality Software	
Known Issues and Limitations	
Conclusion	
Related Links	
Tcl Sample Script	

DC FPGA Synthesis Script	18–13
Quartus II Software-Generated Formal Verification Script	18-14
Referenced Documents	18-15
Document Revision History	18–15

Section VII. Device Programming

Chapter 19. Quartus II Programmer

Introduction	19–1
Programming Flow	19–1
Programming and Configuration Modes	19–4
JTAG Mode	19–4
Passive Serial Mode	19–4
Active Serial Mode	19–5
In-Socket Programming Mode	19–5
Programmer Overview	19–6
Tools Menu	19–11
Hardware Setup	19–12
Hardware Settings	19–12
JTAG Settings	19–13
Device Programming and Configuration	19–14
Single Device Programming and Configuration	19–14
Multi-Device Programming and Configuration	19–14
Bypassing an Altera Device	19–15
Bypassing a Non-Altera Device	19–15
Chain Description File	19–17
Design Security Key Programming	19–17
Optional Programming Files	19–18
Types of Programming and Configuration Files	19–18
Generating Optional Programming Files	19–20
Create Programming Files	19–20
Convert Programming Files	19–20
Generating Optional Programming or Configuration Files During Compilation	19–21
Flash Loaders	19–21
Parallel Flash Loader	19–21
Serial Flash Loader	19–21
Other Programming Tools	19–22
Quartus II Stand-Alone Programmer	19–22
jtagconfig Debugging Tool	19–22
Scripting Support	19–22
Conclusion	19–23
Referenced Documents	19–24
Document Revision History	19–24

Chapter Revision Dates

The chapters in this book, the Quartus II Handbook, Volume 3, were revised on the following dates. Where chapters or groups of chapters are available separately, part numbers are listed.

Chapter 1.	Quartus II Sim	ulator	
1	Revised:	October 2007	
	Part number:	QII53017-7.2.0	
Chapter 2.	Mentor Graphics ModelSim Support		
	Revised:	October 2007	
	Part number:	QII53001-7.2.0	
Chapter 3.	Synopsys VCS	Support	
-	Revised:	October 2007	
	Part number:	QII53002-7.2.0	
Chapter 4.	Cadence NC-S	im Support	
-	Revised:	October 2007	
	Part number:	QII53003-7.2.0	
Chapter 5.	Simulating Altera IP in Third-Party Simulation Tools		
1	Revised:	October 2007	
	Part number:	QII53014-7.2.0	
Chapter 6.	The Quartus II	TimeQuest Timing Analyzer	
-	Revised:	October 2007	
	Part number:	QII53018-7.2.0	
Chapter 7.	Switching to th	ne Quartus II TimeQuest Timing Analyzer	
1	Revised:	October 2007	
	Part number:	QII53019-7.2.0	
Chapter 8.	Quartus II Clas	ssic Timing Analyzer	
-	Revised:	October 2007	
	Part number:	QII53004-7.2.0	
Chapter 9.	Synopsys Prim	eTime Support	
*	Revised:	October 2007	
	Part number:	QII53005-7.2.0	

- Chapter 10. PowerPlay Power Analysis Revised: October 2007 Part number: QII53013-7.2.0
- Chapter 11. Signal Integrity Analysis with Third-Party Tools Revised: October 2007 Part number: QII53020-7.2.0
- Chapter 12. Quick Design Debugging Using SignalProbe Revised: October 2007 Part number: QII53008-7.2.0
- Chapter 13. Design Debugging Using the SignalTap II Embedded Logic Analyzer Revised: October 2007 Part number: QII53009-7.2.0
- Chapter 14. In-System Debugging Using External Logic Analyzers Revised: October 2007 Part number: QII53016-7.2.0
- Chapter 15. In-System Updating of Memory and Constants Revised: October 2007 Part number: QII53012-7.2.0
- Chapter 16. Design Debugging Using In-System Sources and Probes Revised: October 2007 Part number: QII53021-7.2.0
- Chapter 17. Cadence Encounter Conformal Support Revised: October 2007 Part number: QII53011-7.2.0
- Chapter 18. Synopsys Formality Support Revised: October 2007 Part number: QII53015-7.2.0
- Chapter 19. Quartus II Programmer Revised: October 2007 Part number: QII53022-7.2.0

About this Handbook

This handbook provides comprehensive information about the Altera® Quartus® II design software, version 7.2.

How to Contact Altera

For the most up-to-date information about Altera products, refer to the following table.

Information Type	Contact (1)
Technical support	www.altera.com/mysupport/
Technical training	www.altera.com/training/ custrain@altera.com
Product literature	www.altera.com/literature/
Altera literature services	literature@altera.com (1)
FTP site	ftp.altera.com

Note to table:

(1) You can also contact your local Altera sales office or sales representative.

Third-Party Software Product Information

Third-party software products described in this handbook are not Altera products, are licensed by Altera from third parties, and are subject to change without notice. Updates to these third-party software products may not be concurrent with Quartus II software releases. Altera has assumed responsibility for the selection of such third-party software products and its use in the Quartus II 7.2 software release. To the extent that the software products described in this handbook are derived from third-party software, no third party warrants the software, assumes any liability regarding use of the software, or undertakes to furnish you any support or information relating to the software. EXCEPT AS EXPRESSLY SET FORTH IN THE APPLICABLE ALTERA PROGRAM LICENSE SUBSCRIPTION AGREEMENT UNDER WHICH THIS SOFTWARE WAS PROVDED TO YOU, ALTERA AND THIRD-PARTY LICENSORS DISCLAIM ALL WARRANTIES WITH RESPECT TO THE USE OF SUCH THIRD-PARTY SOFTWARE CODE OR DOCUMENTATION IN THE SOFTWARE, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT. For more information, including the latest available version of specific third-party software products, refer to the documentation for the software in question.

Typographic Conventions

This document uses the typographic conventions shown below.

Visual Cue	Meaning
Bold Type with Initial Capital Letters	Command names, dialog box titles, checkbox options, and dialog box options are shown in bold, initial capital letters. Example: Save As dialog box.
bold type	External timing parameters, directory names, project names, disk drive names, filenames, filename extensions, and software utility names are shown in bold type. Examples: f _{MAX} , \qdesigns directory, d: drive, chiptrip.gdf file.
Italic Type with Initial Capital Letters	Document titles are shown in italic type with initial capital letters. Example: <i>AN 75: High-Speed Board Design.</i>
Italic type	Internal timing parameters and variables are shown in italic type. Examples: $t_{P A}$, $n + 1$.
	Variable names are enclosed in angle brackets (< >) and shown in italic type. Example: <i><file name=""></file></i> , <i><project name=""></project></i> . pof file.
Initial Capital Letters	Keyboard keys and menu names are shown with initial capital letters. Examples: Delete key, the Options menu.
"Subheading Title"	References to sections within a document and titles of on-line help topics are shown in quotation marks. Example: "Typographic Conventions."
Courier type	Signal and port names are shown in lowercase Courier type. Examples: data1, tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.
	Anything that must be typed exactly as it appears is shown in Courier type. For example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an actual file, such as a Report File, references to parts of files (e.g., the AHDL keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier.
1., 2., 3., and a., b., c., etc.	Numbered steps are used in a list of items when the sequence of the items is important, such as the steps listed in a procedure.
✓, —, N/A	Used in table cells to indicate the following: \checkmark indicates a "Yes" or "Applicable" statement; — indicates a "No" or "Not Supported" statement; N/A indicates that the table cell entry is not applicable to the item of interest.
••	Bullets are used in a list of items when the sequence of the items is not important.
\checkmark	The checkmark indicates a procedure that consists of one step only.
17 - Carlor Carl	The hand points to information that requires special attention.
CAUTION	A caution calls attention to a condition or possible situation that can damage or destroy the product or the user's work.
WARNING	A warning calls attention to a condition or possible situation that can cause injury to the user.
H	The angled arrow indicates you should press the Enter key.
•••	The feet direct you to more information on a particular topic.

Section I. Simulation

As the design complexity of FPGAs continues to rise, verification engineers are finding it increasingly difficult to simulate their system-ona-programmable-chip (SOPC) designs in a timely manner. The verification process is now the bottleneck in the FPGA design flow. You can perform functional and timing simulation of your design by using the Quartus[®] II Simulator. The Quartus II software also provides a wide range of features for performing simulation of designs in EDA simulation tools.

This section includes the following chapters:

- Chapter 1, Quartus II Simulator
- Chapter 2, Mentor Graphics ModelSim Support
- Chapter 3, Synopsys VCS Support
- Chapter 4, Cadence NC-Sim Support
- Chapter 5, Simulating Altera IP in Third-Party Simulation Tools
- For information about the revision history for chapters in this section, refer to each individual chapter for that chapter's revision history.

1. Quartus II Simulator

QII53017-7.2.0

Introduction	With today's FPGAs becoming faster and more complex, designers face challenges in validating their designs. Simulation verifies the correctness of the design, reducing board testing and debugging time. Altera® offers the Simulator as part of the Quartus® II software to assist designers with design verification. The Quartus II Simulator has a comprehensive set of features that are covered in the following sections:
	 "Simulation Flow" "Waveform Editor" on page 1–5 "Simulator Settings" on page 1–17 "Simulation Report" on page 1–25 "Debugging with the Quartus II Simulator" on page 1–29 "Scripting Support" on page 1–32 This chapter describes how to perform different types of simulations with the Quartus II Simulator."
Simulation Flow	You can perform both functional and timing simulations with the Quartus II Simulator. Both types of simulation verify the correctness and behavior of your design. Functional simulations are run at the beginning of the Quartus II design flow and timing simulations are run at the end. Figure 1–1 shows the Quartus II Simulator flow.

Figure 1–1. Simulation Flow

Notes to Figure 1–1:

- (1) For more information on EDA Simulators, refer to the Simulation section in volume 3 of the Quartus II Handbook.
- (2) You can use Signal Activity Files (**.saf**) or Value Change Dump Files (**.vcd**) in the PowerPlay Power Analyzer to check power resources.
As shown in Figure 1–1, your design simulation can happen at the functional level, where your design's logical behavior is verified and no timing information is used in simulation. Timing simulation can happen after your design has been compiled (synthesized and placed and routed) and after you use the timing data of your design's resources. In Timing simulation, your design's logical behavior is verified with the device's worst-case timing models. Timing simulation using the Fast Timing Model is also a type of Timing simulation where best-case timing data is used.

To perform functional simulations with the Quartus II Simulator, you must first generate a functional simulation netlist. A functional netlist file is a flattened netlist extracted from the design files that does not contain timing information.

For timing simulations, you must first perform place-and-route and static timing analysis to generate a timing simulation netlist. A timing simulation netlist includes timing delays of each device atom block and the routing delays.

If you want to use third-party EDA simulation tools, you can generate a netlist using EDA Netlist Writer. You can use this netlist with your testbench files in third-party simulation tools.

For more information about third-party simulators, refer to the respective EDA Simulation chapter in the *Simulation* section in volume 3 of the *Quartus II Handbook*.

The Quartus II Simulator supports Functional, Timing, and Timing using Fast Timing Model simulations. The following sections describe how to perform these simulations.

Functional Simulation

To run a functional simulation, perform the following steps:

- 1. On the Processing menu, click **Generate Functional Simulation Netlist**. This flattens the functional simulation netlist extracted from the design files. The netlist does not contain timing information.
- 2. On the Assignments menu, click **Settings**. The **Settings** dialog box appears.
- 3. In the **Category** list, select **Simulator Settings**. The **Simulator Settings** page appears.
- 4. In the **Simulation mode** list, select **Functional**.

- 5. In the **Simulation input** box, specify the vector source. You must specify the vector file to run the simulation.
- 6. Click OK.
- 7. On the Processing menu, click Start Simulation.

Timing Simulation

To run a timing simulation, perform the following steps:

- 1. On the Processing menu, click **Start Compilation** or click the **Compilation** button on the toolbar. This flattens the design and generates an internal netlist with timing delay information annotated.
- 2. On the Assignments menu, click **Settings**. The **Settings** dialog box appears.
- 3. In the **Category** list, select **Simulator Settings**. The **Simulator Settings** page appears.
- 4. In the Simulation Mode list, select Timing.
- 5. In the **Simulation input** list, specify the vector source. You need to specify the vector file to run the simulation.
- 6. Click OK.
- 7. On the Processing menu, click Start Simulation.

Timing Simulation Using Fast Timing Model Simulation

To run a timing simulation using a fast timing model, perform the following steps:

- 1. On the Processing menu, point to Start and click **Start Analysis and Synthesis**.
- 2. On the Processing menu, point to Start and click Start Fitter.

You must perform fast timing analysis before you can perform a timing simulation using the fast timing models.

3. On the Processing menu, point to Start and click **Start Classic Timing Analyzer (Fast Timing Model)**.

- 4. On the Assignments menu, click **Settings**. The **Settings** dialog box appears.
- 5. In the **Category** list, select **Simulator Settings**. The **Simulator Settings** page appears.
- 6. In the **Simulation mode** list, select **Timing using Fast Timing Model**.
- 7. In the **Simulation input** box, specify the vector source. You need to specify the vector file to run the simulation.
- 8. Click OK.
- 9. On the Processing menu, click Start Simulation.

Waveform Editor The most common input stimulus for the Quartus II Simulator are VWFs. You can use the Quartus II Waveform Editor to generate a VWF.

Creating VWFs

To create a VWF, perform the following steps:

- 1. On the File menu, click New. The New dialog box appears.
- 2. Click the Other Files tab, and select Vector Waveform File.
- 3. Click OK. A blank Waveform Editor window appears (Figure 1–2).

Figure 1–2. Waveform Editor Window

	oject Lools Wind	1 Jow	_		-			
er Time Bar:	10.0 ns	Pointer	1.8 ns	Interval	-8.2 ns	Start	End	-
Name	Value at 10.0 ns	0 ps		10.0 ns 10.0 ns		20 +10	1,0 ns 1.0 ns 1	30.0 r

- 4. Add nodes and buses. To add a node or bus, on the Edit menu, click Insert and click Insert Node or Bus. The Insert Node or Bus dialog box appears (Figure 1–3). All nodes and buses, as well as the internal signals, are listed under Name in the Waveform Editor window.
- You can also open the **Insert Node or Bus** dialog box by double-clicking under **Name** in the Waveform Editor.

Figure 1–3. Insert Node or Bus Dialog Box

Insert Node	or Bus		
Name:			OK
Туре:	INPUT	•	Cancel
Value type:	9-Level	•	Node Finder
Radix:	Binary	-	
Bus width:	1		
Start index:	0		
🔲 Display gra	ay code count as binary count		

5. You can customize the type of node or bus you want to add. If you have a large design with many nodes or buses, you may want to use the Node Finder for node or bus selection. To use the Node Finder, click **Node Finder**. The **Node Finder** dialog box appears (Figure 1–4).

Figure 1–4. Node Finder Dialog Box

Name of the no bus you want t	ode or to find		List of de	fault filters			
	Specify or b of the design	rowse the hierarch n to find the node	iy or bus		Customize your filt	ers	
Node Finder							
Named: ×		Filter: Pins: a		•	Customize		ОК
Look in: [filtref]		•		•	Include subentitie	s Stop	Cancel
Nodes Found:			S	elected Nodes:			
Name Assig	gnments Type	Creator	j [Name	As	signments Type	
🗩 clk Una:	ssigned Input	User entered	1	🕩 filtref newt	U	nassigned Input	
🖻 clkx2 Una:	ssigned Input	User entered	1	🕩 filtref newt	U	nassigned Input	
🗗 Una:	ssigned Input Group	User entered	1	🕩 filtref reset	U	nassigned Input	
🕩 d[0] 🛛 Una:	ssigned Input	User entered					
🗈 d[1] Una:	ssigned Input	User entered					
🗩 d[2] Una:	ssigned Input	User entered					
🕩 d[3] 🛛 Una:	ssigned Input	User entered	>>				
🗈 d[4] Una:	ssigned Input	User entered					
🗈 d[5] Una:	ssigned Input	User entered	<				
🗩 d[6] Una:	ssigned Input	User entered					
🖻 d[7] Una:	ssigned Input	User entered	<<				
💿 follow 🛛 Una:	ssigned Output	User entered					
🗈 newt Una:	ssigned Input	User entered					
🗩 reset 🛛 Una:	ssigned Input	User entered					
🔊 yn_out Una:	ssigned Output Gro	User entered					
💿 un outf01. Lina:	ssianed 🕈 Autout	User entered			1		
		>		<		>	
							11.
All nod	es and buses match	ing		A	All selected nodes a	nd	
the searc	ch criteria are listed i	here		1	buses are placed he	ere	

You can use the Node Finder to find your nodes for simulation among all the nodes and buses in your design. Use the Node Finder to filter and add nodes to your waveform. The Node Finder is equipped with multiple default filter options. By using the correct filter in the Node Finder, you can find the internal node's name and add it to your Vector Waveform File for simulation.

Your node might not appear in the simulation waveform and might be ignored during simulation. This happens because the node has been renamed or synthesized away by the Quartus II software. To prevent this from happening, Altera recommends using the register and pin nodes to simulate your design.

Table 1–1. Filter Options	
Filter	Description
Pins: input	Finds all input pin names in your design file(s).
Pins: output	Finds all output pin names in your design file(s).
Pins: bidirectional	Finds all bidirectional pin names in your design file(s).
Pins: virtual	Finds all virtual pin names.
Pins: all	Finds all pin names in your design file(s).
Registers: pre-synthesis	Finds all user-entered register names contained in the design after design elaboration, but before physical synthesis does any synthesis optimizations.
Registers: post-fitting	Finds all user-entered register names in your design file(s) that survived physical synthesis and fitting.
Design Entry (all names)	Finds all user-entered names in your design file(s).
Post-Compilation	Finds all user-entered and compiler-generated names that do not have location assignments and survived fitting.
SignalTap II: pre-synthesis	Finds all internal device nodes in the pre-synthesis netlist that can be analyzed by the SignalTap $^{\otimes}$ II Logic Analyzer.
SignalTap II: post-fitting	Finds all internal device nodes in the post-fitting netlist that can be analyzed by the SignalTap II Logic Analyzer.
SignalProbe	Finds all SignalProbe [™] device nodes in the post-fitting netlist.

Table 1–1 describes twelve of the Node Finder default filters.

To customize your own filters in the Node Finder, perform the following steps:

- a. Click Customize. The Customize Filter dialog box appears.
- b. To configure settings, click **New**. The **New Custom Filter** dialog box appears.
- c. In the **Filter name** box, type the name of the custom filter.
- d. In the **Copy settings from filter** list, select the filter setting.
- e. Click OK.
- f. You can now customize your filters in the **Customize Filter** dialog box.
- 6. In the **Look in** box, you can view and edit the current search hierarchy path. You can type the search hierarchy path or you can browse for the hierarchy path by clicking the browse button.

You can move up the search hierarchy by selecting hierarchical names in the **Select Hierarchy Level** dialog box. This ensures that in a large design with many signals, you can specify which hierarchy you would like to get the node from to reduce the amount of signals displayed.

7. After you have configured the filter and specified the correct hierarchy in the **Node Finder** dialog box, click **List** to display all relevant nodes or buses.

Select any node(s) or bus(es) from the **Nodes Found** list and click > to include it in the waveform, or you can click >> to include all nodes and buses displayed in the **Nodes Found** list.

- 8. Click OK.
- You can also add nodes to the Waveform Editor by dragging nodes from the Project Navigator, Netlist Viewers, or Block Diagram, and dropping them into the Waveform Editor.
- Create a waveform for a signal. The Quartus II Waveform Editor toolbar includes some of the most common waveform settings, making waveform vector drawings easier and user friendly. Figure 1–5 shows the options available on the Waveform Editor toolbar.

Figure 1–5. Waveform Editor Toolbar

10. After you edit your waveform, save the waveform. On the File menu, click **Save As**. The **Save As** dialog box appears. Type your file name, specify the file type, and click **Save**.

Improvement Instead of using the Node Finder to insert your nodes for your VWF, you can also drag-and-drop any nodes from the Netlist Viewer to your Simulation Vector Waveform File. For more information on Netlist Viewers, refer to *Analyzing Designs with the Quartus II Netlist Viewers* in volume 1 of the *Quartus II Handbook*.

Count Value

Count Value applies a count value to a bus to increment the value of the bus by a specified time interval. Instead of manually editing the values for each node, the Count Value feature on the Waveform Editor toolbar automatically creates the counting values for buses. This feature enables you to specify a starting value for a bus, what time interval to increment, and when to stop counting. You can also configure transition occurrences, while setting the count type and increment number. When you click on the **Count Value** button in the Waveform Editor toolbar, the **Count Value** dialog box appears (Figure 1–6). You can also open the **Count Value** dialog box by right-clicking the selected node, pointing to Value, and clicking **Count Value**.

Figure 1–6. Count Value Dialog Box

ount Value	Count Value
Count value Count value Counting Timing Radix: Binary Start value: Count lype Count lype F Binary	Country Timing Start time: 0 ps v End time: 1.0 us v Transitions occur Relative to clock settings: clocka © Positive edge © Negative edge
C Gray code	At absolute times: Count every: 10.0 ns Multiplied by: 1 OK Cancel

Clock

You can use the Clock feature in the Waveform Editor toolbar to automatically generate the clock wave, rather than drawing each clock triggering pulse. To generate a clock signal with the **Clock** dialog box, click the **Overwrite Clock** button on the Waveform Editor toolbar. Furthermore, you can determine the start and end time of a clock signal, whether to manually configure the period (the offset and the duty cycle), or whether to generate the clock based on a specified clock. Figure 1–7 shows the **Clock** dialog box.

Figure 1–7. Clock Dialog Box

Clock		
Time range-		
Start time:	0	ps 💌
End time:	1.0	us 💌
Base wavefo	rm on	
C Clock se	ttings:	
clocka		-
Time per	iod:	
Period:	10.0	ns 🔻
Offset:	0.0	ns 💌
Duty cyc	cle (%): 50	•
Г	ОК	Cancel

Arbitrary Value

Arbitrary Value allows you to overwrite a node value over the selected waveform, waveform interval, or across one or more nodes or groups. To overwrite a node value, perform the following steps:

- 1. Select a node or a bus and click the **Arbitrary Value** button on the Waveform Editor toolbar (Figure 1–5). The **Arbitrary Value** dialog box appears (Figure 1–8).
- 2. Under **Time range**, specify the start and end time you want to overwrite for the node value.
- 3. In the **Radix** list, select the radix type.
- 4. Specify the new value you want overwritten in the **Numeric or named value** box.
- 5. Click OK.

Figure 1–8. Arbitrary Value Dialog Box

Time range		
Start time:	0	ps 💌
End time:	1.0	us 💌
Radix:	Hexadecimal	•
Numeric or named value:		_

Random Value

Random Value allows you to generate random node values over the selected waveform, waveform interval, or across one or more nodes or groups. Figure 1–9 shows the **Random Values** dialog box.

You can generate random node values by every grid interval, every half grid interval, at random intervals, or at fixed intervals.

Figure 1–9. Random Values Dialog Box

Generate randor	m values		
C Every grid in	terval		
• Every half gr	rid interval		
C At random in	itervals		
C At fixed inter	vals		
Interval perio	od:	ns	5
	[

Generating a Testbench

You can export your VWF as a VHDL Test Bench File (**.vht**) or Verilog Test Bench File (**.vt**). This is useful when you want to use a vector waveform in different EDA tools. You must run an analysis and elaboration before you can export a waveform vector. To export a waveform vector, have your vector waveform open and perform the following steps:

- 1. On the File menu, click **Export**. The **Export** dialog box appears.
- 2. In the Save as type list, select VHDL Test Bench File (*.vht) or Verilog Test Bench File (*.vt).
- 3. You can optionally turn on **Add self-checking code to file**. This option adds additional logic to check the results of the output and compares it to the original VWF.

For more information about using the generated test bench in other EDA tools, refer to the respective EDA simulator chapter in the *Simulation* section in volume 3 of the *Quartus II Handbook*.

Grid Size

When you select portions of your waveform, the selection area snaps to time intervals specified in the **Grid Size** dialog box. You can customize the grid size in the Waveform Editor. You can change the grid size based on the clock settings or by setting the time period. To customize the grid size, on the Edit menu, click **Grid Size**.

Time Bars

Add time bars in the Waveform Editor to compare edges between different signals. You can also use time bars to jump forward and backward to the next edge transition in the selected signal, and read the logic level of signals by sliding the Time Bar in your waveform. The logic level is displayed in the **Value at** column of the Waveform Editor.

The **Time Bar Organizer** dialog box enables you to create, delete, and edit a time bar, and to create a master time bar. Only one master time bar is allowed per waveform file. To use the Time Bar Organizer, on the Edit menu, point to Time Bar and click **Time Bar Organizer**.

Under Existing time bars, in the Absolute time column, the red **M** indicates the master time bar (Figure 1–10).

You must open your project in the Quartus II software before you can export a VWF.

Figure 1–10. Time Bar Organizer Dialog Box

Time bar Time:	ns 💌	Add
Interpret time a:	s	Delete
C Relative to	o master time bar	Set as Master
Absolute time	Relative time	
M 5.0 ns	0 ps	

Stretch or Compress a Waveform Interval

You can stretch or compress a waveform interval in the Waveform Editor, which enables you to analyze the effects on a waveform. For example, you can check the behavior of your design at high speeds for a short interval by using the compress option to compress the waveform. You can also use this feature to delay the transition of a signal by stretching the waveform.

You have to specify the original start and end time, and the new time for the waveform you want to stretch or compress. If you want to stretch or compress all the nodes or buses, deselect all nodes and buses and set the stretch or compress feature.

To stretch or compress a waveform interval, on the Edit menu, point to Value and click **Stretch or Compress Waveform Interval**. The **Stretch or Compress Waveform Interval** dialog box appears.

The "To time value" end time specified in the **Stretch or Compress Waveform Interval** dialog box cannot be larger than the "End Time" specified in the **Simulator Settings** page of the **Settings** dialog box (Figure 1–12). Otherwise, the Quartus II software displays a message indicating the invalid time value.

End Time

The End Time setting enables you to change the end time of the VWF. The end time represents the maximum length of time in the VWF. You can specify the end time and your preferred time unit, and have different extension values for different nodes or buses. With the waveform open, specify the end time by performing the following steps:

1. On the Edit menu, click **End Time**. The **End Time** dialog box appears (Figure 1–11).

Figure 1–11. End Time Dialog Box

nd time extension pe	r signal: ——		
Signal Name	Direction	Radix	Extension value
d[5]	Input	Binary	Default extension value
set	Comb	Binary	Default extension value
± yn_out	Output	Binary	Default extension value
reset	Input	Binary	Default extension value
clk	Input	Binary	Default extension value
yn_out[2]	Output	Binary	Default extension value

- 2. In the **Time** box, specify the end time and select the time unit in the **Time** list.
- 3. Under **Default extension options**, in the **Extension value** list, select the value.
- 4. Under End time extension per signal, you can select specific extension values for each signal by clicking in the Extension value column.

P	The options in the End time dialog box are different settings
	than those under Simulation period in the Settings dialog box.
	Simulation period is the period that the Quartus II software
	simulates the stimuli. End time is the maximum length of time
	in the VWF. For information on the simulation period, refer to
	Table 1–2 on page 1–19.

Arrange Group or Bus in LSB or MSB Order

You can arrange a group or bus in Least Significant Bit (LSB) or Most Significant Bit (MSB) order. If you arrange in LSB order, the LSB is on top and MSB is at bottom. If you arrange in MSB order, the MSB is on top and LSB is at bottom.

To arrange a group or bus in LSB or MSB order, perform the following steps:

- 1. Select the bus that you want to change the LSB or MSB order. You can also select multiple buses in the waveform editor.
- 2. On the Edit, point to Group and Bus Bit Order and click either **MSB** on top, **LSB** on Bottom to change the bus or group in MSB order or click **LSB** on top, **MSB** on Bottom to change the bus or group in LSB order.

Simulator Settings You can enhance your output, reduce debugging time, and provide better coverage before running a simulation. This section covers the different simulation modes supported by the Quartus II Simulator. Additionally, the Quartus II Simulator offers common setup features like glitch filtering, setup and hold violation detection, and simulation coverage.

To setup simulation settings, perform the following steps:

- 1. On the Assignments menu, click **Settings**. The **Settings** dialog box appears.
- 2. In the **Category** list, select **Simulator Settings**. The **Simulator Settings** page appears (Figure 1–12).

Figure 1–12. Simulator Settings Page

Settings - filtref	
Settings - filtref Category: General - Files - Libraries - Device Deprating Settings & Conditions - Compilation Process Settings - Compilation Process Settings - Analysis & Synthesis Settings - Fitter Settings - Timing Analysis Settings - Timing Analysis Settings - Assembler - Design Assistant - SignalTap II Logic Analyzer	Simulator Settings Select simulation options. Simulation mode: Functional Simulation input: fir.vwf Add Multiple Files Simulation period Run simulation until all vector stimuli are used C End simulation at
 SignalT ap II Logic Analyzer Logic Analyzer Interface Simulator Settings Simulation Verification Simulation Utput Files PowerPlay Power Analyzer Settings 	Glitch filtering options: Auto More Settings Description: Specifies whether or not glitch filtering should be performed during Timing Simulation.
	OK Cancel

٦

Table 1–2	2 shows	the options	in the	Simulator	Settings pag	je.
-----------	---------	-------------	--------	-----------	--------------	-----

Table 1–2. Quartus II Simulator Settings (Part 1 of 2)				
Settings and Options	Description			
Simulation mode (1)	Functional This simulation mode uses a pre-synthesis compiler database to simulate the logical performance of a project without the timing information. This mode enables you to check the functionality of the design. All nodes and buses are preserved in this simulation because functional simulation is performed before synthesis, partitioning, or fitting. A VWF is required to perform this simulation mode.			
	Timing This simulation mode takes the compiled netlist that includes timing information. With this simulation mode, you can check setup, hold violation, glitches, and simulation coverage. You can remove nodes or buses using the Quartus II Compiler when logic is optimized. This simulation mode uses the worst case timing model.			
	Timing using Fast Timing Model This simulation mode is similar to timing simulation but this mode uses the best-case timing model.			
Simulation input	You must include the vector file in the Simulation input box. You can type the name of the file or use the browse button to open the Select File dialog box. In the Files of type list, you can select Vector Waveform File (*.vwf), Compressed Vector Waveform File (*.cvwf), Value Change Dump File (*.vcd), Vector Table Output File (*.tbl), Vector Text File (*.vec), Simulation Channel File (.scf), or All Files (*.*) .			
	TBL files contain input vectors and output logic levels in tabular-format list. You can generate this file using a VWF. However, if you would like to maintain, view, or update the vectors, VWFs offer better visibility. VWF or TBL file formats are interchangeable. You can generate TBL files from VWFs and vice versa. You can create a VWF with the Waveform Editor. For more information on the Waveform Editor, refer to "Waveform Editor" on page 1–5.			
	The Quartus II software also supports MAX+PLUS® II simulation vector files, such as VEC and SCF.			
	A CVWF is the simplified version, non-readable, format of the VWF format. This file type is in binary format and is generally smaller in file size. You can use CVWFs in the Waveform Editor and simulation.			
	A VCD file is an ASCII file which contains header information, variable definitions, and the value changes for specified variables, or all variables, in a given design. The value changes for a variable are given in scalar or vector format, based on the nature of the variable.			

Table 1–2. Quartus II Simulator Settings (Part 2 of 2)				
Settings and Options	Description			
Simulation period	The simulation period determines the length of time that the simulator runs the stimuli with the maximum period being equal to the end time of a VWF. If the simulation period is configured shorter than the end time, all signals beyond the simulation period are displayed as Unknown (X). Therefore, you can also shorten the simulation period or end the simulation earlier by selecting End Simulation at and specifying the time and selecting the time unit. If the simulation period is configured longer than the end time, the simulation will stop at the end time. For information on the end time, refer to "End Time" on page 1–16.			
Glitch filtering options	Specifies whether to enable glitch filtering for simulations. You can select one of the following options:			
	Auto—The Simulator performs glitch filtering when SAF generation is enabled in the Simulation Output Files page of the Settings dialog box.			
	Always —The Simulator always performs glitch filtering, even if SAF generation is not enabled.			
	Never —The Simulator never performs glitch filtering, even if SAF generation is enabled.			
More Settings	If you click More Settings , the More Simulator Settings dialog box appears. The following options are available under Existing option settings .			
	Cell Delay Model Type Specifies the type of delay model to be used for cell delays: transport or inertial. The default is transport.			
	Interconnect Delay Model Type Specifies the type of delay model to be used for interconnect delays: transport or inertial. The default is transport.			
	Preserve fewer signal transition to reduce memory requirements This option is effective on lower performance workstations because turning on this option flushes signal transitions from memory to disk for memory optimization.			

Note to Table 1–2:

(1) The Quartus II Simulator may flag an error message if zero-time oscillation happens in your design. Zero-time oscillation happens when a particular output signal does not achieve a stable output value at a particular fixed time, which may be due to your design containing combinational logic path loops.

Simulation Verification Options

Figure 1–13 shows the simulation verification page.

Figure 1–13. Simulation Verification Page

Category:	
General	Simulation Verification
 Files Libraries Device Operating Settings & Conditions Compilation Process Settings EDA Tool Settings EDA Tool Settings Fitter Settings Timing Analysis Settings Assembler Design Assistant Signal Tap II Logic Analyzer Logic Analyzer Interface Simulation Verification Simulation Output Files PowerPlay Power Analyzer Settings 	Select simulation verification options. Check outputs Waveform Comparison Settings Setup and hold time violation detection Glitch detection: Image: Ima

Г

Table 1–3 shows the options in the simulation verification page.

Table 1–3. Quartus II Simulation Verification (Part 1 of 2)				
Settings and Options	Description			
Check outputs	Check outputs checks expected outputs against actual outputs in the simulation report. After turning on Check outputs , click the Waveform Comparison Settings button. The Waveform Comparison Settings dialog box appears.			
	In the Waveform Comparison Settings dialog box, you can specify the waveform comparison time frame and the comparison options. You can also set the tolerance level for all the signals by specifying the tolerance limit in the Default comparison timing tolerance box. The Maximum comparison mismatches box is the amount of mismatches the Quartus II Simulator is allowed to accept before it stops comparing.			
	You can also set the type of transition the comparison should trigger in the Waveform Comparison Settings dialog box. You can assign trigger comparisons based on Input signal transition edges , All signal transition edges , or Selected Signal transition edges .			
	To customize the waveform comparison matching rules, you can also click the Comparison Rules button. The Comparison Rules dialog box appears, allowing you to customize the comparison matching rules.			
Setup and hold time violation detection	This option detects setup and hold time violation. Setup time is the period required by a synchronous signal to stabilize before the arrival of a clock edge. Hold time is the time required by a synchronous signal to maintain after the same clock edge. If the Setup and hold time violation detection option is turned on, a warning in the Messages windows appears if any setup or hold time violation is detected during the simulation. This option is only for Timing and Timing using Fast Timing Model simulation modes.			
Glitch detection	Conditions happen when two or more signals toggle simultaneously and can cause glitches or unwanted short pulses. The Glitch detection option enables you to detect glitches and specify the time interval that defines a glitch. If two logic level transitions occur in a period shorter than the specified time period, the resulting glitch is detected and reported in the Processing tab of the Messages window.			
	If you turn on the Glitch detection option, you can specify the acceptable glitch width. A Messages window appears when a pulse is smaller than the specified glitch width that is detected. The Glitch detection option is only available for Timing and Timing using Fast Timing Model simulation modes.			

Table 1–3. Quartus II Simulation Verification (Part 2 of 2)				
Settings and Options	Description			
Simulation coverage reporting	This option reports the ratio of outputs (coverage) actually simulated to the number of outputs in the netlist and is expressed as a percentage. When you turn on the Simulation coverage reporting option, the Report Settings button is available. If you click Report Settings , the Report Settings dialog box appears. The three types of coverage reports you can select from are Display complete 1/0 value coverage report , Display missing 1-value coverage report .			
Disable setup and hold time violation detection for input registers of bi-directional pins	This option enables you to disable setup and hold time violations detection in input registers of all bidirectional pins in the simulated design during Timing or Timing using Fast Timing Model simulation.			

Simulation Output Files Options

Figure 1–14 shows the simulation output file page.

Figure 1–14. Simulation Output Files Page

ategory:	
General	Simulation Output Files
 Files Libraries Device Operating Settings & Conditions Compilation Process Settings EDA Tool Settings Fitter Settings Fitter Settings Fitter Settings Fitter Settings Timing Analysis Settings Assembler Design Assistant SignalT ap II Logic Analyzer Logic Analyzer Interface Simulation Verification Simulation Output Files PowerPlay Power Analyzer Settings 	Select simulation output file options. Simulation output waveform Automatically add pins to simulation output waveforms Overwrite simulation input file with simulation results Group bus channel in simulation results Signal activity output for power analysis Generate Signal Activity File Signal Activity File Options VCD output for power analysis Generate VCD File: File Options VCD File Options Description: Specifies whether or not a VCD File for PowerPlay Power Analyzer should be written out. OK

Table 1–4. Quartus II Simulation Output Files				
Setting and Options	Description			
Simulation output waveform	Specify the simulation output waveform options.			
	Automatically add pins to simulation output waveforms The Automatically add pins to simulation output waveforms option automatically adds all outputs that are available in the design to the waveform reports. If your design has large amounts of outputs, turning on this option ensures all outputs are monitored during simulation.			
	Overwrite simulation input file with simulation results This option overwrites the vector source file with simulation results. This option is ignored when the Check outputs setting is turned on. This option adds the result to the vector file and generally, it can give you more visibility during the debugging process. (1)			
	Group bus channel in simulation results This option automatically groups bus channels in the output waveform that are shown in the simulation reports. By turning off this option, all output waveforms have a node to represent each bus signal.			
Signal activity output for power analysis	When you perform your simulation with the Quartus II Simulator, you can generate a SAF which is used by the PowerPlay Power Analyzer to assist you with power analysis. (2) , (3)			
VCD output for power analysis	When you perform simulation with the Quartus II Simulator, you can generate a VCD file, which is used by the PowerPlay Power Analyzer to assist you with power analysis. (2), (3)			

Table 1–4 shows the options in the simulation output file page.

Notes to Table 1–4:

A backup copy of the source vector file is saved under the db folder with the name <project>.sim_ori.
 vector file format type>.

(2) Instead of using the SAF or Generate VCD file (*.vcd), you can also save your output waveform as a VCD file to perform power analysis.

(3) For more information about the PowerPlay Power Analyzer, refer to the *PowerPlay Power Analysis* chapter in volume 3 of the *Quartus II Handbook*.

Simulation Report

Comprehensive reports are shown after the completion of each simulation. These reports are important to ensure designs meet timing and logical correctness. These simulation reports also play an important role in debugging.

Simulation Waveform

Simulation Waveforms are part of the Simulation report. In this report, the stimuli and the results of the simulation are displayed.

You can export the simulation waveform as a VHDL Test Bench File or a Verilog Test Bench File for use in other EDA tools. You can also save a simulation as a VWF or Vector Table Output File for use with the Quartus II software.

When you try to edit the Simulation Waveform, the **Edit Input Vector File** dialog box appears, asking whether you would like to edit the vector input file with the results of the simulation or if you would like to overwrite the vector input file with other vector inputs (Figure 1–15).

Figure 1–15. Edit Input Vector File

You can overwrite your simulation input file with the simulation results so that your input vector file is updated with the resulting waveform after a simulation. For more information, refer to the **Overwrite simulation input file with simulation results** option in Table 1–2.

If you do not want to overwrite the simulation input file in every simulation run, perform the following to overwrite simulation input files with simulation results after a simulation:

On the Processing Menu, point to Simulation Debug and click **Overwrite Vector Inputs with Simulation Outputs**.

Simulating Bidirectional Pin

A bidirectional pin is represented in the waveform by two channels. One channel represents the input to the bidirectional pin, and the other channel represents the output from the bidirectional pin. You can enter the input channel into the waveform by using the **Node Finder** dialog box. The output channel is automatically created by the Quartus II Simulator and named *<bidir pin name>*~result.

Logical Memories Report

The Quartus II software writes out the contents of each memory module after simulation. Therefore, if you use memory cells in your design, you can analyze the contents of the logic memory structures in the device in the Logical Memories Report. The Logical Memories Report displays individual reports for each memory block and contains the data stored in the memory cell used at the end of simulation.

After being simulated, a memory module's contents are stored in the Logical Memories section of the simulation report file.

To view this section, perform the following steps:

- 1. On the Processing menu, click **Simulation Report**. The Simulation Report window appears.
- 2. In the report window, click on the "+" next to Logical Memories.

Simulation Coverage Reports

The **Coverage Summary** report contains the following summary information for the simulation:

- Total toggling coverage as a percentage
- Total nodes checked in the design
- Total output ports checked
- Total output ports with complete 1/0-value coverage
- Total output ports with no 1/0-value coverage
- Total output ports with no 1-value coverage
- Total output ports with no 0-value coverage

The **Complete 1/0-Value Coverage** report lists the following information:

- Node name
- Output port name
- Output port type for output ports that toggle between 1 and 0 during the simulation

The **Missing 0-Value Coverage** report and **Missing 1-Value Coverage** report list the following information:

- Node name
- Output port name
- Output port type for output ports that do not toggle to the designated value

For more information about Simulation Coverage reports, refer to the **Simulation coverage reporting** option in Table 1–2 on page 1–19.

The following are individual reports and their definition:

Complete 1/0 value coverage report

Displays all the nodes or buses that toggle between 1 and 0 during simulation.

Missing 1-value coverage and **Missing 0-value coverage reports** Displays all the nodes that do not toggle to the designated value.

Comparing Two Waveforms

You can compare your simulation results against previous simulations using the compare option. To compare two waveforms in the **Simulation Report**, turn on the **Check outputs** option. For more information on the **Check outputs** option, refer to Table 1–2 on page 1–19. With the **Check outputs** option turned on, the two comparable waveforms are visible in black and red. The black waveforms represent the original output or the expected output, and the red waveforms represent the compared output or the actual output. Figure 1–16 shows an example of expected output waveform versus actual output waveform.

Figure 1–16. Example of Simulation Waveform from the Simulation Report When Check Output is Turned On

Debugging with the Quartus II Simulator

The Quartus II software includes tools to help with simulation debugging. This section covers some debugging tools and their use.

Breakpoints

Inserting breakpoints into the simulation process enables the simulator to break at the desired time or on the desired node or bus condition. You can monitor the activity of nodes or buses during specified times and pinpoint the cause of mismatched signal levels between expected and actual. To use breakpoints, perform the following steps:

1. On the Processing menu, point to Simulation Debug and click **Breakpoints**. The **Breakpoints** dialog box appears (Figure 1–17).

Figure 1–17. Breakpoints Dialog Box

Enable	Name	Equation	Action	Customized Message (Optional)	New
2	bp1 bp2	Block1 in = 1 Block1 in > 1	Error Message Warning Message	My breakpoint triggered!	Edit
2	bp3	Block1 out < 1	Information Message		Сору
2	DP4	time = 100ns	Stop		Delete
					Up
				3	Down

- 2. Click **New** to create a new breakpoint. The **New Breakpoint** dialog box appears. In this dialog box, you can specify the name, the equation, and the action of the breakpoint. You can also enable or disable this breakpoint by using the **Enable Breakpoint** check box.
- 3. In the Equation text box, click **condition**. You can configure the logical conditions of individual nodes or buses, or you can set the time.
- After you configure the equation conditions, select the action for the Quartus II Simulator. In the Action drop down list, select Stop, Warning Message, Error Message, or Information Message. This selection defines the action once the condition is met.

5. You can also enter the text that appears when the Simulator encounters the breakpoint. If you do not make an entry in this box, the Quartus II software displays a default message.

Updating Memory Content

If your design includes memories, when the simulator stops at a breakpoint, you can view and edit the contents of the memories. To view your memories during a breakpoint in the simulation, on the Processing menu, point to Simulation Debug and click **Embedded Memory**.

Last Simulation Vector Outputs

The Last Simulation Vector Outputs command opens the Output Simulation Waveforms report generated by the last simulation. To use this command, on the Processing menu, point to Simulation Debug and click **Last Simulation Vector Outputs**.

You can open the current input vectors that you defined in the **Simulator Settings** dialog box with the Current Vector Inputs command. To use this command, on the Processing menu, point to Simulation Debug and click **Current Vector Inputs**. Lastly, you can overwrite the vector source file with the simulation outputs which open the resulting file.

Conventional Debugging Process

During the design phase, tapping out internal signals is a common practice to debug simulation errors. Therefore, the Quartus II software enables you to tap out the signal for simulation debug and also enables you to pull out the internal signal to the physical I/O. The Quartus II software also offers SignalTap II and SignalProbe to further assist you with debugging.

Accessing Internal Signals for Simulation

You can conventionally debug by probing out the internal signals, which enables you to preserve the internal signals during synthesis. You can probe the internal signal by selecting the node or bus and specifying a name, and then adding an output port to the schematic with a similar name. Figure 1–18 shows an example of accessing internal signals for simulation from a schematic diagram.

For timing simulations, the simulation netlist is based on the Compilation post-Synthesis and post-Fitting netlist. Therefore, some of the internal nodes or buses are optimized away during compilation of the netlist. If an internal node is optimized away, the Quartus II software shows a warning in the **Warning** tab of the Messages window similar to the following message:

Warning: Compiler packed, optimized or synthesized away node "DataU". Ignored vector source file node.

This internal node is ignored by the Quartus II Simulator.

If you would like to tap out the D and Q ports of registers, turn on **Add D and Q ports of register node to Simulation Output Waveform** from the Assignment Editor. This feature is only available for functional simulations.

Scripting Support

You can run procedures and make settings described in this chapter in a Tcl script. You can also run some procedures at a command prompt. For detailed information about scripting command options, refer to the Quartus II Command-Line and Tcl API Help browser. To run the Help browser, type the following command at the command prompt:

quartus_sh --qhelp+

The Scripting Reference Manual includes the same information in PDF form.

••••

For more information about Tcl scripting, refer to the *Tcl Scripting* chapter in volume 2 of the *Quartus II Handbook*. Refer to the *Quartus II Settings File Reference Manual* for information about all settings and constraints in the Quartus II software. For more information about command-line scripting, refer to the *Command-Line Scripting* chapter in volume 2 of the *Quartus II Handbook*.

You can change the Functional, Timing, or Timing using Fast Timing Model simulation modes with the following command:

simulation mode <mode> +

To initialize the simulation for the current design, use the following command. During initialization, the Simulator builds the simulation netlist and sets the simulation time to zero.

The option -ignore_vector_file is set to **Off** by default, when the source vector file exists for simulation. The Quartus II software ignores the source vector file during simulation if the option -ignore_vector_file is set to On. The -end_time option is used only when the -ignore_vector_file option is set to **On**.

```
initialize_simulation [-h | -help] [-long_help] [-check_outputs <On | Off>] \
[-end_time <end_time>] [-glitch_filtering <On | Off>] [-ignore_vector_file <On | Off>] \
[-memory_limiter <On | Off>] [-power_vcd_output <target_file>] [-read_settings_files <On |
Off>] \ [-saf_output <target_file>] [-sim_mode <functional | timing | timing_using_fast_timing_model >] \
[-vector_source <vector_source_file>] [-write_settings_files <On | Off>] \
-simulation results format <VWF | CVWF | VCD> -vector source <vector source file>
```

To force the specified signal or group of signals to the specified value, type the following at a command prompt:

force simulation value [-h | -help] [-long help] -node <hpath> <value>

To turn on the simulator to simulate the design for a specified time, type the following at a command prompt:

run_simulation [-h | -help] [-long_help] [-time <time>] 🕶

If you do not specify the length of time the simulation runs, it runs until the simulation is complete.

To create a breakpoint with a specified equation and action, type the following at a command prompt:

```
create_simulation_breakpoint [-h | -help] [-long_help] \
-action [Give Warning | Give Info | Give Error] \
-breakpoint <breakpoint_name> -equation <equation> [-user_message <message_text>] +
```

To delete a breakpoint with a specified name, type the following at a command prompt:

```
delete_simulation_breakpoint [-h | -help] [-long_help] \
-breakpoint <breakpoint_name> +
```

Conclusion

Simulation plays an important role in ensuring the quality of a product. The Quartus II software offers various tools to assist you with simulation and helps reduce debugging time with the introduction of features like Glitch Filtering and Breakpoints.

Referenced Documents

This chapter references the following documents:

- Quartus II Settings File Reference Manual
- Section I: Simulation section in volume 3 of the Quartus II Handbook
- *Tcl Scripting* chapter in volume 2 of the *Quartus II Handbook*

Document Revision History

Table 1–5 shows the revision history for this chapter.

Table 1–5. Document Revision History				
Date and Document Version	Changes Made	Summary of Changes		
October 2007 v7.2.0	Reorganized "Referenced Documents" on page 1-33.	—		
May 2007 v7.1.0	 Updated a command in Scripting Support. Updated Breakpoints. Added procedure to Logical Memories Report. Updated sections, added sections and deleted sections in Simulator Settings. Updated Simulation Report. Updated Table 1-2. Added Arrange Group or Bus in LSB ir MSB Order. Updated Creating VWFs. Added Referenced Documents. 	Updated for the Quartus II software version 7.1.		
March 2007 v7.0.0	Updated Quartus II software 7.0 revision and date only. No other changes made to chapter.	—		
November 2006 v6.1.0	 Updated for the Quartus II software version 6.1. Added references to Value Change Dump File (.vcd) Added Random Value section Other minor changes 	Updated for the Quartus II software version 6.1.		
May 2006 v6.0.0	Initial release.			

2. Mentor Graphics ModelSim Support

QII53001-7.2.0

Introduction

An Altera[®] software subscription includes a license for the ModelSim-Altera software on a PC or UNIX platform. The ModelSim-Altera software can be used to perform functional register transfer level (RTL), post-synthesis, and gate-level timing simulations for either Verilog HDL or VHDL designs that target an Altera FPGA. This chapter provides detailed instructions on how to simulate your design in the ModelSim-Altera version or the Mentor Graphics[®] ModelSim[®] software version. This chapter gives you details on the specific libraries that are needed for a functional RTL simulation or a gate-level timing simulation.

This document describes using ModelSim-Altera software version 6.1g and the Mentor Graphics ModelSim software version 6.1g. It also contains references to features available in the Altera Quartus[®] II software version 7.2.

The following topics are discussed in this chapter:

- "Background"
- "Software Compatibility" on page 2–3
- "Altera Design Flow with ModelSim or ModelSim-Altera Software" on page 2–3
- "Functional RTL Simulation" on page 2–5
- "Post-Synthesis Simulation" on page 2–16
- Gate-Level Timing Simulation" on page 2–23
- "Simulating Designs that Include Transceivers" on page 2–37
- "Using the NativeLink Feature with ModelSim" on page 2–44
- "Scripting Support" on page 2–50
- Software Licensing and Licensing Setup" on page 2–51

For more information about the current Quartus II software version, refer to the Altera website at www.altera.com.

Background

The ModelSim-Altera software version 6.1g is included with your Altera software subscription and can be licensed for the PC, Solaris, or Linux platforms to support either Verilog HDL or VHDL hardware description language (HDL) simulation. The ModelSim-Altera software supports VHDL or Verilog functional RTL, post-synthesis, and gate-level timing simulations for all Altera devices.

Table 2–1 describes the differences between the Mentor Graphics ModelSim SE/PE and ModelSim-Altera software versions.

Table 2–1. Comparison of M				
Product Feature	ModelSim SE	ModelSim PE	ModelSim-Altera	ModelSim-Altera Web Edition
100% VHDL, Verilog, mixed-HDL support	Optional	Optional	Supports only single-HDL simulation	Supports only single-HDL simulation
Complete HDL debugging environment	~	~	~	~
Optimized direct compile architecture	~	~	~	~
Industry-standard scripting	\checkmark	~	\checkmark	~
Flexible licensing	\checkmark	Optional	\checkmark	—
Verilog PLI support. Interfaces Verilog HDL designs to customer C code and third-party software	~	~	~	~
VHDL FLI support. Interfaces VHDL designs to customer C code and third-party software	~	_	_	—
Standard Delay Format File annotation	~	~	✓(1)	 ✓ (1)
Advanced debugging features and language-neutral licensing	\checkmark	-	_	_
Customizable, user- expandable graphical user interface GUI and integrated simulation performance analyzer	~	_	_	_
Integrated code coverage analysis and SWIFT support	~	—	—	—
Accelerated VITAL and Verilog HDL primitives (3 times faster), and register transfer level (RTL) acceleration (5 times faster)	~	_	_	_
Platform support	PC, UNIX, Linux	PC only	PC, UNIX, Linux	PC only
Precompiled Libraries	No	No	Yes	Yes

Note to Table 2–1:

(1) ModelSim-Altera will only allow SDF annotation to modules in the Altera library.

Software Compatibility

Table 2–2 shows which ModelSim-Altera software version is compatible with the Quartus II software versions. ModelSim versions provided directly from Mentor Graphics do not correspond to specific Quartus II software versions.

For help with ModelSim-Altera licensing set up, refer to "Software Licensing and Licensing Setup" on page 2–51.

Table 2–2. Compatibility Between Software Versions			
ModelSim-Altera Software	Quartus II Software (1)		
ModelSim-Altera software version 6.1g	Quartus II software version 6.1, 7.0, 7.1, and 7.2		
ModelSim-Altera software version 6.1d	Quartus II software version 6.0		
ModelSim-Altera software version 6.0e	Quartus II software version 5.1		
ModelSim-Altera software version 6.0c	Quartus II software version 5.0		
ModelSim-Altera software version 5.8.e ModelSim-Altera software version 5.8	Quartus II software version 4.2		

Note to Table 2–2:

(1) Updated ModelSim-Altera precompiled libraries are available for download on Altera's website for each release of the Quartus II service pack.

Altera Design Flow with ModelSim or ModelSim-Altera Software This chapter contains the following sections:

- Functional RTL simulations
- Post-synthesis simulations
- Gate-level timing simulations
- Using the NativeLink[®] feature with ModelSim

Figure 2–1 illustrates an Altera design flow using the Mentor Graphics ModelSim software or ModelSim-Altera software.

Figure 2–1. Altera Design Flow with ModelSim-Altera and Quartus II Software

Note to Figure 2–1:

(1) If you are performing a functional simulation through NativeLink, you must complete analysis and elaboration first.
Functional RTL Simulation

A functional RTL simulation is performed before a gate-level simulation or post-synthesis simulation. Functional RTL simulation verifies the functionality of the design before synthesis and place-and-route. This section provides detailed instructions on how to perform a functional RTL simulation in the ModelSim-Altera software and highlights some of the differences in performing similar steps in the Mentor Graphics ModelSim software versions for Verilog HDL and VHDL designs.

Functional Simulation Libraries

Pre-compiled libraries are available for functional simulation with the ModelSim-Altera software. These libraries include the **lpm** library and the **altera_mf** library. To create these libraries for simulation with the ModelSim SE/PE software, compile the library files described in the following sections.

Ipm Simulation Models

To simulate designs containing lpm functions, use the following functional simulation models:

- **220model.v** (for Verilog HDL)
- 220pack.vhd and 220model.vhd (for VHDL)
- When you are simulating a design that uses VHDL-1987, use the **220model_87.vhd** model file.

Table 2–3 shows the location of these simulation model files and precompiled libraries in the Quartus II software and the ModelSim-Altera software.

Table 2–3. Location of Ipm Simulation Models Files and Pre-Compiled Libraries		
Software	Location	
Quartus II	<quartus directory="" ii="" installation="">\eda\sim_lib\ (1)</quartus>	
ModelSim-Altera	<modelsim-altera directory="" installation="">\altera\<hdl>\220model\ (2), (3)</hdl></modelsim-altera>	

Notes to Table 2–3:

- (1) For ModelSim SE/PE, compile the files provided with the Quartus II software.
- (2) For ModelSim-Altera, use the precompiled libraries for simulation.
- (3) *<HDL>* can be either Verilog HDL or VHDL.

For more information about LPM functions, refer to the Quartus II Help.

Altera Megafunction Simulation Models

To simulate a design that contains Altera megafunctions, use the following simulation models:

- altera_mf.v (for Verilog HDL)
 - altera_mf.vhd and altera_mf_components.vhd (for VHDL)
- When you are simulating a design that uses VHDL-1987, use **altera_mf_87.vhd**.

Table 2–4 shows the location of these simulation files and precompiled libraries in the Quartus II software and the ModelSim-Altera software.

Table 2–4. Location of Altera Megafunction Simulation Models Files and Precompiled Libraries

Software	Location	
Quartus II	<quartus directory="" ii="" installation="">\eda\sim_lib\ (1)</quartus>	
ModelSim-Altera	<modelsim-altera directory="" installation="">\altera\<hdl>\altera_mf\ (2), (3)</hdl></modelsim-altera>	

Notes to Table 2-4:

- (1) For ModelSim SE/PE, compile the files provided with the Quartus II software.
- (2) For ModelSim-Altera, use the precompiled libraries for simulation.
- (3) <*HDL*> can be either Verilog HDL or VHDL.

The following Altera megafunctions require device atom libraries to perform a functional simulation in a third-party simulator:

- altclkbuf
- altclkctrl
- altdqs
- altdq
- altddio_in
- altddio_out
- altddio_bidir
- altufm_none
- altufm_parallel
- altufm_spi
- altmemmult
- altremote_update

The device atom library files are located in the following directory:

<Quartus II installation directory>/eda/sim_lib

Low-Level Primitive Simulation Models

You can simulate a design that contains low-level Altera primitives with the following simulation models:

- altera_primitives.v (for Verilog HDL)
- altera_primitives.vhd and altera_primitives_components.vhd (for VHDL)

Table 2–5 shows the location of these simulation library files and precompiled libraries in the Quartus II software and the ModelSim-Altera software.

Table 2–5. Location of Altera Primitives Model Files and Precompiled Libraries		
Software	Location	
Quartus II	<quartus directory="" ii="" installation="">\eda\sim_lib (1)</quartus>	
ModelSim-Altera	<modelsim-altera directory="" installation="">\altera\<hdl>\altera (2), (3)</hdl></modelsim-altera>	

Notes to Table 2-5:

- (1) For ModelSim SE/PE, compile the files provided with the Quartus II software.
- (2) For ModelSim-Altera, use the precompiled libraries for simulation.
- (3) <*HDL*> can be either Verilog HDL or VHDL.

Simulating VHDL Designs

Use the following instructions to perform a functional RTL simulation for VHDL designs in the ModelSim software.

The steps in the following section assume you have already created a ModelSim project.

The ModelSim-Altera software comes with precompiled simulation libraries. Creating simulation libraries and compiling simulation models steps are not required. You can proceed directly to "Compile Testbench and Design Files into Work Library" on page 2–9.

Create Simulation Libraries

Simulation libraries are required to simulate a design that contains an Altera primitive, lpm function, or Altera megafunction. These libraries have already been compiled if you are using the ModelSim-Altera software. However, if you are using the Mentor Graphics ModelSim software, you must create the simulation libraries and link them to your design correctly.

Create Simulation Libraries Using the ModelSim GUI Perform the following steps to create simulation libraries:

- 1. In the ModelSim software, on the File menu, point to New and click Library. The Create a New Library dialog box appears.
- 2. Select a new library and a logical mapping to it.
- 3. In the **Library Name** box, type the name of the newly created library.

For example, the library name for Altera megafunctions should be **altera_mf**, and the library name for LPM should be **lpm**.

4. Click OK.

Create Simulation Libraries Using the ModelSim Command Prompt Type the following commands at the ModelSim command prompt:

```
vlib altera_mf +
vmap altera_mf altera_mf +
vlib lpm +
vmap lpm lpm +
vlib altera +
vmap altera altera +
```

Compile Simulation Models into Simulation Libraries

The following steps are not required for the ModelSim-Altera software.

Compile Simulation Models into Simulation Libraries Using the ModelSim GUI

Perform the following steps to compile simulation models into simulation libraries:

- 1. On the File menu, point to Add to Project and click Existing File.
- 2. Browse to the *<Quartus II installation directory>/eda/sim_lib* and add the necessary simulation model files to your project.
- The **altera_mf.vhd** model file should be compiled into the **altera_mf** library. The **220pack.vhd** and **220model.vhd** model files should be compiled into the **lpm** library.
- 3. In the Workspace window, select the simulation model file, and on the View menu, click **Properties**.

- 4. Choose the correct library from the **Compile to Library** list.
- 5. Click OK.
- 6. On the Compile menu, click **Compile selected**.

Compile Simulation Models into Simulation Libraries at the ModelSim Command Prompt

Type the following commands at the ModelSim command prompt:

```
vcom -work altera_mf <Quartus II installation directory>/eda/sim_lib/altera_mf_components.vhd +
vcom -work altera_mf <Quartus II installation directory>/eda/sim_lib/altera_mf.vhd +
vcom -work lpm <Quartus II installation directory>/eda/sim_lib/220pack.vhd +
vcom -work lpm <Quartus II installation directory>/eda/sim_lib/220model.vhd +
vcom -work altera <Quartus II installation directory>/eda/sim_lib/altera_primitives_components.vhd +
vcom -work altera <Quartus II installation directory>/eda/sim_lib/altera_primitives_vhd +
vcom -work altera <Quartus II installation directory>/eda/sim_lib/altera
```

Compile Testbench and Design Files into Work Library

Compile a testbench and design files into a work library by clicking **Compile All** or by clicking the **Compile All** toolbar icon on the Compile menu.

Compile Testbench and Design Files into Work Library Using the ModelSim Command Prompt

Type the following command at the ModelSim command prompt:

vcom -work work <my_test bench.vhd> <my_design_files.vhd>←

Resolve compile-time errors before proceeding to the following section.

Loading the Design

To load a design, perform the following steps:

- 1. On the Simulate menu, click **Start Simulation**. The **Start Simulation** dialog box appears.
- 2. Expand the work library in the **Start Simulation** dialog box.
- 3. Select the top-level design unit (your testbench).
- 4. In the **Resolution** list, select **ps**.
- 5. Click OK.

Loading the Design Using the ModelSim Command Prompt Type the following command at the ModelSim command prompt:

```
vsim work.<my_test bench> -t ps +
```

Running the Simulation

Perform the following steps to run a simulation:

- 1. On the View menu, point to Debug Windows and click **Objects**. This command displays all objects in the current scope.
- 2. On the View menu, point to Debug Windows and click Wave.
- 3. Drag signals to monitor from the Objects window and drop them into the Wave window.
- 4. Type the following command at the ModelSim command prompt:

run <time period> ←

Running the Simulation Using the ModelSim Command Prompt Type the following commands at the ModelSim command prompt:

add wave /<signal name> ↔ run <time period> ↔

Simulating Verilog HDL Designs

The following instructions provide step-by-step instructions to perform functional RTL simulation for Verilog HDL designs in the ModelSim software.

The following steps assume you have already created a ModelSim project.

If you are using the ModelSim-Altera software, a set of precompiled libraries are created when you install the software. Creating simulation libraries and compiling simulation models steps are not required. You can proceed directly to "Compile Testbench and Design Files into Work Library" on page 2–12.

Create Simulation Libraries

Simulation libraries are needed to properly simulate a design that contains an lpm function or an Altera megafunction. These libraries have already been compiled if you are using the ModelSim-Altera software.

However, if you are using the Mentor Graphics ModelSim software, you must create the simulation libraries and correctly link them to your design.

Create Simulation Libraries Using the ModelSim GUI Perform the following steps to create simulation libraries:

- 1. On the File menu, point to New and click **Library**. The **Create a New Library** dialog box appears.
- 2. Select a new library and a logical mapping to it.
- 3. In the **Library Name** box, type the name of the newly created library.

For example, the library name for Altera megafunctions should be **altera_mf**, and the library name for LPM should be **lpm**.

4. Click OK.

Create Simulation Libraries Using the ModelSim Command Prompt Type the following commands at the ModelSim command prompt:

Compile Simulation Models into Simulation Libraries

The following steps are not required for the ModelSim-Altera software.

Compile Simulation Models into Simulation Libraries Using the ModelSim GUI

Perform the following steps to compile simulation models into simulation libraries:

- 1. On the File menu, point to Add to Project and click Existing File.
- 2. Browse to the *<Quartus II installation directory>/eda/sim_lib* and add the necessary simulation model files to your project.
- Compile the **altera_mf.v** into the **altera_mf** library. Compile the **220model.v** into the **lpm** library.

- 3. Select the simulation model file and on the View menu, click **Properties**.
- 4. Choose the correct library from the **Compile to Library** list.
- 5. Click OK.
- 6. On the Compile menu, click **Compile selected**.

Compile Simulation Models into Simulation Libraries Using the ModelSim Command Prompt

Type the following commands at the ModelSim command prompt:

```
vlog -work altera_mf <Quartus II installation directory>/eda/sim_lib/altera_mf.v +
vlog -work lpm <Quartus II installation directory>/eda/sim_lib/220model.v +
vlog -work altera <Quartus II installation directory>/eda/sim_lib/altera_primitives.v +
```

Compile Testbench and Design Files into Work Library

Compile a testbench and design files into a work library on the Compile menu by clicking **Compile All** or clicking the **Compile All** toolbar icon on the Compile menu.

Compile Testbench and Design Files into Work Library Using the ModelSim Command Prompt

Type the following command at the ModelSim command prompt:

vlog -work work <my_test bench.v> <my_design_files.v>↔

Resolve compile-time errors before proceeding to the following section.

Loading the Design

Perform the following steps to load a design:

- 1. On the Simulate menu, click **Start Simulation**. The **Start Simulation** dialog box appears.
- 2. Click the Libraries tab.
- 3. In the Search Libraries box, click Add.
- 4. Specify the location of the lpm or altera_mf simulation libraries.

- If you are using the ModelSim-Altera version, refer to Table 2–3 on page 2–5 and Table 2–4 on page 2–6 for the location of the precompiled simulation libraries. If you are using the Mentor Graphics ModelSim software version, browse to the library that was created earlier.
- 5. In the **Load Design** dialog box, click the **Design** tab and expand the work library.
- 6. Select the top-level design unit (your testbench).
- 7. In the **Resolution** list, select **ps**.
- 8. Click OK.

Loading a Design Using the ModelSim Command Prompt Type the following command at the ModelSim command prompt:

```
vsim -L altera_mf -L lmp work.<my_test bench> -t ps 🛩
```

Running the Simulation

Perform the following steps to run a simulation:

- 1. On the View menu, point to Debug Windows and click **Objects**. This command displays all objects in the current scope.
- 2. On the View menu, point to Debug Windows and click Wave.
- 3. Drag the signals to monitor from the Objects window and drop them into the Wave window.
- 4. Type the following command at the ModelSim command prompt:

run <time period> ←

Running the Simulation Using the ModelSim Command Prompt Type the following commands at the ModelSim command prompt:

add wave /<signal name> ↔ run <time period> ↔

Verilog HDL Functional RTL Simulation with Altera Memory Blocks

Both ModelSim software products support simulating Altera memory megafunctions initialized with Hexadecimal (Intel-Format) File (.hex) or RAM initialization files (.rif).

Although synthesis is able to read a Memory Initialization File (**.mif**), this memory file is not supported with third-party tools and must be converted to either a Hexadecimal (Intel-Format) File or RAM Initialization File.

Table 2–6 summarizes the different types of memory initialization file formats that are supported with each RTL language.

Table 2–6. Simulation Support for Memory Initialization Files			
File	Verilog HDL	VHDL	
Hexadecimal (Intel-Format) File	Yes (1)	Yes	
Memory Initialization File	No	No	
RAM Initialization File	Yes (2)	No	

Notes to Table 2–6:

(1) For memories and library files from the Quartus II software version 5.0 and earlier, you must use a PLI library containing the convert_hex2ver function.

(2) Requires the USE RIF macro to be defined, described later in this section.

To simulate your design by converting your Memory Initialization File into either a Hexadecimal (Intel-Format) File or a RAM Initialization File, perform the following steps:

1. Convert a Memory Initialization File to a Hexadecimal (Intel-Format) File or RAM Initialization File in the Quartus II software.

Converting a Memory Initialization File to a Hexadecimal (Intel-Format) File

- a. Open the Memory Initialization File. On the File menu, click **Save As**. The **Save As** dialog box appears.
- b. In the **Save as type** list, select **Hexadecimal (Intel-Format) File** (*.hex).
- c. Click OK.

Convert a Memory Initialization File to a RAM Initialization File

- a. Open the Memory Initialization File and on the File menu, click **Export**. The **Export** dialog box appears.
- b. In the Save as type list, select RAM Initialization File (*.rif).

c. Click OK.

Alternatively, you can convert a Memory Initialization File to a RAM Initialization File using the **mif2rif.exe** utility located in the *<Quartus II installation>/bin* directory.

mif2rif <mif_file> <rif_file> +

2. Modify the HDL file generated by the MegaWizard[®] Plug-In Manager.

The Altera memory custom megafunction variation file includes the lpm_file parameter for LPM memories such as LPM_ROM, or the init_file for Altera specific memories such as an altsyncram, to point to the initialization file.

In a text editor, open the custom megafunction variation file and edit the lpm_file or init_file to point to the Hexadecimal (Intel-Format) File or RAM Initialization File, as shown in the following example:

lpm_ram_dp_component.lpm_file = "rath to HEX/RIF>"

3. Compile the functional library files with compiler directives.

If you use a Hexadecimal (Intel-Format) File, no compiler directives are required. If you use a RAM Initialization File, you must define the **USE_RIF** macro when compiling the model library files. For example, you should enter the following when compiling the altera_mf library when RAM Initialization File memory initialization files are used:

vlog -work altera_mf altera_mf.v +define+USE_RIF=1

For the Quartus II software versions 5.0 and earlier, you must define the NO_PLI macro instead of USE_RIF. The NO_PLI macro is forward compatible with the Quartus II software.

Post-Synthesis Simulation

A post-synthesis simulation verifies the functionality of a design after synthesis has been performed. You can create a post-synthesis netlist in the Quartus II software and use this netlist to perform a post-synthesis simulation in ModelSim. Once the post-synthesis version of the design is verified, the next step is to place-and-route the design in the target device using the Quartus II Fitter.

Generating a Post-Synthesis Simulation Netlist

The following steps describe the process of generating a post-synthesis simulation netlist in the Quartus II software:

- 1. Perform Analysis and Synthesis. On the Processing menu, point to Start and click **Start Analysis and Synthesis** (you can also perform this after step 2).
- 2. Turn on the **Generate Netlist for Functional Simulation Only** option by performing the following steps:
 - a. On the Assignments menu, click **EDA Tool Settings**. The **Settings** dialog box appears.
 - b. In the **Category** list, select **Simulation**. The **Simulation** page appears.
 - c. In the **Tool name** list:
 - If you are using the ModelSim-Altera software, select ModelSim-Altera.
 - If you are using the Mentor Graphics ModelSim software, select **ModelSim**.
 - d. Under EDA Netlist Writer options, in the Format for output netlist list, select VHDL or Verilog. You can also modify where you want the post-synthesis netlist generated by editing or browsing to a directory in the Output directory box.
 - e. Click More Settings. The More EDA Tools Simulation Settings dialog box appears. In the Existing options settings list, click Generate Netlist for Functional Simulation Only and select On from the Setting list under Option.
 - f. Click **OK**.
 - g. In the **Settings** dialog box, click **OK**.

3. Run the EDA Netlist Writer. On the Processing menu, point to Start and click **Start EDA Netlist Writer**.

During the EDA Netlist Writer stage, the Quartus II software produces a Verilog Output File (**.vo**) or VHDL Output File (**.vho**) that can be used for post-synthesis simulations in the ModelSim software. This netlist file is mapped to architecture-specific primitives. No timing information is included at this stage. The resulting netlist is located in the output directory you specified in the **Settings** dialog box, which defaults to the *<project directory***/simulation/modelsim** directory.

Simulating VHDL Designs

The following instructions help you perform a post-synthesis simulation for a VHDL design in the ModelSim software.

P

The following steps assume you have already created a ModelSim project.

If you are using the ModelSim-Altera software, a set of precompiled libraries are created when you install the software. Creating simulation libraries and compiling simulation models steps are not required. You can proceed directly to "Compile Testbench and Design Files into Work Library" on page 2–9.

Create Simulation Libraries

Simulation libraries are required to simulate a design that is mapped to post-synthesis primitives. If you are using the Mentor Graphics ModelSim software, you must create the simulation libraries and correctly link them to your design.

This process is not required with the ModelSim-Altera version because a set of pre-compiled libraries is installed with the software.

Create Simulation Libraries Using the ModelSim GUI Perform the following steps to create simulation libraries:

- 1. On the File menu, click **New Library**. The **Create a New Library** dialog box appears.
- 2. Select a new Library and a logical linking to it.
- 3. In the **Library Name** box, type the name of the newly created library.

4. Click OK.

Create Simulation Libraries Using the ModelSim Command Prompt Type the following commands to create simulation libraries:

vlib <device family name> +
vmap <device family name> <device family name> +

For more information about library names, refer to Table 2–9 on page 2–28.

Compile Simulation Models into Simulation Libraries Using the ModelSim GUI

Perform the following steps to compile simulation models into simulation libraries:

- 1. On the File menu, point to Add to Project and click Existing File.
- Browse to the <Quartus II installation directory>/eda/sim_lib directory and add the necessary gate-level simulation files to your project.
- 3. Select the simulation model file and on the View menu, click **Properties**.
- 4. In the **Compile to Library** list, select the correct library.
- 5. Click OK.
- 6. On the Compile menu, click **Compile selected**.

Compile Simulation Models into Simulation Libraries Using the ModelSim Command Prompt

Type the following commands at the ModelSim command prompt:

vcom -work <device family name> <Quartus II installation directory> \
/eda/sim_lib/<device family name>_atoms.vhd +

vcom -work <device family name> <Quartus II installation directory> \
/eda/sim_lib/<device family name>_components.vhd

Compile Testbench and VHDL Output File into Work Library

To compile the testbench and VHDL Output Files into a work library, on the Compile menu, click **Compile All** or click the **Compile All** toolbar icon on the Compile menu.

Compile Testbench and VHDL Output File into Work Library Using ModelSim Command Prompt

Type the following command at the ModelSim command prompt:

vcom -work work <my_test bench.vhd> <my_vhdl_output_file.vho>+

Resolve any compilation errors before proceeding to the following section.

Loading the Design

Perform the following steps to load a design:

- 1. On the Simulate menu, click **Simulate**.
- 2. Click the **Design** tab.
- 3. In the Library list, select the work library.
- 4. In the **Simulate** dialog box, expand the **work** library and select the top-level design unit (your testbench).
- 5. Click OK.

Loading the Design Using the ModelSim Command Prompt

Type the following command at the ModelSim command prompt:

vsim work.<my test bench> -t 1ps +

Set the time scale resolution to 1 ps when simulating Altera FPGA designs.

Running the Simulation

Perform the following steps to run a simulation:

- 1. On the View menu, point to Debug Windows and click **Objects**. This command displays all objects in the current scope.
- 2. On the View menu, point to Debug Windows and click Wave.
- 3. Drag the signals to monitor from the Objects window and drop them into the Wave window.
- 4. Type the following command at the ModelSim command prompt:

run <time period> ←

Running the Simulation Using the ModelSim Command Prompt Type the following commands at the ModelSim command prompt:

```
add wave /<signal name> ↔
run <time period> ↔
```

Simulating Verilog HDL Designs

The following sections provide step-by-step instructions for performing post-synthesis simulation for Verilog HDL designs in the ModelSim software.

Create Simulation Libraries

The following steps assume you have already created a ModelSim project.

If you are using the ModelSim-Altera software, a set of precompiled libraries are created when you install the software. Creating simulation libraries and compiling simulation models steps are not required. You can proceed directly to "Compile Testbench and Design Files into Work Library" on page 2–9.

Create Simulation Libraries Using the ModelSim GUI

Perform the following steps to create simulation libraries:

- 1. In the ModelSim software, on the File menu, point to New and click **Library**. The **Create a New Library** dialog box appears.
- 2. Select a new library and a logical mapping to it.
- The name of the libraries should be **altera_mf** (for Altera megafunctions) and **lpm** (for lpm and MegaWizard Plug-in Manager-generated entities).
- 3. In the **Library Name** box, type the name of the newly created library.
- 4. Click OK.

Create Simulation Libraries Using the ModelSim Command Prompt Type the following commands at the ModelSim command prompt:

vlib <device family name> ← vmap <device family name> <device family name> ←

For more information about library names, refer to Table 2–9 on page 2–28.

Compile Simulation Models into Simulation Libraries Using the ModelSim GUI

Perform the following steps to compile simulation models into simulation libraries:

- 1. On the File menu, click Add to Project, then select Existing File.
- 2. Browse to the *<Quartus II installation directory>/eda/sim_lib* directory and add the necessary simulation model files to your project.
- 3. Select the simulation model file and on the View menu, click **Properties**.
- 4. Specify the correct library in the **Compile to Library** box.

Compile Simulation Models into Simulation Libraries Using the ModelSim Command Prompt

Type the following command at the ModelSim command prompt:

vlog -work <device family name> <Quartus II installation \
directory> /eda/sim_lib/<device family name>_atoms.v +

Compile Testbench and Verilog Output File into Work Library

To compile the testbench and Verilog Output Files into a work library, on the Compile menu, click **Compile All** or click the **Compile All** toolbar icon on the Compile menu.

Compile Testbench and Verilog Output File into Work Library Using the ModelSim Command Prompt

Type the following command at the ModelSim command prompt:

vlog -work work <my_test bench.v> <my_verilog_output_file.vo> +

Resolve any compilation errors before proceeding to the following section.

Loading the Design

Perform the following steps to load a design:

- 1. On the Simulate menu, click **Start Simulation**. The **Start Simulation** dialog box appears.
- 2. Click the Libraries tab.
- 3. In the Search Libraries box, click Add.
- 4. Specify the location of the device family simulation libraries.
- 5. In the **Load Design** dialog box, click the **Design** tab and expand the work library.
- 6. Select the top-level design unit (your testbench).
- 7. In the **Resolution** list, select **ps**.
- 8. Click OK.

Loading the Design Using the ModelSim Command Prompt Type the following command at the ModelSim command prompt:

vsim -L <gate-level simulation library> work.<my_test bench> -t lps ←

Set the time scale resolution to 1 ps when simulating Altera FPGA designs.

Running the Simulation

Perform the following steps to run a simulation:

- 1. In the View menu, point to Debug Windows and click **Objects**. This command displays all objects in the current scope.
- 2. On the View menu, point to Debug Windows and click Wave.
- 3. Drag the signals to monitor from the Objects window and drop them into the Wave window.
- 4. Type the following command at the ModelSim command prompt:

run <*time period*> ←

Running the Simulation Using the ModelSim Command Prompt Type the following commands at the ModelSim command prompt:

add wave /<signal name> ↔ run <time period> ↔

Gate-Level Timing Simulation

Gate-level timing simulation is a post place-and-route simulation to verify the operation of the design after the worst-case timing delays have been calculated. This section provides detailed instructions on how to perform gate-level timing simulation in the ModelSim-Altera software and highlights differences in performing similar steps in the Mentor Graphics ModelSim software versions for VHDL and Verilog HDL designs.

Generating a Gate-Level Timing Simulation Netlist

To perform gate-level timing simulation, the ModelSim-Altera software requires information about how the design was placed into device-specific architectural blocks. The Quartus II software provides this information in the form of a Verilog Output File for Verilog HDL designs and a VHDL Output File for VHDL designs. The accompanying timing information is stored in the Standard Delay Format Output File (.sdo), which annotates the delay for the elements found in the Verilog Output File or VHDL Output File.

The following steps describe the process of generating a gate-level timing simulation netlist in the Quartus II software:

- 1. Perform a full compilation. On the Processing menu, click **Start Compilation**.
- 2. On the Assignments menu, click **EDA Tool Settings**. The **Settings** dialog box appears.
- 3. In the **Category** list, click the "+" icon to expand **EDA Tool Settings** and select **Simulation**. The **Simulation** page appears.
- 4. In the **Tool name** list:
 - If you are using the ModelSim-Altera software, select **ModelSim-Altera**.
 - If you are using the Mentor Graphics ModelSim software, select ModelSim.

- 5. Under EDA Netlist Writer options, in the Format for output netlist list, select VHDL or Verilog. You can also modify where you want the post-synthesis netlist generated by editing or browsing to a directory in the Output directory box.
- 6. Click OK.
- 7. In the **Settings** dialog box, click **OK**.
- 8. Run the EDA Netlist Writer. On the Processing menu, point to Start and click **Start EDA Netlist Writer**.

During the EDA Netlist Writer stage, the Quartus II software produces a Verilog Output File (**.vo**), VHDL Output File (**.vho**), and a SDO used for gate-level timing simulations in the ModelSim software. This netlist file is mapped to architecture-specific primitives. The timing information for the netlist is included in the SDO. The resulting netlist is located in the output directory you specified in the Settings dialog box, which defaults to the *<project directory*/simulation/modelsim directory.

Generating a Different Timing Model

If you enable the Quartus II Classic or Quartus II TimeQuest Timing Analyzer when generating the SDO file, slow-corner (worst case) timing models are used by default. To generate the SDO file using a different timing model, you must run the Quartus II Classic or the Quartus II TimeQuest Timing Analyzer with a different timing model before you start the EDA Netlist writer.

To run the Quartus II Classic Timing Analyzer with the best-case model, on the Processing menu, point to Start and click **Start Classic Timing Analyzer (Fast Timing Model)**. After timing analysis is complete, the Compilation Report appears. You can also type the following command at a command prompt:

```
quartus_tan <project_name> --fast_model=on +
```

To run the Quartus II TimeQuest Timing Analyzer with a best-case model, use the <code>-fast_model</code> option after you create the timing netlist. The following command enables the fast timing models:

create_timing_netlist -fast_model +

You can also type the following command at a command prompt:

quartus_sta <project_name> --fast_model=on ←

For more information about generating the timing model, refer to the *Quartus II Classic Timing Analyzer* or *Quartus II TimeQuest Timing Analyzer* chapter in volume 3 of the *Quartus II Handbook*.

After you run the Classic or TimeQuest Timing Analyzer, you can perform steps 2 through 8 in "Generating a Gate-Level Timing Simulation Netlist" on page 2–23 to generate the SDO file. For fast corner timing models, the _fast post fix is added to the VO, VHO, and SDO file (for example, **my_project_fast.vo**, **my_project_fast.vho**, and **my_project_fast.sdo**).

Operating Condition Example: Generate All Timing Models for Stratix III Devices

In Stratix III and Cyclone III devices, you can specify different temperature and voltage parameters to generate the timing models. Table 2–7 shows the available operation conditions (model, voltage, and temperature) for Stratix III and Cyclone III devices.

Table 2–7. Available Operating Condition for Stratix III and Cyclone III Devices			
Device Family	Model	Voltage	Temperature
Stratix III	Slow	1100 mV	85° C
	Slow	1100 mV	0° C
	Fast	1100 mV	0° C
Cyclone III	Slow	1200 mV	85° C
	Slow	1200 mV	0° C
	Fast	1200 mV	0° C

To generate the SDO files for the three different operating conditions for a Stratix III design, perform the following steps:

1. Generate all the available corner models at all operating conditions. Type the following command at a command prompt:

quartus sta <project name> --multicorner 🕶

2. Generate the ModelSim simulation output files for all three corners specified above. The output files are generated in the simulation output directory. Type the following command at a command prompt:

quartus_eda <project name> --simulation --tool=modelsim --format=verilog +

To summarize, for the three operating conditions the preceding steps generate the following files in the simulation output directory:

First slow corner (slow, 1100 mV, 85° C): VO file— *<revision name>*.vo SDO file— *<revision name>*_v.sdo

Second slow corner (slow, 1100 mV, 0° C): VO file— <*revision name>_*<*speedgrade>_***1100mv_0c_slow.vo** SDO file— <*revision name>_*<*speedgrade>_***1100mv_0c_v_slow.sdo**

Fast corner (fast, 1100 mV, 0° C): VO file— <revision name>_<speedgrade>_1100mv_0c_fast.vo SDO file— <revision name>_<speedgrade>_1100mv_0c_v_fast.sdo

Perform Timing Simulation Using Post-synthesis Netlist

Instead of using the gate-level netlist, you can also perform a timing simulation with the post-synthesis netlist. You can generate a SDO without running the fitter. In this case, the SDO file includes all timing values for only the device cells. Interconnect delays are not included because fitting (placement and routing) has not been performed.

To generate the post-synthesis netlist and the SDO file, type the following command at a command prompt:

```
quartus_map <project name> -c <revision name> +
quartus_tan <project name> -c <revision name> --post_map --zero_ic_delays +
quartus_eda <project name> -c <revision name> --simulation --tool= \
<3rd party EDA tool> --format=<HDL language> +
```

For more information on the --format and --tool options, type the following command at a command prompt:

```
quartus_eda -help=<options> +
```

Gate-Level Simulation Libraries

Table 2–8 provides a description of the ModelSim-Altera precompiled device libraries.

Table 2–8. ModelSim-Altera Precompiled Device Libraries		
Library	Description	
arriagx_hssi	Precompiled library for Arria [®] GX device designs using the Gigabit Transceiver Block (alt2gxb megafunction). This precompiled library is required for both functional and timing simulations.	
stratixiii	Precompiled library for Stratix [®] III device designs.	
stratixii	Precompiled library for Stratix II device designs.	
stratixiigx	Precompiled library for Stratix II GX device designs.	
stratixiigx_hssi	Precompiled library for Stratix II GX device designs using the Gigabit Transceiver Block (alt2gxb megafunction). This precompiled library is required for both functional and timing simulations.	
stratix	Precompiled library for Stratix device designs.	
stratixgx	Precompiled library for Stratix GX device designs.	
stratixgx_gxb	Precompiled library for Stratix GX device designs using the Gigabit Transceiver Block. This precompiled library should be used for post-fit (timing) simulations.	
altgxb	Precompiled library for Stratix GX device designs that include the altgxb megafunction. This precompiled library should be used for functional simulations.	
cycloneii	Precompiled library for Cyclone [®] II device designs.	
cyclone	Precompiled library for Cyclone device designs.	
maxii	Precompiled library for MAX [®] II device designs.	
max	Precompiled library for MAX 7000 and MAX 3000 device designs.	
apexii	Precompiled library for APEX [™] II device designs.	
apex20k	Precompiled library for APEX 20K device designs.	
apex20ke	Precompiled library for APEX 20KC, APEX 20KE, and Excalibur™ device designs.	
mercury	Precompiled library for Mercury™ device designs.	
flex10ke	Precompiled library for FLEX [®] 10KE and ACEX [®] 1K device designs.	
flex6000	Precompiled library for FLEX 6000 device designs.	

Table 2–9 shows the location of the timing simulation libraries in the ModelSim-Altera software for Verilog HDL.

Table 2–9. Location of Timing Simulation Libraries for ModelSim-Altera for Verilog HDL		
Library	Verilog HDL	
arriagx_ver	<modelsim-altera directory="" installation="">\altera\verilog\arriagx\</modelsim-altera>	
arriagx_hssi_ver	<modelsim-altera directory="" installation="">\altera\verilog\arriagx_hssi\ (1)</modelsim-altera>	
stratixii_ver	<modelsim-altera directory="" installation="">\altera\verilog\stratixii\</modelsim-altera>	
stratixiigx_ver	<modelsim-altera directory="" installation="">\altera\verilog\stratixiigx\</modelsim-altera>	
stratixiigx_hssi_ver	$<\!\!\textit{ModelSim-Altera installation directory}\!\!>\!\!\texttt{altera}\end{stratixiigx_hssi}\ (1)$	
stratixiii_ver	<modelsim-altera directory="" installation="">\altera\verilog\stratixiii\</modelsim-altera>	
stratix_ver	<modelsim-altera directory="" installation="">\altera\verilog\stratix\</modelsim-altera>	
stratixgx_ver	<modelsim-altera directory="" installation="">\altera\verilog\stratixgx\</modelsim-altera>	
stratixgx_gxb_ ver	<modelsim-altera directory="" installation="">\altera\verilog\stratixgx_gxb\</modelsim-altera>	
cycloneiii_ver	<modelsim-altera directory="" installation="">\altera\verilog\cycloneiii\</modelsim-altera>	
cycloneii_ver	<modelsim-altera directory="" installation="">\altera\verilog\cycloneii\</modelsim-altera>	
cyclone_ver	<modelsim-altera directory="" installation="">\altera\verilog\cyclone\</modelsim-altera>	
maxii_ver	<modelsim-altera directory="" installation="">\altera\verilog\maxii\</modelsim-altera>	
max_ver	<modelsim-altera directory="" installation="">\altera\verilog\max\</modelsim-altera>	
apexii_ver	<modelsim-altera directory="" installation="">\altera\verilog\apexii\</modelsim-altera>	
apex20k_ver	<modelsim-altera directory="" installation="">\altera\verilog\apex20k\</modelsim-altera>	
apex20ke_ver	<modelsim-altera directory="" installation="">\altera\verilog\apex20ke\</modelsim-altera>	
mercury_ver	<modelsim-altera directory="" installation="">\altera\verilog\mercury\</modelsim-altera>	
flex10ke_ver	<modelsim-altera directory="" installation="">\altera\verilog\flex10ke\</modelsim-altera>	
flex6000_ver	<modelsim-altera directory="" installation="">\altera\verilog\flex6000\</modelsim-altera>	

Note to Table 2–9:

(1) The stratixiigx_hssi precompiled library is required for functional and timing simulations.

Table 2–10 shows the location of the timing simulation libraries in the ModelSim-Altera software for VHDL.

Table 2–10. Location of Timing Simulation Library Files for ModelSim-Altera for VHDL (Part 1 of 2)		
Library VHDL		
arriagx	<modelsim-altera directory="" installation="">\altera\vhdl\arriagx\</modelsim-altera>	
arriagx_hssi	<modelsim-altera directory="" installation="">\altera\vhdl\arriagx_hssi\ (1)</modelsim-altera>	
stratixii	<modelsim-altera directory="" installation="">\altera\vhdl\stratixii\</modelsim-altera>	

Table 2–10. Location of Timing Simulation Library Files for ModelSim-Altera for VHDL (Part 2 of 2)		
Library	VHDL	
stratixiigx	<modelsim-altera directory="" installation="">\altera\vhdl\stratixiigx\</modelsim-altera>	
stratixiigx_hssi	<modelsim-altera directory="" installation="">\altera\vhdl\stratixiigx_hssi\ (1)</modelsim-altera>	
stratixiii	<modelsim-altera directory="" installation="">\altera\vhdl\stratixiii\</modelsim-altera>	
stratix	<modelsim-altera directory="" installation="">\altera\vhdl\stratix\</modelsim-altera>	
stratixgx	<modelsim-altera directory="" installation="">\altera\vhdl\stratixgx\</modelsim-altera>	
stratixgx_gxb	<modelsim-altera directory="" installation="">\altera\vhdl\stratixgx_gxb\</modelsim-altera>	
cycloneiii	<modelsim-altera directory="" installation="">\altera\vhdl\cycloneiii\</modelsim-altera>	
cycloneii	<modelsim-altera directory="" installation="">\altera\vhdl\cycloneii\</modelsim-altera>	
cyclone	<modelsim-altera directory="" installation="">\altera\vhdl\cyclone\</modelsim-altera>	
maxii	<modelsim-altera directory="" installation="">\altera\vhdl\maxii\</modelsim-altera>	
max	<modelsim-altera directory="" installation="">\altera\vhdl\max\</modelsim-altera>	
apexii	<modelsim-altera directory="" installation="">\altera\vhdl\apexii\</modelsim-altera>	
apex20ke	<modelsim-altera directory="" installation="">\altera\vhdl\apex20ke\</modelsim-altera>	
apex20k	<modelsim-altera directory="" installation="">\altera\vhdl\apex20k\</modelsim-altera>	
flex10ke	<modelsim-altera directory="" installation="">\altera\vhdl\flex10ke\</modelsim-altera>	
flex6000	<modelsim-altera directory="" installation="">\altera\vhdl\flex6000\</modelsim-altera>	
mercury	<modelsim-altera directory="" installation="">\altera\vhdl\mercury\</modelsim-altera>	

Note to Table 2–10:

(1) The stratixiigx_hssi precompiled library is required for functional and timing simulations.

If you are using the Mentor Graphics ModelSim software version for your timing simulation, libraries are available in the Quartus II software in the *<Quartus II installation directory>*\eda\sim_lib\ directory. Mentor Graphics ModelSim software users must use the files provided with the Quartus II software.

Simulating VHDL Designs

The following section provides step-by-step instructions for performing gate-level timing simulation for VHDL designs. The following steps assume you have already created a ModelSim project. For additional information, refer to "Altera Design Flow with ModelSim or ModelSim-Altera Software" on page 2–3.

If you are using the ModelSim-Altera software, a set of precompiled libraries are created when you install the software. Creating simulation libraries and compiling simulation models steps are not required. You can proceed directly to "Compile Testbench and Design Files into Work Library" on page 2–9.

Create Simulation Libraries

If you are using the Mentor Graphics ModelSim software, create the gate-level simulation libraries and correctly link them to your design.

Create Simulation Libraries Using the ModelSim GUI Perform the following steps to create simulation libraries:

- 1. In the ModelSim software, on the File menu, point to New and click Library. The Create a New Library dialog box appears.
- 2. Select a new library and a logical mapping to it.
 - The name of the libraries should be **altera_mf** (for Altera megafunctions) and **lpm** (for lpm and MegaWizard Plug-In Manager-generated entities).
- 3. In the **Library Name** box, type the name of the newly created library.
- The library name must be one of those listed in Table 2–10 on page 2–28.
- 4. Click OK.

Create Simulation Libraries Using the ModelSim Command Prompt Type the following commands at the ModelSim command prompt:

```
vlib <device family name> +
vmap <device family name> <device family name> +
```

For more information about library names, refer to Table 2–9 on page 2–28.

Compile Simulation Models into Simulation Libraries Using the ModelSim GUI

Perform the following steps to compile simulation models into simulation libraries:

- 1. On the File menu, point to Add to Project and click Existing File.
- Browse to the <Quartus II installation directory>/eda/sim_lib directory, and add the necessary gate-level simulation files to your project.
- 3. Select the simulation model file, and on the View menu, click **Properties**.
- 4. In the **Compile to Library** list, select the correct library.
- 5. Click OK.
- 6. On the Compile menu, click Compile selected.

Compile Simulation Models into Simulation Libraries Using the ModelSim Command Prompt

Type the following commands at the ModelSim command prompt:

vcom -work <device family name> <Quartus II installation directory> \
/eda/sim_lib/<device family name>_atoms.vhd +

vcom -work <device family name> <Quartus II installation directory> \
/eda/sim_lib/<device family name>_components.vhd +

Compile Testbench and VHDL Output File into Work Library

Compile testbench and VHDL Output Files into a work library on the Compile menu by clicking **Compile All** or by clicking the **Compile All** toolbar icon on the Compile menu.

Compile Testbench and VHDL Output File into Work Library Using the ModelSim Command Prompt

Type the following command at the ModelSim command prompt:

vcom -work work <my_test bench.vhd> <my_vhdl_output_file.vho> +

Resolve any compilation errors before proceeding to the following section.

Loading the Design

Perform the following steps to load a design:

- 1. On the Simulate menu, click Start Simulation.
- 2. Click the **SDF** tab, and click **Add**.
- 3. In the **Add SDF Entry** dialog box, click **Browse** and select the Standard Delay Format Output File (**.sdo**).
- 4. In the **Apply to Region** dialog box, type in the instance path to which the SDO should be applied. For example, if you are using a testbench exported into the Quartus II software from a Vector Waveform File, the instance path should be set to /i1.
 - You do not have to choose from the **Delay** list because the Quartus II EDA Netlist Writer generates the SDO using the same value for the triplet (minimum, typical, and maximum timing values). The value is derived from either the fast (minimum) timing model or worst case (maximum) timing model, depending on which timing model was used in the last timing analysis. In the standard compilation flow, the Quartus II software writes the SDO using timing values from the worst case (maximum) timing model.
- 5. Click OK.
- 6. Click the **Design** tab. In the **Resolution** list, select **ps**.
- 7. In the **Library** list, select the **work** library.
- 8. In the Start Simulation dialog box, expand the work library.
- 9. Select the top-level design unit (your testbench).
- 10. Click OK.

Loading a Design Using the ModelSim Command Prompt Type the following command at the ModelSim command prompt:

vsim -sdftyp <instance path to design>=<path to SDO> work. \
<my_test bench> -t ps +

Running the Simulation

Perform the following steps to run a simulation:

- 1. In the View menu, point to Debug Windows and click **Objects**. This command displays all objects in the current scope.
- 2. On the View menu, point to Debug Windows and click Wave.
- 3. Drag the signals to monitor from the Objects window and drop them into the Wave window.
- 4. Type the following command at the ModelSim command prompt:

run <time period> ←

Running a Simulation Using the ModelSim Command Prompt Type the following commands at the ModelSim command prompt:

```
add wave /<signal name> ↔
run <time period> ↔
```

Simulating Verilog HDL Designs

The following sections provide step-by-step instructions on performing gate-level timing simulation for Verilog HDL designs in the ModelSim-Altera software.

If you are using the ModelSim-Altera software, a set of pre-compiled libraries are created when you install the software. Creating simulation libraries and compiling simulation models steps are not required. You can proceed directly to "Compile Testbench and Design Files into Work Library" on page 2–9.

Create Simulation Libraries

If you are using the Mentor Graphics ModelSim software, you must create the simulation libraries and correctly link them to your design. The following steps assume you have already created a ModelSim project. For additional information, refer to "Altera Design Flow with ModelSim or ModelSim-Altera Software" on page 2–3.

Create Simulation Libraries Using the ModelSim GUI Perform the following steps to create simulation libraries:

- 1. In the ModelSim software, on the File menu, point to New and click Library. The Create a New Library dialog box appears.
- 2. Select a new library and a logical mapping to it.
 - The names of the libraries should be **altera_mf** (for Altera megafunctions) and **lpm** (for lpm and MegaWizard Plug-In Manager-generated entities).
- 3. In the **Library Name** box, type the name of the newly created library.
- 4. Click OK.

Create Simulation Libraries Using the ModelSim Command Prompt Type the following commands at the ModelSim command prompt:

vlib <library name> ↔ vmap <library name> <device family name> ↔

For more information about library names, refer to Table 2–9 on page 2–28.

Compile Simulation Models into Simulation Libraries Using the ModelSim GUI

Perform the following steps to compile simulation models into simulation libraries:

- 1. On the File menu, point to Add to Project and click Existing File.
- 2. Browse to the *<Quartus II installation directory>/eda/sim_lib*, and add the necessary simulation model files to your project.
- 3. Select the simulation model file, and on the View menu, click **Properties**.
- 4. In the **Compile to Library** list, select the correct library.

- 5. Click OK.
- 6. On the Compile menu, click **Compile selected**.

Compile Simulation Models into Simulation Libraries Using the ModelSim Command Prompt

Type the following command at the ModelSim command prompt:

vlog -work <device family name> <Quartus II installation directory> /eda/sim_lib/<device family name> \
_atoms.v +

Compile Testbench and Verilog Output File into Work Library

Compile a testbench and Verilog Output File into a work library on the Compile menu by clicking **Compile All** or by clicking the **Compile All** toolbar icon on the Compile menu.

Compile Testbench and Verilog Output File into Work Libraries Using the ModelSim Command Prompt

Type the following command at the ModelSim command prompt:

vlog -work work <my_test bench.v> <my_verilog_output_file.vo> +

Resolve any compilation errors before proceeding to the following section.

Loading the Design

Perform the following steps to load a design:

- 1. On the Simulate menu, click **Start Simulation**. The **Start Simulation** dialog box appears.
- 2. Click the Libraries tab.
- 3. In the **Search Libraries** box, click **Add**.
- 4. Specify the location of the lpm or altera_mf simulation libraries.
- If you are using the ModelSim-Altera version, refer to Table 2–3 on page 2–5 and Table 2–4 on page 2–6 for the location of the precompiled simulation libraries. If you are using the Mentor Graphics ModelSim software version, browse to the library that you created earlier.
- 5. In the **Load Design** dialog box, click the **Design** tab and expand the work library.

- 6. Select the top-level design unit (your testbench).
- 7. In the **Resolution** list, select **ps**.
- 8. Click OK.

When simulating in Verilog HDL, the SDO does not have to be manually specified because in the Quartus II generated Verilog Output File, there is a \$sdf_annotate task that ModelSim uses to look into the current directory from which VSIM was run and uses to look for the SDO. If your SDO is not in the same directory from which you ran VSIM, you can either copy the SDO into your current directory or comment out the \$sdf_annotate line in the Verilog Output File and manually specify the SDO in the Load Design dialog box.

Loading the Design Using the ModelSim Command Prompt Type the following command at the ModelSim command prompt:

vsim -L <location of the gate level simulation library> -work.<my_test bench> -t ps +

Running the Simulation

Perform the following steps to run a simulation:

- 1. On the View menu, point to Debug Windows and click **Objects**. This command displays all objects in the current scope.
- 2. On the View menu, point to Debug Windows and click Wave.
- 3. Drag the signals to monitor from the Objects window and drop them into the Wave window.
- 4. Type the following command at the ModelSim command prompt:

run <time period> ←

Running the Simulation Using the ModelSim Command Prompt Type the following commands at the ModelSim command prompt:

add wave /<signal name> ↔ run <time period> ↔

For the design examples to run gate-level timing simulation in VHDL or Verilog language, refer to: www.altera.com/support/examples/modelsim/exm-modelsim.html.

Simulating Designs that Include Transceivers

If your design includes a Stratix GX or Stratix II GX transceiver, you must compile additional library files to perform functional or timing simulations.

Stratix GX Functional Simulation

To perform a functional simulation of your design that instantiates the altgxb megafunction which enables the gigabit transceiver block on Stratix GX devices, compile the **stratixgx_mf** model file into the **altgxb** library.

Example: Performing Functional Simulation for Stratix GX in Verilog HDL

If you are using ModelSim-Altera, compiling the libraries is not necessary. You can simulate the design directly by typing the following command:

```
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L altgxb work.<my design> +
```

If you are using ModelSim SE/PE, you must compile the necessary libraries before you can simulation the designs. Type the following commands at the ModelSim command prompt to compile and simulate the design:

vlib work vlib lpm vlib altera_mf vlib sgate vlog -work lpm 220model.v vlog -work altera_mf altera_mf.v vlog -work sgate sgate.v vlog -work altgxb stratixgx_mf.v vsim -L lpm -L sgate-L altgxb work.

Example: Performing Functional Simulation for Stratix GX in VHDL

If you are using ModelSim-Altera, compiling the libraries is not necessary and you can simulate the design directly by typing the following command:

vsim -L lpm -L sgate -L altgxb work.<my design> r 🛩

The **stratixiigx_mf** model file references the **lpm** and **sgate** libraries. If you are using ModelSim PE/SE, you must create these libraries to perform a simulation.

If you are using ModelSim SE/PE, you must compile the necessary libraries before you can simulation the designs. Type the following commands at the ModelSim command prompt to compile and simulate the design:

```
vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd 
vcom -work lpm 220pack.vhd 220model.vhd 
vcom -work sgate sgate_pack.vhd sgate.vhd 
vcom -work altgxb stratixgx_mf.vhd stratixgx_mf_components.vhd 
vsim -L lpm -L altera mf -L sgate -L altgxb work.<my design >
```

Stratix GX Post-Fit (Timing) Simulation

Perform a post-fit timing simulation of your design that includes a Stratix GX transceiver by compiling the **stratixgx_atoms** and **stratixgx_hssi_atoms** model files into the **stratixgx** and **stratixgx_gxb** libraries, respectively.

The **stratixgx_hssi_atoms** model file references the **lpm** and **sgate** libraries. If you are using ModelSim PE/SE, you must create these libraries to perform a simulation.

Example: Performing Timing Simulation for Stratix GX in Verilog HDL

If you are using ModelSim-Altera, compiling the libraries is not necessary. You can simulate the design directly by typing the following command:

```
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixgx_ver -L \
stratixgx_gxb work.<my design> -t ps +transport_int_delays \
+transport path delays +
```

If you are using ModelSim SE/PE, you must compile the necessary libraries before you can simulate the designs. Type the following commands at the ModelSim command prompt to compile and simulate the design:

```
vlog -work lpm 220model.v 	
vlog -work altera_mf altera_mf.v 	
vlog -work sgate sgate.v 	
vlog -work stratixgx stratixgx_atoms.v 	
vlog -work stratixgx_gxb stratixgx_hssi_atoms.v 	
vsim -L lpm -L altera_mf -L sgate -L stratixgx -L stratixgx_gxb \
work.<my design> -t ps +transport_int_delays +transport_path_delays
```

This example assumes you are using ModelSim PE/SE. If you are using ModelSim-Altera, type the following command to simulate your design:

```
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixgx_ver -L \
stratixgx_gxb work.<my design> -t ps +transport_int_delays \
+transport_path_delays +
```

Example: Performing Timing Simulation for Stratix GX in VHDL

If you are using ModelSim-Altera, compiling the libraries is not necessary. You can simulate the design directly by typing the following command:

```
vsim -L lpm -L altera_mf -L sgate -L stratixgx -L stratixgx_gxb \
work. <my design> -t ps - +transport_int_delays+transport_path_delays +
```

If you are using ModelSim SE/PE, you must compile the necessary libraries before you can simulate the designs. Type the following commands at the ModelSim command prompt to compile and simulate the design:

```
vcom -work lpm 220pack.vhd 220model.vhd 	
vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd 	
vcom -work sgate sgate_pack.vhd sgate.vhd 	
vcom -work stratixgx stratixgx_atoms.vhd stratixgx_components.vhd 	
vcom -work stratixgx_gxb stratixgx_hssi_atoms.vhd \
stratixgx_hssi_components.vhd 	
vsim -L lpm -L altera_mf -L sgate -L stratixgx -L stratixgx_gxb \
work. <my design> -t ps +transport_int_delays +transport_path_delays
```

This example assumes you are using ModelSim PE/SE. If you are using ModelSim-Altera, type the following command to simulate your design:

```
vsim -L lpm -L altera_mf -L sgate -L stratixgx -L stratixgx_gxb \
work. <my design> -t ps - +transport_int_delays+transport_path_delays
```

Stratix II GX Functional Simulation

To perform a functional simulation of your design that instantiates the alt2gxb megafunction, which enables the gigabit transceiver block on Stratix II GX devices, compile the **stratixiigx_hssi** model file into the **stratixiigx_hssi** library.

The stratixiigx_hssi_atoms model file references the lpm and sgate libraries. If you are using ModelSim PE/SE, you must create these libraries to perform a simulation.

Generate a functional simulation netlist by turning on **Generate Simulation Model** in the Simulation Library tab of the alt2gxb MegaWizard Plug-In Manager (Figure 2–2). The *<alt2gxb entity name>.vho* or *<alt2gxb module name>.vo* is generated in the current project directory.

The Quartus II-generated alt2gxb functional simulation library file references stratixiigx hssi wysiwyg atoms.

Figure 2–2. alt2gxb MegaWizard

MegaWizard Plug-In Manager [page 15 of 16] EDA	
ALT2GXB	
Version 7.1	About Documentation
Parameter 2 EDA 3 Summary	
setungs	
	Simulation Libraries
ji	file(s) are needed
rx_datain[0] rx_dataout[150]	File Description
tx_datain[150]	stratixiigx_hssi Stratix II GX HSSI simulation library
	sgate Sgate simulation library
rx_dinitalreset(0)	
rx analogreset[0]	
[tx_digitalreset[0] PLL	
gxb_powerdown[0]	
cal_blk_clk = FIFQ and enc.	
Protocol: Basic No Loopback	
Operation mode: Receiver and Transmitter Effective data rate: 2000.000 Mbps	
GXB Transmitter PLL bandwidth mode: High RX PLL bandwidth mode: Medium	
RX Vcm: 0.85 Force RX signal detection	
VCCHTX: 1.5 TX Vom: 0.6	An IP Euroctional Simulation Model is a cycle-accurate VHDL or Verilon HDL model
Preemphasis First Post-tap Setting: 0 Preemphasis First Post-tap Setting: 0	produced by the Quartus II software. These models allow fast functional
Self Test mode: none Word alignment: sync state machine	simulations of IP using industry-standard VHDL or Verilog HDL simulators.
Word alignment width: 10 Word alignment pattern: 17C	You may use these simulation model output files for simulation purposes and
abrob mode, normal	expressly not for synthesis or any other purposes. Using these models for
	synthesis will create a non-functional design
	Generate simulation model
	Synthesis
	Some third-party synthesis tools may benefit from reading the details of this
	megafunction. Using this netlist, the synthesis tool is able to estimate timing
	and resource usage for the megarunction
Resource Usage	Generate a synthesis area and timing estimation netlist
	Cancel Cancel Rack Next > Einich
	Cancer < pack Mext > Einish

Example: Performing Functional Simulation for Stratix II GX in Verilog HDL

If you are using ModelSim-Altera, compiling the libraries is not necessary and you can simulate the design directly by typing the following command:
```
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixgx_hssi_ver \
work.<my design> +
```

If you are using ModelSim SE/PE, you must compile the necessary libraries before you can simulate the designs. Type the following commands at the ModelSim command prompt to compile and simulate the design:

```
vlog -work lpm 220model.v 	
vlog -work altera_mf altera_mf.v 	
vlog -work sgate sgate.v 	
vlog -work stratixiigx_hssi stratixiigx_hssi_atoms.v 	
vlog -work work <alt2gxb module name>.vo 	
vsim -L lpm -L altera_mf -L sgate -L stratixgx_hssi work.<my design>
```

Example: Performing Functional Simulation for Stratix II GX in VHDL

If you are using ModelSim-Altera, compiling the libraries is not necessary. You can simulate the design directly by typing the following command:

```
vsim -L lpm -L altera mf -L sgate -L stratixgx hssi work.<my design> r 🕶
```

If you are using ModelSim SE/PE, you must compile the necessary libraries before you can simulate the designs. Type the following commands at the ModelSim command prompt to compile and simulate the design:

```
vcom -work lpm 220pack.vhd 220model.vhd 	
vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd 	
vcom -work sgate sgate_pack.vhd sgate.vhd 	
vcom -work stratixiigx_hssi stratixiigx_hssi_components.vhd \
stratixiigx_hssi_atoms.vhd 	
vcom -work work <alt2gxb entity name>.vho 	
vsim -L lpm -L altera_mf -L sgate -L stratixgx_hssi work.<my design>
```

Stratix II GX Post-Fit (Timing) Simulation

To perform a post-fit timing simulation of your design that includes a Stratix II GX transceiver, compile stratixiigx_atoms and stratixiigx_hssi_atoms into the stratixiigx and stratixiigx_hssi libraries, respectively.

The **stratixiigx_hssi_atoms** model file references the **lpm** and **sgate** libraries. If you are using ModelSim PE/SE, you must create these libraries to perform a simulation.

Example: Performing Timing Simulation for Stratix II GX in Verilog HDL

If you are using ModelSim-Altera, compiling the libraries is not necessary and you can simulate the design directly by typing the following command:

vsim -L lpm -L altera_mf -L sgate -L stratixiigx -L stratixiigx_hssi \
work.<my design> -t ps +transport_int_delays +transport_path_delays +

If you are using ModelSim SE/PE, you must compile the necessary libraries before you can simulate the designs. Type the following commands at the ModelSim command prompt to compile and simulate the design:

vlog -work lpm 220model.v vlog -work altera_mf altera_mf.v vlog -work sgate sgate.v vlog -work stratixiigx stratixiigx_atoms.v vlog -work stratixiigx_hssi stratixiigx_hssi_atoms.v vsim -L lpm -L altera_mf -L sgate -L stratixiigx -L stratixiigx_hssi \ work.<my design> -t ps +transport_int_delays +transport_path_delays

Example: Performing Timing Simulation for Stratix II GX in VHDL

If you are using ModelSim-Altera, compiling the libraries is not necessary. You can simulate the design directly by typing the following command:

vsim -L lpm -L altera_mf -L sgate -L stratixiigx -L stratixiigx_hssi \
work.<mydesign> -t ps +transport_int_delays +transport_path_delays +

If you are using ModelSim SE/PE, you must compile the necessary libraries before you can simulate the designs. Type the following commands at the ModelSim command prompt to compile and simulate the design:

```
vcom -work lpm 220pack.vhd 220model.vhd 	
vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd 	
vcom -work sgate sgate_pack.vhd sgate.vhd 	
vcom -work stratixiigx_stratixiigx_atoms.vhd stratixiigx_components.vhd 	
vcom -work stratixiigx_hssi stratixiigx_hssi_components.vhd \
stratixiigx_hssi_atoms.vhd 	
vsim -L lpm -L altera_mf -L sgate -L stratixiigx -L stratixiigx_hssi \
work.<my design> -t ps +transport int delays +transport path delays
```

This example assumes you are using ModelSim PE/SE. If you are using ModelSim-Altera, you do not need to compile any libraries and can type the following command:

```
vsim -L lpm -L altera_mf -L sgate -L stratixiigx -L stratixiigx_hssi \
work.<my design> -t ps +transport int delays +transport path delays +
```

Transport Delays

By default, the ModelSim software filters out all pulses that are shorter than the propagation delay between primitives. Turning on the transport delay options in the ModelSim software prevents the simulation tool from filtering out these pulses. Use the following options to ensure that all signal pulses are seen in the simulation results.

+transport_path_delays

Use this option when the pulses in your simulation may be shorter than the delay within a gate-level primitive.

+transport_int_delays

Use this option when the pulses in your simulation may be shorter than the interconnect delay between gate-level primitives.

The +transport_path_delays and +transport_int_delays options are also used by default in the NativeLink feature for gate-level timing simulation.

For more information about either of these options, refer to the ModelSim Altera Command Reference installed with the ModelSim software.

The following ModelSim software command describes the command-line syntax to perform a gate-level timing simulation with the device family library:

```
vsim -t lps -L stratixii -sdftyp /i1=filtref_vhd.sdo work.filtref_vhd_vec_tst \
+transport_int_delays +transport_path_delays
```

Using the NativeLink Feature with ModelSim

The NativeLink feature in the Quartus II software facilitates the seamless transfer of information between the Quartus II software and EDA tools and allows you to run ModelSim within the Quartus II software.

Setting Up NativeLink

To run ModelSim automatically from the Quartus II software using the NativeLink feature, you must specify the path to your simulation tool by performing the following steps:

- 1. On the Tools menu, click **Options**. The **Options** dialog box appears.
- 2. In the Category list, select EDA Tool Options.
- 3. Double-click the entry under **Location of executable** beside the name of your EDA Tool.
- 4. Type or browse to the directory containing the executables of your EDA tool.
- For ModelSim-Altera and ModelSim SE/PE, executable files are stored in the **win32aloem** and **win32** directories, respectively.

c:\<ModelSim-Altera installation path>\win32aloem

c:\<*ModelSim installation path*>**win32**

5. Click OK.

You can also specify the path to the simulator's executables by using the set_user_option TCL command:

set_user_option -name EDA_TOOL_PATH_MODELSIM cpath to executables>
set_user_option -name EDA_TOOL_PATH_MODELSIM_ALTERA cpath to executables>

Performing an RTL Simulation Using NativeLink

To run a functional RTL simulation with the ModelSim software in the Quartus II software, perform the following steps:

- 1. On the Assignments menu, click **EDA Tool Settings**. The **Settings** dialog box appears.
- 2. In the **Category** list, select **Simulation**. The **Simulation** page appears (Figure 2–3).

Figure 2–3. Simulation Page in the Settings Dialog Box

Category:	
Category: General Files Usert Libraries (Current Project) Device Timing Analysis Settings Files Comparison Entry/Synthesis Files Formal Verification Prosead Synthesis Board-Level Complation Process Settings Filter Settings Assembler Design Assistant SignalTapi II Logic Analyzer Logic Analyzer Interface SignalProbe Settings Simulator Settings Filter Settings Simulator Settings Simulator Settings Filter Settings Simulator Settings Filter Settings Simulator Settings Filter Setting	Simulation Specify options for generating output files for use with other EDA tools. Tool name: ModelSim Run gate-level simulation automatically after compilation EDA Netlist Writer options Format for output netlist: VHDL Time scale: Output directory: simulation/modelsim Map illegal HDL characters Enable glitch filtering Options for Power Estimation Generate Value Change Dump (VCD) file script Settings Design instance name: It More Settings Tone Compile test bench: INOne> Compile test bench:
	Reset
	DK Cancel

- 3. In the **Tool name** list, select one of the following choices:
 - ModelSim
 - ModelSim-Altera
- 4. If your design is written entirely in Verilog HDL or in VHDL, the NativeLink feature automatically chooses the correct language and Altera simulation libraries. If your design is written with mixed languages, the NativeLink feature uses the default language specified in the Format for output netlist list. To change the default language when there is a mixed language design, under EDA Netlist Writer options, in the Format for output netlist list, select VHDL or Verilog. Table 2–11 shows the design languages for output netlists and simulation models.

Table 2–11. NativeLink Design Languages			
Design File	Simulation Models Used		
Verilog	Any	Verilog	
VHDL	Any	VHDL	
Mixed	Verilog	Verilog	
Mixed	VHDL	VHDL	

For mixed language simulation, choose the same language that was used to generate your megafunctions to ensure correct parameter passing between the megafunctions and the Altera libraries. For example, if your altsyncram megafunction was generated in VHDL, choose VHDL as the format for the output netlist.

When creating mixed language designs, it is important to be aware of the following:

- EDA Simulation tools do not allow seamless passing of parameters when a VHDL entity is instantiated in Verilog designs.
- The ModelSim and ModelSim-Altera software do not allow the use of Verilog User Defined Primitives (UDPs) to be instantiated in VHDL designs.
- 5. If you have testbench files or macro scripts, enter the information under **NativeLink settings**.

For more information about setting up a testbench with NativeLink, refer to "Setting Up a Testbench" on page 2–48.

- 6. Click OK.
- 7. On the Processing menu, point to Start and click **Start Analysis and Elaboration** to perform an analysis and elaboration. This command collects all your file name information and builds your design hierarchy in preparation for simulation.
- 8. On the Tools menu, point to **EDA Simulation Tool** and click **Run EDA RTL Simulation** to automatically run ModelSim, compile all necessary design files, and complete a simulation.

Performing a Gate-Level Simulation Using NativeLink

To run a gate-level timing simulation with the ModelSim software in the Quartus II software, perform the following steps:

- 1. On the Assignments menu, click **EDA Tool Settings**. The **Settings** dialog box appears.
- 2. In the **Category** list, select **Simulation**. The **Simulation** page appears (Figure 2–3 on page 2–45).
- 3. In the **Tool name** list, select one of the following:
 - ModelSim
 - ModelSim-Altera
- 4. Under EDA Netlist Writer options, in the Format for output netlist list, choose VHDL or Verilog. You can also modify where you want the post-synthesis netlist generated by editing or browsing to a directory in the Output directory box.
- 5. To run a gate-level simulation after each full compilation, turn on **Run Gate Level Simulation automatically after compilation**.
- 6. If you have testbench files or macro scripts, enter the information under **NativeLink settings**.
- 7. Click OK.
- 8. On the Processing menu, point to Start and click **Start EDA Netlist Writer** to generate a simulation netlist of your design.
- 9. On the Tools menu, point to EDA Simulation Tool and click **Run EDA Gate Level Simulation** to automatically run ModelSim, compile all necessary design files, and complete a simulation.
- A ModelSim Macro File (*.do) is generated in the <project_directory>\simulation\modelsim directory while running NativeLink. You can perform a simulation with the DO file directly from ModelSim when you rerun a simulation without using NativeLink. To perform the simulation directly without NativeLink, type the following command in the ModelSim console: do cgenerated_do_file>.do

Setting Up a Testbench

You can use NativeLink to compile your design files and testbench files, and run an EDA simulation tool to automatically perform a simulation.

To set up NativeLink for simulation, perform the following steps:

- 1. On the Assignments menu, click **Settings**. The **Settings** dialog box appears.
- 2. In the **Category** list, click the "+" icon to expand **EDA Tool Settings** and select **Simulation**. The **Simulation** page appears.
- 3. Under NativeLink settings, select None, Compile test bench, or Script to compile test bench (Table 2–12).

Table 2–12. NativeLink Settings			
Settings Description			
None	Compile simulation models and design files.		
Compile test bench	NativeLink compiles simulation models, design files, testbench files, and starts simulation.		
Script to compile test bench	NativeLink compiles the simulation models and design files. The script you provide is sourced after design files compile. Use this option when you want to create your own script to compile your testbench and perform simulation.		

- 4. If you select **Compile test bench**, select your test bench setup from the **Compile test bench** list. You can use different testbench setups to specify different test scenarios. If there are no testbench setups entered, create a testbench setup by performing the following steps:
 - a. Click Test Benches. The Test Benches dialog box appears.
 - b. Click New. The New Test Bench Settings dialog box appears.
 - c. In the **Test Bench name** box, type in the testbench setup name that identifies the different test bench setups.
 - d. In the **Test bench entity** box, type in the top-level testbench entity name. For example, for a Quartus II generated VHDL testbench, type in <*Vector Waveform File name>_*vhd_vec_tst.
 - e. In the **Instance** box, type in the full instance path to the top level of your FPGA design. For example, for a Quartus II generated VHDL testbench, type in i1.

- f. Under **Simulation period**, select **Run simulation until all vector stimuli are used** or specify the end time of the simulation.
- g. Under **Test bench files**, browse and add all your testbench files in the **File name** box. Use the **Up** and **Down** button to reorder your files. The script used by NativeLink compiles the files in order from top to bottom.
- You can also specify the library name and the HDL version to compile the testbench file. Native link compiles the testbench to a library name using the specified HDL version.
 - h. Click OK.
 - i. In the Test Benches dialog box, click OK.
- 5. Under NativeLink settings, you can turn on Use script to setup simulation and browse to your script. Your script is executed to set up and run simulation after loading the design using the vsim command.
- 6. If you choose **Script to compile test bench**, browse to your script and click **OK**.

Creating a Testbench

In the Quartus II software, you can create a Verilog HDL or VHDL testbench from a Vector Waveform File. The generated testbench includes the behavior of the input stimulus and applies it to your instantiated top-level FPGA design.

- 1. On the File menu, click **Open**. The **Open** dialog box appears.
- 2. Click the **Files of type** arrow and select **Waveform/Vector Files**. Select your Vector Waveform File.
- 3. Click Open.
- 4. On the File menu, click **Export**. The **Export** dialog box appears.
- 5. Click the **Save as type** arrow and select **VHDL Test Bench File** (*.vht) or **Verilog Test Bench File** (*.vt).
- 6. You can turn on **Add self-checking code to file** to check your simulation results against your Vector Waveform File.

7. Click **Export**. Your VHDL or Verilog testbench file is generated in your project directory.

Scripting Support

You can run procedures and create settings described in this chapter in a Tcl script. You can also run some procedures at the command line prompt.

For more information about Tcl scripting, refer to the *Tcl Scripting* chapter in volume 2 of the *Quartus II Handbook*.

For more information about command line scripting, refer to the *Command-Line Scripting* chapter in volume 2 of the *Quartus II Handbook*.

For detailed information about scripting command options, refer to the **Qhelp** command line and Tcl API help browser.

Type this command to start the Qhelp help browser:

quartus_sh --qhelp↔

Generating a Post-Synthesis Simulation Netlist for ModelSim

You can use the Quartus II software to generate a post-synthesis simulation netlist with Tcl commands or with a command at the command-line prompt. The following example assumes that you are selecting ModelSim (Verilog HDL output from Quartus II software).

Tcl Commands

Use the following Tcl commands to set the output format to Verilog HDL, the simulation tool to ModelSim for Verilog HDL, and to generate a functional netlist:

set_global_assignment-name EDA_SIMULATION_TOOL "ModelSim (Verilog)"
set_global_assignment-name EDA_GENERATE_FUNCTIONAL_NETLIST ON

Command Prompt

Use the following command to generate a simulation output file for the ModelSim simulator. Specify VHDL or Verilog HDL for the format:

quartus_eda <project name> --simulation=on --format=<format> --tool=ModelSim \
--functional +

Generating a Gate-Level Timing Simulation Netlist for ModelSim

You can use the Quartus II software to generate a gate-level timing simulation netlist with Tcl commands or with a command at the command prompt.

Tcl Commands

Use one of the following Tcl commands:

```
set_global_assignment -name EDA_SIMULATION_TOOL "ModelSim-Altera (Verilog)"
set_global_assignment -name EDA_SIMULATION_TOOL "ModelSim-Altera (VHDL)"
set_global_assignment -name EDA_SIMULATION_TOOL "ModelSim (Verilog)"
set_global_assignment -name EDA_SIMULATION_TOOL "ModelSim (VHDL)"
```

Command Line

Generate a simulation output file for the ModelSim simulator by specifying VHDL or Verilog HDL for the format by typing the following command at the command prompt:

```
quartus_eda <project name> --simulation=on --format=<format> --tool=ModelSim +
```

Software Licensing and Licensing Setup

License the ModelSim-Altera software with a parallel port software guard (T-guard), USB guard, FIXEDPC license, or a network FLOATNET or FLOATPC license. Each Altera software subscription includes a license for either VHDL or Verilog HDL. Network licenses with multiple users may have their licenses split between VHDL and Verilog HDL in any ratio.

The USB software guard is not supported by versions earlier than Mentor Graphics ModelSim software 5.8d.

Obtain a license for the ModelSim-Altera software from the Altera website at **www.altera.com**. Get licensing information for the Mentor Graphics ModelSim software directly from Mentor Graphics. Refer to Figure 2–4 for the set-up process.

For ModelSim-Altera versions prior to 5.5b, use the **PCLS** utility included with the software to set up the license.

Figure 2–4. ModelSim-Altera Licensing Set Up Process

LM_LICENSE_FILE Variable

Altera recommends setting the LM_LICENSE_FILE environment variable to the location of the license file.

Conclusion

Using the ModelSim-Altera simulation software within the Altera FPGA design flow enables Altera software users to easily and accurately perform functional RTL simulations, post-synthesis simulations, and gate-level simulations on their designs. Proper verification of designs at the functional, post-synthesis, and post place-and-route stages using the ModelSim-Altera software helps ensure design functionality and success and, ultimately, a quick time-to-market.

Referenced Documents

This chapter references the following documents:

- Quartus II Classic Timing Analyzer chapter in volume 3 of the Quartus II Handbook
- Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook
- Tcl Scripting chapter in volume 2 of the Quartus II Handbook
- Command-Line Scripting chapter in volume 2 of the Quartus II Handbook

Document Revision History

Table 2–13 shows the revision history for this chapter.

Table 2–13. Document Revision History				
Date and Document Version	Changes Made	Summary of Changes		
October 2007 v7.2.0	Updated Table 2–2. Updated "Operating Condition Example: Generate All Timing Models for Stratix III Devices" on page 2–25.	Updated for the Quartus II software version 7.2.		
May 2007 v7.1.0	Updated "Functional RTL Simulation" on page 2–5. Updated "Gate-Level Timing Simulation" on page 2–23. Added "Perform Timing Simulation Using Post-synthesis Netlist" on page 2–26. Updated examples in "Simulating Designs that Include Transceivers" on page 2–37. Updated procedures in "Setting Up a Testbench" on page 2–48. Added "Referenced Documents" on page 2–52.	Updated for the Quartus II software version 7.1.		
March 2007 v7.0.0	Updated Quartus II software 7.0 revision and date only.	_		
November 2006 v6.1.0	 Added ModelSim-Altera Web Edition to Table 2-1. Added Stratix III library support to Table 2-8, 2-9, and 2-10. Other minor changes to chapter. 	Updated for the Quartus II software version 6.1.		
May 2006 v6.0.0	 Updated for the Quartus II software version 6.0.0: Added a section on setting ModelSim as the Simulation Tool Updated EDA Tools Settings in the GUI. Updated the Synopsys Design Constraints File information. Updated the device information. Added Quartus II-Generated Testbench information Updated megafunction information. 	_		
October 2005 v5.1.0	Updated for the Quartus II software version 5.1.	—		
May 2005 v5.0.0	 Updates to tables, figures. Updated information. New functionality for Quartus II software 5.0. 			
December 2004 v3.0	 Reorganized chapter, updated information. Updates to tables, figures. New functionality for Quartus II software 4.2. 	_		
June 2004 v2.0	Updates to tables, figures.New functionality for Quartus II software 4.1.	—		
February 2004 v1.0	Initial release.	—		

3. Synopsys VCS Support

QII53002-7.2.0

Introduction

This chapter is an overview about using the Synopsys VCS software to simulate designs that target Altera[®] FPGAs. It provides a step-by-step explanation of how to perform functional register transfer level (RTL) simulations, post-synthesis simulations, and gate-level timing simulations using the VCS software.

This chapter discusses the following topics:

- "Software Requirements"
- "Common VCS Software Compiler Options" on page 3–11
- "Using VirSim" on page 3–12
- "Debugging Support Command-Line Interface" on page 3–12
- Simulating Designs that Include Transceivers" on page 3–13
- "Using PLI Routines with the VCS Software" on page 3–16
- "Transport Delays" on page 3–17
- "Using NativeLink with the VCS Software" on page 3–18
- "Scripting Support" on page 3–23

Software Requirements

To simulate your design using VCS, you must first set up the Altera libraries. These libraries are installed with the Quartus II software.

Table 3–1 shows the compatibility between versions of the Quartus II software and the Synopsys VCS software.

Table 3–1. Supported Quartus II and VCS Software Version Compatibility				
Synopsys	Altera			
VCS software version Y-2006.06-SP1	Quartus II software version 7.2			
VCS software version 2006.06	Quartus II software version 7.1			
VCS software version 2005.06-SP2	Quartus II software version 7.0 and 6.1			
VCS software version 2005.06-SP1	Quartus II software version 6.0			
VCS software version 7.2	Quartus II software version 5.1			
VCS software version 7.2	Quartus II software version 5.0			
VCS software version 7.1.1	Quartus II software version 4.2			

••••

For more information about installing the software and the directories created during the Quartus II software installation, refer to the *Quartus II Installation and Licensing for Windows* or the *Quartus II Installation and Licensing for UNIX and Linux Workstation* manuals.

Using VCS in the Quartus II Design Flow

You can perform the following types of simulations using VCS:

- Functional RTL
- Post-synthesis
- Gate-level timing

Figure 3–1 shows the VCS and Quartus II software design flow.

Figure 3–1. Altera Design Flow with the VCS and Quartus II Software

Functional Simulations

Functional RTL simulations verify the functionality of the design before synthesis, placement, and routing. These simulations are independent of any Altera FPGA architecture implementation. Once the HDL designs are verified to be functionally correct, the next step is to synthesize the design and use the Quartus II software to place-and-route the design in an Altera device.

To functionally simulate an Altera FPGA design in the VCS software that uses Altera intellectual property (IP) megafunctions, or library of parameterized modules (LPM) functions, you must include certain libraries during the compilation. Table 3–2 summarizes the Verilog HDL library files that are required to compile LPM functions and Altera megafunctions.

Files	
Library Name	Verilog HDL Libraries
LPM	220model.v
altera_mf	altera_mf.v
altgxb	stratixgx_mf.v (1)
alt2gxb	stratixiigx_hssi_atoms.v (1) arriagx_hssi_atoms.v (1)
sgate	sgate.v
altera	altera_primitives.v

Table 3–2. Altera Verilog HDL Functional/Behavioral Simulation Library	
Files	

Note to Table 3-2:

(1) The stratixgx_mf.v, stratixiigx_hssi_atoms.v, and arriagx_hssi_atoms.v library files require the LPM and SGATE libraries.

The library files in Table 3–2 are installed with the Quartus II software. These files are found in the *<path to Quartus II installation* **>dasim_lib** directory.

The following is a VCS command for performing a functional RTL simulation with one of the libraries in Table 3–2:

vcs -R <test bench>.v <design name>.v -v <library file>.v ←

Megafunctions Requiring Atom Libraries

The following Altera megafunctions require gate-level libraries to perform a functional simulation in a third-party simulator:

- altclkbuf
- altclkctrl
- altdq
- altdqs
- altddio_in
- altddio_out
- altddio_bidir
- altufm_none
- altufm_parallel
- altufm_spi
- altmemmult
- altremote_update

The gate-level library files are located in *path to Quartus II installation>eda/sim_lib* directory (Table 3–3).

Functional RTL Simulation with Altera Memory Blocks

The VCS software supports functional simulation of complex Altera memory blocks such as lpm_ram_dp and altsyncram. You can create these memory blocks with the Quartus II MegaWizard[®] Plug-In Manager, which can be initialized with power-up data via a Hexadecimal (Intel-Format) File (.hex) or Memory Initialization File (.mif). The lpm_file parameter included in the file generated by the MegaWizard Plug-In Manager points to the path of the Hexadecimal (Intel-Format) File or Memory Initialization File that is used to initialize the memory block. You can create a Hexadecimal (Intel-Format) File or Memory Initialization File with the Quartus II software.

Compiling Functional Library Files with Compiler Directives

If you use a Hexadecimal (Intel-Format) File, no compiler directives are required. If you use a RAM Initialization File, the USE_RIF macro must be defined to compile the model library files. For example, enter the following when compiling the altera_mf library using RIF memory initialization files:

vcs -R -v <path to Quartus installation> /
\eda\sim_lib\altera_mf.v <test bench file> /
<design file (top-level)> +define+USE_RIF=1 +

For the Quartus II software versions 5.0 and earlier, the NO_PLI macro must be defined instead of USE_RIF. The NO_PLI macro is forward compatible with the Quartus II software.

Post-Synthesis Simulation

A post-synthesis simulation verifies the functionality of a design after synthesis has been performed. You can create a post-synthesis netlist in the Quartus II software and use this netlist to perform a post-synthesis simulation in the VCS software. Once the post-synthesis version of the design has been verified, the next step is to place-and-route the design in the target architecture using the Quartus II software.

Generating a Post-Synthesis Simulation Netlist

The following steps describe the process of generating a post-synthesis simulation netlist in the Quartus II software:

- 1. Perform Analysis and Synthesis. On the Processing menu, point to Start and click **Start Analysis and Synthesis**.
- 2. Turn on the **Generate Netlist for Functional Simulation Only** option by performing the following steps:
 - a. On the Assignments menu, click **EDA Tool Settings**. The **Settings** dialog box appears.
 - b. In the **Category** list, select **Simulation**. The **Simulation** page is shown.
 - c. In the **Tool name** list, select **VCS**.
 - d. You can modify where you want the post-synthesis netlist generated by editing or browsing to a directory in the **Output directory** box.
 - e. Click More Settings. The More EDA Tools Simulation Settings dialog box appears. In the Existing options settings list, click Generate Netlist for Functional Simulation Only and select On from the Setting list under Option.
 - f. Click **OK**.
 - g. In the **Settings** dialog box, click **OK**.
- 3. Run the EDA Netlist Writer. On the Processing menu, point to Start and click **Start EDA Netlist Writer**.

During the EDA Netlist Writer stage, the Quartus II software produces a Verilog Output File (**.vo**) that can be used for the post-synthesis simulations in the VCS software. This netlist file is mapped to architecture-specific primitives. No timing information is included at this stage.

The resulting netlist is located in the output directory you specified in the **Settings** dialog box, which defaults to the *<project directory>* /simulation/vcs directory. This netlist, along with the device family library listed in Table 3–3, can be used to perform a post-synthesis simulation in the VCS software.

Library Files	Description
arriagx_atoms.v arriagx_hssi_atoms.v	Atom libraries for Arria [™] GX designs
stratixii_atoms.v	Atom libraries for Stratix [®] II designs
stratixiigx_atoms.v stratixiigx_hssi_atoms.v	Atom libraries for Stratix II GX designs
stratix_atoms.v	Atom libraries for Stratix designs
stratixgx_atoms.v stratixgx_hssi_atoms.v	Atom libraries for Stratix GX designs
stratixiii_atoms.v	Atom libraries for Stratix III designs
hardcopyii_atoms.v	Atom libraries for HardCopy [®] II designs
hcstratix_atoms.v	Atom libraries for HardCopy Stratix designs
cycloneiii_atoms.v	Atom libraries for Cyclone® III designs
cycloneii_atoms.v	Atom libraries for Cyclone II designs
cyclone_atoms.v	Atom libraries for Cyclone designs
apexii_atoms.v	Atom libraries for APEX™ II designs
apex20ke_atoms.v	Atom libraries for APEX 20KE, APEX 20KC, and Excalibur™ designs
apex20k_atoms.v	Atom libraries for APEX 20K designs
flex10ke_atoms.v	Atom libraries for FLEX® 10KE and ACEX® 1K designs
flex6000_atoms.v	Atom libraries for FLEX 6000 designs
maxii_atoms.v	Atom libraries for MAX [®] II designs
max_atoms.v	Atom libraries for MAX 3000 and MAX 7000 designs
mercury_atoms.v	Atom libraries for Mercury [™] designs

Table 3–3. Altera Gate-Level Simulation Library Files

The following VCS software commands describe the command-line syntax used to perform a post-synthesis simulation with the appropriate device family library listed in Table 3–3:

vcs -R <test bench> <post synthesis netlist> -v <altera device family library> +

Gate-Level Timing Simulation

A gate-level timing simulation verifies the functionality of the design after place-and-route. You can create a post-fit netlist in the Quartus II software and use this netlist to perform a gate-level timing simulation in VCS software.

Generating a Gate-Level Timing Simulation Netlist

To perform gate-level timing simulation, the VCS software requires information about how the design was placed into device-specific architectural blocks. The Quartus II software provides this information in the form of a Verilog Output File for Verilog HDL designs. The accompanying timing information is stored in the Standard Delay Output File (**.sdo**), which annotates the delay for the elements found in the Verilog Output File.

The following steps describe the process of generating a gate-level timing simulation netlist in the Quartus II software:

- 1. Perform a full compilation. On the Processing menu, click **Start Compilation**.
- 2. On the Assignments menu, click **EDA Tool Settings**. The **Settings** dialog box appears.
- 3. In the **Category** list, select **Simulation**. The **Simulation** page is shown.
- 4. In the **Tool name** list, select **VCS**.
- 5. You can modify where you want the post-synthesis netlist generated by editing or browsing to a directory in the **Output directory** box.
- 6. Click OK.
- 7. In the **Settings** dialog box, click **OK**.
- 8. Run the EDA Netlist Writer. On the Processing menu, point to Start and click **Start EDA Netlist Writer**.

During the EDA Netlist Writer stage, the Quartus II software produces a Verilog Output File (**.vo**) that can be used for post-synthesis simulations in the VCS software. This netlist file is mapped to architecture-specific primitives. No timing information is included at this stage. The resulting netlist is located in the output directory you specified in the Settings dialog box, which defaults to the *<project directory*>/simulation/vcs directory.

Generating Different Timing Model

If you enable the Quartus II Classic or Quartus II TimeQuest Timing Analyzer when generating the SDO file, slow-corner (worst case) timing models are used by default. To generate the SDO file using a different timing model, you must run the Quartus II Classic or the Quartus II TimeQuest Timing Analyzer with a different timing model before you start the EDA Netlist writer.

To run the Classic Timing Analyzer with the best-case model, on the Processing menu, point to Start and click **Start Classic Timing Analyzer** (Fast Timing Model). After timing analysis is complete, the Compilation Report appears. You can also type the following command at a command prompt:

quartus_tan <project_name> --fast_model=on +

To run the Quartus II TimeQuest Timing Analyzer with a best-case model, use the <code>-fast_model</code> option after you create the timing netlist. The following command enables the fast timing models:

create_timing_netlist -fast_model

You can also type the following command at a command prompt:

quartus sta <project_name> --fast model=on ←

For more information about generating the timing model, refer to the *Quartus II Classic Timing Analyzer* or *Quartus II TimeQuest Timing Analyzer* chapter in volume 3 of the *Quartus II Handbook*.

After you run the Quartus II Classic Timing Analyzer or the Quartus II TimeQuest Timing Analyzer, you can perform steps 2 through 8 in "Generating a Gate-Level Timing Simulation Netlist" on page 3–8 to generate the SDO file. For fast corner timing models, the **_fast** post fix is added to the VO, VHO, and SDO file (for example, **my_project_fast.vo**, **my_project_fast.vho**, and **my_project_fast.sdo**).

Operating Condition Example: Generate All Timing Models for Stratix III Devices

In Stratix III and Cyclone III devices, you can specify different temperature and voltage parameters to generate the timing models. Table 3–4 shows the available operation conditions (model, voltage, and temperature) for Stratix III and Cyclone III devices.

Table 3–4. Available Operating Condition for Stratix III and Cyclone III Devices					
Device Family	Model	Voltage	Temperature		
Stratix III	Slow	1100 mV	85° C		
	Slow	1100 mV	0° C		
	Fast	1100 mV	0° C		
Cyclone III	Slow	1200 mV	85° C		
	Slow	1200 mV	0° C		
	Fast	1200 mV	0° C		

To generating the SDO files for the three different operating conditions for a Stratix III design, perform the following steps:

1. Generate all the available corner models at all operating conditions. Type the following command at a command prompt:

```
quartus sta <project name> --multicorner +
```

2. Generate the ModelSim simulation output files for all three corners specified above. The output files are generated in the simulation output directory. Type the following command at a command prompt:

quartus eda <project name> --simulation --tool=vcs --format=verilog +

To summarize, for the three operating conditions the steps above generate the following files in the simulation output directory:

First slow corner (slow, 1100 mV, 85° C): VO file— *<revision name>*.vo SDO file— *<revision name>*_v.sdo Second slow corner (slow, 1100 mV, 0° C): VO file— <*revision name>_<speedgrade>_***1100mv_0c_slow.vo** SDO file— <*revision name>_<speedgrade>_***1100mv_0c_v_slow.sdo**

Fast corner (fast, 1100 mV, 0° C): VO file— <revision name>_<speedgrade>_1100mv_0c_fast.vo SDO file— <revision name>_<speedgrade>_1100mv_0c_v_fast.sdo

Perform Timing Simulation Using Post-Synthesis Netlist

You can perform a timing simulation using the post-synthesis netlist instead of using a gate-level netlist and you can generate a SDO without running the fitter. In this case, the SDO file includes all timing values for the device cells only. Interconnect delays are not included because fitting (placement and routing) has not been performed.

To generate the post-synthesis netlist and the SDO file, type the following command at a command prompt:

```
quartus_map <project name> -c <revision name> +
quartus_tan <project name> -c <revision name> --post_map --zero_ic_delays +
quartus_eda <project name> -c <revision name> --simulation --tool=<third party EDA tool>
--format=<HDL language> +
```

For more information about the -format and -tool option, type the following command: quartus_eda -help=<*options*> command

Common VCS Software Compiler Options

The VCS software has options that help you simulate your design. Table 3–5 lists some of the options that are available.

Table 3–5. VCS Software Compiler Options (Part 1 of 2)		
Library	Description	
-R	Runs the executable file immediately.	
-RI	Once the compile has completed, instructs the VCS software to automatically launch VirSim.	
-v <library filename=""></library>	Specifies a Verilog HDL library file (for example, 220model.v or altera_mf.v). The VCS software looks in this file for module definitions that are found in the source code. Only the relevant library files are compiled based on the modules found.	
-y <library directory=""></library>	Specifies a Verilog HDL library directory. The VCS software looks for library files in this folder that contain module definitions that are instantiated in the source code.	

Table 3–5. VCS Software Compiler Options (Part 2 of 2)		
Library	Description	
+compsdf	Indicates that the VCS software compiler includes the back-annotated SDF file in the compilation.	
+cli	The VCS software enters Command-Line Interface (CLI) mode upon successful compilation completion.	
+race	Specifies that the VCS software generate a report that indicates all of the race conditions in the design. Default report name is race.out .	
- P	Compiles user-defined Programming Language Interface (PLI) table files.	
-d	Indicates the VCS software runs in quiet mode. All messages are suppressed.	

For more information about any VCS software option, refer to the VCS User Guide.

Using VirSim

VirSim is the graphical debugging system for the VCS software. This tool is included with the VCS software and can be run by using the -RI compile-time compiler option when compiling a design. The following VCS software command describes the command-line syntax for compiling and loading a timing simulation in VirSim:

vcs -RI <test bench>.v <design name>.vo -v <path to Quartus II installation> \
\eda\sim_lib\<device family>_atoms.v +compsdf +

For more information about using VirSim, refer to the *VirSim User Manual* included in the VCS software installation.

Debugging Support Command-Line Interface

The VCS software has an interactive non-graphical debugging capability that is very similar to other UNIX debuggers such as the GNU debugger (GDB). The VCS software CLI can be used to halt simulations at user-defined break points, force registers with values, and display values of registers.

Enable the non-graphical capability by using the +cli run-time option. Use the VCS software CLI to debug your Altera FPGA design by typing the following command:

vcs -R <test bench>.v <design name>.vo
 -v <path to Quartus II installation> \
 \eda\sim_lib\<device family>_atoms.v +compsdf +cli +

The +cli command takes an optional number argument that specifies the level of debugging capability. As the optional debugging capability is increased, the overhead incurred by the simulation is increased, resulting in an increase in simulation times.

For more information about the +cli options, refer to the *VCS User Guide* included in the VCS software installation.

For the design examples to run gate-level timing simulation in VHDL or Verilog language, refer to **www.altera.com/support/examples/vcs/exm-vcs.html**.

Simulating Designs that Include Transceivers

If your design includes a Stratix GX or Stratix II GX transceiver, you must compile additional library files to perform functional or timing simulations.

Stratix GX Functional Simulation

To perform a functional simulation of your design that instantiates the altgxb megafunction, enabling the gigabit transceiver block gigabit transceiver block on Stratix GX devices, compile the **stratixgx_mf** model file into the **altgxb** library.

The **stratixiigx_mf** model file references the **lpm** and **sgate** libraries, so you must create these libraries to perform a simulation.

Example of Compiling Library Files for Functional Stratix GX Simulation in Verilog HDL

To compile the libraries necessary for functional simulation of a Verilog HDL design targeting a Stratix GX device, type the following commands at the VCS command prompt:

vcs -R <test bench>.v <design files>.v -v stratixgx_mf.v -v \ sgate.v -v 220model.v -v altera_mf.v +

Stratix GX Post-Fit (Timing) Simulation

Perform a post-fit timing simulation of your design that includes a Stratix GX transceiver by compiling the **stratixgx_atoms** and **stratixgx_hssi_atoms** model files into the **stratixgx** and **stratixgx_gxb** libraries, respectively.

The **stratixgx_hssi_atoms** model file references the **lpm** and **sgate** libraries, so you must create these libraries to perform a simulation.

Example of Compiling Library Files for Timing Stratix GX Simulation in Verilog HDL

To compile the libraries necessary for timing simulation of a Verilog HDL design targeting a Stratix GX device, type the following commands at the VCS command prompt:

```
vcs -R <testbench>.v <gate-level netlist>.vo -v stratixgx_atoms.v -v \
stratixgx_hssi_atoms.v -v sgate.v -v 220model.v -v altera_mf.v \
+transport_int_delays +pulse_int_e/0 +pulse_int_r/0 \
+transport_path_delays +pulse_e/0 +pulse_r/0 +
```

Stratix II GX Functional Simulation

To perform a functional simulation of your design that instantiates the alt2gxb megafunction, enabling the gigabit transceiver block gigabit transceiver block on Stratix II GX devices, compile the **stratixiigx_hssi** model file into the **stratixiigx_hssi** library.

The **stratixiigx_hssi_atoms** model file references the **lpm** and **sgate** libraries, so you must create these libraries to perform a simulation.

Generate a functional simulation netlist by turning on **Generate Simulation Model in the Simulation Library** in the alt2gxb MegaWizard Plug-In Manager (Figure 3–2). The *<alt2gxb entity name>.vho* file or *<alt2gxb module name>.vo* file is generated in the current project directory.

- P
- The Quartus II-generated alt2gxb functional simulation library file references stratixiigx_hssi wysiwyg atoms.

MegaWizard Plug-In Manager [page 15 of 16] EDA						
ALT2GXB Version 7.1				About	Docum	entation
Parameter Settings EDA Summary						
	- Sim	ulation Librarie	-			
ü	To file	properly simula (s) are needed	te the generated design file	es, the follow	ng simulatio	n model
rx_datain[0] rx_dataout[15.	.01 F	ile	Description			
bk datain[15.0] pli_inclk rx_cruck[0] bk_ctrienable[1.0] rx_cruck[10(st 10(sc 10(sc 10(sc 10(sc 10(sc 10(sc 10(sc 10(sc)) 10(sc 10(sc)) 10(sc 10(sc)) 10(sc 10(sc)) 10(sc 10(sc)) 10(sc) 10(sc) 10(sc)) 10(sc) 10(sc)	ratikilgx_hssi jate IP Functional S duced by the Q ulations of IP u may use these	Stratix II GX HSSI simulat Sgate simulation library imulation Model is a cycle-a yartus II software. These sing industry-standard VHC e simulation model output fi synthesis or any other purp	ccurate VHDL models allow VL or Verilog H les for simula oses. Using t	or Verilog H Fast functior DL simulator tion purpose	DL model nal rs. s and for
		Generate simul	ation model			
	- Svr	nthesis				
	Sor me	me third-party s gafunction. Usin d resource usag	ynthesis tools may benefit ng this netlist, the synthesi le for the megafunction	from reading s tool is able	the details o to estimate t	of this timing
Resource Usage		Generate a syr	nthesis area and timing esti	mation netlist		
			Cancel	< <u>B</u> ack	Next >	Einish

Example of Compiling Library Files for Functional Stratix II GX Simulation in Verilog HDL

To compile the libraries necessary for functional simulation of a Verilog HDL design targeting a Stratix II GX device, type the following commands at the VCS command prompt:

vcs -R <testbench>.v <alt2gxb simulation netlist>.vo -v stratixgx_hssi_atoms.v -v \ sgate.v -v 220model.v -v altera_mf.v +

Stratix II GX Post-Fit (Timing) Simulation

To perform a post-fit timing simulation of your design that includes a Stratix II GX transceiver, compile stratixiigx_atoms and stratixiigx_hssi_atoms into the stratixiigx and stratixiigx_hssi libraries, respectively.

The **stratixiigx_hssi_atoms** model file references the **lpm** and **sgate** libraries, so you must create these libraries to perform a simulation.

Example of Compiling Library Files for Timing Stratix II GX Simulation in Verilog HDL

To compile the libraries necessary for timing simulation of a Verilog HDL design targeting a Stratix II GX device, type the following commands at the VCS command prompt:

```
vcs -R <testbench>.v <gate-level netlist>.vo -v stratixiigx_atoms.v -v \
stratixiigx_hssi_atoms.v -v sgate.v -v 220model.v -v altera_mf.v \
+transport_int_delays +pulse_int_e/0 +pulse_int_r/0 \
+transport_path_delays +pulse_e/0 +pulse_r/0 +
```

```
Using PLI
Routines with
the VCS
Software
```

The VCS software can interface your custom-defined C code with Verilog HDL source code. This interface is known as PLI. This interface is extremely useful because it allows advanced users to define their own system tasks that currently may not exist in the Verilog HDL.

Preparing and Linking C Programs to Verilog HDL Code

When compiling the source code, the C code must include a reference to the **vcsuser.h** file. This file defines PLI constants, data structures, and routines that are necessary for the PLI interface. This file is included with the VCS software installation and can be found in the **\$VCS_HOME**\lib directory.

Once the C code is complete, you must create an object file (**.o**). Create the object file with the following command:

gcc -c my_custom_function.c +

Next, you must create a PLI table file (.tab). This file maps the C program task to the matching task *\$task* in the Verilog HDL source code. You can create this file using a standard text editor. The following is an example of an entry in the PLI file:

\$my_custom_function call=my_custom_function acc+=rw*

The Verilog HDL code can now include a reference to the user-defined task. To compile an Altera FPGA design that includes a reference to a user-defined system task, type the following at the command-line prompt:

```
vcs -R <test bench>.v <design name>.v -v <Altera library file>.v -P <my_tabfile.tab> \ <my_custom_function.o> ←
```

Transport Delays

By default, the VCS software filters out all pulses that are shorter than the propagation delay between primitives. Turning on the transport delay options in the VCS software prevents the simulation tool from filtering out these pulses. Use the following options to ensure that all signal pulses are seen in the simulation results.

+transport_path_delays

Use this option when the pulses in your simulation may be shorter than the delay within a gate-level primitive. For this option to work you must also include the +pulse_e/number and +pulse_r/number options.

+transport_int_delays

Use this option when the pulses in your simulation may be shorter than the interconnect delay between gate-level primitives. For this option to work, you must also include the +pulse_int_e/number and +pulse_int_r/number options. The +transport_path_delays and +transport_int_delays options are also used by default in the NativeLink feature for gate-level timing simulation.

For more information about either of these options, refer to the *VCS User Guide* installed with the VCS software.

The following VCS software command describes the command-line syntax to perform a post-synthesis simulation with the device family library:

```
vcs -R <test bench>.v <gate-level netlist>.v -v <altera device family library>.v \
+transport_int_delays +pulse_int_e/0 +pulse_int_r/0 \
+transport_path_delays +pulse_e/0 +pulse_r/0 +
```

Using NativeLink with the VCS Software

The NativeLink[®] feature in the Quartus II software facilitates the seamless transfer of information between the Quartus II software and EDA tools and allows you to run VCS within the Quartus II software.

Setting Up NativeLink

To run VCS automatically from the Quartus II software using the NativeLink feature, you must specify the path to your simulation tool by performing the following steps:

- 1. On the Tools menu, click **Options**. The **Options** dialog box appears.
- 2. In the **Category** list, select **EDA Tool Options**. The **EDA Tool Options** page is shown.
- 3. Double-click the entry under the **Location of executable** column.
- 4. Type or browse to the directory containing the executables of your EDA tool.
- 5. Click OK.

You can also specify the path to the simulator's executables by using the set_user_option Tcl command:

set_user_option -name EDA_TOOL_PATH_VCS cpath to executables> +

Performing an RTL Simulation Using NativeLink

To run a functional RTL simulation automatically with the VCS software in the Quartus II software, perform the following steps:

- 1. On the Assignments menu, click **EDA Tool Settings**. The **Settings** dialog box appears.
- 2. In the **Category** list, select **Simulation**. The **Simulation** page is shown (Figure 3–3).

Figure 3–3. Simulation Page in the Settings Dialog Box

- 3. In the **Tool name** list, select **VCS**. You can also modify where you want the post-synthesis netlist generated by editing or browsing to a directory in the **Output directory** box.
- 4. If you have testbench files or macro scripts, enter the information under **NativeLink settings**.

For more information about setting up a testbench with NativeLink, refer to "Setting Up a Testbench" on page 3–21.

5. Click OK.

- 6. On the Processing menu, point to Start and click **Start Analysis and Elaboration** to perform an analysis and elaboration. This command collects all your file name information and builds your design hierarchy in preparation for simulation.
- 7. On the Tools menu, point to **EDA Simulation Tool** and click **Run EDA RTL Simulation** to automatically launch VCS, compile all necessary design files, and complete a simulation.

Performing a Gate-Level Simulation Using NativeLink

To run a gate-level timing simulation with the VCS software automatically in the Quartus II software, perform the following steps:

- 1. On the Assignments menu, click **EDA Tool Settings**. The **Settings** dialog box appears.
- 2. In the **Category** list, select **Simulation**. The **Simulation** page is shown (Figure 3–3).
- 3. In the **Tool name** list, select **VCS**.
- 4. You can modify where you want the post-synthesis netlist generated by editing or browsing to a directory in the **Output directory** box.
- 5. To perform a gate level simulation after each full compilation, turn on **Run Gate Level Simulation automatically after compilation**.
- 6. If you have testbench files or macro scripts, enter the information under **NativeLink settings**.
- 7. Click OK.
- 8. Perform a full compilation. On the Processing menu, click **Start Compilation**.
- 9. On the Processing menu, point to Start and click **Start EDA Netlist** Writer to generate a simulation netlist of your design.
- 10. On the Tools menu, point to EDA Simulation Tool and click **Run EDA Gate Level Simulation** to automatically launch VCS, compile all necessary design files, and complete a simulation.

A VCS file (*.vcs) is generated in the <project_dirrectory>\simulation\vcs directory while running the NativeLink. With this VCS File (*.vcvs), you can simulating the design using the following command without using the NativeLink:

```
vcs -file <project_directory>\simulation\vcs\<generated_do_file>.vcs
```

Setting Up a Testbench

You can automatically launch your EDA simulator tool, compile your design files and testbench files, and perform a simulation automatically using the NativeLink feature.

To setup NativeLink with a testbench, perform the following steps:

- 1. On the Assignments menu, click **Settings**. The **Settings** dialog box appears.
- 2. In the **Category** list, click the "+" icon to expand **EDA Tool Settings** and select **Simulation**. The **Simulation** page is shown.
- 3. Under NativeLink settings, select None or Compile test bench (Table 3–6).

Table 3–6. NativeLink Settings	
Settings	Description
None	Compile simulation models and design files.
Compile test bench	NativeLink compiles simulation models, design files, testbench files, and starts simulation.

4. If you select **Compile test bench**, select your testbench setup from the **Compile test bench** list. You can use different testbench setups to specify different testbench files for different test scenarios. If there are no testbench setups entered, create a testbench setup by performing the following steps:

- a. Click Test Benches. The Test Benches dialog box appears.
- b. Click New. The New Test Bench Settings dialog box appears.
- c. In the **Test Bench name** box, type in the testbench setup name which is used to identify between the different testbench setups.

- d. In the **Test bench entity** box, type in the top-level entity name. For example, for a Quartus II generated Verilog testbench, type in *<Vector Waveform File name>_*vlg_vec_tst.
- e. In the **Instance** box, type the full instance path to the top level of your FPGA design. For example, for a Quartus II generated Verilog test bench, type i1.
- f. Under **Simulation period**, select **Run simulation until all vector stimuli are used**. If you select **End simulation at**, specify the simulation end time and the time unit.
- g. Under **Test bench files**, browse and add all your testbench files in the **File name** box. Use the **Up** and **Down** buttons to reorder your files. The script used by NativeLink compiles the files in the order from top to the bottom.
- You can also specify the library name and the HDL version to compile the testbench file. NativeLink compiles the testbench to the library name of the HDL specified version.
 - h. Click OK.
 - i. In the Test Benches dialog box, click OK.

Creating a Testbench

In the Quartus II software, you can create a Verilog HDL or VHDL testbench from a Vector Waveform File. The generated testbench includes the behavior of the input stimulus and applies it to your instantiated top-level FPGA design.

- 1. On the File menu, click **Open**. The **Open** dialog box appears.
- 2. Click the **Files of type** arrow and select **Waveform/Vector Files**. Select your file.
- 3. Click Open.
- 4. On the File menu, click **Export**. The **Export** dialog box appears.
- 5. Click the **Save as type** arrow and select **VHDL Test Bench File** (*.vht) or **Verilog Test Bench File** (*.vt).
- 6. You can turn on **Add self-checking code to file** to check your simulation results against your Vector Waveform File.
7. Click Export.

Scripting Support

You can run procedures and create settings described in this chapter in a Tcl script. You can also run some procedures at a command prompt.

For more information about Tcl scripting, refer to the *Tcl Scripting* chapter in volume 2 of the *Quartus II Handbook*.

For more information about command-line scripting, refer to the *Command Line Scripting* chapter in volume 2 of the *Quartus II Handbook*.

For detailed information about scripting command options, refer to the **Qhelp** utility.

To start the **Qhelp** utility, type this command:

quartus_sh --qhelp 🕶

Generating a Post-Synthesis Simulation Netlist for VCS

You can use the Quartus II software to generate a post-synthesis simulation netlist with Tcl commands or with a command at a command prompt.

Tcl Commands

Use the following Tcl commands:

set_global_assignment -name EDA_SIMULATION_TOOL "VCS" set_global_assignment -name EDA_GENERATE_FUNCTIONAL_NETLIST ON

Command Prompt

Use the following command to generate a simulation output file for the VCS software simulator; specify VHDL or Verilog HDL for the format:

```
quartus_eda <project name> --simulation=on --format=<format> --tool=vcs
--functional
```

Generating a Gate-Level Timing Simulation Netlist for VCS

You can use the Quartus II software to generate a gate-level timing simulation netlist with Tcl commands or with a command at a command prompt.

	Tcl Commands
	Use the following Tcl commands:
<pre>set_global_assignmer</pre>	nt -name EDA_SIMULATION_TOOL "VCS" ←
	Command Prompt
	Use the following command to generate a simulation output file for the VCS software simulator. Specify VHDL or Verilog HDL for the format.
quartus_eda <project na<="" th=""><th>me>simulation=onformat=<format>tool=vcs ←</format></th></project>	me>simulation=onformat= <format>tool=vcs ←</format>
Conclusion	You can use the VCS software in your Altera FPGA design flow to easily and accurately perform functional RTL simulations, post-synthesis simulations, and gate-level functional timing simulations. The seamless integration of the Quartus II software and VCS software make this simulation flow an ideal method for fully verifying an FPGA design.
Referenced Documents	 This chapter references the following documents: Quartus II Installation and Licensing for Windows Manual Quartus II Installation and Licensing for UNIX and Linux Workstation Manual Quartus II Classic Timing Analyzer chapter in volume 3 of the Quartus II Handbook Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook VCS User Guide Tcl Scripting chapter in volume 2 of the Quartus II Handbook Command Line Scripting chapter in volume 2 of the Quartus II Handbook

Document Revision History

Table 3–7 shows the revision history for this chapter.

Table 3–7. Document Revision History			
Date and Document Version	Changes Made	Summary of Changes	
October 2007 v7.2.0	 Updated Table 3–1. Updated "Operating Condition Example: Generate All Timing Models for Stratix III Devices" on page 3–10. 	Updated for the Quartus II software version 7.2.	
May 2007 v7.1.0	 Updated Tables 3–1, 3–2, and 3–3. Updated "Generating a Gate-Level Timing Simulation Netlist" on page 3–8. Added "Perform Timing Simulation Using Post-Synthesis Netlist" on page 3–11. Updated "Performing a Gate-Level Simulation Using NativeLink" on page 3–20. Updated procedures in "Setting Up a Testbench" on page 3–21. 	Updated for the Quartus II software version 7.1.	
March 2007 v7.0.0	Updated Quartus II software 7.0 revision and date only.	_	
November 2006 v6.1.0	 Updated for the Quartus II software version 6.1. Added library for Stratix III support. Minor updates to Table 3-1, 3-2, and 3-3. 	Updated for the Quartus II software version 6.1.	
May 2006 v6.0.0	 Updated for the Quartus II software version 6.0.0: Added a section on setting VCS as the Simulation Tool Updated EDA Tools Settings in the GUI. Updated the Synopsys Design Constraints File information. Added pulse_e and pulse_r information to simulation sections. Added Quartus II-Generated Testbench information Updated megafunction information. 	_	
October 2005 v5.1.0	Updated for the Quartus II software version 5.1.	—	
May 2005 v5.0.0	 Updated information. Updated tables. Added Using NativeLink[®] with VCS section. New functionality for Quartus II software version 5.0. 		
December 2004 v2.1	Updates to tables, figures.New functionality for Quartus II software version 4.2.		
June 2004 v2.0	Updates to tables and figures.New functionality for the Quartus II software version 4.1.		
February 2004 v1.0	 Initial release. 		

4. Cadence NC-Sim Support

QII53003-7.2.0

Introduction

This chapter is a getting started guide to using the Cadence Incisive verification platform software in Altera[®] FPGA design flows. The Incisive verification platform software includes NC-Sim, NC-Verilog, NC-VHDL, Verilog, and VHDL desktop simulators. This chapter provides step-by-step explanations of the basic NC-Sim, NC-Verilog, and NC-VHDL functional, post-synthesis, and gate-level timing simulations. It also describes the location of the simulation libraries and how to automate simulations.

This chapter contains the following topics:

- "Software Requirements"
- "Functional and RTL Simulation" on page 4–6
- "Post-Synthesis Simulation" on page 4–22
- "Gate-Level Timing Simulation" on page 4–24
- "Simulating Designs that Include Transceivers" on page 4–31
- "Using the NativeLink Feature with NC-Sim" on page 4–37
- "Incorporating PLI Routines" on page 4–43
- "Scripting Support" on page 4–48

Software Requirements

You must first install the Quartus[®] II software before using it with the Cadence Incisive verification platform software. The Cadence interface is installed automatically when you install the Quartus II software on your computer.

Table 4–1 shows the Cadence NC simulator versions compatible with specific Quartus II software versions.

Table 4–1. Compatibility Between Software Versions			
Quartus II Software	Cadence NC Simulators (UNIX)	Cadence NC Simulators (PC)	Cadence NC Simulators (Linux)
Version 7.2	Version 6.10 p001	Version 5.4 s011	Version 6.10 p001
Version 7.1	Version 5.83 p003	Version 5.4 s011	Version 5.83 p003
Version 6.1 and 7.0	Version 5.82 p001	Version 5.4 s011	Version 5.82 p001
Version 6.0	Version 5.5 s012	Version 5.4 s011	Version 5.5 s012
Version 5.1	Version 5.4 s011	Version 5.4 s011	Version 5.4 s011
Version 5.0	Version 5.4 s004	Version 5.4 p001	Version 5.4 s004
Version 4.2	Version 5.1 s017	Version 5.1 s017	Version 5.1 s017
Version 4.1	Version 5.1 s012	Version 5.1 s010	Version 5.0 p001
Version 4.0	Version 5.0 s005	Version 5.0 s006	Version 5.0 p001

Simulation Flow Overview

The Incisive platform software supports the following simulation flows:

- Functional and RTL Simulation
- Post-Synthesis Simulation
- Gate-Level Timing Simulation
- Using the NativeLink Feature with NC-Sim

Figure 4–1 shows the Quartus II software and Cadence design flow.

Figure 4–1. Quartus II Software Design Flow with Cadence NC Simulators

Functional and RTL simulation verifies the functionality of your design. When you perform a functional simulation with Cadence Incisive simulators, you use your design files (Verilog HDL or VHDL) and the models provided with the Quartus II software. These Quartus II models are required if your design uses the library of parameterized modules (LPM) functions or Altera-specific megafunctions. Refer to "Functional and RTL Simulation" on page 4–6 for more information about how to perform this simulation.

A post-synthesis simulation verifies the functionality of a design after synthesis has been performed. You can create a post-synthesis netlist (**.vo** or **.vho**) in the Quartus II software and use this netlist to perform a post-synthesis simulation with the Incisive simulator. Refer to "Post-Synthesis Simulation" on page 4–22 for more information about how to perform this simulation.

After performing place-and-route, the Quartus II software generates a Verilog Output File (**.vo**) or VHDL Output File (**.vho**) and a Standard Delay Output file (**.sdo**) for gate-level timing simulation. The netlist files map your design to architecture-specific primitives. The SDO file contains the delay information of each architecture primitive and routing element specific to your design. Together, these files provide an accurate simulation of your design with the selected Altera FPGA architecture. Refer to "Gate-Level Timing Simulation" on page 4–24 for more information about how to perform this simulation.

Operation Modes

In the NC simulators, you can use either the GUI mode or the command-line mode to simulate your design.

You can start the Incisive simulators in GUI mode in a PC or a UNIX environment by typing nclaunch at a command prompt.

To simulate in command-line mode, use the programs shown in Table 4–2.

Table 4–2. Command-Line Programs			
Program	Function		
ncvlog or ncvhdl	NC-Verilog (ncvlog) compiles your Verilog HDL code into a Verilog Syntax Tree (.vst) file. ncvlog also performs syntax and static semantics checks.		
	NC-VHDL (ncvhdl) compiles your VHDL code into a VHDL Syntax Tree (.ast) file. ncvhdl also performs syntax and static semantics checks.		
ncelab	NC-Elab (ncelab) elaborates the design. ncelab constructs the design hierarchy and establishes signal connectivity. This program also generates a Signature File (.sig) and a Simulation SnapShot File (.sss).		
ncsim	NC-Sim (ncsim) performs mixed-language simulation. This program is the simulation kernel that performs event scheduling and executes the simulation code.		

Quartus II Software and NC Simulation Flow Overview

An overview of the Quartus II software and Cadence NC simulation flow is described below. More detailed information is provided in "Functional and RTL Simulation" on page 4–6, "Post-Synthesis Simulation" on page 4–22, and "Gate-Level Timing Simulation" on page 4–24.

1. Set up your working environment (UNIX only).

You must set several environment variables in UNIX to establish an environment that facilitates entering and processing designs.

2. Create user libraries.

Create a file that maps logical library names to their physical locations. These library mappings include your working directory and any design-specific libraries; for example, Altera LPM functions or megafunctions.

3. Compile source code and testbenches.

You compile your design files at the command-line using **ncvlog** (Verilog HDL files) or **ncvhdl** (VHDL files), or on the Tools menu by clicking **Verilog Compiler** or **VHDL Compiler** in NCLaunch. During compilation, the NC software performs syntax and static semantic checks. If no errors are found, compilation produces an internal representation for each HDL design unit in the source files. By default, these intermediate objects are stored in a single, packed, library database file in your working directory.

4. Elaborate your design.

Before you can simulate your model, you must define the design hierarchy in a process called elaboration. Use **ncelab** in command-line mode or on the Tools menu, click **Elaborator** in NCLaunch to elaborate the design.

5. Add signals to your waveform.

Before simulating, specify which signals to view in your waveform using a simulation history manager (SHM) database.

6. Simulate your design.

Run the simulator with the **ncsim** program (command-line mode) or by clicking **Run** in the SimVision Console window.

Functional and RTL Simulation

The following sections provide detailed instructions for performing functional/RTL simulation using the Quartus II software and the Cadence Incisive platform software tools.

Create Libraries

Before simulating with the Incisive simulator, you must set up libraries with a file named **cds.lib**. The **cds.lib** file is an ASCII text file that maps logical library names—for example, your working directory or the location of resource libraries such as models for LPM functions—to their physical directory paths. When you run the Incisive simulator, the tool reads **cds.lib** to determine which libraries are accessible and where they are located. There is also a default **cds.lib** file, which you can modify for your project settings.

You can use more than one **cds.lib** file. For example, you can have a project-wide **cds.lib** file that contains library settings specific to a project such as technology or cell libraries and a user **cds.lib** file.

The following sections describe how to create and edit a cds.lib file:

- Basic libraries setup
- LPM function, Altera megafunction, and Altera primitive library setup

Basic Library Setup

You can create a **cds.lib** file with any text editor. The following examples show how you use the DEFINE statement to bind a library name to its physical location. The logical and physical names can be the same or you can select different names. The DEFINE statement usage is:

DEFINE *<library name> <physical directory path>*

For example, a simple **cds.lib** file for Verilog HDL contains the following lines:

DEFINE lib_std /usr1/libs/std_lib DEFINE worklib ../worklib

Using Multiple cds.lib Files

Use the INCLUDE or SOFTINCLUDE statement to reference another **cds.lib** file within a **cds.lib** file. The syntax is:

INCLUDE cpath to another cds.lib>

or

SOFTINCLUDE cpath to another cds.lib>

For the Windows operating system, enclose the path with quotation marks if there are spaces in the directory path.

For VHDL or mixed-language simulation, in addition to the DEFINE statements, you must include the default **cds.lib** file (included with NC-Sim). The syntax for including the default **cds.lib** file is:

INCLUDE <path to NC installation>/tools/inca/files/cds.lib

or

INCLUDE \$CDS INST DIR/tools/inca/files/cds.lib

The default **cds.lib** file, provided with NC tools, contains a SOFTINCLUDE statement to include other **cds.lib** files, such as **cdsvhdl.lib** and **cdsvlog.lib**. These files contain library definitions for IEEE libraries and Synopsys libraries.

Create a cds.lib File in Command-Line Mode

To create a **cds.lib** file at a the command prompt, perform the following steps:

1. Create a directory for the work library and any other libraries you need by typing the following command at a command prompt:

```
mkdir <library name> ←
```

For example: mkdir worklib +

2. Using a text editor, create a **cds.lib** file and add the following line to it:

DEFINE <library name> <physical directory path>

For example: DEFINE worklib ./worklib

Create a cds.lib File in GUI Mode

To create a **cds.lib** file using the GUI, perform the following steps:

- 1. Type nclaunch + at the command line to run the GUI.
- 2. If the NCLaunch window is not in multiple step mode, on the File menu, click **Switch to Multiple Step**.
- Change your design directory on the File menu by clicking Set Design Directory. The Set Design Directory dialog box appears (Figure 4–2).

Figure 4–2. Creating a Work Directory in GUI Mode

Set Design Directory
Design Directory
Library Mapping File C:/ALTERA/QDESIGNS51/TUTORIAL/SIMULATION/NCSIM/cds.lib
Create cds.lib File
Work Library
worklib New
OK Cancel Help

- 4. Click Browse to navigate to your design directory.
- 5. Click **Create cds.lib File** and in the **New cds.lib File** dialog box, click **Save** and choose the libraries you want to include.
- 6. Click New under Work Library.
- 7. Enter your new work library name, for example, worklib.
- 8. Click **OK**. The new library is displayed under **Work Library**. Figure 4–2 shows an example using the directory name **worklib**.
- 9. Repeat steps 7 and 8 for each functional simulation library. For example, lpm, altera_mf, and altera.
- 10. Click OK in the Set Design Directory dialog box.
- You can edit your libraries by editing the **cds.lib** file. Edit the **cds.lib** file by right-clicking the **cds.lib** filename in the right side of the window and choosing **Edit**.

LPM Functions, Altera Megafunctions, and Altera Primitives Libraries

Altera provides behavioral descriptions for LPM functions, Altera-specific megafunctions, and Altera primitives. You can implement the megafunctions in a design using the Quartus II MegaWizard[®] Plug-In Manager or by instantiating them directly from your design file. You must set up resource libraries so that you can simulate your design in the Incisive simulator if your design uses LPM functions, Altera megafunctions, or Altera primitives.

Many LPM functions and Altera megafunctions use memory files. You must convert the memory files into a format the Incisive tools can read before simulating. Follow the instructions in "Compile Source Code and Testbenches" on page 4–13 to connect the memory files.

Altera provides megafunction behavioral descriptions in the files shown in Table 4–3. These library files are located in the following directory:

<path to Quartus II installation > /eda/sim_lib directory.

For more information about LPM functions and Altera megafunctions, refer to the Quartus II Help.

Table 4–3. Megafunction Behavioral Description Files			
Library Description	Verilog HDL	VHDL	
LPM	220model.v	220model.vhd (1) 220model_87.vhd (2) 220pack.vhd	
Altera megafunction	altera_mf.v	altera_mf.vhd (1) altera_mf_87.vhd (2) altera_components.vhd	
Altera primitives	altera_primitives.v	altera_primitives.vhd (1) altera_primitives_components.vhd	
IP functional simulation model	sgate.v	sgate.vhd sgate_pack.vhd	
altgxb	stratixgx_mf.v (3)	stratixgx_mf.vhd (3) stratixgx_mf_components.vhd (3)	
alt2gxb	stratixiigx_hssi_atoms.v, arriagx_hssi_atoms.v(3), (4)	stratixiigx_hssi_atoms.vhd stratixiigx_hssi_components.vhd arriagx_hssi_atoms.vhd arriagx_hssi_components.vhd (3), (4)	

Notes to Table 4–3:

(1) Use this model with VHDL 93.

(2) Use this model with VHDL 87.

(3) The alt2gxb and altgxb library files require the **lpm** and **sgate** libraries.

(4) You must generate a functional simulation netlist for simulation.

If an lpm library does not exist, set up a library for LPM functions by creating a new directory and adding the following line to your **cds.lib** file:

DEFINE lpm <path>/<directory name>

If an altera_mf library does not exist, set up a library for Altera megafunctions by adding the following line to your **cds.lib** file:

DEFINE altera mf <path>/<directory name>

Megafunctions Requiring Atom Libraries

The following Altera megafunctions require device atom libraries to perform a functional simulation in a third-party simulator:

- altclkbuf
- altclkctrl
- altdq
- altdqs
- altddio_in
- altddio_out
- altddio_bidir
- altufm_none
- altufm_parallel
- altufm_spi
- altmemmult
- altremote_update

The device atom library files are located in the following directory:

<path to Quartus II installation>/eda/sim_lib

Simulating a Design with Memory

The NC-Sim simulator supports simulating Altera memory megafunctions initialized with Hexadecimal (Intel-Format) File (.hex) or RAM Initialization Files (.rif).

Although synthesis is able to read a Memory Initialization File (.mif), these files are not supported in simulations with third-party tools and must be converted to either a Hexadecimal (Intel-Format) File or RAM Initialization File.

Table 4–4 summarizes the different types of memory initialization file formats that are supported with each RTL language.

Table 4–4. Simulation Support for Memory Initialization Files			
File Verilog HDL VHDL			
Hexadecimal (Intel-Format) File	Yes (1)	Yes	
Memory Initialization File	No	No	
RAM Initialization File	Yes (2)	No	

Notes to Table 4–4:

 For memories and library files from Quartus II software version 5.0 and earlier, you are required to use a PLI library containing the convert_hex2ver task function.

(2) Requires the USE_RIF macro to be defined.

To convert your Memory Initialization File into either a Hexadecimal (Intel-Format) File or RAM Initialization File, perform the following steps:

- 1. Open the Memory Initialization File and on the File menu, click **Export**. The **Export** dialog box appears.
- 2. Select Hexadecimal (Intel-Format) File (*.hex) or RAM Initialization File (*.rif) from the Save as type list and click OK.
- Alternatively, you can convert a Memory Initialization File to a RAM Initialization File using the mif2rif.exe executable located in the *Quartus II installation*/**bin** directory. An example of this executable is:

mif2rif <mif_file> <rif_file>

3. Modify the HDL file generated with the MegaWizard Plug-In Manager.

The MegaWizard Plug-In Manager-generated Altera memory megafunction wrapper file includes the lpm_file parameter for LPM memories, or the init_file parameter for Altera-specific memories to point to the initialization file.

In a text editor, open the MegaWizard Plug-In Manager generated wrapper file and edit the lpm_file or init_file parameters to point to the Hexadecimal (Intel-Format) File or RAM Initialization File, as shown below:

lpm_ram_dp_component.lpm_file = "path to HEX/RIF>"

4. Compile the functional library files with compiler directives.

If you use a Hexadecimal (Intel-Format) File, no compiler directives are required. If you use a RAM Initialization File, the USE_RIF macro must be defined when compiling the model library files. For example, the following should be entered when compiling the altera_mf library when RAM Initialization Files are used:

```
ncvlog -work altera_mf altera_mf.v -DEFINE
"USE RIF=1"
```

For Quartus II software versions 5.0 and earlier, you must define the NO_PLI macro instead of USE_RIF. The NO_PLI macro is forward compatible with the Quartus II software.

Compile Source Code and Testbenches

Compile your testbench and design files with **ncvlog** (for Verilog HDL files) and **ncvhdl** (for VHDL files). Both **ncvlog** and **ncvhdl** perform syntax checks and static semantic checks. A successful compilation produces an internal representation for each HDL design unit in the source files. By default, these intermediate objects are stored in a single, packed, library database file in your work library directory.

Compilation in Command-Line Mode

To compile from the command line, use one of the following commands:

 You must create a work library before compiling.
 Verilog HDL: ncvlog *<options>* -work *<library name> <design files>* +
 VHDL:

ncvhdl <options> -work <library name> <design files> 🛩

If your design uses LPM, Altera megafunctions, or Altera primitives, you must also compile the Altera-provided functional models. The following commands show an example of each.

Verilog HDL:

```
ncvlog -WORK lpm 220model.v 
ncvlog -WORK altera_mf altera_mf.v 
ncvlog -WORK altera altera primitives.v
```

If you are using the Quartus II software versions 5.0 and earlier and your design uses a memory initialization file, compile the **nopli.v** file, which is located in the *<Quartus II installation>/eda/* **sim_lib** directory, before you compile your model. For example:

ncvlog -WORK lpm nopli.v 220model.v↔ ncvlog -WORK altera mf nopli.v altera mf.v↔

Another option is to define NO_PLI during compilation with the following command:

ncvlog -DEFINE "NO_PLI=1" -WORK lpm 220model.v ncvlog -DEFINE "NO_PLI=1" -WORK altera_mf altera_mf.v

VHDL:

ncvhdl -V93 -WORK lpm 220pack.vhd ncvhdl -V93 -WORK lpm 220model.vhd ncvhdl -V93 -WORK altera_mf altera_mf_components.vhd ncvhdl -V93 -WORK altera_mf altera_mf.vhd ncvhdl -V93 -WORK altera altera primitives components.vhd ncvhdl -V93 -WORK altera altera_primitives.vhd 🛩

Compilation in GUI Mode

To compile using the NCLaunch GUI, perform the following steps:

1. Right-click a library filename in the NCLaunch window and click **NCVlog** (Verilog HDL) or **NCVhdl** (VHDL).

Alternatively, on the Tools menu, click **Verilog Compiler** or **VHDL Compiler**. Figure 4–3 shows the **Compile Verilog** and **Compile VHDL** dialog boxes.

Figure 4–3. Compiling Verilog HDL and VHDL Files

Compile Verilog 🛛 🔀	Compile VHDL
File C:/ALTERA/QDESIGNS51/TUTORIAL	
✓ Work Library worklib Overwrite log file Incvlog log ✓ Error Limit 15 €	Work Library worklib Overwrite log file ncvhdLlog Image: Error Limit 15 🚽
 ✓ Update if needed ✓ Enable line debug ✓ Define Macro 	I♥ Update if needed ☐ Enable VHDL 93 features I♥ Enable line debug
Include Directories	Order Independent Compilation Enable order independent compilation Generate compilation script
C Other Options	C Other Options
OK Cancel Apply Help	OK Cancel Apply Help

2. Select the file and click **OK** in the **Compile Verilog** or **Compile VHDL** dialog box to begin compilation. The dialog box closes and returns you to NCLaunch.

The command-line equivalent argument is shown at the bottom of the NCLaunch window.

Elaborate Your Design

Before you can simulate your design, you must define the design hierarchy in a process called elaboration. When you use the Incisive simulator, you use the language-independent **ncelab** program to elaborate your design. The **ncelab** program constructs a design hierarchy based on the design's instantiation and configuration information, establishes signal connectivity, and computes initial values for all objects in the design. The elaborated design hierarchy is stored in a simulation snapshot, which is the representation of your design that the simulator uses to run the simulation. The snapshot is stored in the library database file, along with the other intermediate objects generated by the compiler and elaborator.

If you are running the NC-Verilog simulator with the single-step invocation method (**ncverilog**), and want to compile your source files and elaborate the design with one command, use the +elaborate option to stop the simulator after elaboration, for example:

ncverilog +elaborate test.v 🕶

Elaboration in Command-Line Mode

To elaborate your Verilog HDL or VHDL design from the command line, use the following command:

ncelab [options] [<library>.] <cell>[:<view>] +

You can set your simulation timescale using the -TIMESCALE <arguments> option. The following example elaborates a dual-port RAM with the time scale option:

ncelab -TIMESCALE 1ps/1ps worklib.lpm_ram_dp_test:entity +

If you specified a timescale of 1 ps in the Verilog HDL testbench, the TIMESCALE option is not necessary. Using a ps resolution ensures the correct simulation of your design.

If your design includes high speed signals, you may need to add the following pulse reject options with your ncelab command.

ncelab -TIMESCALE 1ps/1ps worklib.mydesign:entity -PULSE R 0 -PULSE INT R 0 -

•••

For more information about the pulse reject options, refer to the *SDF Annotate Guide* from Cadence.

To list the elements in your library and the available views, use the **ncls** program. The following command displays all of the cells and their views in your current **worklib** directory:

ncls -library worklib 🖊

•••

For more information about the **ncls** program, refer to the Cadence NC-Verilog Simulator Help or Cadence NC-VHDL Simulator Help.

Elaboration in GUI Mode

To elaborate using the GUI, perform the following steps:

- 1. In the right side of the NCLaunch window, expand your current work library.
- 2. Select and expand (if necessary) the entity or module name you want to elaborate.
- 3. Right-click the view you want to display and click **NCElab**. The **Elaborate** dialog box appears (Figure 4–4). Optionally, on the Tools menu, click **Elaborator**.
- 4. In the **Other Options** box, set the simulation timescale by typing (Figure 4–4):

-TIMESCALE 1ps/1ps

Figure 4–4. Elaborating the Design

Elaborate	
Design Unik	
	, ([lib.]cell[:view])
🔲 Snapshot Name	
🔽 Work Library	worklib 👤
Overwrite log file 💷	ncelab.log
Error Limit	15 륒
🔲 Update if needed	
Access Visibility	All 🛁
🔲 Executable Filename	
	(Default: ncelab)
C Other Options	
	Advanced Options
OK Cancel	Apply Help

5. Click **OK** in the **Elaborate** dialog box to begin elaboration. The dialog box closes and returns you to NCLaunch.

Add Signals to View

To view the stored selected signals, use an SHM database, which is a Cadence proprietary waveform database, to store the selected signals you want to view. Before you can specify which signals to view, you must create the database by adding commands to your code. Or you can create a Value Change Dump File (**.vcd**) to store the simulation history.

For more information about using a Value Change Dump File, refer to the *Cadence NC-Sim User Manual* from Cadence included with the installation.

Adding Signals in Command-Line Mode

To create an SHM database, specify the system tasks described in Table 4–5 in your Verilog HDL code.

P

For VHDL, you can use the Tcl command interface or C function calls to add signals to a database. Refer to the Cadence documentation included in the installation package for details.

Table 4–5. SHM Database System Tasks			
System Task	Description		
<pre>\$shm_open("<filename>.shm");</filename></pre>	Opens a database. If you do not specify a filename, the default waves.shm database opens. If a database with the specified name does not exist, it is created for you.		
\$shm_probe("[A S C]");	Probe signals. You can specify the signals to probe; if you do not specify signals, the default is all ports in the current scope.		
	A probes all nodes in the current scope. S probes all nodes below the current scope. C probes all nodes below the current scope and in libraries.		
<pre>\$shm_save;</pre>	Saves the database.		
\$shm_close;	Closes the database.		

The following sample shows a simple example of how to add signals to an SHM database.

```
initial
   begin
    $shm_open ("waves.shm");
    $shm_probe ("AS");
   end
```

You can insert this code sample into your Verilog HDL file. It is applicable only for Verilog HDL files. For more information about these system tasks, refer to the Cadence NC-Sim software user manual included in the installation.

Adding Signals in GUI Mode

To add signals in GUI mode, perform the following steps:

- 1. In the NC-Sim software, load the design.
 - a. In the NCLaunch window, click the + icon to expand the **Snapshots** directory.
 - b. Right-click on the **lib.cell:view** you want to simulate and click **NCSim**.

c. Click **OK** in the **Simulate** dialog box.

After you load the design, the SimVision Console and SimVision Design Browser windows appear. Figure 4–5 shows the SimVision Design Browser window.

2. In the Design Browser window, select a module in the left side of the window to display the signal names (Figure 4–5).

Figure 4–5. SimVision Design Browser

3. To send the selected signals to the Waveform Viewer, perform one of the following steps:

Select a group of signals from the right side of the Design Browser window and click the **Send to Waveform Viewer** icon in the **Send To** toolbar (the upper-right area of the Design Browser window). Right-click the signals and click **Send to Waveform Window** (Figure 4–6).

A waveform window showing all of your signals appears. You are now ready to simulate your testbench and design.

Simulate Your Design

After you have compiled and elaborated your design, you can simulate it using **ncsim**. The **ncsim** program loads the file or snapshot generated by **ncelab** as its primary input. It then loads other intermediate objects referenced by the snapshot. If you enable interactive debugging, it may also load HDL source files and script files. The simulation output is controlled by the model or debugger. The output can include result files generated by the model, SHM database, or Value Change Dump File.

Functional/RTL Simulation in Command-Line Mode

To perform functional/RTL simulation of your Verilog HDL or VHDL design at the command line, type the following command:

ncsim [options] [<library>.] <cell>[:<view>] ←

For example:

ncsim worklib.lpm_ram_dp:syn 🕶

Table 4–6 shows some of the options you can use with ncsim.

Table 4–6. ncsim Options			
Options	Options Description		
-gui	Launch GUI mode		
-batch	Used for non-interactive mode		
-tcl	Used for interactive mode (not required when using $-gui$)		

Functional/RTL Simulation in GUI Mode

You can run and step through simulation of your Verilog HDL or VHDL design in the GUI. In the Design Browser window, on the Simulation menu, click **Run** to begin the simulation.

You must load the design before simulating. If you have not done so, refer to step 1 in "Adding Signals in GUI Mode" on page 4–18 for instructions.

Post-Synthesis Simulation

The following sections provide detailed instructions for performing post-synthesis simulation using Quartus II output files, simulation libraries, and the Incisive platform software.

Quartus II Simulation Output Files

After performing synthesis with either a third-party synthesis tool or with the Quartus II integrated synthesis, you must generate a simulation netlist for functional simulations. To generate a simulation netlist for functional simulation, perform the following steps in the Quartus II software:

- 1. Perform Analysis and Synthesis. On the Processing menu, point to Start and click **Start Analysis and Synthesis**.
- 2. Turn on the **Generate Netlist for Functional Simulation Only** option by performing the following steps:
 - a. On the Assignments menu, click **EDA Tool Settings**. The **Settings** dialog box appears.
 - b. In the **Category** list, select **Simulation**. The **Simulation** page appears.
 - c. In the **Tool name** list, select **NCSim**.
 - d. Under **EDA Netlist Writer options**, in the **Format for output netlist** list, select **VHDL** or **Verilog**. You can also modify where you want the post-synthesis netlist generated by editing or browsing to a directory in the **Output directory** box.
 - e. Click More Settings. The More EDA Tools Simulation Settings dialog box appears. In the Existing options settings list, click Generate Netlist for Functional Simulation Only and select On from the Setting list under Option.
 - f. Click OK.
 - g. In the **Settings** dialog box, click **OK**.
- 3. Run the EDA Netlist Writer. On the Processing menu, point to Start and click **Start EDA Netlist Writer**.

During the EDA Netlist Writer stage, the Quartus II software produces a Verilog Output File (.vo) or VHDL Output File (.vho) that can be used for post-synthesis simulations in the NC-Sim software. This netlist file is mapped to architecture-specific primitives. No timing information is included at this stage. The resulting netlist is located in the output directory you specified in the **Settings** dialog box, which defaults to the *<project directory>/simulation/NCSim* directory.

Create Libraries

Create the following libraries for your simulation:

- Work library
- Device family library targeting your design targets using the following files in the *<path to Quartus II installation>/eda/sim_lib* directory:
 - <device_family>_atoms.v
 - <device_family>_atoms.vhd
 - <device_family>_components.vhd

Compile Project Files and Libraries

Compile the project files and libraries into your work directory using the **ncvlog** or **ncvhdl** programs or the GUI. Include the following files:

- Test bench file
- The Quartus II software functional output netlist file (Verilog Output File or VHDL Output File)
- Atom library file for the device family <device family>_atoms.<v | vhd>
- For VHDL, <device family>_components.vhd

Refer to the section "Compile Source Code and Testbenches" on page 4–13 for instructions about compiling.

Elaborate Your Design

Elaborate your design using the **ncelab** program as described in "Elaboration in GUI Mode" on page 4–16.

Add Signals to the View

Refer to the section "Add Signals to View" on page 4–17 for information about adding signals to the view.

Simulate Your Design

Simulate your design using the **ncsim** program as described in "Simulate Your Design" on page 4–20.

Gate-Level Timing Simulation

The following sections provide detailed instructions for performing timing simulation using the Quartus II output files, simulation libraries, and Cadence NC tools.

Generating a Gate-Level Timing Simulation Netlist

To perform gate-level timing simulation, the NC-Sim software requires information about how the design was placed into device-specific architectural blocks. The Quartus II software provides this information in the form of a Verilog Output File for Verilog HDL designs and a VHDL Output File for VHDL designs. The accompanying timing information is stored in the SDO file, which annotates the delay for the elements found in the Verilog Output File or VHDL Output File.

To generate the Verilog Output File or VHDL Output Files and the Standard Delay File, perform the following steps:

- 1. Perform a full compilation. On the Processing menu, click **Start Compilation**.
- 2. On the Assignments menu, click **EDA Tool Settings**. The **Settings** dialog box appears.
- 3. In the **Category** list, select **Simulation**. The **Simulation** page appears.
- 4. In the **Tool name** list, select **NCSim**.
- 5. Under EDA Netlist Writer options, in the Format for output netlist list, select VHDL or Verilog. You can also modify where you want the post-synthesis netlist generated by editing or browsing to a directory in the Output directory box.
- 6. Click OK.
- 7. Run the EDA Netlist Writer. On the Processing menu, point to Start and click **Start EDA Netlist Writer**.

During the EDA Netlist Writer stage, the Quartus II software produces a Verilog Output File (**.vo**), VHDL Output File (**.vho**), and a SDO file used for gate-level timing simulations in the NC-Sim software. This netlist file is mapped to architecture-specific primitives. The timing information for the netlist is included in the SDO file. The resulting netlist is located in the output directory you specified in the **Settings** dialog box, which defaults to the *<project directory*/simulation/ncsim directory.

Generating a Different Timing Model

If you enable the Quartus II Classic Timing Analyzer or Quartus II TimeQuest Timing Analyzer when generating the SDO file, slow-corner (worst case) timing models are used by default. To generate the SDO file using a different timing model, you must run the Quartus II Classic Timing Analyzer or the Quartus II TimeQuest Timing Analyzer with a different timing model before you start the EDA Netlist Writer.

To run the Quartus II Classic Timing Analyzer with the best-case model, on the Processing menu, point to Start and click **Start Classic Timing Analyzer (Fast Timing Model)**. After timing analysis is complete, the Compilation Report appears. You can also type the following at a command prompt:

```
quartus_tan <project_name> --fast_model=on ←
```

To run the Quartus II TimeQuest Timing Analyzer with a best-case model, use the <code>-fast_model</code> option after you create the timing netlist. The following command enables the fast timing models:

create_timing_netlist -fast_model

You can also type the following command at a command prompt:

quartus_sta <project_name> --fast_model=on ←

•••

For more information about generating the timing model, refer to the *Quartus II Classic Timing Analyzer* or *Quartus II TimeQuest Timing Analyzer* chapter in volume 3 of the *Quartus II Handbook*.

After you run the Quartus II Classic Timing Analyzer or Quartus II TimeQuest Timing Analyzer, you can perform steps 2 through 7 in "Generating a Gate-Level Timing Simulation Netlist" on page 4–24 to generate the SDO file. For fast corner timing models, the _fast post fix is added to the VO, VHO, and SDO file (for example, **my_project_fast.vo**, **my_project_fast.vho**, and **my_project_fast.sdo**).

Operating Condition Example: Generate All Timing Models for Stratix III and Cyclone III Devices

In Stratix[®] III and Cyclone[®] III devices, you can specify different temperature and voltage parameters to generate the timing models. Table 4–7 shows the available operating conditions (model, voltage, and temperature) for Stratix III and Cyclone III devices.

Devices			
Device Family	Model	Voltage	Temperature
Stratix III	Slow	1100 mV	85° C
	Slow	1100 mV	0° C
	Fast	1100 mV	0° C
Cyclone III	Slow	1200 mV	85° C
	Slow	1200 mV	0° C
	Fast	1200 mV	0° C

Table 4–7. Available Operating Conditions for Stratix III and Cyclone II.	I
Devices	

To generate the SDO files for the three different operating conditions for a Stratix III design, perform the following steps:

1. Generate all the available corner models at all operating conditions. Type the following command at a command prompt:

quartus_sta <project name> --multicorner 🛩

2. Generate the ModelSim simulation output files for all three corners specified above. The output files are generated in the simulation output directory. Type the following command at a command prompt:

quartus eda <project name> --simulation --tool=ncsim --format=verilog

To summarize, for the three operating conditions the steps above generate the following files in the simulation output directory:

First slow corner (slow, 1100 mV, 85° C): VO file— <revision name>.vo SDO file— <revision name>_v.sdo

Second slow corner (slow, 1100 mV, 0° C): VO file— <*revision name>_<speedgrade>_***1100mv_0c_slow.vo** SDO file— <*revision name>_<speedgrade>_***1100mv_0c_v_slow.sdo**

Fast corner (fast, 1100 mV, 0° C): VO file— <revision name>_<speedgrade>_1100mv_0c_fast.vo SDO file— <revision name>_<speedgrade>_1100mv_0c_v_fast.sdo

Perform Timing Simulation Using Post-Synthesis Netlist

You can perform a timing simulation using the post-synthesis netlist instead of using a gate-level netlist and you can generate a Standard Delay Format Output File (.sdo) without running the Fitter. In this case, the SDO file includes all timing values for the device cells only. Interconnect delays are not included because fitting (placement and routing) has not been performed.

To generate the post-synthesis netlist and the SDO file, type the following at a command prompt:

For more information on the -format and -tool options, type the following command at a command prompt:

```
quartus_eda -help=<options> command +
```

Quartus II Timing Simulation Libraries

Altera device simulation library files are provided in the *Quartus II installation*>/**eda/sim_lib** directory. The Verilog Output File or VHDL Output File requires the library for the device your design targets. For example, the Stratix device family requires the following library files:

- stratix_atoms.v
- stratix_atoms.vhd
- stratix_components.vhd

If your design targets a Stratix device, you must set up the appropriate mappings in your **cds.lib** file. Refer to "Create Libraries" for more information.

Create Libraries

Create the following libraries for your simulation:

- Work library
- Device family libraries targeting using the following files in the *<path* to Quartus II installation > / eda/sim_lib directory:
 - device_family>_atoms.v
 - <device_family>_atoms.vhd
 - <device_family>_components.vhd

For step-by-step instructions on creating libraries, refer to "Basic Library Setup" on page 4–7 and "LPM Functions, Altera Megafunctions, and Altera Primitives Libraries" on page 4–9.

Compile the Project Files and Libraries

Compile the project files and libraries into your work directory using the **ncvlog** or **ncvhdl** programs or the GUI. Include the following files:

- Test bench file
- The Quartus II software functional output netlist file (Verilog Output File or VHDL Output File)
- Atom library file for the device family <device family>_atoms.<v | vhd>
- For VHDL, <*device family*>_components.vhd

For instructions on compiling, refer to "Compile Source Code and Testbenches" on page 4–13.

Elaborate Your Design

When performing elaboration with the Quartus II-generated Verilog HDL netlist file, the Standard Delay Format Output File is read automatically. When you run **ncelab**, it recognizes the embedded system task \$sdf_annotate and automatically compiles and annotates the Standard Delay Format Output File (runs **ncsdfc** automatically).

The Standard Delay Format Output File should be located in the same directory where you invoke an elaboration or simulation, because the \$sdf_annotate task references the Standard Delay Format Output File without using a full path. If you are invoking an elaboration or simulation from a different directory, you can either comment out the \$sdf_annotate and annotate the Standard Delay Format Output File with the GUI, or add the full path of the Standard Delay Format Output File.

Refer to "Elaborate Your Design" on page 4–15 for step-by-step instructions on elaboration.

For VHDL, the Quartus II software-generated VHDL netlist file does not contain system task calls to locate your SDF file; therefore, you must compile the Standard Delay Format Output File manually. Refer to "Compiling the Standard Delay Output File (VHDL Only) in Command-Line Mode" and "Compiling the Standard Delay Output File (VHDL Only) in GUI Mode" for information about compiling the Standard Delay Format Output File.

Compiling the Standard Delay Output File (VHDL Only) in Command-Line Mode

To annotate the Standard Delay Format Output File timing data from the command line, perform the following steps:

 Compile the Standard Delay Format Output File using the ncsdfc program by typing the following command at the command prompt:

ncsdfc <project name>_vhd.sdo -output <output name> +

The **ncsdfc** program generates an *<output name>.sdf.X* compiled SDO.

- If you do not specify an output name, **ncsdfc** uses <*project name>.sdo.X*.
- 2. Specify the compiled Standard Delay Format Output File for the project by adding the following command to an ASCII SDF command file for the project:

COMPILED_SDF_FILE = "<project name>.sdf.X" SCOPE = <instance path>

The following code shows an example of an SDF command file:

// SDF command file sdf_file COMPILED_SDF_FILE = "lpm_ram_dp_test_vhd.sdo.X", SCOPE = :tb, MTM_CONTROL = "TYPICAL", SCALE_FACTORS = "1.0:1.0:1.0", SCALE_TYPE = "FROM_MTM";

After you compile the Standard Delay Format Output File, run the following command to elaborate the design:

ncelab worklib.<project name>:entity -SDF_CMD_FILE <SDF Command File> +

Compiling the Standard Delay Output File (VHDL Only) in GUI Mode

To annotate the SDO file timing data in the GUI, perform the following steps in the NCLaunch window:

- 1. On the Tools menu, click **SDF Compiler**. The **Compile SDF** dialog box appears.
- 2. In the **SDF File** box, type in the name of the Standard Delay Format Output File (**.sdo**) for the project.
- 3. Click OK.

When the Standard Delay Format Output File compilation is complete, you can elaborate the design. Refer to "Elaboration in GUI Mode" on page 4–16 for step-by-step instructions.

- If you are performing a VHDL gate-level simulation, you must create an SDF command file before you begin elaboration. To create the SDF command file, perform steps 5 through 11.
- 4. On the Tools menu, click **Elaborator**. The **Elaborate** dialog box appears.
- 5. Click Advanced Options.
- 6. Click Annotation.
- 7. Turn on Use SDF File.
- 8. Click Edit.
- 9. Browse to the location of the SDF command file name.
- 10. Click **Add** and browse to the location of the Standard Delay Format Output File in the **Compiled SDF File** box and click **OK**.
- 11. Click **OK** to save and exit the **SDF Command File** dialog box.

Add Signals to View

Refer to the section "Add Signals to View" on page 4–17 for information about adding signals to view.

Simulate Your Design

Simulate your design using the **ncsim** program as described in "Simulate Your Design" on page 4–20.

For the design examples to run gate-level timing simulation, refer to www.altera.com/support/examples/ncsim/exm-ncsim.html.

If your design includes a Stratix II GX or Stratix GX transceiver, you must compile additional library files to perform functional or timing simulations.

Stratix GX Functional Simulation

To perform a functional simulation of your design that instantiates the altgxb megafunction, enabling the gigabit transceiver block (GXB) on Stratix GX devices, compile the **stratixgx_mf** model file into the **altgxb** library.

The **stratixgx_mf** model file references the **lpm** and **sgate** libraries, so you will need to create these libraries to perform a simulation.

Example of Compiling Library Files for Functional Stratix GX Simulation in Verilog HDL

To compile the libraries necessary for a functional simulation of a Verilog HDL design targeting a Stratix GX device, type the following commands at the NC Sim command prompt:

ncvlog -work lpm 220model.v ncvlog -work altera_mf altera_mf.v ncvlog -work sgate sgate.v ncvlog -work altgxb stratixgx_mf.v ncsim work.<my design>

Example of Compiling Library Files for Functional Stratix GX Simulation in VHDL

To compile the libraries necessary for functional simulation of a VHDL design targeting a Stratix GX device, type the following commands at the NC-Sim command prompt:

```
ncvhdl -work lpm 220pack.vhd 220model.vhd 
ncvhdl -work altera_mf altera_mf_components.vhd altera_mf.vhd 
ncvhdl -work sgate sgate_pack.vhd sgate.vhd 
ncvhdl -work altgxb stratixgx_mf.vhd stratixgx_mf_components.vhd
```

Simulating Designs that Include Transceivers

ncsim work.<my design> +

Stratix GX Post-Fit (Timing) Simulation

To perform a post-fit timing simulation of your design that includes a Stratix GX transceiver, compile the **stratixgx_atoms** and **stratixgx_hssi_atoms** model files into the **stratixgx** and **stratixgx_gxb** libraries, respectively.

You need to create these libraries to perform a simulation because the **stratixgx_hssi_atoms** model file references the **lpm** and **sgate** libraries.

Example of Compiling Library Files for Timing Stratix GX Simulation in Verilog HDL

To compile the libraries necessary to timing simulation of a Verilog HDL design targeting a Stratix GX device, type the following commands at the NC-Sim command prompt:

ncvlog -work lpm 220model.v ncvlog -work altera_mf altera_mf.v ncvlog -work sgate sgate.v ncvlog -work stratixgx stratixgx_atoms.v ncvlog -work stratixgx_gxb stratixgx_hssi_atoms.v ncelab work.<my design> -TIMESCALE lps/lps -PULSE_R 0 \ -PULSE INT R 0

Example of Compiling Library Files for Timing Stratix GX Simulation in VHDL

To compile the libraries necessary for timing simulation of a VHDL design targeting a Stratix GX device, type the following commands at the NC-Sim command prompt:

```
ncvhdl -work lpm 220pack.vhd 220model.vhd 	
ncvhdl -work altera_mf altera_mf_components.vhd altera_mf.vhd 	
ncvhdl -work sgate sgate_pack.vhd sgate.vhd 	
ncvhdl -work stratixgx stratixgx_atoms.vhd stratixgx_components.vhd 	
ncvhdl -work stratixgx_gxb stratixgx_hssi_atoms.vhd \
stratixgx_hssi_components.vhd 	
ncelab work.<my design> -TIMESCALE 1ps/1ps -PULSE R 0 -PULSE INT R 0
```
Stratix II GX Functional Simulation

To perform a post-fit timing simulation of your design that instantiates the alt2gxb megafunction, edit your cds.lib file so that all the libraries point to the work library, and compile the stratixiigx_hssi model file into the stratixiigx_hssi library. When compiling the library files, you can safely ignore the following warning message:

```
"Multiple logical libraries mapped to a single location"
```

The following example is of the **cds.lib** file.

Example 4–1. Example of a cds.lib File

```
SOFTINCLUDE ${CDS_INST_DIR}/tools/inca/files/cdsvhdl.lib
SOFTINCLUDE ${CDS_INST_DIR}/tools/inca/files/cdsvlog.lib
DEFINE work ./ncsim_work
DEFINE stratixiigx_hssi ./ncsim_work
DEFINE stratixiigx ./ncsim_work
DEFINE lpm ./ncsim_work
DEFINE sgate ./ncsim_work
```

The **stratixiigx_hssi_atoms** model file references the **lpm** and **sgate** libraries, so you will need to create these libraries to perform a simulation.

Generate a functional simulation netlist by turning on **Create a simulation library for this design** in the last page of the alt2gxb MegaWizard (Figure 4–7). The *<alt2gxb entity name>.vho* or *<alt2gxb module name>.vo* is generated in the current project directory.

Figure 4–7. alt2gxb MegaWizard

MegaWizard Plug-In Manager [page 15 of 16] EDA	
ALT2GXB	About Desumentation
1 Parameter 2 EDA 3 Summary Settings	Zoor Doministration
Protocol: Basic Not Acceleration Protocol: Basic Not Acceleration Protoc	Simulation Libraries To properly simulate the generated design files, the following simulation model file(s) are needed Image: Simulation Simulation ID and Simulation Simulation ID and Simulation Simulation Simulation Model IS a cycle-accurate VHDL or Verilog HDL model produced by the Quartus II software. These models allow fast functional simulations of IP using industry-standard VHDL or Verilog HDL simulations Simulations Simulation software and and vertices ID and simulation software and simulation software and simulation Simulation ID and Simulation Simulation Simulation Simulation Simulation ID and Simulation ID and Simulation Simulatin Simulation Simulation Simulation Simulation
Resource Usage	Synthesis Some third-party synthesis tools may benefit from reading the details of this megafunction. Using this netlist, the synthesis tool is able to estimate timing and resource usage for the megafunction Generate a synthesis area and timing estimation netlist
	Cancel < <u>B</u> ack <u>N</u> ext > Einish

The Quartus II generated alt2gxb functional simulation library file references stratixiigx_hssi wysiwyg atoms.

Example of Compiling Library Files for Functional Stratix II GX Simulation in Verilog HDL

To compile the libraries necessary to functional simulation of a Verilog HDL design targeting a Stratix II GX device, type the following commands at the NC-Sim command prompt:

```
ncvlog -work lpm 220model.v 	
ncvlog -work altera_mf altera_mf.v 	
ncvlog -work sgate sgate.v 	
ncvlog -work stratixiigx_hssi stratixiigx_hssi_atoms.v
```

ncvlog -work work <alt2gxb module name>.vo +
ncelab work.<my design> +

Example of Compiling Library Files for Functional Stratix II GX Simulation in VHDL

To compile the libraries necessary for functional simulation of a VHDL design targeting a Stratix II GX device, type the following commands at the NC-Sim command prompt:

```
ncvhdl -work lpm 220pack.vhd 220model.vhd 	
ncvhdl -work altera_mf altera_mf_components.vhd altera_mf.vhd 	
ncvhdl -work sgate sgate_pack.vhd sgate.vhd 	
ncvhdl -work stratixiigx_hssi stratixiigx_hssi_components.vhd \
stratixiigx_hssi_atoms.vhd 	
ncvhdl -work work <alt2gxb entity name>.vho 	
ncelab work.<my design>
```

Stratix II GX Post-Fit (Timing) Simulation

To perform a post-fit timing simulation of your design that includes the alt2gxb megafunction, edit your cds.lib file so that all the libraries point to the work library and compile stratixiigx_atoms and stratixiigx_hssi_atoms into the stratixiigx and stratixiigx_hssi libraries, respectively. When compiling the library files, you can safely ignore the following warning message:

```
"Multiple logical libraries mapped to a single location"
```

For an example of a **cds.lib** file, refer to "Stratix II GX Functional Simulation" on page 4–33.

The stratixiigx_hssi_atoms model file references the lpm and sgate libraries, so you will need to create these libraries to perform a simulation.

Example of Compiling Library Files for Timing Stratix II GX Simulation in Verilog HDL

To compile the libraries necessary to timing simulation of a Verilog HDL design targeting a Stratix II GX device, type the following commands at the NC-Sim command prompt:

```
ncvlog -work lpm 220model.v 	
ncvlog -work altera_mf altera_mf.v 	
ncvlog -work sgate sgate.v 	
ncvlog -work stratixiigx stratixiigx_atoms.v 	
ncvlog -work stratixiigx_hssi stratixiigx_hssi_atoms.v
```

ncelab work.<mydesign> -TIMESCALE 1ps/1ps -PULSE_R 0 -PULSE_INT_R 0 🕶

Example of Compiling Library Files for Timing Stratix II GX Simulation in VHDL

To compile the libraries necessary for timing simulation of a VHDL design targeting a Stratix II GX device, type the following commands at the NC-Sim command prompt:

```
ncvhdl -work lpm 220pack.vhd 220model.vhd 	
ncvhdl -work altera_mf altera_mf_components.vhd altera_mf.vhd 	
ncvhdl -work sgate sgate_pack.vhd sgate.vhd 	
ncvhdl -work stratixiigx stratixiigx_atoms.vhd \
stratixiigx_components.vhd 	
ncvhdl -work stratixiigx_hssi stratixiigx_hssi_components.vhd \
stratixiigx_hssi_atoms.vhd 	
ncvhdl -work work <alt2gxb>.vho 	
ncelab work.<my design> -TIMESCALE 1ps/1ps -PULSE R 0 -PULSE INT R 0
```

Pulse Reject Delays

By default, the NCSim software filters out all pulses that are shorter than the propagation delay between primitives. Setting the pulse reject delays (similar to transport delays) options in the NC-Sim software prevents the simulation tool from filtering out these pulses. Use the following options to ensure that all signal pulses are seen in the simulation results.

-PULSE_R

Use this option when the pulses in your simulation are shorter than the delay within a gate-level primitive. The argument is the percentage of delay for pulse reject limit for the path.

-PULSE_INT_R

Use this option when the pulses in your simulation are shorter than the interconnect delay between gate-level primitives. The argument is the percentage of delay for pulse reject limit for the path. The -PULSE_R and -PULSE_INT_R options are also used by default in the NativeLink[®] feature for gate-level timing simulation.

The following NC-Sim software command describes the command-line syntax to perform a gate-level timing simulation with the device family library:

```
ncelab worklib.project name>:entity -SDF_CMD_FILE <SDF Command File> \
-TIMESCALE 1ps/1ps -PULSE_R 0 -PULSE_INT_R 0
```

Using the NativeLink Feature with NC-Sim

The NativeLink feature in the Quartus II software facilitates the seamless transfer of information between the Quartus II software and EDA tools and allows you to run NC-Sim within the Quartus II software.

Setting Up NativeLink

To run NC-Sim automatically from the Quartus II software using the NativeLink feature, you must specify the path to your simulation tool by performing the following steps:

- 1. On the Tools menu, click **Options**. The **Options** dialog box appears.
- 2. In the **Category** list, select **EDA Tool Options**. The **EDA Tool Options** page is shown.
- 3. Double-click the entry under the **Location of executable** column beside the name of your **EDA Tool**, and type or browse to the directory containing the executables of your EDA tool.
- 4. Click OK.

You can also specify the path to the simulator's executables by using the set_user_option TCL command:

set_user_option -name EDA_TOOL_PATH_NCSIM cpath to executables>

Performing an RTL Simulation Using NativeLink

To run a functional RTL simulation with the NC-Sim software automatically in the Quartus II software, perform the following steps:

- 1. On the Assignments menu, click **EDA Tool Settings**. The **Settings** dialog box appears.
- 2. In the **Category** list, select **Simulation**. The **Simulation** page appears (Figure 4–8).

Figure 4–8. Simulation Page in the Settings Dialog Box

- 3. In the **Tool name** list, select **NCSim**.
- 4. If your design is written entirely in Verilog HDL or in VHDL, the NativeLink feature automatically chooses the correct language and Altera simulation libraries. If your design is written with mixed languages, the NativeLink feature uses the default language specified in the **Format for output netlist** list. To change the default

language when there is a mixed language design, under EDA Netlist Writer options, in the Format for output netlist list, select VHDL or Verilog. Table 4–8 shows the design languages for output netlists and simulation models.

Table 4–8. NativeLink Design Languages			
Design File	Format for Output Netlist	Simulation Models Used	
Verilog	Any	Verilog	
VHDL	Any	VHDL	
Mixed	Verilog	Verilog	
Mixed	VHDL	VHDL	

For mixed language simulation, choose the same language that was used to generate your megafunctions to ensure correct parameter passing between the megafunctions and the Altera libraries. For example, if your altsyncram megafunction was generated in VHDL, choose VHDL as the format for output netlist.

For mixed language simulations, it is important to be aware of the following conditions:

- VHDL designs instantiating Verilog user-defined primitives (UDPs) are not supported.
- Parameters cannot be passed in Verilog modules that instantiate VHDL components.
- 5. If you have testbench files or macro scripts, enter the information under **NativeLink settings**.

For more information about setting up a testbench with NativeLink, refer to the section "Setting Up a Testbench" on page 4–40.

- 6. Click OK.
- 7. On the Processing menu, point to Start and click **Start Analysis and Elaboration** to perform an analysis and elaboration. This command collects all your file name information and builds your design hierarchy in preparation for simulation.
- 8. On the Tools menu, point to **EDA Simulation Tool** and click **Run EDA RTL Simulation** to automatically run NC-Sim, compile all necessary design files, and complete a simulation.

Performing a Gate Level Simulation Using NativeLink

To run a gate-level timing simulation with the NC-Sim software in the Quartus II software, perform the following steps:

- 1. On the Assignments menu, click **EDA Tool Settings**. The **Settings** dialog box appears.
- 2. In the **Category** list, select **Simulation**. The **Simulation** appears (Figure 4–8 on page 4–38).
- 3. In the **Tool name** list, select **NCSim**.
- 4. Under EDA Netlist Writer options, in the Format for output netlist list, choose VHDL or Verilog. You can also modify where you want the post-synthesis netlist generated by editing or browsing to a directory in the Output directory box.
- 5. To perform a gate level simulation after each full compilation, turn on **Run Gate Level Simulation automatically after compilation**.
- 6. If you have testbench files or macro scripts, enter the information under **NativeLink settings**.
- 7. Click OK.
- 8. On the Processing menu, point to Start and click **Start EDA Netlist** Writer to generate a simulation netlist of your design.
- On the Tools menu, point to EDA Simulation Tool and click Run EDA Gate Level Simulation to automatically run NC-Sim, compile all necessary design files, and complete a simulation.
- A Tcl File (*.tcl) is generated in the <project_directory>\simulation\ncsim directory when you run NativeLink. This TCL File enables you to simulate the design with the following command without using NativeLink:

quartus sh -t <project_directory>\simulation\ncsim\<generated_do_file>.tcl

Setting Up a Testbench

You can compile your design files and testbench files, and run EDA simulation tools to perform a simulation automatically using the NativeLink feature.

To setup NativeLink with a testbench, perform the following steps:

- 1. On the Assignments menu, click **Settings**. The **Settings** dialog box appears.
- 2. In the **Category** list, select **Simulation**. The **Simulation** page appears.
- 3. Under NativeLink settings, select None or Compile test bench (Table 4–9).

Table 4–9. NativeLink Settings			
Settings	Description		
None	Compile simulation models and design files.		
Compile test bench	NativeLink compiles simulation models, design files, testbench files, and starts simulation.		

- 4. If you select **Compile test bench**, select your testbench setup from the **Compile test bench** list. You can use different testbench setups to specify different testbench files for different test scenarios. If there are no testbench setups entered, create a testbench setup by performing the following steps:
 - a. Click Test Benches. The Test Benches dialog box appears.
 - b. Click New. The New Test Bench Settings dialog box appears.
 - c. In the **Test Bench name** box, type in the testbench setup name which is used to identify the different testbench setups.
 - d. In the Test bench entity box, type in the top-level entity name. For example, for a Quartus II generated VHDL testbench, type filtref_vhd_vec_tst.
 - e. In the **Instance** box, type in the full instance path to the top level of your FPGA design. For example, for a Quartus II generated VHDL testbench, type i1.
 - f. Under Simulation period, select Run simulation until all vector stimuli are used. If you select End simulation at, specify the simulation end time and the time unit.

- g. Under **Test bench files**, browse and add all your testbench files in the **File name** box. Use the **Up** and **Down** button to reorder your files. The script used by NativeLink compiles the files in the order from top to the bottom.
- You can also specify the library name and the HDL version to compile the testbench file. NativeLink compiles the testbench to the library name of the HDL specified version.
 - h. Click OK.
 - i. In the Test Benches dialog box, click OK.
- 5. Under NativeLink settings, you can turn on Use script to setup simulation and browse to your script. You can write a script to setup your waveforms before running the simulation.
- The script should be a valid NC-Sim tcl script. NativeLink passes the script to ncsim command with command-line arguments to set up and run simulation.

Creating a Testbench

In the Quartus II software, you can create a Verilog HDL or VHDL testbench from a Vector Waveform File. The generated testbench includes the behavior of the input stimulus and applies it to your instantiated top-level FPGA design.

- 1. On the File menu, click **Open**. The **Open** dialog box appears.
- 2. Click the **Files of type** arrow and select **Waveform/Vector Files**. Select your file.
- 3. Click Open.
- 4. On the File menu, click **Export**. The **Export** dialog box.
- 5. Click the **Save as type** arrow and select **VHDL Test Bench File** (*.vht) or **Verilog Test Bench File** (*.vt).
- 6. You can turn on **Add self-checking code to file** to check your simulation results against your Vector Waveform File.
- 7. Click Export.

Incorporating PLI Routines

Designers frequently use PLI routines in Verilog HDL testbenches to perform user- or design-specific functions that are beyond the scope of the Verilog HDL language. Cadence NC simulators include the PLI wizard, which helps you incorporate your PLI routines.

For example, if you are using the Quartus II software version 5.0 and earlier, and you are using a Hexadecimal (Intel-Format) File for memory, you can convert it for use with NC tools using the Altera-provided **convert_hex2ver** function. To use this function, you must build it and place it in your project directory using the PLI wizard.

This section describes how to dynamically link, dynamically load, and statically link a PLI library using the **convert_hex2ver** function as an example. The following **convert_hex2ver** source files are located in the *<path to Quartus II installation>/eda/cadence/verilog-xl* directory:

- convert_hex2ver.c
- veriuser.c

Dynamically Link a PLI Library

To create a PLI dynamic library (.so or .sl), perform the following steps:

- 1. Run the PLI wizard by typing pliwiz at the command prompt.
- 2. In the **Config Session Name and Directory** page, type the name of the session in the **Config Session Name** box and type the directory in which the file should be built in the **Config Session Directory** box.
- 3. Click Next.
- 4. In the **Select Simulator/Dynamic Libraries** page, turn on the **Dynamic Libraries Only** option.
- 5. Click Next.
- 6. In the **Select Components** page, select the **PLI 1.0 Applications** option, and then select **libpli**.
- 7. Click Next.
- 8. In the Select PLI 1.0 Application Input page, select Existing VERIUSER (source/object file).
- 9. Select **Source File** and click **Browse** to locate the **veriuser.c** file provided with the Quartus II software.

The **veriuser.c** file is located in the following directory:

<path to Quartus II installation>/eda/cadence/verilog-xl

- 10. Click Next.
- 11. In the **PLI 1.0 Application** page, click **Browse** under **PLI Source Files** to locate the **convert_hex2ver.c** file.
- 12. Click Next.
- 13. In the **Select Compiler** page, choose your **C** compiler from the **Select Compiler list** box.

gcc is an example of a C compiler. To allow the **PLIWIZ** wizard to find your C compiler, ensure your path variable is set correctly.

- 14. Click Next.
- 15. Click Finish.
- 16. To build your targets now, click Yes.
- 17. Compilation creates the file **libpli.so** (**libpli.dll** for PCs), which is your PLI dynamic library, in your session directory. When you elaborate your design, the elaborator looks through the path specified in the LD_LIBRARY_PATH (UNIX) or PATH (PCs) environment variable, searches for the **.so** and **.dll** files, and loads them when needed.
- P
- You must modify LD_LIBRARY_PATH or PATH to include the directory location of your **.so** and **.dll** files.

Dynamically Load a PLI Library

To create a PLI library to be loaded with the NC-Sim software, perform the following steps:

1. Open the **veriuser.c** file located in the following directory:

<path to Quartus II installation>/eda/cadence/verilog-xl

The following two examples are sections of the original and modified **veriuser.c** file. The first example is the original **veriuser.c** file packaged with the Quartus II software. The second example is a **veriuser.c** file modified for dynamic loading.

Original veriuser.c File

```
s_tfcell veriusertfs[] =
{
    /*** Template for an entry:
    { usertask|userfunction, data,
        checktf(), sizetf(), calltf(), misctf(),
        "$tfname", forwref?, Vtool?, ErrMsg? },
    Example:
    {usertask, 0, my_check, 0, my_func, my_misctf, "$my_task" },
    ***/
/*** add user entries here ***/
    /* This Handles Binary bit patterns */
    {usertask, 0, 0, 0, convert_hex2ver, 0, "$convert_hex2ver",
1},
    {0} /*** final entry must be 0 ***/
};
```

Modified veriuser.c File

```
p_tfcell my_bootstrap ()
          {
static s_tfcell my_tfs[] =
/*s tfcell veriusertfs[] = */
{
    /*** Template for an entry:
    { usertask | userfunction, data,
      checktf(), sizetf(), calltf(), misctf(),
      "$tfname", forwref?, Vtool?, ErrMsg? },
    Example:
    { usertask, 0, my check, 0, my func, my misctf, "$my task" },
    ***/
/*** add user entries here ***/
    /* This Handles Binary bit patterns */
    {usertask, 0, 0, 0, convert_hex2ver, 0, "$convert_hex2ver",
1},
        {0} /*** final entry must be 0 ***/
};
return(my_tfs);
         }
```

- 2. Run the PLI wizard by typing pliwiz at a command prompt, or on the Utilities menu by clicking **PLI Wizard** in the NCLaunch window.
- 3. In the **Config Session Name and Directory** page, type the name of the session in the **Config Session Name** box and type the directory in which the file should be built in the **Config Session Directory** box.
- 4. Click Next.

- 5. In the **Select Simulator/Dynamic Libraries** page, select the **Dynamic Libraries Only** option.
- 6. Click Next.
- 7. In the **Select Components** page, turn on the **PLI 1.0 Applications** option, and select **loadpli1**.
- 8. Click Next.
- 9. Type a name into the **Bootstrap Function(s)** box.

For example, type my_bootstrap into the **Bootstrap Function(s)** box.

10. Type the name of your generated dynamic library into the **Dynamic Library** box.

For example, type convert_dyn_lib into the **Dynamic Library** box to generate a dynamic library named **convert_dyn_lib.so**.

- In the PLI 1.0 Application page, click Browse under PLI Source Files to locate the convert_hex2ver.c file and the modified veriuser.c file.
- 12. Click Next.
- 13. In the **Select Compiler** page, select your **C** compiler from the **Select Compiler** list box.

gcc is an example of a C compiler. To allow the **PLIWIZ** wizard to find your C compiler, ensure your Path variable is set correctly.

- 14. Click Next.
- 15. Click Finish.
- 16. To build your targets now, click Yes.

Compilation generates your dynamic library, **cmd_file.nc**, and **cmd_file.xl** files into your local directory. The **cmd_file.nc** and **cmd_file.xl** files contain command line options to use with your newly generated dynamic library file.

Use the cmd_file.nc command file with ncelab to perform your simulations, as shown in the following example:

ncelab worklib.mylpmrom -FILE cmd_file.nc 🛩

Use the cmd_file.xl command file with verilog-xl or ncverilog to perform your simulations, as shown in the following example:

Statically Link the PLI Library with NC-Sim

To statically link the PLI library with NC-Sim software, perform the following steps:

- 1. Run the PLI wizard by typing pliwiz at the command prompt, or on the Utilities menu by clicking **PLI Wizard** in the NCLaunch window.
- 2. In the **Config Session Name** and **Directory** page, type the name of the session in the **Config Session Name** box and type the directory in which the file should be built in the **Config Session Directory** box.
- 3. Click Next.
- 4. Select NC Simulators and select NC-verilog.
- 5. Click Next.
- 6. In the **Select Components** page, turn on the **PLI 1.0 Applications option** and select **Static**.
- 7. In the Select PLI 1.0 Application Input page, select Existing VERIUSER (source/object file).

8. Select **Source File** and click **Browse** to locate the **veriuser.c** file provided with the Quartus II software.

The **veriuser.c** file is found in the following location:

<path to Quartus II installation>/eda/cadence/verilog-xl

- 9. Click Next.
- 10. In the **PLI 1.0 Application** page, click **Browse** under **PLI Source Files** to locate the **convert_hex2ver.c** file.
- 11. Click Next.
- 12. In the **Select Compiler** page, select your **C** compiler from the **Select Compiler** list box.

gcc is an example of a C compiler. To allow the **PLIWIZ** to find your C compiler, ensure your Path variable is set correctly.

- 13. Click Next.
- 14. Click Finish.
- 15. To build your targets now, click Yes.

Compilation generates **ncelab** and **ncsim** executables into your local directory. These executables replace the original **ncelab** and **ncsim** executables.

ncverilog users can use the following command to perform simulation with the newly generated **ncelab** and **ncsim** executables.

ncverilog +ncelabexe+<path to ncelab> +ncsimexe+<path to ncelab> <design files> +

The following example shows how an **ncverilog** users can perform a simulation with the newly generated **ncelab** and **ncsim** executables:

ncverilog +ncelabexe+./ncelab +ncsimexe+./ncsim my_ram.vt my_ram.v -v altera_mf.v +

Scripting Support

You can run procedures and make settings described in this chapter in a Tcl script. You can also run some procedures at a command prompt. For detailed information about scripting command options, refer to the Quartus II Command-Line and Tcl API Help browser. To run the Help browser, type the following command at the command prompt:

quartus_sh --qhelp +

The *Scripting Reference Manual* includes the same information in PDF format.

For more information about Tcl scripting, refer to the *Tcl Scripting chapter* in volume 2 of the *Quartus II Handbook*. Refer to the *Quartus II Settings File Reference Manual* for information about all settings and constraints in the Quartus II software. For more information about command-line scripting, refer to the *Command-Line Scripting* chapter in volume 2 of the *Quartus II Handbook*.

Generate NC-Sim Simulation Output Files

You can generate Verilog Output File and Standard Delay Format Output File simulation output files with Tcl commands or at a command prompt.

For more information about generating Verilog Output File simulation output files and Standard Delay Format Output File simulation output files, refer to "Quartus II Simulation Output Files" on page 4–22.

Tcl Commands:

The following three assignments cause a Verilog HDL netlist to be written out when you run the Quartus II netlist writer. The netlist has a 1 ps timing resolution for the NC-Sim Simulation software.

```
set_global_assignment -name EDA_OUTPUT_DATA_FORMAT VERILOG -section_id eda_simulation
set_global_assignment -name EDA_TIME_SCALE "1 ps" -section_id eda_simulation
set_global_assignment -name EDA_SIMULATION_TOOL "NC-Verilog (Verilog)"
```

Use the following Tcl command to run the Quartus II netlist writer:

execute_module -tool eda

Command Prompt

Use the following command to generate a simulation output file for the Cadence NC-Sim software simulator. Specify Verilog HDL or VHDL for the format.

```
quartus eda <project name> --simulation --format=<verilog |vhdl> --tool=ncsim +
```

Conclusion

The Cadence NC family of simulators work within an Altera FPGA design flow to perform functional/RTL, post-synthesis, and gate-level timing simulation, easily and accurately.

	Altera provides functional models of LPM and Altera-specific megafunctions that you can compile with your testbench or design. For timing simulation, use the atom netlist file generated by Quartus II compilation.
	The seamless integration of the Quartus II software and Cadence NC tools make this simulation flow an ideal method for fully verifying an FPGA design.
Referenced Documents	 This chapter references the following documents: SDF Annotate Guide and Cadence NC-Sim User Manual from Cadence Quartus II Classic Timing Analyzer chapter in volume 3 of the Quartus II Handbook Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook Tcl Scripting chapter in volume 2 of the Quartus II Handbook Quartus II Settings File Reference Manual Command-Line Scripting chapter in volume 2 of the Quartus II Handbook

Document **Revision History**

Table 4–10 shows the revision history for this chapter.

Table 4–10. Document Revision History (Part 1 of 2)		
Date and Document Version	Changes Made	Summary of Changes
October 2007 v7.2.0	 Updated Table 4–1. Updated "Operating Condition Example: Generate All Timing Models for Stratix III and Cyclone III Devices" on page 4–26. 	Updated for the Quartus II software version 7.2.
May 2007 v7.1.0	 Updated "Software Requirements" on page 4–1. Updated "Generating a Gate-Level Timing Simulation Netlist" on page 4–24. Added "Perform Timing Simulation Using Post-Synthesis Netlist" on page 4–27. Updated "Pulse Reject Delays" on page 4–37. Updated "Performing a Gate Level Simulation Using NativeLink" on page 4–41. Updated procedure in "Setting Up a Testbench" on page 4–41. Added "Referenced Documents" on page 4–51. 	_
March 2007 v7.0.0	Updated Quartus II software 7.0 revision and date only. No other changes made to chapter.	_

Table 4–10. Document Revision History (Part 2 of 2)		
Date and Document Version	Changes Made	Summary of Changes
November 2006 v6.1.0	Added new software versions to Table 4-1.Several other minor changes.	Updated for the Quartus II software version 6.1.
May 2006 v6.0.0	 Updated for the Quartus II software version 6.0.0: Added a section about setting VCS as the Simulation Tool Updated EDA Tools Settings in the GUI. Updated the Synopsys Design Constraints File information. Added pulse_e and pulse_r information to simulation sections. Added Quartus II-Generated Testbench information Updated megafunction information. 	_
December 2005 v5.1.1	Removed reference to convert_hex2ver.obj.	_
October 2005 v5.1.0	Updated for the Quartus II software version 5.1.	_
May 2005 v5.0.0	 Updated information. Added Using NativeLink with NC-Sim section. New functionality for Quartus II software 5.0. 	_
December 2004 v3.0	Reorganized chapter and updated information.	_
August 2004 v2.1	New functionality for Quartus II software 4.1 SP1.	_
June 2004 v2.0	Updates to tables and figures.New functionality for Quartus II software 4.1.	_
February 2004 v1.0	Initial release.	_

5. Simulating Altera IP in Third-Party Simulation Tools

QII53014-7.2.0

Introduction

The capacity and complexity of Altera[®] FPGAs continues to increase as the need for intellectual property (IP) becomes increasingly critical. Using IP megafunctions reduces the design and verification time, allowing you to focus on design customization. Altera and the Altera Megafunction Partners Program (AMPPSM) offer a broad portfolio of IP megafunctions optimized for Altera FPGAs. Through parameterization, these reusable blocks of IP can be customized to meet your design requirements.

Even when the IP source code is encrypted or otherwise restricted, Altera's Quartus[®] II software allows you to easily simulate designs that contain Altera IP. With the Quartus II software, you can custom configure IP designs, then generate a VHDL or Verilog HDL functional simulation model to use with your choice of simulation tools.

This chapter provides an overview of the process for instantiating the IP megafunctions in your design and simulating its' functional simulation model in an Altera-supported, third-party simulation tool. In this chapter, IP megafunctions refer to Altera megafunctions, IP MegaCore[®] functions and IP AMPP megafunctions. All IP MegaCore functions come with IP functional simulations (IPFS) models to support functional simulation. Some Altera megafunctions and some AMPP megafunctions also require IPFS models for functional simulation.

IP Functional Simulation Flow

The IP megafunction's MegaWizard[®] interface allows you to quickly and easily view documentation, specify parameters, generate an IP functional simulation (IPFS) model, and output the files necessary to integrate a parameterized IP megafunction into your design. Within the Quartus II software, the MegaWizard Plug-In Manager can be used to select and parameterize your choice of IP megafunctions. The Quartus II software generates an IP megafunction's variation file that is included in your Quartus II project. For IP megafunctions that require IPFS models, Quartus II software can also generate a Verilog Output File (**.vo**) or VHDL Output File (**.vho**) that contains a Register Transfer Level (RTL) IPFS model after you have parameterized the megafunction. IPFS models are written to the Quartus II project directory. Most Altera megafunctions and IP MegaCore functions support functional simulation in Verilog and VHDL for all Altera supported third-party simulators. Simulation libraries are required to simulate IP megafunctions. Refer to Table 5–2 on page 5–10 for a subset of simulation libraries supplied with the Quartus II software.

Figure 5–1 shows a typical simulation flow for Altera IP with third-party simulators.

Figure 5–1. IP Functional Simulation (IPFS) Model Design Flow

Verilog and VHDL IP Functional Simulation (IPFS) Models

Some IP megafunctions require IPFS models to support functional simulation. These IPFS models are written in high-level Register Transfer Level (RTL) HDL. These high-level RTL models in Verilog or VHDL format differ from the low-level synthesized netlist in Verilog or VHDL format generated by the Quartus II software for post-synthesis or post place-and-route simulations. The IPFS models generated by the Quartus II software are much faster than the low-level post-synthesis or post place-and-route netlists of your design because they are mapped to higher-level primitives such as adders, multipliers, and multiplexers. These IPFS models can be simulated together with the rest of your design in any Altera-supported simulator. Altera recommends that you generate IPFS models in the same hardware language as the IP megafunction's variation file hardware language.

CAUTION

You can use an IPFS model for simulation only, and not for synthesis or any other purpose. Attempting to synthesize an IPFS model will result in a nonfunctional design.

Generating an IPFS model for Altera MegaCore functions does not require a license. However, generating an IPFS model for AMPP megafunctions may require a license. For more information on licensing requirements, contact the IP megafunction vendor.

For details about how to parameterize and generate an IP, refer to the applicable IP user guide.

Instantiate the IP in Your Design

For each IP megafunction in your design, you must instantiate the corresponding entity or module in your design. Each IP megafunction entity or module name is defined in its Quartus II generated megafunction variation file. After instantiating the IP megafunction in your design, you do not need to edit your design for synthesis or simulation.

To synthesize your design using the Quartus II software, add the Quartus II-generated Verilog HDL or VHDL variation file to your Quartus II project. When you create new variation files for a Quartus II project, they are added to the current open project when the megafunction is generated.

To synthesize your design using a third-party EDA tool, add the Quartus II-generated CMP file (*<megafunction variation>.cmp*) for your VHDL design or the Verilog HDL black box file (*<megafunction variation>_bb.v*) for your Verilog HDL design to your third-party synthesis project.

For more information about synthesis and compilation with the Quartus II software, refer to the applicable chapters in volume 1 of the *Quartus II Handbook*.

Perform Simulation

To perform simulation, in addition to adding your design files and testbench files, you also have to add the IP megafunction's variation file or IPFS model to your simulation project. If the IP megafunction does not require an IPFS model for simulation, add the megafunctions' variation file to your simulation project. If the IP megafunction you are simulating requires an IPFS model, then add the IPFS model to your simulation project. Your simulation project will also require Altera-supplied libraries for successful simulation. Figure 5–2 shows how the Altera libraries are used in IP functional simulation.

Figure 5–2. IP Functional Simulation Library Usage

The Quartus II software contains all the libraries required for setting up and running a successful simulation of Altera IP. You can use the Quartus II NativeLink feature to set up your simulation if the IP megafunction you are using supports Quartus II NativeLink. Refer to the applicable IP megafunction user guide to determine if the IP megafunction supports the NativeLink feature in the Quartus II software. Alternatively, you can simulate Altera IP with third-party simulators directly.

Simulating Altera IP Using the Quartus II NativeLink Feature

The Quartus II NativeLink feature eases the task of setting up and running a simulation. The NativeLink feature lets you launch the third-party simulator to perform simulation from within the Quartus II software. The NativeLink feature automates the compilation and simulation of testbenches. The following list briefly describes the steps to simulate IP megafunctions with third-party simulators using the Quartus II NativeLink feature. Each of these steps is described in more detail in the sections that follow.

- 1. Set up a Quartus II Project.
- 2. Select the Third-Party Simulation Tool.
- 3. Specify the Path for the Third-Party Simulator.
- 4. Specify the Testbench Settings.
- 5. Analyze and Elaborate the Quartus II Project.
- 6. Run RTL Functional Simulation.

Set up a Quartus II Project

To simulate IP megafunctions with the Quartus II NativeLink feature, you must open an existing project or create a new project in the Quartus II software. You can create and parameterize the IP you want to use in your design using MegaWizard Plug-In Manager within the Quartus II software. Altera IP megafunction variation files are added to your Quartus II project when you create and parameterize the IP. You can also add any other required design files to your Quartus II project. If you are using the Quartus II NativeLink feature and your Quartus II project contains IP megafunctions that require IPFS models for simulation, you do not have to manually add the IPFS models to the Quartus II project for these IP megafunctions. When the Quartus II NativeLink feature launches the third-party simulator tool and starts the simulation, it automatically adds the IPFS model files required for simulation as long as they are present in the Quartus II project directory.

Select the Third-Party Simulation Tool

You can select the third-party simulation tool from the Project Settings menu, as shown in Figure 5–3.

General	Simulation
- Files	
- User Libraries (Current Project)	Specify options for generating output files for use with other EDA tools.
Device	
Operating Conditions	Tool name: ModelSim-Altera
Voltage	 Due arts local circulation extensionly after consoliction
i - l'emperature	I hun gate-tevel sinulation automatically arter compilation
E adu Timina Estimato	ED & November and an
Incremental Compilation	E DA Neusi witer options
En EDA Tool Settings	Format for output netlist: VHDL Time scale:
Design Entry/Synthesis	Output directory. simulation/modelsim
Simulation	
- Timing Analysis	Map illegal HDL characters Enable glitch filtering
- Formal Verification	Options for Power Estimation
- Physical Synthesis	Generate Value Change Dump (VCD) file script Script Settings
- Board-Level	
Analysis & Synthesis Settings	Design instance name: i1
Default Parameters	More Settings
Sunthesis Netlist Ontimizations	
H- Fitter Settings	- NativeLink settings
Timing Analysis Settings	C None
TimeQuest Timing Analyzer	Compile test bench: multiplier test bench ▼ Test Benches
Classic Timing Analyzer Setting	
- Classic Timing Analyzer Re	Use script to set up simulation:
Assembler	C Soviet to compile text banak
Design Assistant	
signal I ap II Logic Analyzer	Purel
Circulator Cottings	Heset
E. Sundator Settings	

Figure 5–3. Selecting Third-Party Simulator Tools

Table 5–1 lists the third-party simulators supported by the Quartus II NativeLink feature.

Table 5–1. Third-Party Simulator Support with the Quartus II NativeLink Feature				
Third-Party Simulator	Can be Launched from Quartus II	Testbench Support	Mixed Design (Verilog and VHDL)	
ModelSim PE/SE	Yes	Yes	Yes	
ModelSim Altera Edition	Yes	Yes	No	
Synopsys VCS	Yes(1)	Yes	No	
Synopsys VCS-MX	Yes(1)	Yes	Yes	
Cadence NC-Sim	Yes(1)	Yes	Yes	
Aldec	Yes	Yes	Yes	

Note to Table 5–1:

(1) If the simulator is run on UNIX or Linux platforms, the Quartus II software must be running on the same platform to launch the simulator tool.

Specify the Path for the Third-Party Simulator

To launch the third-party simulation tool, the absolute path for the selected simulator must be provided in the **Options** page under the Tools menu. See Figure 5–4. Double click the **Location of executable** field to change or specify the absolute path.

× Category: General • EDA Tool Options Internet Connectivity EDA Tool Location of executable License Setup < double-click to change path > < double-click to change path > LeonardoSpectrum Processing Precision Synthesis Global User Libraries (All Projec Synplify < double-click to change path > Synplify Pro Active-HDL < double-click to change path > < double-click to change path > - Assignment Editor - Colors ModelSim - Fonts < double-click to change path > ModelSim-Altera C:\Modeltech_ae\win32aloem < double-click to change path > Block/Symbol Editor NCSim - Colors Fonts - Chip Planner - Colors --- Lu. Fonts - LogicLock Regions Window Memory Editor
 Fonts - Messages Suppression Colors Fonts - Netlist Viewers - Colors Fonts Pin Planner Programmer - Report Window Colors Fonts - Resource Property Editor - Colors 🗄 - SignalTap II Logic Analyzer View Colors Fonts -L Printing OK Cancel

Figure 5-4. Specifying the Simulator Path

Specify the Testbench Settings

Specify the applicable testbench settings as follows:

 Under the NativeLink Settings in the Settings dialog box (Figure 5–3), select the Compile Test Bench radio button and click Test Benches to display the Test Benches dialog box. See Figure 5–5.

Figure 5–5. Test Bench Dialog Box

xisting test bench settings:			5	
Name	Entity	Instance	Bun Ti	New
gate_tb_51 multiplier_test_bench	multiplier_vhd_ve	i1 i1	100 ns m 100 ns sii	E dit
				Delete

2. Click **New** to display the **New Test Bench Settings** dialog box (shown in Figure 5–6).

Figure 5–6. New Test Bench Settings Dialog Box

Test bench name:		
Test bench entity: tb		
Instance: i1		
Run for: 100 ns 💌		
Test bench files		
File name:		Add
File name	Туре	Remove
simulation/modelsim/my_multiplier.vht	VHDL Test	Up
		Down

3. In the **New Test Bench Settings** dialog box, set the appropriate fields with the names for the testbenches.

For specific instructions about specifying testbench settings for your MegaCore function, refer to your MegaCore function user guide.

4. After specifying the testbench files, close the **New Test Bench Settings**, **Test Benches**, and **Settings** dialog boxes.

Analyze and Elaborate the Quartus II Project

Before starting the simulation using the NativeLink feature, make sure that each IP megafunctions' variation files are included in your design project. On the Quartus II Processing menu, point to Start, then click **Start Analysis & Elaboration**.

Run RTL Functional Simulation

After the design is analyzed and elaborated, you can start the simulation by clicking **Run EDA-RTL Simulation** from the Tools menu. See Figure 5–7. During RTL functional simulation, the IPFS models are compiled and used by the simulator.

Simulating Altera IP Without the Quartus II NativeLink Feature

You can also simulate Altera IP directly with third-party simulators. If your design instantiates an IP megafunction, add its variation file to your simulation project. If the IP megafunction requires IPFS model files, **do not** add the megafunctions' variation file to your simulation project. Rather, add its' IPFS model files (either Verilog or VHDL) to your simulation project. The IPFS model generated by the Quartus II software instantiates high-level primitives such as adders, multipliers, and multiplexers, as well as the library of parameterized modules (LPM) functions and Altera megafunctions. To properly compile, load, and simulate the IP megafunctions, you must first compile the following libraries in your simulation tool:

- sgate—includes the definition of the high-level primitives (needed for IPFS models)
- **altera_mf**—includes the definition of Altera megafunctions
- **220model**—includes the definition of LPM functions

You can use these library files with any Altera-supported simulation tool. If you are using the ModelSim[®] Altera software, the libraries are precompiled and mapped.

••••

To simulate a design containing a Nios[®] processor or Avalon[®] peripherals, refer to *AN 189 Simulating Nios Embedded Processor Designs*.

Table 5–2 lists the simulation library files, where *<path>* is the directory where the Quartus II software is installed.

Table 5–2. Simulation Library Files				
Location	HDL Language	Description		
<path>/eda/sim_lib/sgate.v</path>	Verilog HDL	Libraries that contain simulation models		
<path>/eda/sim_lib/sgate.vhd</path>	VHDL	for IP functional models		
<path>/eda/sim_lib/sgate_pack.vhd</path>	VHDL	Libraries that contain VHDL component declarations for the sgate.vhd library		
<path>/eda/sim_lib/220model.v</path>	Verilog HDL	Libraries that contain simulation mode		
<path>/eda/sim_lib/220model.vhd</path>	VHDL	for the Altera LPM version 2.2.0		
<path>/eda/sim_lib/220pack.vhd</path>	VHDL	Libraries that contain VHDL component declarations for the 220model.vhd library		
<path>/eda/sim_lib/altera_mf.v</path>	Verilog HDL	Libraries that contain simulation models		
<path>/eda/sim_lib/altera_mf.vhd</path>	VHDL	for Altera-specific megafunctions		
<path>/eda/sim_lib/altera_mf_components.vhd</path>	VHDL	Libraries that contain VHDL component declarations for the altera_mf.vhd library		

Design Language Examples

The following design language examples explain how to simulate IP megafunctions directly with third-party simulator tools. These design examples describe simulation with:

- ModelSim Verilog
- ModelSim VHDL
- NC-VHDL
- VCS

Verilog HDL Example: Simulating the IPFS Model in the ModelSim Software

The following example shows the process of simulating a Verilog HDL-based megafunction. The example assumes that the megafunction variation and the IPFS model are generated.

- 1. Create a ModelSim project by performing the following steps:
 - a. In the ModelSim software, on the File menu, point to New and click **Project**. The **Create Project** dialog box is shown.
 - b. Specify the name of your simulation project.
 - c. Specify the desired location for your simulation project.
 - d. Specify the default library name and click **OK**.
 - e. Add relevant files to your simulation project:
 - Your design files
 - The IPFS model generated by the Quartus II software (if you are using the ModelSim-Altera software, skip to step 5)
 - The sgate.v, 220model.v, and altera_mf.v library files
- 2. Create the required simulation libraries by typing the following commands at the ModelSim prompt:
 - vlib sgate ↔ vlib lpm ↔ vlib altera mf ↔

3. Map to the required simulation libraries by typing the following commands at the ModelSim prompt:

vmap sgate sgate +
vmap lpm lpm +
vmap altera_mf altera_mf +

4. Compile the HDL into libraries by typing the following commands at the ModelSim prompt:

vlog -work altera_mf altera_mf.v +
vlog -work sgate sgate.v +
vlog -work lpm 220model.v +

5. Compile the IPFS model by typing the following command at the ModelSim prompt:

vlog -work work <my_IP>.vo +

6. Compile your RTL by typing the following command at the ModelSim prompt:

vlog -work work <my_design>.v ←

7. Compile the testbench by typing the following command at the ModelSim prompt:

vlog -work work <my_testbench>.v +

8. Load the testbench by typing the following command at the ModelSim prompt:

vsim -L <altera_mf library_path> -L <lpm_library_path>
-L <sgate_library_path> work.<my_testbench> +

VHDL Example: Simulating the IPFS Model in the ModelSim Software

The following example shows the process of performing a functional simulation of a VHDL-based, megafunction IPFS model. The example assumes that the megafunction's variation and the IPFS model are generated.

- 1. Create a ModelSim project by performing the following steps:
 - a. In the ModelSim software, on the File menu, point to New and click **Project**. The **Create Project** dialog box appears.
 - b. Specify the name for your simulation project.
 - c. Specify the desired location for your simulation project.
 - d. Specify the default library name and click **OK**.
 - e. Add the relevant files to your simulation project:
 - Add your design files
 - Add the IPFS model generated by the Quartus II software (if you are using the ModelSim-Altera software, skip to step 5)
 - Add the sgate.vhd, sgate_pack.vhd, 220model.vhd, 220pack.vhd, altera_mf.vhd, and altera_mf_components.vhd library files
- 2. Create the required simulation libraries by typing the following commands at the ModelSim prompt:

vlib sgate + vlib lpm + vlib altera mf +

3. Map to the required simulation libraries by typing the following commands at the ModelSim prompt:

vmap sgate sgate + vmap lpm lpm + vmap altera mf altera mf +

4. Compile the HDL into libraries by typing the following commands at the ModelSim prompt:

vcom -work altera_mf -93 -explicit
altera_mf_components.vhd
vcom -work altera_mf -93 -explicit altera_mf.vhd

vcom -work lpm -93 -explicit 220pack.vhd 🛩 vcom -work lpm -93 -explicit 220model.vhd 🛩 vcom -work sgate -93 -explicit sgate pack.vhd 🛩 vcom -work sgate -93 -explicit sgate.vhd 🛩 5. Compile the IPFS model by typing the following command at the ModelSim prompt: vcom -work work -93 -explicit <output_netlist>.vho 🛩 6. Compile the RTL by typing the following command at the ModelSim prompt: vcom -work work -93 -explicit <RTL>.vhd 🛩 7. Compile the testbench by typing the following command at the ModelSim prompt: vcom -work work -93 -explicit <my_testbench>.vhd +

8. Load the testbench by typing the following command at the ModelSim prompt:

vsim work.my testbench 🕶

NC-VHDL Example: Simulating the IPFS Model in the NC-VHDL Software

The following example shows the process of performing a functional simulation of an NC-VHDL-based, megafunction IP functional-simulation model. The example assumes that the megafunction's variation and the IPFS model are generated.

1. Create a **cds.lib** file by typing the following entries:

DEFINE worklib ./worklib DEFINE sgate ./sgate DEFINE altera_mf ./altera_mf DEFINE lpm ./lpm 2. Compile library files into appropriate libraries by typing the following commands at the command prompt:

ncvhdl -V93 -WORK lpm 220pack.vhd ncvhdl -V93 -WORK lpm 220model.vhd ncvhdl -V93 -WORK altera_mf altera_mf_components.vhd rncvhdl -V93 -WORK altera_mf altera_mf.vhd ncvhdl -V93 -WORK sgate sgate_pack.vhd ncvhdl -V93 -WORK sgate sgate.vhd

3. Compile source code and testbench files by typing the following commands at the command prompt:

ncvhdl -V93 -WORK worklib <my_design>.vhd ncvhdl -V93 -WORK worklib <my_testbench>.vhd ncvhdl -V93 -WORK worklib <my_IPtoolbench_output_netlist>.vho

4. Elaborate the design by typing the following command at the command prompt:

ncelab worklib.<my_testbench>:entity +

Verilog HDL Example: Simulating Your IPFS Model in VCS

The following example illustrates the process of performing a functional simulation of a design that contains a Verilog HDL-based, megafunction IPFS model. This example assumes that the megafunction variation and the IPFS model are generated.

Single-Step Process

For the single-step process, type the following at the command prompt:

```
vcs <testbench>.v <RTL>.v <output_netlist>.v -v 220model.v
altera_mf.v sgate.v -R +
```

	Two-Step Process (Compilation and Simulation)	
	For compilation and simulation, perform the following steps:	
	1.	Compile your design files by typing the following at the command prompt:
		vcs <testbench>.v<rtl>.v <output_netlist>.v -v 220model.v altera_mf.v sgate.v -o simulation_out +</output_netlist></rtl></testbench>
	2.	Load your simulation by typing the following at a command prompt:
		source simulation_out 🕶
	For more information about simulating a design in VCS, refer to the chapter <i>Synopsys VCS Support</i> in volume 3 of the <i>Quartus II Handbook</i> .	
Conclusion	Altera Quartus II software provides full support for simulating IP megafunction's with third party tools either directly or using its NativeLink feature. Using the Quartus II software, you can also generate IPFS models for supported megafunctions that enhances and simplifies design verification. Using an IPFS model is transparent, requiring only the addition of different files in which to synthesize and simulate projects.	
Referenced Documents	Thi	s chapter references the following documents: <i>Synopsys VCS Support</i> in volume 3 of the <i>Quartus II Handbook</i>
		Volume 1 of the Quartus II Handbook
Document Revision History

Table 5–3 shows the revision history for this chapter.

Table 5–3. Document Revision History		
Date and Document Version	Changes Made	Summary of Changes
October 2007 v7.2.0	Reorganized "Referenced Documents" on page 5–16.	_
May 2007 v7.1.0	 Updated Figure 5–6 Added "Referenced Documents" section. 	Minor updates to support the Quartus II software, version 7.1.
March 2007 v7.0.0	Updated Quartus II software 7.0 revision and date only.	_
November 2006 v6.1.0	 Added Quartus II NativeLink feature information Updated Figure 5-1, 5-2 Added Figure 5-3, 5-4, 5-7 Added Table 5-1 	Chapter updates to support the Quartus II NativeLink feature.
May 2006 v6.0.0	Minor updates for the Quartus II software version 6.0.	_
October 2005 v5.1.0	Updated for the Quartus II software version 5.1.	_
May 2005 v5.0.0	Chapter 4 was formerly in Section I, Vol 3 in 4.2.	_
December 2004 v1.0.0	Initial release.	_

Section II. Timing Analysis

As designs become more complex, the need for advanced timing analysis capability grows. Static timing analysis is a method of analyzing, debugging, and validating the timing performance of a design. The Quartus® II software provides the features necessary to perform advanced timing analysis for today's system-on-a-programmable-chip (SOPC) designs.

Synopsys PrimeTime is an industry standard sign-off tool, used to perform static timing analysis on most ASIC designs. The Quartus II software provides a path to enable you to run PrimeTime on your Quartus II software designs, and export a netlist, timing constraints, and libraries to the PrimeTime environment.

This section explains the basic principles of static timing analysis, the advanced features supported by the Quartus II Timing Analyzer, and how you can run PrimeTime on your Quartus designs.

This section includes the following chapters:

- Chapter 6, The Quartus II TimeQuest Timing Analyzer
- Chapter 7, Switching to the Quartus II TimeQuest Timing Analyzer
- Chapter 8, Quartus II Classic Timing Analyzer
- Chapter 9, Synopsys PrimeTime Support
- For information about the revision history for chapters in this section, refer to each individual chapter for that chapter's revision history.

6. The Quartus II TimeQuest Timing Analyzer

QII53018-7.2.0

Introduction

The Quartus[®] II TimeQuest Timing Analyzer is a powerful ASIC-style timing analysis tool that validates the timing performance of all logic in your design using an industry-standard constraint, analysis, and reporting methodology. Use the Quartus II TimeQuest Timing Analyzer's GUI or command-line interface to constrain, analyze, and report results for all timing paths in your design.

Before running the Quartus II TimeQuest Timing Analyzer, you must specify initial timing constraints that describe the clock characteristics, timing exceptions, and signal transition arrival and required times. You can specify timing constraints in the Synopsys Design Constraints (SDC) file format using the GUI or command-line interface. The Quartus II Fitter optimizes the placement of logic to meet your constraints.

During timing analysis, the Quartus II TimeQuest Timing Analyzer analyzes the timing paths in the design, calculates the propagation delay along each path, checks for timing constraint violations, and reports timing results as slack in the **Report** pane and in the **Console** pane. If the Quartus II TimeQuest Timing Analyzer reports any timing violations, you can customize the reporting to view precise timing information about specific paths, and then constrain those paths to correct the violations. When your design is free of timing violations, you can be confident that the logic will operate as intended in the target device.

the Quartus II TimeQuest Timing Analyzer is a complete static timing analysis tool that you can use as a sign-off tool for Altera[®] FPGAs and structured ASICs.

This chapter contains the following sections:

- Getting Started with the Quartus II TimeQuest Timing Analyzer"
- "Compilation Flow with the Quartus II TimeQuest Timing Analyzer Guidelines" on page 6–3
- "Timing Analysis Overview" on page 6–7
- "Specify Design Timing Requirements" on page 6–19
- "The Quartus II TimeQuest Timing Analyzer Flow Guidelines" on page 6–22
- "Collections" on page 6–23
- Constraints Files" on page 6–25
- "Clock Specification" on page 6–28
- "I/O Specifications" on page 6–45

- "Timing Exceptions" on page 6–48
- "Constraint and Exception Removal" on page 6–57
- "Timing Reports" on page 6–58
- "Timing Analysis Features" on page 6–77
- "The TimeQuest Timing Analyzer GUI" on page 6–82
- Conclusion" on page 6–95

Getting Started with the Quartus II TimeQuest Timing Analyzer

The Quartus II TimeQuest Timing Analyzer caters to the needs of the most basic to the most advanced designs for FPGAs.

This section provides a brief overview of the Quartus II TimeQuest Timing Analyzer, including the necessary steps to properly constrain a design, perform a full place-and-route, and perform reporting on the design.

Setting Up the Quartus II TimeQuest Timing Analyzer

The Quartus II software version 7.2 supports two native timing analysis tools: Quartus II TimeQuest Timing Analyzer and the Quartus II Classic Timing Analyzer. When you specify the Quartus II TimeQuest Timing Analyzer as the default timing analysis tool, the Quartus II TimeQuest Timing Analyzer guides the Fitter and analyzes timing results after compilation.

To specify the Quartus II TimeQuest Timing Analyzer as the default timing analyzer, on the Assignments menu, click **Settings**. In the **Settings** dialog box, in the **Category** list, select **Timing Analysis Settings**, and turn on **Use TimeQuest Timing Analyzer during compilation**.

To add the TimeQuest icon to the Quartus II toolbar, on the Tools menu, click **Customize**. In the **Customize** dialog box, click the **Toolbars** tab, turn on **Processing**, and click **Close**.

Compilation Flow with the Quartus II TimeQuest Timing Analyzer Guidelines

When you enable the Quartus II TimeQuest Timing Analyzer as the default timing analyzer, everything from constraint validation to timing verification is performed by the Quartus II TimeQuest Timing Analyzer. Figure 6–1 shows the recommended design flow steps to maximize and leverage the benefits the Quartus II TimeQuest Timing Analyzer. Details about each step are provided after the figure.

Create Quartus II Project and Specify Design Files—Creates a project before you can compile design files. In this step you specify the target FPGA, any EDA tools used in the design cycle, and all design files.

You can also modify existing design files for design optimization and add additional design files. For example, you can add HDL files or schematics to the project.

Perform Initial Compilation—Creates an initial design database before you specify timing constraints for your design. Perform Analysis and Synthesis to create a post-map database, or perform a full compilation to create a post-fit database.

Creating a post-map database for the initial compilation is faster than creating a post-fit database, and a post-map database is sufficient for the initial database.

Creating a post-fit database is recommended only if you previously created and specified an SDC file for the project. A post-map database is sufficient for the initial compilation. Specify Design Requirements—Timing requirements guide the Fitter as it places and routes your design.

You must enter all timing constraints and exceptions in an SDC file. This file must be included as part of the project. To add this file to your project, on the Project menu, click **Add/Remove Files in Project**, and add the SDC file in the **Files** dialog box.

- Refer to "Specify Timing Constraints" on page 6–20 for a list of timing constraints and exceptions.
- Perform Compilation—Synthesizes, places, and routes your design into the target FPGA.

When compilation is complete, the TimeQuest Timing Analyzer generates summary clock setup and clock hold, recovery, and removal reports for all defined clocks in the design.

 Verify Timing—Verifies timing in your design with the Quartus II TimeQuest Timing Analyzer

Running the Quartus II TimeQuest Timing Analyzer

You can run the Quartus II TimeQuest Timing Analyzer in one of the following modes:

- Directly from the Quartus II software
- Stand-alone mode
- Command-line mode

This section describes each of the modes, and the behavior of the Quartus II TimeQuest Timing Analyzer.

Directly from the Quartus II Software

To run the Quartus II TimeQuest Timing Analyzer from the Quartus II software, on the Tools menu, click **TimeQuest Timing Analyzer**. The Quartus II TimeQuest Timing Analyzer is available after you have created a database for the current project. The database can be either a post-map or post-fit database; perform Analysis and Synthesis to create a post-map database, or a full compilation to create a post-fit database.

After a database is created in the Quartus II software, you can create a timing netlist based on that database. If you create a post-map database, you cannot create a post-fit timing netlist in the Quartus II TimeQuest Timing Analyzer.

When you launch the TimeQuest Timing Analyzer directly from the Quartus II software, the current project opens by default.

Stand-Alone Mode

To run the Quartus II TimeQuest Timing Analyzer in stand-alone mode, type the following command at the command prompt:

quartus_staw 🛩

In stand-alone mode, you can perform static analysis on any project that contains either a post-map or post-fit database. To open a project, double-click **Open Project** in the **Tasks** pane.

Command-Line Mode

Use the command-line mode for easy integration with scripted design flows. Using the command-line mode avoids interaction with the user interface provided by the Quartus II TimeQuest Timing Analyzer, but allows the automation of each step of the static timing analysis flow. Table 6–1 provides a summary of the options available in the command-line mode.

Table 6–1. Summary of Command Line Options (Part 1 of 2)		
Command Line Option	Description	
-h help	Provides help information on quartus_sta.	
-t <script file=""></script>		

Table 6–1. Summary of Command Line Options (Part 2 of 2)	
Command Line Option	Description
tq2hc	Generate temporary files to convert the Quartus II TimeQuest Timing Analyzer SDC file(s) to a PrimeTime SDC file that can be used by the HardCopy Design Center (HCDC).
tq2pt	Generate temporary files to convert the Quartus II TimeQuest Timing Analyzer SDC file(s) to a PrimeTime SDC file.
-f <argument file=""></argument>	Specifies a file containing additional command-line arguments.
-c <revision name=""> rev=<revision_name></revision_name></revision>	Specifies which revision and its associated Quartus II Settings File (.qsf) to use.
multicorner	Specifies that all slack summary reports be generated for both the slow and fast corners.

To run the Quartus II TimeQuest Timing Analyzer in command-line mode, type the following command at the command prompt:

quartus_sta <options> ←

Timing Analysis Overview

This section provides an overview of the Quartus II TimeQuest Timing Analyzer concepts. Understanding these concepts allows you to take advantage of the powerful timing analysis features available in the Quartus II TimeQuest Timing Analyzer.

the Quartus II TimeQuest Timing Analyzer follows the flow shown in Figure 6–2 when it analyzes your design. Table 6–2 lists the most commonly used commands for each step.

Figure 6–2. The the Quartus II TimeQuest Timing Analyzer Flow

Table 6–2 describes the Quartus II TimeQuest Timing Analyzer terminology.

Table 6–2. The Quartus II TimeQuest Timing Analyzer Terms	
Terminology	Definition
Nodes	Most basic timing netlist unit. Use to represent ports, pins, registers, and keepers.
Keepers	Ports or registers. (1)
Cells	Look-up table (LUT), registers, DSP blocks, TriMatrix [®] memory, IOE, and so on. (2)
Pins	Inputs or outputs of cells.
Nets	Connections between pins.
Ports	Top-level module inputs or outputs; for example, device pins.
Clocks	Abstract objects outside of the design.

Notes to Table 6–2:

(1) Pins can indirectly refer to keepers. For example, when the value in the -from field of a constraint is a clock pin to a dedicated memory. In this case, the clock pin refers to a collection of registers.

(2) For Stratix[®] devices and other early device families, the LUT and registers are contained in logic elements (LE) and act as cells for these device families.

The Quartus II TimeQuest Timing Analyzer requires a timing netlist before it can perform a timing analysis on any design. For example, for the design shown in Figure 6–3, the Quartus II TimeQuest Timing Analyzer generates a netlist equivalent to the one shown in Figure 6–4.

Figure 6–3. Sample Design

Figure 6-4 shows various cells, pins, nets, and ports. Sample cell names are reg1, reg2, and and_inst; sample pins are data1 | combout, reg1 | regout, and and_inst | combout; sample net names are data1~combout, reg1, and and_inst; and sample port names are data1, clk, and data_out.

Paths connect two design nodes, such as the output of a register to the input of another register. Timing paths play a significant role in timing analysis. Understanding the types of timing paths is important to timing closure and optimization. The following list shows some of the commonly analyzed paths that are described in this section:

- **Edges**—the connections from ports-to-pins, from pins-to-pins, and from pins-to-ports.
- Clock paths—the edges from device ports or internally generated clock pins to the clock pin of a register.
- Data paths—the edges from a port or the data output pin of a sequential element to a port or the data input pin of another sequential element.
- **Asynchronous paths**—the edges from a port or sequential element to the asynchronous set or clear pin of a sequential element.

Figure 6–5 shows some of these commonly analyzed path types.

Once the Quartus II TimeQuest Timing Analyzer identifies the path type, it can report data and clock arrival times for valid register-to-register paths. The Quartus II TimeQuest Timing Analyzer calculates data arrival time by adding the delay from the clock source to the clock pin of the source register, the micro clock-to-out (μ t_{CO}) of the source register, and the delay from the source register 's *Q* pin to the destination register 's *D* pin, where the μ t_{CO} is the intrinsic clock-to-out for the internal registers in the FPGA. The Quartus II TimeQuest Timing Analyzer calculates clock arrival time by adding the delay from the clock source to the destination register's clock pin. Figure 6–6 shows a data arrival path and a clock arrival path. The Quartus II TimeQuest Timing Analyzer calculates data required time by accounting for the clock arrival time and the micro setup time (μ t_{SU}) of the destination register, where the μ t_{SU} is the intrinsic setup for the internal registers in the FPGA.

In addition to identifying various paths in a design, the Quartus II TimeQuest Timing Analyzer analyzes clock characteristics to compute the worst-case requirement between any two registers in a single registerto-register path. You should constrain all clocks in your design before performing this analysis. The launch edge is an active clock edge that sends data out of a sequential element, acting as a source for the data transfer. A latch edge is the active clock edge that captures data at the data port of a sequential element, acting as a destination for the data transfer.

Figure 6–7 shows a single-cycle system that uses consecutive clock edges to transfer and capture data, a register-to-register path, and the corresponding launch and latch edges timing diagram. In this example, the launch edge sends the data out of register reg1 at 0 ns, and register reg2 latch edge captures the data at 5 ns.

The Quartus II TimeQuest Timing Analyzer validates clock setup and hold requirements relative to the launch and latch edges.

Clock Analysis

A comprehensive static timing analysis includes analysis of register-to-register, I/O, and asynchronous reset paths. The Quartus II TimeQuest Timing Analyzer uses data required times, data arrival times, and clock arrival times to verify circuit performance and detect possible timing violations. The Quartus II TimeQuest Timing Analyzer determines the timing relationships that must be met for the design to correctly function, and checks arrival times against required times to verify timing.

Clock Setup Check

To perform a clock setup check, the Quartus II TimeQuest Timing Analyzer determines a setup relationship by analyzing each launch and latch edge for each register-to-register path. For each latch edge at the destination register, the Quartus II TimeQuest Timing Analyzer uses the closest previous clock edge at the source register as the launch edge. In Figure 6–8, two setup relationships are defined and are labeled Setup A and Setup B. For the latch edge at 10 ns, the closest clock that acts as a launch edge is at 3 ns and is labeled Setup A. For the latch edge at 20 ns, the closest clock that acts as a launch edge is 19 ns, and is labeled Setup B.

The Quartus II TimeQuest Timing Analyzer reports the result of clock setup checks as slack values. Slack is the margin by which a timing requirement is met or not met. Positive slack indicates the margin by which a requirement is met, and negative slack indicates the margin by which a requirement is not met. The Quartus II TimeQuest Timing Analyzer determines clock setup slack, as shown in Equation 1, for internal register-to-register paths.

(1) Clock Setup Slack = Data Required Time – Data Arrival Time

Data Arrival Time = Launch Edge + Clock Network Delay to Source Register + μt_{CO} + Register-to-Register Delay

Data Required = Clock Arrival Time – μt_{SU} – Setup Uncertainty

Clock Arrival Time = Latch Edge + Clock Network Delay to Destination Register

If the data path is from an input port to a internal register, the Quartus II TimeQuest Timing Analyzer uses the equations shown in Equation 2 to calculate the setup slack time.

(2) Clock Setup Slack Time = Data Required Time – Data Arrival Time

Data Arrival Time = Launch Edge + Clock Network Delay + Input Maximum Delay of Pin + Pin-to-Register Delay

Data Required Time = Latch Edge + Clock Network Delay to Destination Register – μt_{SII}

If the data path is an internal register to an output port, the Quartus II TimeQuest Timing Analyzer uses the equations shown in Equation 3 to calculate the setup slack time.

(3) Clock Setup Slack Time = Data Required Time – Data Arrival Time

Data Arrival Time = Launch Edge + Clock Network Delay to Source Register + μt_{CO} + Register-to-Pin Delay

Data Required Time = Latch Edge + Clock Network Delay – Output Maximum Delay of Pin

Clock Hold Check

To perform a clock hold check, the Quartus II TimeQuest Timing Analyzer determines a hold relationship for each possible setup relationship that exists for all source and destination register pairs. The Quartus II TimeQuest Timing Analyzer checks all adjacent clock edges from all setup relationships to determine the hold relationships. The Quartus II TimeQuest Timing Analyzer performs two hold checks for each setup relationship. The first hold check determines that the data launched by the current launch edge is not captured by the previous latch edge. The second hold check determines that the data launched by the next launch edge is not captured by the current latch edge. Figure 6–9 shows two setup relationships labeled setup A and setup B. The first hold check is labeled hold check A1 and hold check B1 for setup A and setup B, respectively. The second hold check is labeled hold check A2 and hold check B2 for setup A and setup B, respectively.

From the possible hold relationships, The Quartus II TimeQuest Timing Analyzer selects the hold relationship that is the most restrictive. The hold relationship with the largest difference between the latch and launch edges (that is, latch – launch and not the absolute value of latch and launch) is selected because this determines the minimum allowable delay for the register-to-register path. For Figure 6–9, the hold relationship selected is hold check A2.

The Quartus II TimeQuest Timing Analyzer determines clock hold slack as shown in Equation 4.

(4) Clock Hold Slack = Data Arrival Time – Data Required Time

Data Arrival Time = Launch Edge + Clock Network Delay to Source Register + μt_{C0} + Register-to-Register Delay

Data Required Time = Clock Arrival Time + μt_{H} + Hold Uncertainty

Clock Arrival Time = Latch Edge + Clock Network Delay to Destination Register

If the data path is from an input port to an internal register, the Quartus II TimeQuest Timing Analyzer uses the equations shown in Equation 5 to calculate the setup slack time.

(5) Clock Setup Slack Time = Data Arrival Time – Data Required Time

Data Arrival Time = Launch Edge + Clock Network Delay + Input Minimum Delay of Pin + Pin-to-Register Delay

Data Required Time = Latch Edge + Clock Network Delay to Destination Register + μt_{H}

If the data path is an internal register to an output port, the Quartus II TimeQuest Timing Analyzer uses the equations shown in Equation 6 to calculate the setup slack time.

(6) Clock Setup Slack Time = Data Arrival Time – Data Required Time

Data Arrival Time = Latch Edge + Clock Network Delay to Source Register + μt_{CO} + Register-to-Pin Delay

Data Required Time = Latch Edge + Clock Network Delay – Output Minimum Delay of Pin

Recovery and Removal

Recovery time is the minimum length of time the de-assertion of an asynchronous control signal, for example, clear and preset, must be stable before the next active clock edge. The recovery slack time calculation is similar to the clock setup slack time calculation, but it applies to asynchronous control signals. If the asynchronous control signal is registered, the Quartus II TimeQuest Timing Analyzer uses Equation 7 to calculate the recovery slack time.

(7) Recovery Slack Time = Data Required Time – Data Arrival Time

Data Arrival Time = Launch Edge + Clock Network Delay to Source Register + μt_{CO} + Register-to-Register Delay

Data Required Time = Latch Edge + Clock Network Delay to Destination Register – μt_{SU}

If the asynchronous control is not registered, the Quartus II TimeQuest Timing Analyzer uses the equations shown in Equation 8 to calculate the recovery slack time.

(8) Recovery Slack Time = Data Required Time – Data Arrival Time

Data Arrival Time = Launch Edge + Clock Network Delay + Maximum Input Delay + Port-to-Register Delay

Data Required Time = Latch Edge + Clock Network Delay to Destination Register Delay – μt_{SU}

If the asynchronous reset signal is from a port (device I/O), you must make an Input Maximum Delay assignment to the asynchronous reset port for the Quartus II TimeQuest Timing Analyzer to perform recovery analysis on that path.

Removal time is the minimum length of time the de-assertion of an asynchronous control signal must be stable after the active clock edge. The Quartus II TimeQuest Timing Analyzer removal time slack calculation is similar to the clock hold slack calculation, but it applies asynchronous control signals. If the asynchronous control is registered, the Quartus II TimeQuest Timing Analyzer uses the equations shown in Equation 9 to calculate the removal slack time.

(9) Removal Slack Time = Data Arrival Time – Data Required Time

Data Arrival Time = Launch Edge + Clock Network Delay to Source Register + μt_{CO} of Source Register + Register-to-Register Delay If the asynchronous control is not registered, the Quartus II TimeQuest Timing Analyzer uses the equations shown in Equation 10 to calculate the removal slack time.

 (10) Removal Slack Time = Data Arrival Time – Data Required Time
 Data Arrival Time = Launch Edge + Clock Network Delay + Input Minimum Delay of Pin + Minimum Pin-to-Register Delay

Data Required Time = Latch Edge + Clock Network Delay to Destination Register + μt_{H}

I If the asynchronous reset signal is from a device pin, you must specify the Input Minimum Delay constraint to the asynchronous reset pin for the Quartus II TimeQuest Timing Analyzer to perform a removal analysis on this path.

Multicycle Paths

Multicycle paths are data paths that require more than one clock cycle to latch data at the destination register. For example, a register may be required to capture data on every second or third rising clock edge. Figure 6–10 shows an example of a multicycle path between a multiplier's input registers and output register where the destination latches data on every other clock edge.

Figure 6–10. Example Diagram of a Multicycle Path

Figure 6–11 shows a register-to-register path where the source clock, src_clk, has a period of 10 ns and the destination clock, dst_clk, has a period of 5 ns.

Figure 6–12 shows the respective timing diagrams for the source and destination clocks and the default setup and hold relationships. The default setup relationship is 5 ns and the default hold relationship is 0 ns.

The default setup and hold relationships can be modified with the set_multicycle_path command to accommodate the system requirements.

Table 6–3 shows the commands used to modify either the launch or latch edge times that the Quartus II TimeQuest Timing Analyzer Timing Analyzer uses to determine a setup relationship or hold relationship.

Table 6–3. Commands to Modify Edge Times		
Command	Description of Modification	
<pre>set_multicycle_path -setup -end</pre>	Latch edge time of the setup relationship	
<pre>set_multicycle_path -setup -start</pre>	Launch edge time of the setup relationship	
<pre>set_multicycle_path -hold -end</pre>	Latch edge time of the hold relationship	
<pre>set_multicycle_path -hold -start</pre>	Latch edge time of the hold relationship	

Figure 6–13 shows the timing diagram after a multicycle setup of two has been applied. The command moves the latch edge time to 10 ns from the default 5 ns.

Specify Design Timing Requirements

Next, specify timing constraints and exceptions for your design.

Timing requirements guide the Fitter as it places and routes your design. You must enter all timing constraints and exceptions in an SDC file. This file must be included as part of the project. To add this file to your project, on the Project menu, click **Add/Remove Files in Project**, and add the SDC file in the **Files** dialog box.

Refer to "Specify Timing Constraints" on page 6–20 for a list of timing constraints and exceptions.

After you create the initial database, follow these steps to create timing requirements:

- 1. Launch the Quartus II TimeQuest Timing Analyzer.
- 2. Create a Timing Netlist.
- 3. Specify Timing Constraints.
- 4. Generate SDC Constraint Reports.
- You cannot use the Assignment Editor to specify timing requirements for the TimeQuest timing analyzer.

Create a Timing Netlist

The TimeQuest timing analyzer requires a timing netlist before you can specify timing requirements. The TimeQuest timing analyzer creates a timing netlist based upon the netlist generated in the compilation step. It annotates the timing netlist with either the post-map or post-fit delay results.

You can create a timing netlist in the following ways:

- In the Tasks pane, double-click Create Timing Netlist.
 - By default, the **Create Timing Netlist** command generates a timing netlist based on the post-fit database. An error message displays if the initial database is a post-map database.
 - or
- On the Netlist menu, click Create Timing Netlist. The Create Timing Netlist dialog box appears (Figure 6–14).

Figure 6–14. Create Timing Netlist Dialog Box

Input netlist	Delay model Slow corner Speed grade:
Tcl command: create_timing_netlist	
٦	OK Cancel Help

In the **Create Timing Netlist** dialog box, specify the input netlist type and the delay model, and click **OK**.

or

To create a timing netlist in the **Console** pane, type the following command at a Tcl prompt:

create_timing_netlist 🕶

You can use the -post_map option to specify that the timing netlist is based on a post-map database. For example, you can type the following command:

```
create_timing_netlist -post_map ←
```

Specify Timing Constraints

Use the SDC Editor to create and edit your timing constraints and exceptions. The following constraints are available:

- Create Clock
- Create Generated Clock
- Set Clock Latency
- Set Clock Uncertainty
- Set Input Delay
- Set Output Delay
- Set False Path
- Set Multicycle Path
- Set Maximum Delay
- Set Minimum Delay

For more information on the SDC Editor, refer to "SDC Editor" on page 6–94.

The specified constraints and exceptions guide the Fitter as it places and routes your design. After you have specified all timing constraints and exceptions, save the SDC file.

Generate SDC Constraint Reports

You can generate initial timing reports to verify that all constraints and exceptions have been entered. Because the constraints and exceptions have not been processed by the Fitter, do not use this step to verify that your timing requirements have been met.

You should verify the following items before continuing:

- All clocks are constrained
- Any invalid clock-to-clock transfers have been removed
- All paths are constrained

You can double-click the **Report Clocks** command in the **Tasks** pane, or type the report_clocks command in the **Console** pane to verify that all clocks have been properly defined and applied to the proper nodes in the design.

You can double-click the **Report Clock Transfers** command in the **Tasks** pane, or type the report_clock_transfers command in the **Console** pane to verify all clock-to-clock transfers.

You can double-click the **Report Unconstrained Paths** command in the **Tasks** pane, or type the report_ucp command in the **Console** pane to verify that all paths in the design have been properly constrained.

The Quartus II TimeQuest Timing Analyzer Flow Guidelines

Use the steps shown in Figure 6–15 to verify timing in the TimeQuest timing analyzer.

Figure 6–15. Timing Verification in the TimeQuest Timing Analyzer

The following sections describe each of the steps shown in Figure 6–15.

Create a Timing Netlist

After you perform a full compilation, you must create a timing netlist based on the fully annotated database from the post-fit results.

To create the timing netlist, double-click **Create Timing Netlist** in the **Tasks** pane, or type the following command in the **Console** pane:

create_timing_netlist ←

Read the Synopsys Design Constraints File

After you create a timing netlist, you must read an SDC file. This step reads all constraints and exceptions defined in the SDC file.

You can read the SDC file from either the Task pane or the Console pane.

To read the SDC file from the **Tasks** pane, double-click the **Read SDC File** command.

The **Read SDC File** task reads the *<current revision>*.sdc file.

To read the SDC file from the **Console** pane, type the following command in the **Console** pane:

```
read_sdc 🛩
```

Update Timing Netlist

You must update the timing netlist after you read an SDC file. The TimeQuest timing analyzer applies all constraints to the netlist for verification, and removes any invalid or false paths in the design from verification.

To update the timing netlist, double-click **Update Timing Netlist** in the **Tasks** pane, or type the following command in the **Console** pane:

update_timing_netlist 🕶

Generate Timing Reports

You can generate timing reports for all critical paths in your design. The **Tasks** pane contains the commonly used reporting commands. Individual or custom reports can be generated for your design.

For more information about reporting, refer to the section "Timing Reports" on page 6–58.

For a full list of available report APIs, refer to the *SDC & TimeQuest API Reference Manual*.

As you verify timing, you may encounter failures along critical paths. If this occurs, you can refine the existing constraints or create new ones to change the effects of existing constraints. If you modify, remove, or add constraints, you should perform a full compilation. This allows the Fitter to re-optimize the design based upon the new constraints, and brings you back to the Perform Compilation step in the process. This iterative process allows you to resolve your timing violations in the design.

For a sample Tcl script to automate the timing analysis flow, refer to the *TimeQuest Quick Start Tutorial*.

Collections

The Quartus II TimeQuest Timing Analyzer supports collection APIs that provide easy access to ports, pins, cells, or nodes in the design. Use collection APIs with any valid constraints or Tcl commands specified in the Quartus II TimeQuest Timing Analyzer.

Table 6–4 describes the collection commands supported by the Quartus II TimeQuest Timing Analyzer.

Table 6–4. Collection Commands	
Command	Description
all_clocks	Returns a collection of all clocks in the design.
all_inputs	Returns a collection of all input ports in the design.
all_outputs	Returns a collection of all output ports in the design.
all_registers	Returns a collection of all registers in the design.
get_cells	Returns a collection of cells in the design. All cell names in the collection match the specified pattern. Wildcards can be used to select multiple cells at the same time.
get_clocks	Returns a collection of clocks in the design. When used as an argument to another command, such as the -from or -to of set_multicycle_path, each node in the clock represents all nodes clocked by the clocks in the collection. The default uses the specific node (even if it is a clock) as the target of a command.
get_nets	Returns a collection of nets in the design. All net names in the collection match the specified pattern. You can use wildcards to select multiple nets at the same time.
get_pins	Returns a collection of pins in the design. All pin names in the collection match the specified pattern. You can use wildcards to select multiple pins at the same time.
get_ports	Returns a collection of ports (design inputs and outputs) in the design.

Table 6–5 describes the SDC extension collection commands supported by the Quartus II TimeQuest Timing Analyzer.

Table 6–5. SDC Extension Collection Commands (Part 1 of 2)	
Command	Description
get_fanouts <filter></filter>	Returns a collection of fan-out nodes starting from < filter>.
get_keepers < <i>filter</i> >	Returns a collection of keeper nodes (non-combinational nodes) in the design.
get_nodes <filter></filter>	Returns a collection of nodes in the design. The get_nodes collection cannot be used when specifying constraints or exceptions.
get_partitions <filter></filter>	Returns a collection of partitions matching the <i><filter></filter></i> .
get_registers <filter></filter>	Returns a collection of registers in the design.
get_fanins <filter></filter>	Returns a collection of fan-in nodes starting from <i><filter></filter></i> .
derive_pll_clocks	Automatically create generated clocks on the outputs of PLL. The generated clock properties reflect the PLL properties that have been specified by the MegaWizard [®] Plug-In Manager.

Table 6–5. SDC Extension Collection Commands (Part 2 of 2)	
Command	Description
get_assignment_groups <filter></filter>	Returns either a collection of keepers, ports, or registers that have been saved to the Quartus Settings File (QSF) with the Assignment (Time) Groups option.
remove_clock < <i>clock list</i> >	Removes the list of clocks specified by <clock list="">.</clock>
<pre>set_scc_mode <size></size></pre>	Allows you to set the maximum Strongly Connected Components (SCC) loop size or force the Quartus II TimeQuest Timing Analyzer to always estimate delays through SCCs.
set_time_format	Sets time format, including time unit and decimal places.

••••

For more information about collections, refer to the SDC file and the *SDC and TimeQuest API Reference Manual*.

Application Examples

Example 6-1 shows various uses of the create_clock and create_generated_clock commands and specific design structures.

```
Example 6-1. create_clock and create_generate_clock Commands and Specific Design Structures
# Create a simple 10 ns with clock with a 60 % duty cycle
create_clock -period 10 -waveform {0 6} -name clk [get_ports clk]
# The following multicycle applies to all paths ending at registers
# clocked by clk
set_multicycle path -to [get_clocks clk] 2
```

Constraints Files

The Quartus II TimeQuest Timing Analyzer stores all timing constraints in an SDC file. You can create an SDC file with different constraints for place-and-route and for timing analysis.

The SDC file should contain only SDC and Tcl commands. Commands to manipulate the timing netlist or control the compilation flow should not be included in the SDC file.

The Quartus II software does not automatically update SDC files. You must explicitly write new or updated constraints in the TimeQuest GUI. Use the write_sdc command, or, in the Quartus II TimeQuest Timing Analyzer, on the Constraints menu, click **Write SDC File** to write your constraints to an SDC file.

Fitter and Timing Analysis SDC Files

You can specify the same or different SDC files for the Quartus II Fitter for place-and-route, and the Quartus II TimeQuest Timing Analyzer for static timing analysis. Using different SDC files allows you to have one set of constraints for place-and-route, and another set of constraints for final timing sign-off in the Quartus II TimeQuest Timing Analyzer.

Specifying SDC Files for Place-and-Route

To specify an SDC file for the Fitter, you must add the SDC file to your Quartus II project. To add the file to your project, use the following command in the Tcl console:

```
set_global_assignment -name SDC_FILE <SDC file name>
```

Or, in the Quartus II GUI, on the Project menu, click **Add/Remove Files** in **Project**.

The Fitter optimizes your design based on the requirements in the SDC files in your project.

The results shown in the timing analysis report located in the Compilation Report are based on the SDC files added to the project.

You must specify the Quartus II TimeQuest Timing Analyzer as the default timing analyzer to make the Fitter read the SDC file.

Specifying SDC Files for Static Timing Analysis

After you create a timing netlist in the Quartus II TimeQuest Timing Analyzer, you must specify timing constraints and exceptions before you can perform a timing analysis. The timing requirements do not have to be identical to those provided to the Fitter. You can specify your timing requirements manually or you can read a previously created SDC file.

To manually enter your timing requirements, you can use constraint entry dialog boxes or SDC commands. If you have an SDC file that contains your timing requirements, you can use this file to apply your timing requirements. To specify the SDC file for timing analysis in the Quartus II TimeQuest Timing Analyzer, use the following command:

read_sdc [<SDC file name>]

If you use the TimeQuest GUI to apply SDC file for timing analysis, in the Quartus II TimeQuest Timing Analyzer, on the Constraints menu, click **Read SDC File**.

By default, the **Read SDC File** command in the **Tasks** pane reads the SDC files specified in the Quartus II Settings File (.qsf) (QSF), which are the same SDC files used by the Fitter.

Synopsys Design Constraints File Precedence

The Quartus II Fitter and the Quartus II TimeQuest Timing Analyzer reads the SDC files from the files list in the QSF file in the order they are listed, from top to bottom.

The Quartus II software searches for an SDC file, as shown in Figure 6-16.

Figure 6–16. Synopsys Design Constraints File Order of Precedence

Note to Figure 6–16:

- (1) This occurs only in the Quartus II TimeQuest Timing Analyzer, and not during compilation in the Quartus II software. The Quartus II TimeQuest Timing Analyzer has the ability to automate the conversion of the QSF timing assignments to SDC if no SDC file exists when the Quartus II TimeQuest Timing Analyzer is opened.
- If you type the read_sdc command at the command line without any arguments, the precedence order shown in Figure 6–16 is followed.

Clock Specification

The specification of all clocks and any associated clock characteristics in your design is essential for accurate static timing analysis results. The Quartus II TimeQuest Timing Analyzer supports many SDC commands that accommodate various clocking schemes and any clock characteristics.

This section describes the SDC file API available to create and specify clock characteristics.

Clocks

Use the create_clock command to create a clock at any register, port, or pin. You can create each clock with unique characteristics. Example 6–2 shows the create_clock command and options.

Example 6-2. create_clock Command create_clock -period <period value> [-name <clock name>] [-waveform <edge list>] [-add] <targets>

Table 6–6 describes the options for the create_clock command.

Table 6–6. create_clock Command Options	
Option	Description
-period <period value=""></period>	Specifies the clock period. You can also specify the clock period in units of frequency, such as -period $< num > MHz$. (1)
-name < <i>clock name</i> >	Name of the specific clock, for example, sysclock. If you do not specify the clock name, the clock name is the same as the node to which it is assigned.
-waveform <edge list=""></edge>	Specifies the clock's rising and falling edges. The edge list alternates between rising edge and falling edge. For example, a 10 ns period where the first rising edge occurs at 0 ns and the first falling edge occurs at 5 ns would be written as -waveform {0 5}. The difference must be within one period unit, and the rise edge must come before the fall edge. The default edge list is {0 <pre>cperiod</pre> /2}, or a 50% duty cycle.
-add	Allows you to specify more than one clock to the same port or pin.
<targets></targets>	Specifies the port(s) or pin(s) to which the assignment applies. If source objects are not specified, the clock is a virtual clock. Refer to "Virtual Clocks" on page 6–32 for more information.

Note to Table 6-6:

(1) The default time unit in the Quartus II TimeQuest Timing Analyzer is nanoseconds (ns).

Example 6–3 shows how to create a 10 ns clock with a 50% duty cycle, where the first rising edge occurs at 0 ns applied to port clk.

Example 6-3. 100MHz Clock Creation create clock -period 10 -waveform { 0 5 } clk

Example 6–4 shows how to create a 10 ns clock with a 50% duty cycle that is phase shifted by 90 degrees applied to port clk_sys.

```
Example 6-4. 100MHz Shifted by 90 Degrees Clock Creation
create_clock -period 10 -waveform { 2.5 7.5 } clk_sys
```

Clocks defined with the create_clock command have a default source latency value of zero. The Quartus II TimeQuest Timing Analyzer automatically computes the clock's network latency for non-virtual clocks.

Generated Clocks

The Quartus II TimeQuest Timing Analyzer considers clock dividers, ripple clocks, or circuits that modify or change the characteristics of the incoming or master clock as generated clocks. You should define the output of these circuits as generated clocks. This definition allows the Quartus II TimeQuest Timing Analyzer to analyze these clocks and account for any network latency associated with them.

Use the create_generated_clock command to create generated clocks. Example 6–5 shows the create_generated_clock command and the available options.

Example 6–5. create_generated_clock Command

```
create_generated_clock
[-name <clock name>]
-source <master pin>
[-edges <edge list>]
[-edge_shift <shift list>]
[-divide_by <factor>]
[-multiply_by <factor>]
[-duty_cycle <percent>]
[-add]
[-invert]
[-master_clock <clock>]
[-phase <phase>]
[-offset <offset>]
<targets>
```

Table 6–7 describes the options for the $\verb|create_generated_clock|$ command.

Table 6–7. create_generated_clock Command Options	
Option	Description
-name < <i>clock name</i> >	Name of the generated clock, for example, clk_x2. If you do not specify the clock name, the clock name is the same as the first node to which it is assigned.
-source <master pin=""></master>	The <i><master pin=""></master></i> specifies the node in the design from which the clock settings derive.
-edges <edge list=""> -edge_shift <shift list=""></shift></edge>	The -edges option specifies the new rising and falling edges with respect to the master clock's rising and falling edges. The master clock's rising and falling edges are numbered 1 <n> starting with the first rising edge, for example, edge 1. The first falling edge after that is edge number 2, the next rising edge number 3, and so on. The <edge list=""> must be in ascending order. The same edge may be used for two entries to indicate a clock pulse independent of the original waveform's duty cycle. -edge_shift specifies the amount of shift for each edge in the <edge list="">. The -invert option can be used to invert the clock after the -edges and -edge shifts are applied. (1)</edge></edge></n>
-divide_by <factor> -multiply_by <factor></factor></factor>	The -divide_by and -multiply_by factors are based on the first rising edge of the clock, and extend or contract the waveform by the specified factors. For example, a -divide_by 2 is equivalent to -edges {1 3 5}. For multiplied clocks, the duty cycle can also be specified. The Quartus II TimeQuest Timing Analyzer supports specifying multiply and divide factors at the same time.
-duty_cycle <percent></percent>	Specifies the duty cycle of the generated clock. The duty cycle is applied last.
-add	Allows you to specify more than one clock to the same pin.
-invert	Inversion is applied at the output of the clock after all other modifications are applied, except duty cycle.
-master_clock < <i>clock</i> >	$\tabla \tabla $
-phase <phase></phase>	Specifies the phase of the generated clock.
-offset <offset></offset>	Specifies the offset of the generated clock.
<targets></targets>	Specifies the port(s) or pin(s) to which the assignment applies.

Note to Table 6–7:

(1) The Quartus II TimeQuest Timing Analyzer supports a maximum of three edges in the edge list.

Source latencies are based on clock network delays from the master clock (not necessarily the master pin). You can use the set_clock_latency -source command to override the source latency.

Figure 6–17 shows how to create an inverted generated clock based on a 10 ns clock.

Figure 6–17. Generating an Inverted Clock

```
create_clock -period 10 [get_ports clk]
create_generated_clock -divide_by 1 -invert -source [get_registers clk] \
    [get registers gen|clkreg]
                              Edges
                                   1
                                         2
                                              3
                                                  4
                                                       5
                                                                7
                                                                    8
                                                           6
                                 clk
                            gen|clkreg
                               Time
                                     0
                                             10
                                                      20
                                                                30
```

Figure 6–18 shows how to modify the generated clock using the -edges and -edge_shift options.

Figure 6–18. Edges and Edge Shifting a Generated Clock

```
create clock -period 10 -waveform { 0 5} [get ports clk]
# Creates a divide-by-t clock
create_generated_clock -source [get_ports clk] -edges {1 3 5 } [get_registers \
clkdivA|clkreg]
# Creates a divide-by-2 clock independent of the master clocks' duty cycle (now 50%)
create_generated_clock -source [get_ports clk] -edges {1 1 5} -edge_shift { 0 2.5 0 } \
[get registers clkdivB|clkreg]
                             Edges
                                          3
                                               4
                                                   5
                                                       6
                                                               8
                                  1
                                       2
                                                           7
```


Altera Corporation October 2007 Figure 6–19 shows the effect of the -multiply_by option on the generated clock.

Figure 6–19. Multiplying a Generated Clock

Virtual Clocks

A virtual clock is a clock that does not have a real source in the design or that does not interact directly with the design. For example, if a clock feeds only an external device's clock port, and not a clock port in the design, and the external device then feeds (or is fed by) a port in the design, it is considered a virtual clock.

Use the create_clock command to create virtual clocks, with no value specified for the source option.

You can use virtual clocks for set_input_delay and set_output_delay constraints.

Figure 6–20 shows an example where a virtual clock is required for the Quartus II TimeQuest Timing Analyzer to properly analyze the relationship between the external register and those in the design. Because the oscillator labeled virt_clk does not interact with the Altera device, but acts as the clock source for the external register, the clock virt_clk must be declared. Example 6–6 shows the command to create a 10 ns virtual clock named virt_clk with a 50% duty cycle where the first rising edge occurs at 0 ns. The virtual clock is then used as the clock source for an output delay constraint.

After you create the virtual clock, you can perform register-to-register analysis between the register in the Altera device and the register in the external device.

Example 6–6. Virtual Clock Example 1

```
#create base clock for the design
create_clock -period 5 [get_ports system_clk]
#create the virtual clock for the external register
create_clock -period 10 -name virt_clk -waveform { 0 5 }
#set the output delay referencing the virtual clock
set_output_delay -clock virt_clk -max 1.5 [get_ports dataout]
```

Example 6–7 shows the command to create a 10 ns virtual clock with a 50% duty cycle that is phase shifted by 90 degrees.

Example 6-7. Virtual Clock Example 2 create clock -name virt clk -period 10 -waveform { 2.5 7.5 }

Multi-Frequency Clocks

Certain designs have more than one clock source feeding a single clock port in the design. The additional clock may act as a low power clock, with a lower frequency than the primary clock. To analyze this type of design, the create_clock command supports the -add option that allows you to add more than one clock to a clock node.

Example 6–8 shows the command to create a 10 ns clock applied to clock port clk, and then add an additional 15 ns clock to the same clock port. The Quartus II TimeQuest Timing Analyzer uses both clocks when it performs timing analysis.

Example 6–8. Multi-Frequency Example

```
create_clock -period 10 -name clock_primary -waveform { 0 5 } [get_ports clk]
create_clock -period 15 -name clock_secondary -waveform { 0 7.5 } [get_ports clk] -add
```

Automatic Clock Detection

To create clocks for all clock nodes in your design automatically, use the derive_clocks command. This command creates clocks on ports or registers to ensure every register in the design has a clock.

Example 6–9 shows the derive_clocks command and options.

Example 6-9. derive_clocks Command
derive_clocks
[-period reriod value>]

[-waveform <edge list>]

Table 6–8 describes the options for the derive clocks command.

Table 6–8. derive_clocks Command Options	
Option	Description
-period <period value=""></period>	Creates the clock period. You can also specify the frequency as -period < <i>num</i> >MHz. (1)
-waveform <edge list=""></edge>	Creates the clock's rising and falling edges. The edge list alternates between rising edge and falling edge. For example, for a 10 ns period where the first rising edge occurs at 0 ns and first falling edge occurs at 5 ns, the edge list is waveform $\{0 \ 5\}$. The difference must be within one period unit, and the rising edge must come before the falling edge. The default edge list is $\{0 \ \text{period/2}\}$, or a 50% duty cycle.

Note to Table 6–8:

(1) This option uses the default time unit nanoseconds (ns).

The derive_clocks command does not create clocks for the outputs of the PLLs.

The derive_clocks command is equivalent to using create_clock for each register or port feeding the clock pin of a register.

The use of the derive_clocks command for final timing sign-off is not recommended. You should create clocks for all clock sources using the create_clock and create_generated_clock commands.

Derive PLL Clocks

PLLs are used for clock management and synthesis in Altera devices. You can customize the clocks generated from the outputs of the PLL based on the design requirements. Because a clock should be created for all clock nodes, all outputs of the PLL should have an associated clock.

You can manually create a clock for each output of the PLL with the create_generated_clock command, or you can use the derive_pll_clocks command, which automatically searches the timing netlist and creates generated clocks for all PLL outputs according to the settings specified for each PLL output.

Use the derive_pll_clocks command to automatically create a clock for each output of the PLL, as shown in the following list:

derive_pll_clocks
[-use_tan_name]

Table 6–9 describes the options for the derive_pll_clocks command.

Table 6–9. derive_pll_clocks Command Options	
Option	Description
-use_tan_name	By default, the clock name is the output clock name. This option uses the net name similar to the names used by the Quartus II Classic Timing Analyzer.

The derive_pll_clocks command calls the

create_generated_clock command to create generated clocks on the outputs of the PLL. The source for the create_generated_clock command is the input clock pin of the PLL. Before or after the derive_pll_clocks command has been issued, you must manually create a base clock for the input clock port of the PLL. If a clock is not defined for the input clock node of the PLL, no clocks are reported for the PLL outputs. Instead, the Quartus II TimeQuest Timing Analyzer issues a warning message similar to Figure 6–10 when the timing netlist is updated.

Example 6–10. Warning Message

Warning: The master clock for this clock assignment could not be derived. Clock: <name of PLL output clock pin name> was not created.

You can include the derive_pll_clocks command in your SDC file, which allows the derive_pll_clocks command to automatically detect any changes to the PLL. With the derive_pll_clocks

command in your SDC file, each time the file is read, the appropriate create_generated_clock command for the PLL output clock pin is generated. If you use the write_sdc command after the derive_pll_clock command, the new SDC file contains the individual create_generated_clock commands for the PLL output clock pins and not the derive_pll_clocks command. Any changes to the properties of the PLL are not automatically reflected in the new SDC file. You must manually update the create_generated_clock commands in the new SDC file written by the derive_pll_clocks command, to reflect the changes to the PLL.

The derive_pll_clocks constraint will also constrain any LVDS transmitters or LVDS receivers in the design by adding the appropriate multicycle constraints to account for any deserialization factors.

For example, Figure 6–21 shows a simple PLL design with a register-to-register path.

Use the derive_pll_clocks command to automatically constrain the PLL. When this command is issued for the design shown in Figure 6–21, the messages shown in Example 6–11 are generated.

Example 6–11. derive_pll_clocks Generated Messages

```
Info:
Info: Deriving PLL Clocks:
Info: create_generated_clock -source pll_inst|altpll_component|pll|inclk[0] -divide_by 2 -name
pll_inst|altpll_component|pll|CLK[0] pll_inst|altpll_component|pll|clk[0]
Info:
```

The node name pll_inst|altpll_component|pll|inclk[0] used for the source option refers to the input clock pin of the PLL. In addition, the name of the output clock of the PLL is the name of the PLL output clock node, pll_inst|altpll_component|pll|clk[0]. If the PLL is in clock switchover mode, multiple clocks are created for the output clock of the PLL; one for the primary input clock (for example, inclk[0]), and one for the secondary input clock (for example, inclk[1]). In this case, you should cut the primary and secondary output clocks using the set_clock_groups command with the -exclusive option.

Before you can generate any reports for this design, you must create a base clock for the PLL input clock port. Use a command similar to the following:

```
create_clock -period 5 [get_ports pll_inclk]
```

You do not have to generate the base clock on the input clock pin of the PLL:pll_inst|altpll_component|pll|inclk[0]. The clock created on the PLL input clock port propagates to all fan-outs of the clock port, including the PLL input clock pin.

Default Clock Constraints

To provide a complete clock analysis, the Quartus II TimeQuest Timing Analyzer, by default, automatically creates clocks for all detected clock nodes in your design that have not be constrained, if there are no base clock constraints in the design. The Quartus II TimeQuest Timing Analyzer creates a base clock with a 1 GHz requirement to unconstrained clock nodes, using the following command:

derive_clocks -period 1

Individual clock constraints (for example, create_clock, create_generated_clock) should be made for all clocks in the design. This results in a thorough and realistic analysis of the design's timing requirements. The use of derive_clocks should be avoided for final timing sign-off.

The default clock constraint is only applied when the Quartus II TimeQuest Timing Analyzer detects that all synchronous elements have no clocks associated with them. For example, if a design contains two clocks and only one clock has constraints, the default clock constraint will not be applied. However, if both clocks have not been constrained, the default clock constraint will be applied.

Clock Groups

Many clocks can exist in a design, however, not all of the clocks interact with one another, and certain clock interactions are not possible. Asynchronous clocks are unrelated clocks (asynchronous clocks have different ideal clock sources). Exclusive clocks are not active at the same time (for example, multiplexed clocks). The mutual exclusivity must be declared to the Quartus II TimeQuest Timing Analyzer to prevent it from analyzing these clock interactions.

Use the set_clock_groups command to specify clocks that are exclusive or asynchronous. Example 6–12 shows the set_clock_groups command and options.

Example 6–12. set_clock_groups Command

```
set_clock_groups
[-asynchronous | -exclusive]
-group <clock name>
[-group <clock name>]
[-group <clock name>] ...
```

Table 6–10 describes the options for the set_clock_groups command.

Table 6–10. set_clock_groups Command Options	
Option	Description
-asynchronous	Asynchronous clocks—when the two clocks have no phase relationship and are active at the same time.
-exclusive	Exclusive clocks—when only one of the two clocks will be active at any given time. An example of an exclusive clock group is when two clocks feed a 2-to-1 MUX.
-group <clock name=""></clock>	Specifies valid destination clock names that are mutually exclusive. <i><clock name=""></clock></i> is used to specify the clock names.

Example 6–13 shows a set_clock_groups command and the equivalent set_false_path commands.

Example 6–13. set_clock_groups Example

```
# Clocks A and C are never active when clocks B and D are active
set_clock_groups -exclusive -group {A C} -group {B D}
# Equivalent specification using false paths
set_false_path -from [get_clocks A] -to [get_clocks B]
set_false_path -from [get_clocks A] -to [get_clocks D]
set_false_path -from [get_clocks C] -to [get_clocks B]
set_false_path -from [get_clocks C] -to [get_clocks D]
set_false_path -from [get_clocks B] -to [get_clocks A]
set_false_path -from [get_clocks B] -to [get_clocks A]
set_false_path -from [get_clocks B] -to [get_clocks C]
set_false_path -from [get_clocks B] -to [get_clocks C]
set_false_path -from [get_clocks D] -to [get_clocks A]
set_false_path -from [get_clocks D] -to [get_clocks C]
```

Clock Effect Characteristics

The create_clock and create_generated_clock commands create ideal clocks that do not account for any board effects. This section describes how to account for clock effect characteristics with clock latency and clock uncertainty.

Clock Latency

There are two forms of clock latency: source and network. Source latency is the propagation delay from the origin of the clock to the clock definition point (for example, a clock port), and network latency is the propagation delay from a clock definition point to a register's clock pin. The total latency (or clock propagation delay) at a register's clock pin is the sum of the source and network latencies in the clock path.

Use the set_clock_latency command to specify source latency to any clock ports in the design. Example 6–14 shows the set_clock_latency command and options.

Example 6–14. set_clock_latency Command

```
set_clock_latency
-source
[-clock <clock_list>]
[-rise | -fall]
[-late | -early]
<delay>
<targets>
```

Table 6-11 describes the options for the set_clock_latency command.

Table 6–11. set_clock_latency Command Options (Part 1 of 2)	
Option	Description
-source	Specifies a source latency.
-clock <clock list=""></clock>	Specifies the clock to use if the target has more than one clock assigned to it.

The set_clock_latency command supports only source latency. The - source option must be specified when using the command.

Table 6–11. set_clock_latency Command Options (Part 2 of 2)	
Option	Description
-rise -fall	Specifies the rising or falling delays.
-late -early	Specifies the earliest or the latest arrival times to the clock.
<delay></delay>	Specifies the delay value.
<targets></targets>	Specifies the clocks or clock sources if a clock is clocked by more than one clock.

The Quartus II TimeQuest Timing Analyzer automatically computes network latencies; therefore, the set_clock_latency command specifies only the source latencies.

Clock Uncertainty

The set_clock_uncertainty command specifies clock uncertainty or skew for clocks or clock-to-clock transfers. Specify the uncertainty separately for setup and hold, and you can specify separate rising and falling clock transitions. The Quartus II TimeQuest Timing Analyzer subtracts the setup uncertainty from the data required time for each applicable path, and adds the hold uncertainty to the data required time for each applicable path.

Use the set_clock_uncertainty command to specify any clock uncertainty to the clock port. Example 6–15 shows the set_clock_uncertainty command and options.

Example 6–15. set_clock_uncertainty Command and Options

```
set_clock_uncertainty
[-rise_from <rise from clock> | -fall_from <fall from clock> |
-from <from clock>]
[-rise_to <rise to clock> | -fall_to <fall to clock> | -to <to clock>]
[-setup | -hold]
<value>
```

Table 6–12 describes the options for the $\texttt{set_clock}_$ uncertainty command.

Table 6–12. Options Description for set_clock_uncertainty	
Option	Description
-from <from clock=""></from>	Specifies the from clock.
<pre>-rise_from <rise clock="" from=""></rise></pre>	Specifies the rise from clock.
<pre>-fall_from <fall clock="" from=""></fall></pre>	Specifies the fall from clock.
-to <to clock=""></to>	Specifies the to clock.
-rise_to <rise clock="" to=""></rise>	Specifies the rise to clock.
-fall_to <fall clock="" to=""></fall>	Specifies the fall to clock.
-setup -hold	Specifies setup or hold.
<value></value>	Uncertainty value.

Derive Clock Uncertainty

Use the derive_clock_uncertainty command to automatically apply inter-clock, intra-clock, and I/O interface uncertainties. Both setup and hold uncertainties are calculated for each clock-to-clock transfer. Example 6–16 shows the derive_clock_uncertainty command and options.

Example 6–16. derive_clock_uncertainty Command

derive_clock_uncertainty
[-overwrite]
[-dtw]

Table 6-13 describes the options for the derive_clock_uncertainty command.

Table 6–13. derive_clock_uncertainty Command Options	
Option	Description
-overwrite	Overwrites previously performed clock uncertainty assignments
-dtw	Creates the PLLJ-PLLSPE_INFO.txt file

The Quartus II TimeQuest Timing Analyzer automatically applies clock uncertainties to clock-to-clock transfers in the design.

Any clock uncertainty constraints that have been applied to source and destination clock pairs with the set_clock_uncertainty command have a higher precedence than the clock uncertainties derived from the derive_clock_uncertainty command for the same source and destination clock pairs. For example, if the set_clock_uncertainty command is called first to specify clock uncertainties between the source clock CLKA and destination clock CLKB. Then the derive_clock_uncertainty command is called second, the clock uncertainty calculated by the derive_clock_uncertainty command is ignored for the source clock CLKA to destination clock CLKB.

The clock uncertainty value that would have been used, however, is still reported for informational purposes. You can use the -overwrite command to overwrite previous clock uncertainty assignments, or remove them manually with the remove_clock_uncertainty command.

In the following types of clock-to-clock transfers, clock certainties can arise. They are modeled by the derive_clock_uncertainty command automatically.

- Inter-clock
- Intra-clock
- I/O Interface

Inter-Clock Transfers

Inter-clock transfers occur when the register-to-register transfer happens in the core of the FPGA and source and destination clocks come from the same PLL output pin or clock port. An example of an inter-clock transfer is shown in Figure 6–22.

Figure 6–22. Inter-Clock Transfer

Intra-Clock Transfers

Intra-clock transfers occur when the register-to-register transfer happens in the core of the FPGA and source and destination clocks come from a different PLL output pin or clock port. An example of an intra-clock transfer is shown in Figure 6–23.

I/O Interface Clock Transfers

I/O interface clock transfers occur when data transfers from an I/O port to the core of the FPGA (input) or from the core of the FPGA to the I/O port (output). An example of an I/O interface clock transfer is shown in Figure 6–24.

For I/O interface uncertainty, you must create a virtual clock and constrain the input and output ports with the set_input_delay and set_output_delay commands that reference the virtual clock. The virtual clock is required to prevent the derive_clock_uncertainty command from applying clock certainties for either intra- or inter-clock transfers on an I/O interface clock transfer when the set_input_delay or set_output_delay commands reference a clock port or PLL output. If a virtual clock is not referenced in the set_input_delay or set_output_delay commands to clock uncertainty for the I/O interface clock, transfers will result in a pessimistic analysis.

The virtual clock should be created with the same properties as the original clock that is driving the I/O port. For example, Figure 6–25 shows a typical input I/O interface with the clock specifications.

Figure 6–25. I/O Interface Specifications

Example 6–17 shows the SDC commands to constrain the I/O Interface shown in Figure 6–25.

Example 6–17. SDC Commands to Constrain the I/O Interface

```
# Create the base clock for the clock port
create_clock -period 10 -name clk_in [get_ports clk_in]
# Create a virtual clock with the same properties of the base clock driving
# the source register
create_clock -period 10 -name virt_clk_in
# Create the input delay referencing the virtual clock and not the base
# clock
# DO NOT use set_input_delay -clock clk_in <delay_value>
# [get_ports data_in]
set_input_delay -clock virt_clk_in <delay_value> [get_ports data_in]
```

I/O Specifications

The Quartus II TimeQuest Timing Analyzer supports Synopsys Design Constraints that constrain the ports in your design. These constraints allow the Quartus II TimeQuest Timing Analyzer to perform a system static timing analysis that includes not only the FPGA timing, but also any external device timing and board timing parameters.

Input and Output Delay

Use input and output delay constraints to specify any external device or board timing parameters. When you apply these constraints, the Quartus II TimeQuest Timing Analyzer performs static timing analysis on the entire system.

Set Input Delay

The set_input_delay constraint specifies the data arrival time at a port (a device I/O) with respect to a given clock. Figure 6–26 shows an input delay path.

Figure 6–26. Set Input Delay

Use the set_input_delay command to specify input delay constraints to ports in the design. Example 6–18 shows the set_input_delay command and options.

Example 6–18. set_input_delay Command

```
set_input_delay
-clock <clock name>
[-clock_fall]
[-rise | -fall]
[-max | -min]
[-add_delay]
[-reference_pin <target>]
[-source_latency_included]
<delay value>
<targets>
```

Table 6–14 describes the options for the set_input_delay command.

Table 6–14. set_input_delay Command Options	
Option	Description
-clock <clock name=""></clock>	Specifies the source clock.
-clock_fall	Specifies the arrival time with respect to the falling edge of the clock.
-rise -fall	Specifies either the rise or fall delay at the port.
-max -min	Specifies the minimum or maximum data arrival time.
-add_delay	Adds another delay, but does not replace the existing delays assigned to the port.
<pre>-reference_pin <target></target></pre>	Specifies a pin or port in the design from which to determine source and network latencies. This is useful to specify input delays relative to an output port fed by a clock.
-source_latency_ included	Specifies that the input delay value includes the source latency delay value, and therefore any source clock latency assigned to the clock will be ignored.
<delay value=""></delay>	Specifies the delay value.
<targets></targets>	Specifies the destination ports or pins.

A warning message appears if you specify only a -max or -min value for the input delay value. The input minimum delay default value is the input maximum delay, and the input maximum delay default value is the input minimum delay, if only one is specified. Similarly, a warning message appears if you specify only a -rise or -fall value for the delay value, and the delay defaults in the same manner as the input minimum and input maximum delays.

The maximum value is used for setup checks, and the minimum value is used for hold checks.

By default, a set of input delays (min/max, rise/fall) is allowed for only one clock, -clock_fall, -reference_pin combination. Specifying an input delay on the same port for a different clock, -clock_fall, or -reference_pin removes any previously set input delays, unless you specify the -add_delay option. When you specify the -add_delay option, the worst-case values are used.

The -rise and -fall options are mutually exclusive. The -min and -max options are also mutually exclusive.

Set Output Delay

The set_output_delay command specifies the data required time at a port (the device pin) with respect to a given clock.

Use the set_output_delay command to specify output delay constraints to ports in the design. Figure 6–27 shows an output delay path.

Example 6–19 shows the set_output_delay command and options.

Example 6–19. set_output_delay Command

```
set_output_delay
-clock <clock name>
[-clock_fall]
[-rise | -fall]
[-max | -min]
[-add_delay]
[-reference_pin <target>]
<delay value>
<targets>
```

Table 6–15 describes the options for the set_output_delay command.

Table 6–15. set_output_delay Command Options (Part 1 of 2)	
Option	Description
-clock <clock name=""></clock>	Specifies the source clock.
-clock_fall	Specifies the required time with respect to the falling edge of the clock.
-rise -fall	Specifies either the rise or fall delay at the port.
-max -min	Specifies the minimum or maximum data arrival time.
-add_delay	Adds another delay, but does not replace the existing delays assigned to the port.

Table 6–15. set_output_delay Command Options (Part 2 of 2)	
Option	Description
<pre>-reference_pin <target></target></pre>	Specifies a pin or port in the design from which to determine source and network latencies. Use this option to specify input delays relative to an output port fed by a clock.
-source_latency_included	Specifies that the input delay value includes the source latency delay value, and therefore any source clock latency assigned to the clock will subsequently be ignored.
<delay value=""></delay>	Specifies the delay value.
<targets></targets>	Specifies the destination ports or pins.

A warning message appears if you specify only a -max or -min value for the output delay value. The output minimum delay default value is the output maximum delay, and the output maximum delay default value is the output minimum delay, if only one is specified.

The maximum value is used for setup checks, and the minimum value is used for hold checks.

By default, a set of output delays (min/max, rise/fall) is allowed for only one clock, -clock_fall, port combination. Specifying an output delay on the same port for a different clock or -clock_fall removes any previously set output delays, unless you specify the -add_delay option. When you specify the -add_delay option, the worst-case values are used.

The -rise and -fall options are mutually exclusive, as are the -min and -max options.

Timing Exceptions

Timing exceptions modify the default analysis that is performed by the Quartus II TimeQuest Timing Analyzer. This section describes the following available timing exceptions:

- False path
- Minimum delays
- Maximum delays
- Multicycle path

Precedence

If a conflict of node names occurs between timing exceptions, the following order of precedence applies:

- 1. False path
- 2. Minimum delays and maximum delays
- 3. Multicycle path

The false path timing exception has the highest precedence. Within each category, assignments to individual nodes have precedence over assignments to clocks. Finally, the remaining precedence for additional conflicts is order-dependent, such that the last assignments overwrite (or partially overwrite) earlier assignments.

False Path

False paths are paths that can be ignored during timing analysis.

Use the set_false_path command to specify false paths in the design. Example 6-20 shows the set_false_path command and options.

Example 6–20. set_false_path Command

```
set_false_path
[-fall_from <clocks> | -rise_from <clocks> | -from <names>]
[-fall_to <clocks> | -rise_to <clocks> | -to <names>]
[-hold]
[-setup]
[-through <names>]
<delay>
```

Table 6–16 describes the options for the set_false_path command.

Table 6–16. set_false_path Command Options (Part 1 of 2)	
Option	Description
-fall_from < <i>clocks</i> >	The <i><names></names></i> is a collection or list of objects in the design. Specifies false path begins at the fall from <i><clocks></clocks></i> .
-fall_to < <i>clocks</i> >	The <i><names></names></i> is a collection or list of objects in the design. Specifies false path ends at the fall to <i><clocks></clocks></i> .
-from <names></names>	The <i><names></names></i> is a collection or list of objects in the design. Specifies false path begins at the <i><names></names></i> .
-hold	Specifies the false path is valid during the hold analysis only.
-rise_from < <i>clocks</i> >	The <i><names></names></i> is a collection or list of objects in the design. Specifies false path begins at the rise from <i><clocks></clocks></i> .

Table 6–16. set_false_path Command Options (Part 2 of 2)	
Option	Description
-rise_to < <i>clocks</i> >	The <i><names></names></i> is a collection or list of objects in the design. Specifies false path ends at the rise to <i><clocks></clocks></i> .
-setup	Specifies the false path is valid during the setup analysis only.
-through <names></names>	The <i><names></names></i> is a collection or list of objects in the design. Specifies false path passes through <i><names></names></i> .
-to <names></names>	The <i><names></names></i> is a collection or list of objects in the design. Specifies false path ends at <i><names></names></i> .
<delay></delay>	Specifies the delay value.

When the objects are timing nodes, the false path only applies to the path between the two nodes. When an object is a clock, the false path applies to all paths where the source node (-from) or destination node (-to) is clocked by the clock.

Minimum Delay

Use the set_min_delay command to specify an absolute minimum delay for a given path. The following list shows the set_min_delay command and options.

Example 6–21. set_min_delay Command

```
set_min_delay
[-fall_from <clocks> | -rise_from <clocks> | -from <names>]
[-fall_to <clocks> | -rise_to <clocks> | -to <names>]
[-through <names>]
<delay>
```

Table 6–17. set_min_delay Command Options	
Option	Description
-fall_from < <i>clocks</i> >	The <i><names></names></i> is a collection or list of objects in the design. Specifies the minimum delay begins at the falling edge of <i><clocks></clocks></i> .
-fall_to < <i>clocks</i> >	The <i><names></names></i> is a collection or list of objects in the design. Specifies the minimum delay ends at the falling of <i><clocks></clocks></i> .
-from <names></names>	The <i><names></names></i> is a collection or list of objects in the design. The <i><names></names></i> acts as the start point of the path.
-rise_from < <i>clocks</i> >	The <i><names></names></i> is a collection or list of objects in the design. Specifies the minimum delay at the rising edge of <i><clocks></clocks></i> .
rise_to <clocks></clocks>	The <names> is a collection or list of objects in the design. Specifies the minimum delay at the rising edge of <<i>clocks</i>>.</names>
-through <names></names>	The <i><names></names></i> is a collection or list of objects in the design. The <i><names></names></i> acts as the through point of the path.
-to <names></names>	The <i><names></names></i> is a collection or list of objects in the design. The <i><names></names></i> acts as the end point of the path.
<delay></delay>	Specifies the delay value.

Table 6–17 describes the options for the set_min_delay command.

If the source or destination node is clocked, the clock paths are taken into account, allowing more or less delay on the data path. If the source or destination node has an input or output delay, that delay is also included in the minimum delay check.

When the objects are timing nodes, the minimum delay applies only to the path between the two nodes. When an object is a clock, the minimum delay applies to all paths where the source node (-from) or destination node (-to) is clocked by the clock.

You can apply the set_min_delay command exception to an output port that does not use a set_output_delay constraint. In this case, the setup summary and hold summary report the slack for these paths. Because there is no clock associated with the output port, no clock is reported for these paths and the **Clock** column is empty. In this case, you cannot report timing for these paths.

To report timing using clock filters for output paths with the set_min_delay command, you must use the set_output_delay command for the output port with a value of 0. You can use an existing clock from the design or a virtual clock as the clock reference in the set_output_delay command.

Maximum Delay

Use the set_max_delay command to specify an absolute maximum delay for a given path. Example 6–22 shows the set_max_delay command and options.

Example 6–22. set_max_delay Command

```
set_max_delay
[-fall_from <clocks> | -rise_from <clocks> | -from <names>]
[-fall_to <clocks> | -rise_to <clocks> | -to <names>]
[-through <names>]
<delay>
```

Table 6–18 describes the options for the set _max_delay command.

Table 6–18. or set_max_delay Command Options	
Option	Description
-fall_from < <i>clocks</i> >	The <i><names></names></i> is a collection or list of objects in the design. Specifies the maximum delay begins at the falling edge of <i><clocks></clocks></i> .
-fall_to < <i>clocks</i> >	The <i><names></names></i> is a collection or list of objects in the design. Specifies the maximum delay ends at the falling of <i><clocks></clocks></i> .
-from <names></names>	The <i><names></names></i> is a collection or list of objects in the design. The <i><names></names></i> acts as the start point of the path.
-rise_from < <i>clocks</i> >	The <i><names></names></i> is a collection or list of objects in the design. Specifies the maximum delay at the rising edge of <i><clocks></clocks></i> .
rise_to <clocks></clocks>	The <names> is a collection or list of objects in the design. Specifies the maximum delay at the rising edge of <i><clocks></clocks></i>.</names>
-through <names></names>	The <i><names></names></i> is a collection or list of objects in the design. The <i><names></names></i> acts as the thru point of the path
-to <names></names>	The <i><names></names></i> is a collection or list of objects in the design. The <i><names></names></i> acts as the end point of the path
<delay></delay>	Specifies the delay value.

If the source or destination node is clocked, the clock paths are taken into account, allowing more or less delay on the data path. If the source or destination node has an input or output delay, that delay is also included in the maximum delay check.

When the objects are timing nodes, the maximum delay only applies to the path between the two nodes. When an object is a clock, the maximum delay applies to all paths where the source node (-from) or destination node (-to) is clocked by the clock.

You can apply the set_max_delay command exception to an output port that does not use a set_output_delay constraint. In this case, the setup summary and hold summary report the slack for these paths. Because there is no clock associated with the output port, no clock is reported for these paths and the **Clock** column is empty. In this case, you cannot report timing for these paths.

To report timing using clock filters for output paths with the set_max_delay command, you must use the set_output_delay command for the output port with a value of 0. You can use an existing clock from the design or a virtual clock as the clock reference in the set_output_delay command.

Multicycle Path

By default, the Quartus II TimeQuest Timing Analyzer uses a single-cycle analysis. When analyzing a path, the setup launch and latch edge times are determined by finding the closest two active edges in the respective waveforms. For a hold analysis, the timing analyzer analyzes the path against two timing conditions for every possible setup relationship, not just the worst-case setup relationship. Therefore, the hold launch and latch times may be completely unrelated to the setup launch and latch edges.

A multicycle constraint relaxes setup or hold relationships by the specified number of clock cycles based on the source (-start) or destination (-end) clock. An end multicycle constraint of 2 extends the worst-case setup latch edge by one destination clock period.

Hold multicycle constraints are based on the default hold position (the default value is 0). An end hold multicycle constraint of 1 effectively subtracts one destination clock period from the default hold latch edge.

Use the set_multicycle_path command to specify the multicycle constraints in the design. Example 6–23 shows the set_multicycle_path command and options.

Example 6–23. set_multicycle_path Command

```
set_multicycle_path
[-end]
[-fall_from <clocks> | -rise_from <clocks> | -from <names>]
[-fall_to <clocks> | -rise_to <clocks> | -to <names>]
[-hold]
[-setup]
[-start]
[-through <names>]
path multiplier>
```

Table 6–19 describes the options for the set_multicycle_path command.

Table 6–19. set_multicycle_path Command Options	
Option	Description
<pre>fall_from <clocks></clocks></pre>	The <i><names></names></i> is a collection or list of objects in the design. Specifies the multicycle begins at the falling edge of <i><clocks></clocks></i> .
fall_to <clocks></clocks>	The <i><names></names></i> is a collection or list of objects in the design. Specifies the multicycle ends at the falling of <i><clocks></clocks></i> .
-from <names></names>	The <i><names></names></i> is a collection or list of objects in the design. The <i><names></names></i> acts as the start point of the path.
-hold -setup	Specifies the type of multicycle to be applied.
-rise_from <clocks></clocks>	The <i><names></names></i> is a collection or list of objects in the design. Specifies the multicycle at the rising edge of <i><clocks></clocks></i> .
-rise_to < <i>clocks</i> >	The <i><names></names></i> is a collection or list of objects in the design. Specifies the multicycle ends at the rising edge of <i><clocks></clocks></i> .
-start -end	Specifies whether the start or end clock acts as the source or destination for the multicycle.
-through <names></names>	The <i><names></names></i> is a collection or list of objects in the design. Specifies multicycle passes through <i><names></names></i> .
-to <names></names>	The <i><names></names></i> is a collection or list of objects in the design. The <i><names></names></i> acts as the end point of the path.
<path multiplier=""></path>	Specifies the multicycle multiplier value.

When the objects are timing nodes, the multicycle constraint only applies to the path between the two nodes. When an object is a clock, the multicycle constraint applies to all paths where the source node (-from) or destination node (-to) is clocked by the clock.

Clock-as-Data Analysis

The Quartus II TimeQuest Timing Analyzer has the ability to analyze clock paths as data paths. This analysis plays an important part when determining arrival and required times for source synchronous interfaces, or where clock path is used as a data path (for example, a clock captured by a register. Figure 6–28 shows a typical source synchronous interface.

Figure 6–28. Simple Source Synchronous Circuit

To constrain the path from port clk, through the PLL, to port clk_out you can use a set_output_delay to the clk_out port, or you can use the set_max_delay exception to the clk_out port (optionally specifying the PLL clock or PLL output pin as the -from). Without the clock as data analysis, this constraint will lose the phase shift associated with the PLL.

With the clock as data analysis the path from port clk to port clk_out will be analyzed as data path and includes the PLL phase shift. Two paths are reported per analysis: one from the rising edge of the clock source and one from the falling edge of the clock source.

Application Examples

 $This section \ describes \ specific \ examples \ for \ the \ {\tt set_multicycle_path} \ command.$

Figure 6–29 shows a register-to-register path where the source clock, src_clk, has a period of 10 ns and the destination clock, dst_clk, has a period of 5 ns.

Figure 6–30 shows the respective timing diagrams for the source and destination clocks and the default setup and hold relationships. The default setup relationship is 5 ns and the default hold relationship is 0 ns.

Figure 6–30. Default Setup and Hold Timing Diagram

The default setup and hold relationships can be modified with the set_multicycle_path command to accommodate the system requirements.

Table 6–20 shows the commands used to modify either the launch or latch edge times that the TimeQuest Timing Analyzer uses to determine a setup relationship or hold relationship.

Table 6–20. Commands to Modify Edge Times		
Command	Description of Modification	
<pre>set_multicycle_path -setup -end</pre>	Latch edge time of the setup relationship	
<pre>set_multicycle_path -setup -start</pre>	Launch edge time of the setup relationship	
<pre>set_multicycle_path -hold -end</pre>	Latch edge time of the hold relationship	
<pre>set_multicycle_path -hold -start</pre>	Latch edge time of the hold relationship	

Figure 6-31 shows the command used to modify the setup latch edge and the resulting timing diagram. The command moves the latch edge time to 10 ns from the default 5 ns.

Figure 6–31. Modified Setup Diagram

```
# latch every 2nd edge
set_multicycle_path -from [get_clocks src_clk] -to [get_clocks dst_clk] -setup -end 2
                                                            new setup -
                                                           default setup -
                          0
                                   10
                                            20
                                                     30
```

Constraint and Exception Removal

When using the Quartus II TimeQuest Timing Analyzer interactively, it is usually necessary to remove a constraint or exception. In cases where constraints and exceptions either become outdated or have been erroneously entered, the Quartus II TimeQuest Timing Analyzer provides a convenient way to remove them.

Table 6-21 lists commands that allow you to remove constraints and exceptions from a design.

Table 6–21. Constraint and Exception Removal		
Command	Description	
<pre>remove_clock [-all] [<clock list="">]</clock></pre>	Removes any clocks specified by <i><clock list=""></clock></i> that have been previously created. The <i>-</i> all option removes all declared clocks.	
remove_clock_groups -all	Removes all clock groups previously created. Specific clock groups cannot be removed.	
<pre>remove_clock_latency -source <targets></targets></pre>	Removes the clock latency constraint from the clock specified by <targets>.</targets>	
<pre>remove_clock_uncertainty -from <from clock=""> -to <to clock=""></to></from></pre>	Removes the clock uncertainty constraint from <from clock=""> to <to clock="">.</to></from>	
<pre>remove_input_delay <targets></targets></pre>	Removes the input delay constraint from <targets>.</targets>	
<pre>remove_output_delay <targets></targets></pre>	Removes the output delay constraint from <targets>.</targets>	
reset_design	Removes all constraints and exceptions in the design.	

Timing Reports

The Quartus II TimeQuest Timing Analyzer provides real-time static timing analysis result reports. Reports are generated only when requested. Each report can be customized to display specific timing information, excluding those fields not required.

This section describes the various report generation commands supported by the Quartus II TimeQuest Timing Analyzer.

report_timing

Use the report_timing command to generate a setup, hold, recovery, or removal report. Example 6–24 shows the report_timing command and options.

Example 6–24. report_timing Command

```
report timing
[-append]
[-detail <summary | path_only | path_and_clock | full_path>]
[-from <names>]
[-to <names>]
[-file <name>]
[-fall from clock <names> | -rise from clock <names> -from clock <names>]
[-hold]
[-less than slack <slack limit>]
[-npaths <number>]
[-nworst <number>]
[-recovery]
[-removal]
[-setup]
[-stdout]
[-through <names>]
[-through <names>]
[-to clock <names>]
[-panel name <name>]
[-fall_to_clock <names> | -rise_to_clock <names>]
```

Table 6–22 describes the options for the report_timing command.

Table 6–22. report_timing Command Options (Part 1 of 2)	
Option	Description
-append	Specifies that the current report be appended to the file specified by the -file option.
-file <name></name>	Indicates that the current report is written to the file <name>.</name>

Table 6–22. report_timing Command Options (Part 2 of 2)		
Option	Description	
-detail <summary path_only path_and_clock full_path></summary path_only path_and_clock 	Specifies whether or not the clock path detail is reported. Path Only : Clock network delay is lumped together Summary : Lists each individual path Path and Clock : Clock network delay is shown in detail Full Path : More clock network details, in particular for generated clocks	
-fall_from_clock <names></names>	Specifies the falling edge of the <names> from the source register to be analyzed. The options from_clock, fall_from_clock, and rise_from_clock are mutually exclusive.</names>	
-fall_to_clock <names></names>	Specifies the falling edge of the <i><names< i="">> to the destination register to be analyzed. The options to_clock, fall_to_clock, and rise_to_clock are mutually exclusive.</names<></i>	
-file <names></names>	Indicates that the current report is written to the file <name>.</name>	
-hold	Specifies a clock hold analysis.	
<pre>-less_than_slack <slack limit=""></slack></pre>	Limits the paths to be reported to those the <i><slack limit=""></slack></i> value.	
-npaths <number></number>	Specifies the number of paths to report.	
-nworst <number></number>	Restricts the number of paths per endpoint.	
-panel_name < <i>names</i> >	Specifies the name of the panel in the Reports pane.	
-recovery	Specifies a recovery analysis.	
-removal	Specifies a removal analysis.	
<pre>-rise_from_clock <names></names></pre>	Specifies the rising edge of the <i><names></names></i> from the source register to be analyzed. The options from_clock, fall_from_clock, and rise_from_clock are mutually exclusive.	
<pre>-rise_to_clock <names></names></pre>	Specifies the rising edge of the <i><names></names></i> to the destination register to be analyzed. The options to_clock, fall_to_clock, and rise_to_clock are mutually exclusive.	
-setup	Specifies a clock setup analysis.	
-stdout	Indicates the report be sent to stdout.	
-through <names></names>	Specifies the through node for the analysis.	
-to <names></names>	Specifies the to node for the analysis.	
-to_clock <names></names>	Specifies the destination clock for the analysis.	
-panel_name < <i>names</i> >	Sends the results to the panel and specifies the name of the new panel.	

Example 6–25 shows a sample report that results from typing the following command:

report_timing -from_clock clk_async -to_clock clk_async -setup -npaths 1 +

Г

```
Example 6–25. Sample report_timing Report
```

```
Info:
_____
    Info: To Node : dst_reg
Info: From Node : src_reg
    Info: Latch Clock : clk async
    Info: Launch Clock : clk_async
    Info:
    Info: Data Arrival Path:
    Info:
    Info: Total (ns) Incr (ns) Type Node

        Info:
        0.000
        0.000
        launch edge time

        Info:
        2.237
        2.237
        R
        clock network delay

    Info:2.4100.173uTcosrc_regInfo:2.4100.000 RRCELLsrc_reg|regoutInfo:3.4070.997 RRICdataout|datainInfo:3.5610.154 RRCELLdst_reg
    Info:
    Info: Data Required Path:
    Info:
    Info: Total (ns) Incr (ns) Type Node

        Info:
        10.000
        10.000
        latch edge time

        Info:
        11.958
        1.958
        R
        clock network delay

        Info:
        11.610
        -0.348
        uTsu
        dst_reg

    Info:
    Info: Data Arrival Time : 3.561
Info: Data Required Time : 11.610
    Info: Slack
                    : 8.049
    Info: ______
```

The report_timing command generates a report of the specified analysis type—either setup, hold, recovery, or removal. Each report contains various columns for the data arrival times and data required time, specifically:

- Total
- Incr
- RF
- Type
- Fanout
- Location
- Element

Each of the four column descriptions are described in the Table 6–23.

P

All columns appear only when a report panel is created. If the report_timing output is directed to a file or the console, only the Total, Incr, RF, Type and Node columns appear.

Table 6–23. Timing Report Data		
Column Name	Description	
Total	Shows the accumulated time delay	
Incr	Shows the increment in delay	
RF	Shows the input and output transition of the element; this can be one of the following: R, F, RR, RF, FR, FF	
Туре	Shows the node type; refer to Table 6–24 of a description of the various node types	
Fanout	Shows the number of fan-outs of the element	
Location	Shows the location of the element in the FPGA	
Element	Shows the name element	

Table 6–24 provides a description of the possible node Type in the report_timing reports.

Table 6–24. Type Description		
Type Name	Description	
CELL	Indicates the element is either a register or a combinational element in the FPGA; the CELL can be a register in the ALM, memory blocks, or DSP blocks	
COMP	Indicates the PLL clock network compensation delay	
IC	Indicates the element is an interconnect delay	
μt _{co}	Indicates the element's micro clock-to-out time	
μt _{SU}	Indicates the element's micro setup time	
μ _{tH}	Indicates the element's micro hold time	
і _{ЕХТ}	Indicates the element's external input delay time	
O _{EXT}	Indicates the element's external output delay time	

report_clock_transfers

Use the report_clock_transfers command to generate a report that details all clock-to-clock transfers in the design. A clock-to-clock transfer is reported if a path exists between two registers that are clocked by two different clocks. Information such as the number of destinations and sources is also reported.

Use the report_clock_transfers command to generate a setup, hold, recovery, or removal report.

Example 6–26 shows the report_clock_transfers command and options.

Example 6–26. report_clock_transfers Command

report_clock_transfers
[-append]
[-file <name>]
[-hold]
[-setup]
[-stdout]
[-recovery]
[-removal]
[-panel name <name>]

Table 6–25 describes the options for the report_clock_transfers command.

Table 6–25. report_clock_transfers Command Options	
Option	Description
-append	Specifies that the current report be appended to the file specified by the -file option.
-file <name></name>	Indicates that the current report is written to the file <name>.</name>
-hold	Creates a clock transfer summary for hold analysis.
-setup	Creates a clock transfer summary for setup analysis.
-stdout	Indicates the report be sent to stdout.
-recovery	Creates a clock transfer summary for recovery analysis.
-removal	Creates a clock transfer summary for removal analysis.
-panel_name <name></name>	Sends the results to the panel and specifies the name of the new panel.

report_clocks

Use the report_clocks command to generate a report that details all clocks in the design. The report contains information such as type, period, waveform (rise and fall), and targets for all clocks in the design.

Example 6–27 shows the report_clocks command and options.

Example 6–27. report_clocks Command

report_clocks
[-append]
[-desc]
[-file <name>]
[-stdout]
[-panel_name <name>]

Table 6–26 describes the options for the report_clocks command.

Table 6–26. report_clocks Command Options	
Option	Description
-append	Specifies that the current report be appended to the file specified by the -file option.
-file <name></name>	Indicates that the current report is written to the file <name>.</name>
-desc	Specifies the clock names to sort in descending order. The default is ascending order.
-stdout	Indicates the report be sent to stdout.
-panel_name <name></name>	Sends the results to the panel and specifies the name of the new panel.

report_min_pulse_width

A minimum pulse width checks that a clock high or low pulse is sustained enough to recognize an actual change in the clock signal. A failed minimum pulse width check indicates that the register may not recognize the clock transition. Use the report_min_pulse_width command to generate a report that details the minimum pulse width for all clocks in the design. The report contains information for high and low pulses for all clocks in the design.

The report_min_pulse_width command also reports minimum period checks for RAM and DSP, as well as I/O edge rate limits for input and output clock ports. For output ports, the port must either have a clock (or generated clock) assigned to it or used as the -reference_pin for an input/output delays.

The report_min_pulse_width command checks the I/O edge rate limits, but does not always perform the check for output clock ports. For the report_min_pulse_width command to check the I/O edge rate limits for output clock ports the output clock port must:

Have a clock or generated clock constraint assigned to it

or

Be used as a -reference_pin for an Input or Output delay constraint

Each register in the design is reported twice per clock that clocks the register: once for the high pulse and once for the low pulse. Example 6–28 shows the report_min_pulse_width command and options.

Example 6–28. report_min_pulse_width Command

```
report_min_pulse_width
[-append]
[-file <name>]
[-nworst <number>]
[-stdout]
[<targets>]
[-panel name <name>]
```

Table 6–27 describes the options for the <code>report_min_pulse_width</code> command.

Table 6–27. report_min_pulse_width Command Options	
Option	Description
-append	If output is sent to a file, this option appends the result to that file. Otherwise, the file is overwritten.
-file <name></name>	Sends the results to a file.
-nworst <number></number>	Specifies the number of pulse width checks to report. The default is 1.
-stdout	Redirects the output to stdout via messages; only required if another output format, such as a file, has been selected and is also to receive messages.
-targets	Specifies registers.
-panel name <i><name></name></i>	Sends the results to the panel and specifies the name of the new panel.

report_net_timing

Use the report_net_timing command to generate a report that details the delay and fan-out information about a net in the design. A net corresponds to a cell's output pin.

Example 6–29 shows the report_net_timing command and options.

Example 6–29. report_net_timing Command

```
report_net_timing
[-append]
[-file <name>]
[-nworst_delay <number>]
[-nworst_fanout <number>]
[-stdout]
[-panel_name <name>]
```

Table 6–28 describes	the options	for the	report	_net_	timing
command.					

Table 6–28. report_net_timing Command Options		
Option	Description	
-append	Specifies that the current report be appended to the file specified by the -file option.	
-file <name></name>	Indicates that the current report is written to the file <name>.</name>	
-nworst_delay <number></number>	Specifies that <number> worst net delays be reported.</number>	
-nworst_fanout <number></number>	Specifies that <number> worst net fan-outs be reported.</number>	
-stdout	Indicates the report be sent to stdout.	
-panel_name <name></name>	Sends the results to the panel and specifies the name of the new panel.	

report_sdc

Use the use the report_sdc command to generate a report of all the Synopsys Design Constraints in the project.

Example 6–30 shows the report_sdc command and options.

Example 6–30. report_sdc Command

report_sdc
[-ignored]
[-append]
[-file]
[-stdout]
[-panel_name <name>]

Table 6–29 describes the options for the report_sdc command.

Table 6–29. report_sdc Command Options		
Option	Description	
-ignored	Reports assignments that were ignored.	
-append	Specifies that the current report be appended to the file specified by the -file option.	
-file	Indicates that the current report is written to the file <name>.</name>	
-stdout	Indicates that the report is sent to stdout.	
-panel_name <name></name>	Sends the results to the panel and specifies the name of the new panel.	

report_ucp

Use the report_ucp command to generate a report of all unconstrained paths in the design.

Example 6–31 shows the report_ucp command and options.

Example 6–31. report_ucp Command

```
report_ucp
[-append]
[-file <name>]
[-hold]
[-setup]
[-stdout]
[-summary]
[-panel_name <name>]
```

Table 6–30. Option Descriptions for report_ucp		
Option	Description	
-append	Specifies that the current report be appended to the file specified by the -file option.	
-file <name></name>	Indicates that the current report is written to the file <name>.</name>	
-hold	Report all unconstrained hold paths.	
-setup	Report all unconstrained setup paths.	
-stdout	Indicates the report be sent to stdout.	
-summary	Generates only the summary panel.	
-panel_name <name></name>	Sends the results to the panel and specifies the name of the new panel.	

Table 6–30 describes the options for the report_ucp command.

Table 6–31 summarizes all reporting commands available in the Quartus II TimeQuest Timing Analyzer.

Table 6–31. Reports from the Tasks Pane and Tcl Commands (Part 1 of 2)			
Task Pane Report	Tcl Command	Description	
Report Setup Summary	create_timing_summary -setup	Generates a clock setup summary for all defined clocks.	
Report Hold Summary	create_timing_summary -hold	Generates a clock hold summary for all defined clocks.	
Report Recovery Summary	create_timing_summary -recovery	Generates a clock recovery summary for all defined clocks.	
Report Removal Summary	create_timing_summary -removal	Generates a clock removal summary for all defined clocks.	
Report Clocks	report_clocks	Generates a clock summary for all defined clocks.	
Report Clock Transfers	report_clock_transfers	Generates a clock transfer summary for all clock-to-clock transfers in the design.	
Report SDC	report_sdc	Generates a summary of all SDC file commands read.	
Report Unconstrained Paths	report_ucp	Generates a summary of all unconstrained paths in the design.	
Report Timing	report_timing	Generates a detailed summary for specific paths in the design.	
Report Net Timing	report_net_timing	Generates a detailed summary for specific nets in the design.	

Table 6–31. Reports from the Tasks Pane and Tcl Commands (Part 2 of 2)		
Task Pane Report	Tcl Command	Description
Report Minimum Pulse Width	report_min_pulse_width	Generates a detailed summary for specific registers in the design.
Create Slack Histogram	create_slack_histogram	Generates a detailed histogram for a specific clock in the design.

report_path

Use the report_path command to report the longest delay paths and the corresponding delay value.

Example 6–32 shows the report_path command and options.

Example 6–32. report_path Command

report_path
[-append]
[-file <name>]
[-from <names>]
[-npaths <number>]
[-stdout]
[-through]
[-to <names>]
[-panel name <name>]

Table 6–32 describes the options for the report_path command.

Table 6–32. report_path Command Options		
Option	Description	
-append	Specifies that the current report be appended to the file specified by the -file option.	
-file <name></name>	Indicates that the current report is written to the file <i><name></name></i> .	
-from <i><names></names></i>	Specifies the source node for the analysis.	
-npaths <number></number>	Specifies the number of paths to report.	
-stdout	Indicates the report be sent to stdout.	
-through <i><name></name></i>	Specifies the through node for the analysis.	
-to <i><names></names></i>	Specifies the destination node for the analysis.	
-panel_name <name></name>	Sends the results to the panel and specifies the name of the new panel.	
report_datasheet

Use the report_datasheet command to generate a datasheet report which summarizes the timing characteristics of the entire design. It reports setup (tsu), hold (th), clock-to-output (tco), minimum clock-to-output (mintco), propagation delay (tpd), and minimum propagation delay (mintpd) times. Example 6–33 shows the report_datasheet command and options.

Example 6-33. report_datasheet Command
report_datasheet
[-append]
[-file <name>]
[-stdout]
[panel_name <name>]

Table 6-33 describes the options for the report_datasheet command.

Table 6–33. report_datasheet Command Options Image: Command Options		
Option	Description	
-append	Specifies that the current report be appended to the file specified by the -file option.	
-file <name></name>	Indicates that the current report is written to the file <i><name></name></i> .	
-stdout	Indicates the report be sent to stdout.	
-panel_name <name></name>	Sends the results to the panel and specifies the name of the new panel.	

The delays are reported with respect to a base clock or port for which they are relevant. If there is a case where there are multiple paths for a clock, the maximum delay of the longest path is taken for the tsu, th, tco, and tpd, and the minimum delay of the shortest path is taken for mintco and mintpd.

report_rskm

Use the report_rskm command to generate a report that details the receiver skew margin for LVDS receivers.

Example 6–34 shows the report_rskm command and options.

Example 6–34. report_rskm Command

```
report_rskm
[-append]
[-file <name>]
[-panel_name <name>]
[-stdout]
```

Table 6–34 describes the options for the report_rskm command.

Table 6–34. report_rskm Command Options	
Type Name	Description
-append	Specifies that the current report be appended to the file specified by the -file option.
-file <name></name>	Indicates that the current report is written to the file <name>.</name>
-panel_name < <i>name</i> >	Sends the results to the panel and specifies the name of the new panel.
-stdout	Indicates the report be sent to stdout.

report_tccs

Use the report_tccs command to generate a report that details the channel-to-channel skew margin for LVDS transmitters.

Example 6–35 shows the report_tccs command and options.

Example 6–35. report_tccs Command

```
report_tccs
[-append]
[-file <name>]
[-panel_name <name>]
[-quiet]
[-stdout]
```

Table 6–35 describes the options for the report_tccs command.

Table 6–35. report_tccs Command Options	
Type Name	Description
-append	Specifies that the current report be appended to the file specified by the $-file$ option.
-file <name></name>	Indicates that the current report is written to the file <name>.</name>
-panel_name < <i>name</i> >	Sends the results to the panel and specifies the name of the new panel.
-quiet	Specifies that nothing will be printed if there are no LVDS receivers in the design.
-stdout	Indicates the report be sent to stdout.

report_path

Use the report_path command to generate a report that details the longest delay paths between any two arbitrary keeper nodes.

Example 6–36 shows the report_path command and options.

Example 6–36. report_path Command

report_path
[-append]
[-file <name>]</name>
[-from <names>]</names>
[-min_path]
[-npaths <number>]</number>
[-nworst <number>]</number>
[-panel_name <name>]</name>
[-stdout]
[-summary]
[-through < <i>names</i> >]
[-to <names>]</names>

Table 6–36 describes the options for the report_path command.

Table 6–36. report_path Command Options (Part 1 of 2)	
Type Name	Description
-append	Specifies that the current report be appended to the file specified by the -file option.
-file <name></name>	Indicates that the current report is written to the file <name>.</name>

Table 6–36. report_path Command Options (Part 2 of 2)	
Type Name	Description
-from <names></names>	The <i><names></names></i> is a collection or list of objects in the design. The <i><names></names></i> acts as the start point of the path.
-min_path	Displays the minimum delay paths.
-npaths <number></number>	Specifies the number of paths to report.
-nworst <number></number>	Specifies the maximum number of paths to report for each endpoint.
-panel_name < <i>name</i> >	Sends the results to the panel and specifies the name of the new panel.
-stdout	Indicates the report be sent to stdout.
-summary	Creates a single table with a summary of each path found.
-through <names></names>	The <i><names></names></i> is a collection or list of objects in the design. Specifies false path passes through <i><names></names></i> .
-to <names></names>	The <i><names></names></i> is a collection or list of objects in the design. The <i><names></names></i> acts as the end point of the path.

The delay path reported cannot pass through a keeper node, for example, a register or port. Instead, the delay path must be from the output pin of a keeper node to the input pin of a keeper node.

Figure 6–32 shows a simple design with a register-to-register path.

Figure 6–32. Simple Register-to-Register Path

Example 6–37 shows the report generated from the following command:

report_path -from [get_pins {reg1|regout}] -to [get_pins \
{reg2|datain}] -npaths 1 -panel_name "Report Path" -stdout

Example 6–37. report_path from Keeper Output Pin to Keeper Input Pin

Example 6–38 shows the report generated from the following command:

```
> report_path -from [get_ports data_in_a] -to [get_pins \
{reg2|regout}] -npaths 1
```

Example 6–38. report_path from Keeper-to-Keeper Output Pin

Info: Report Path: No paths were found
0 0.000

No paths were reported in Example 6–38 because the destination passes through an input pin of a keeper node.

check_timing

Use the check_timing command to generate a report on any potential problem with the design or applied constraints. Not all check_timing results are serious issues, and the results should be examined to see if the results are desired. Example 6–39 shows the check_timing command and options.

```
Example 6–39. check_timing Command
```

```
check_timing
[-append]
[-file <name>]
[-include <check_list>]
[-stdout]
[-panel_name <name>]
```

Table 6–37 describes the options for the check_timing command.

Table 6–37. check_timing Command Options	
Option	Description
-append	Specifies that the current report be appended to the file specified by the -file option.
-file <name></name>	Indicates that the current report is written to the file <i><name></name></i> .
-include	Indicates that a check is to be performed with the <i><check_list></check_list></i> . Refer to Table 6–38 for a list of checks.
-stdout	Indicates the report be sent to stdout.
-panel_name <name></name>	Sends the results to the panel and specifies the name of the new panel.

Table 6–38 describes the possible checks.

Table 6–38. Possible Checks (Part 1 of 2)	
Option	Description
no_clock	Checks that registers have at least one clock at their clock pin, and that ports determined to be clocks have a clock assigned to them.
multiple_clock	Checks that registers have at most one clock at their clock pin. When multiple clocks reach a register's clock pin, both clocks will be used for analysis.
generated_clock	Checks that generated clocks are valid. Generated clocks must have a source that is clocked by a valid clock. They must also not depend on each other in a loop (clk1 cannot have clk2 as a source if clk2 already uses clk1 as a source).
no_input_delay	Checks that every input port that is not determined to be a clock has an input delay set on it.
no_output_delay	Checks that every output port has an output delay set on it.
partial_input_delay	Checks that input delays are complete. Makes sure that input delays have a rise-min, fall-min, rise-max, and fall-max portion set.
partial_output_delay	Checks that output delays are complete. Makes sure that output delays have a rise-min, fall-min, rise-max, and fall-max portion set.
reference_pin	Checks if reference pins specified in set_input_delay and set_output_delay using the reference_pin option are valid. A reference_pin is valid if the clock option specified in the same set_input_delay/set_output_delay command matches the clock that is in the direct fan-in of the reference_pin. Being in the direct fan-in of the reference_pin means that there must be no keepers between the clock and the reference_pin.

Table 6–38. Possible Checks (Part 2 of 2)	
Option	Description
latency_override	Checks if the clock latency constraint that is set on a port or pin overrides the more generic clock latency set on a clock. Clock latency can be set on a clock, where the latency applies to all keepers clocked by the clock, whereas clock latency can also be set on a port or pin, where the latency applies to registers in the fan-out of the port or pin.
loops	Checks that there are no strongly connected components in the design. These loops prevent a design from being properly analyzed. Indicates that loops exist but were marked so that they would not be traversed.
latches	Checks if there are latches in the design. The Quartus II TimeQuest Timing Analyzer warns the user that the latches exist and cannot be properly analyzed.

Example 6–40 shows how the check_timing command can be used.

Example 6-40. The check_timing Command

```
# Constrain design
create_clock -name clk -period 4.000 -waveform { 0.000 2.000 } \
    [get_ports clk]
set_input_delay -clock clk2 1.5 [get_ports in*]
set_output_delay -clock clk 1.6 [get_ports out*]
set_false_path -from [get_keepers in] -through [get_nets r1] -to \
    [get_keepers out]
# Check if there were any problems
```

check_timing -include {loops latches no_input_delay partial_input_delay}

report_clock_fmax_summary

Use the report_clock_fmax_summary to report potential f_{MAX} for every clock in the design, regardless of the user-specified clock periods. f_{MAX} is only computed for paths where the source and destination registers or ports are driven by the same clock. Paths of different clocks, including generated clocks, are ignored. For paths between a clock and its inversion, f_{MAX} is computed as if the rising and falling edges are scaled along with f_{MAX} , such that the duty cycle (in terms of a percentage) is maintained. Example 6-41 shows the report_clock_fmax_summary command and options.

Example 6-41. report_clock_fmax_summary Command

report_clock_fmax_summary
[-append]
[-file <name>]
[-panel_name <name>]
[-stdout]

Table 6–39 describes the options for the

report_clock_fmax_summary command.

Table 6–39. report_clock_fmax_summary Command Options		
Option	Description	
-append	Specifies that the current report be appended to the file specified by the -file option.	
-file <name></name>	Indicates that the current report is written to the file <name>.</name>	
-stdout	Indicates the report be sent to stdout.	
-panel_name <name></name>	Sends the results to the panel and specifies the name of the new panel.	

create_timing_summary

Reports the worst-case Clock Setup and Clock Hold slacks and endpoint TNS (total negative slack) per clock domain. Total negative slack is the sum of all slacks less than zero for each destination register or port in the clock domain.

Example 6-42 shows the create_timing_summary command and options.

```
Example 6–42. create_timing_summary Command
```

create_timing_summary
[-append]
[-file <name>]
[-hold]
[-panel_name <name>]
[-recovery]
[-removal]
[-setup]
[-stdout]

Table 6–40 describes the options for the create_timing_summary command.

Table 6-40. create_timing_summary Command Options	
Option	Description
-append	Specifies that the current report be appended to the file specified by the -file option.
-file <name></name>	Indicates that the current report is written to the file <i><name></name></i> .
-hold	Generates a clock hold check summary report.
-panel_name <name></name>	Sends the results to the panel and specifies the name of the new panel.
-recovery	Generates a recovery check summary report.
-removal	Generates a removal check summary report.
-setup	Generates a clock setup check summary report.
-stdout	Indicates the report be sent to stdout.

Timing Analysis Features

Multi-Corner Analysis

Multi-corner analysis allows a design to be verified under a variety of operating conditions (voltage, process, and temperature) while performing a static timing analysis on the design.

Use the set_operating_conditions command to change the operating conditions of the device used for static timing analysis.

Example 6-43 shows the set_operating_conditions command and options.

Example 6-43. set_operating_conditions Command

set_operating_conditions
[-model <fast|slow>]
[-speed <speed grade>]
[-temperature <value in °C>]
[-voltage <value in mV>]
[<operating condition Tcl object>]

г

Table 6–41 describes the options for the report_net_timing command.

Table 6–41. report_net_timing Command Options	
Option	Description
-model <fast slow="" =""></fast>	Specifies the timing model.
-speed <speed grade=""></speed>	Specifies the device speed grade.
-temperature <value in="" °c=""></value>	Specifies the operating temperature.
-voltage <value in="" mv=""></value>	Specifies the operating voltage.
<operating condition="" object="" tcl=""></operating>	Specifies the operating condition Tcl object that specifies the operating conditions.

If an operating condition Tcl object *is* used, the model, speed, temperature, and voltage options are not required. If an operating condition Tcl object is *not* used, the model must be specified, and the -speed, -temperature, and -voltage options are optional, using the appropriate defaults for the device where applicable.

Table 6–42 shows the available operating conditions that can be set for each device family.

Table 6–42. Device Family Operating Conditions								
Dovice Femily		Available Condition	Operating Condition Tcl					
Device Failing	Model	Voltage (mV)	Temp (°C)	Objects				
Stratix III	Slow Slow Fast	1100 1100 1100	85 0 0	slow_1100mv_85c slow_1100mv_0c fast_1100mv_0c				
Cyclone III	Slow Slow Fast	1200 1200 1200	85 0 0	slow_1200mv_85c slow_1200mv_0c fast_1200mv_0c				
Stratix II	Slow Fast	N/A	N/A	slow fast				
Cyclone II	Slow Fast	N/A	N/A	slow fast				

F

Use the command

get_available_operating_conditions to obtain a list of available operating conditions for the target device.

Example 6–44 shows how to set the operating conditions for a Stratix III design to the slow model, 1100 mV, and 85° C.

Example 6-44. Setting Operating Conditions with Individual Values
set operating conditions -model slow -temperature 85 -voltage 1100

Alternatively, the operating conditions in Example 6–44 can be set with the Tcl object as shown in Example 6–45.

Example 6–45. Setting Operating Conditions with a Tcl Object

set_operating_conditions slow_1100mv_85c

Advanced I/O Timing and Board Trace Model Assignments

The Quartus II TimeQuest Timing Analyzer is able to use Advanced I/O Timing and Board Trace Model assignments to model I/O buffer delays in your design. The Advanced I/O Analysis feature can be turned ON or OFF in the **Settings** dialog box under the **TimeQuest Timing Analyzer** option.

If you turn ON or OFF the **Advanced I/O Timing** or change Board Trace Model assignments and do not recompile before you analyze timing, you must use the -force_dat option when you create the timing netlist. Type the following command at the Tcl console of the Quartus II TimeQuest Timing Analyzer:

```
create timing netlist -force dat 🕶
```

If you turn ON or OFF the Advanced I/O Timing or change Board Trace Model assignments and do recompile before you analyze timing, you do not need to use the -force_dat option when you create the timing netlist. You can create the timing netlist with the create_timing_netlist command, or with the **Create Timing Netlist** task in the **Tasks** pane.

For more information about the Advanced I/O Timing feature, refer to the *I/O Management* chapter in volume 2 of the *Quartus II Handbook*.

Wildcard Assignments and Collections

To simplify the task of applying constraints to many nodes in a design, the Quartus II TimeQuest Timing Analyzer accepts the "*" and "?" wildcard characters. Use these wildcard characters to reduce the number of individual constraints you must specify in your design.

The "*" wildcard character matches any string. For example, given an assignment made to a node specified as reg*, the Quartus II TimeQuest Timing Analyzer searches for and applies the assignment to all design nodes that match the prefix reg with none, one, or several characters following, such as reg1, reg[2], regbank, and reg12bank.

The "?" wildcard character matches any single character. For example, given an assignment made to a node specified as reg?, the Quartus II TimeQuest Timing Analyzer searches and applies the assignment to all design nodes that match the prefix "reg" and any single character following, for example, reg1, rega, and reg4.

Both the collection commands get_cells and get_pins have three options that allow you to refine searches that include the wildcard character. To refine your search results, select the default behavior, the -hierarchical option, or the -compatibility option.

The pipe character is used to separate one hierarchy level from the next in the Quartus II TimeQuest Timing Analyzer. For example, *<absolute full cell name>* | *<pin suffix>* represents a hierarchical pin name with the "|" separating the hierarchy from the pin name.

When you use the collection commands get_cells and get_pins without an option, the default search behavior is performed on a per-hierarchical level of the pin name, that is, the search is performed level by level. A full hierarchical name may contain multiple hierarchical levels where a "|" is used to separate the hierarchical levels, and each wildcard character represents only one hierarchical level. For example, "*" represents the first hierarchical level and "* | *" represents the first and second hierarchical levels.

When you use the collection commands get_cells and get_pins with the -hierarchical option, a recursive match is performed on the relative hierarchical path name of the form *<short cell name>* | *<pin name>*. The search is performed on the node name, for example, the last hierarchy of the name, and not the hierarchy path. Unlike the default behavior, this option does not limit the search to each hierarchy level represented by the pipe character.

F

The pipe character cannot be used in the search with the get_cells -hierarchical option. The pipe character can be used with the get_pins collection search. When you use the collection commands get_cells and get_pins with the -compatibility option, the search performed is similar to that of the Quartus II Classic Timing Analyzer. This option searches the entire hierarchical path, and pipe characters are not treated as special characters.

Assuming the following cells exist in a design:

foo foo|bar

and the following pin names:

foo|dataa foo|datab foo|bar|datac foo|bar|datad

Table 6–43 shows the results of using these search strings.

Table 6–43. Sample Search Strings and Search Results							
Search String	Search Result						
get_pins * dataa	foo dataa						
get_pins * datac	<empty></empty>						
get_pins * * datac	foo bar datac						
get_pins foo* *	foo dataa, foo datab						
get_pins -hierarchical * * datac	<empty> (1)</empty>						
get_pins -hierarchical foo *	foo dataa, foo datab						
get_pins -hierarchical * datac	foo bar datac						
get_pins -hierarchical foo * datac	<empty> (1)</empty>						
get_pins -compatibility * datac	foo bar datac						
get_pins -compatibility * * datac	foo bar datac						

Note to Table 6–43:

(1) Due to the additional * | * | in the search string, the search result is <*empty>*.

Resetting a Design

Use the reset_design command to remove all timing constraints and exceptions from the design under analysis. The command removes all clocks, generated clocks, derived clocks, input delays, output delays, clock latency, clock uncertainty, clock groups, false paths, multicycle paths, min delays, and max delays.

This command provides a convenient way to return to the initial state of analysis without the need to delete and re-create a new timing netlist.

The TimeQuest Timing Analyzer GUI

The Quartus II TimeQuest Timing Analyzer provides an intuitive and easy-to-use GUI that allows you to efficiently constrain and analyze your designs. The GUI consists of the following panes:

- "The Quartus II Software Interface and Options" described on page 6–83
- "View Pane" described on page 6–85
- "Tasks Pane" described on page 6–87
- "Console Pane" described on page 6–90
- "Report Pane" described on page 6–90
- "Constraints" described on page 6–90
- "Name Finder" described on page 6–92
- "Target Pane" described on page 6–94
- "SDC Editor" described on page 6–94

Each pane provides features that enhance productivity (Figure 6–33).

Figure 6–33. The TimeQuest GUI

Quartus II TimeQuest Timing Analyzer	- C:/altera	/72_ib10	9/qdesią	gns/fir_fil	lter/fir_fil	ter - filtref					l	
File Edit View Netlist Constraints Reports :	Script Tools	Window	Help									
Report X	Report Tim	ning										•
TimeQuest Timing Analyzer Summary Report Timing	Command	Info Summ	ary of Pat	hs								1
-	Slack	From Nod	e	To Node	e Launch (Clock Latch Clock						<u>^</u>
	1 2.836	state_m:in	st1 filter.ta	p4 follow	clk	clkx2						
	2 2.846	inst5[5]		yn_out[5	j] clkx2	clkx2						
	3 2.858	inst5[7]		yn_out[/	Clkx2	clkx2						
	5 2 004	inst5[2]		yn_out[1	:j CIKX2	cikx2						
	1-2.034	msto[1]		yrCondi	JUKAL	UKAZ						<u> </u>
J	Path #1: 5	etun slack i	is 2.836	-	_			Path #1: Setu	n slack is 2.83	5		_
Asis Asis Asis	D. J. O		Date	Date Los	× 1			D. H. O		. D. J. Marrah	1	
Beport Linconstrained Paths	Path Sum	mary Statist	ICS Data	anam Wa	vetorm			Path Summar	y Statistics Da	ita Path Waver		1
Report Ignored Constraints	Data Arr	ival Path		1-	-							
	lotal	Incr	RF	lype	Fanout	Location	Element				7.92	7 nc
Check Timing	1 0.000	0.000	0				launch edge time			i	1.02	
E	3 2 963	2.704	n	uTee	1	LCEE V27 V20 N25	clock network delay	Launch Clo	ck Launch			
Bennt Net Timing	4 2 863	0.000	BB	CELL	6	LCEE X37 Y20 N25	inst1lfiter tan4kenout		•			
Report Path	5 3.927	1.064	BB	IC	1	IOC_X38_Y27_N2	follow/datain	Setup Rela	tionship	10.0 r	IS	$ \rightarrow $
Report Minimum Pulse Width.	6 6.164	2.237	RB	CELL	0	PIN_F6	follow					
Create Slack Histogram	<						>	Latch Cloc	<			Latch
Macros	Data Rec	juired Path	1						1			
Report Top Failing Paths	Total	Incr	RF	Туре	Fanout	Location	Element	Data Arriv	a1		Υ I	
	1 10.000	10.000					latch edge time					
Report All Core Timings	2 10.000	0.000	R				clock network delay	Clock Dela	2.75	4 ns		
Write SDC File	3 9.000	-1.000	R	oExt	0	PIN_F6	follow					
Reset Design								Data Delay		3.41 hs	1	
Set Operating Conditions												
								Slack			2.836	ns
								Data Regui	-ed			
											_	
								Output Del				-1.0 ns
×								Compare Der				
<								Time (ns)	0.9	4.9		8.9
× 2 F i) Info: Running Overtus II	TimeOver	t Timina	Analyz:	er								
5 i Info: ********************	********	********	******	 *********		******						×
Console History												
For Help, press F1										F	Ready	NUM
											_	

The Quartus II Software Interface and Options

The Quartus II software allows you to configure various options for the Quartus II TimeQuest Timing Analyzer report generation that are generated in the Compilation Report for the design.

The TimeQuest Timing Analyzer settings, in the **Settings** dialog box, allow you to configure the options shown in Table 6–44.

Table 6–44. The Quartus II TimeQuest Timing Analyzer Settings (Part 1 of 2)					
Options	Description				
SDC files to include in the project	Adds and removes SDC files associated with the project				
Enable Advanced I/O Timing	Generates advanced I/O timing results from board trace models specified for each pin				

Г

Table 6–44. The Quartus II TimeQuest Timing Analyzer Settings (Part 2 of 2)					
Options	Description				
Enable multicorner timing analysis during compilation	Generates multiple reports for all available operating conditions of the target device				
Report worst-case paths during compilation	Generates worst-case path reports per clock domain				
Tcl Script File for customizing report during compilation	Specifies any custom scripts to be sourced for any custom report generation				

The options shown in Table 6–44 only control the reports generated in the Compilation Report, and do not control the reports generated in the Quartus II TimeQuest Timing Analyzer.

Figure 6–34 shows the TimeQuest Timing Analyzer setting.

Figure 6–34. TimeQuest Timing Analyzer Settings

General 🗾	TimeQuest Timing Analyzer
Files	
Libraries	Specify LimeQuest Liming Analyzer options.
- Device	
Voltage	SDC files to include in the project
Temperature	SDC filename: Add
L Compilation Process Settings	
Early Timing Estimate	File name Tune Remove
Incremental Compilation	filtref sdc Supposus Design Constraints File
EDA Tool Settings	
- Design Entry/Synthesis	Down
- Simulation	DOWN
 Timing Analysis 	
- Formal Verification	Enable Advanced I/O Timing
 Physical Synthesis 	Enable multicorner timing analysis during compilation
Board-Level	Beport worst-case paths during compilation
- Analysis & Synthesis Settings	· · · · · · · · · · · · · · · · · · ·
Verile a UDL land	T cl Script File for customizing reports during compilation
Default Parameters	Tcl Script File name:
Sunthesis Netlist Ontimizations	
- Fitter Settings	
Physical Synthesis Optimization	
Timing Analysis Settings	
 TimeQuest Timing Analyzer 	
🖃 Classic Timing Analyzer Setting	Description:
Classic Timing Analyzer Re	Associates a Synopsys Design Constraint File (.sdc) with this project.
Assembler	
- Design Assistant	
- Signal I ap II Logic Analyzer	
Logic Analyzer Interface 💦 🚽	

View Pane

The **View** pane is the main viewing area for the timing analysis results. Use the **View** pane to view summary reports, custom reports, or histograms. Figure 6–35 shows the **View** pane after you select the Summary (Setup) report from the **Report** pane.

Figure 6–35. Summary (Setup) Report

mmary (Setup)			⊙ +
Clock	Slack	End Point TNS	
inclk0	0.303	0.000	
altpll0:inst altpll:altpll_component[_clk0	0.384	0.000	
altpll0:inst altpll:altpll_component[_clk0	0.384	0.000	
	Clock Clock inclk0 altpl0:instlatpl1:altpl1_component1_clk0	Clock Slack inclk0 0.303 altpI0:insttatpII:altpII_componentLclk0 0.384	Clock Slack End Point TNS inclk0 0.303 0.000 altpl10:inst[altpl1_altpl1_component1_clk0 0.384 0.000

View Pane: Splitting

For the proper analysis of timing results, comparison of multiple reports is extremely important. To facilitate multiple report viewing, the **View** pane supports window splitting. Window splitting divides the **View** pane into multiple windows, allowing you to view different reports side-by-side.

You can split the **View** pane into multiple windows using the split icon located in the upper right hand corner of the **View** pane. Drag the icon in different directions to generate additional window views in the **View** pane. For example, if you drag the split icon to the left, the **View** pane creates a new window to the right of the current window (Figure 6–36).

Figure 6–36. Splitting the View Pane to the Left (Before and After Split Left)

Su	ımmary (Setup)						⊙⊹
	Clock	Slack	End Point TNS				
1	inclk0	0.303	0.000				
2	altpll0:inst altpll:altpll_component[_clk0	0.384	0.000				
			o.'				
51	Clock	Slack	End Point TNS		Clock	Slack	End Point TNS
1	Clock inclk0	Slack 0.303	End Point TNS 0.000	1	Clock inclk0	Slack 0.303	End Point TNS
1	Clock inclk0 altpll0:inst[altpll:altpll_component[_clk0	Slack 0.303 0.384	End Point TNS 0.000 0.000	1	Clock inclk0 altpll0.inst[altpll:altpll_component[_clk0	Slack 0.303 0.384	End Point TNS 0.000 0.000

If you drag the split icon diagonally, the **View** pane creates three new windows in the **View** pane (Figure 6–37).

-	ummary (Setup)						
	Clock	Slack	End Point TNS				
1	inclk0	0.303	0.000				
2	altpll0:inst altpll:altpll_component[_clk0	0.384	0.000				
	I						
5	ummary (Setup)		0-	519	ummary (Setup)		
	Clock	Slack	End Point TNS		Clock	Slack	End Point
1	inclkΩ	0.303	0.000	7	inglk0	0.000	0.000
					THCKO	0.303	0.000
2	altpll0:inst altpll:altpll_component[_clk0	0.384	0.000		altpli0:inst[altpl]:altpl_component[_clk0	0.303	0.000
2	altpll0:inst altpll:altpll_component[_clk0	0.384	0.000		altpll0:inst[altpl]:altpl]_component[_clk0	0.303	0.000
2	altpll0:inst[altpl]:altpl]_component[_clk0	0.384	0.000		2 altpli0:instlaltpll:altpll_component[_clk0	0.303	0.000
2	altpll0:inst(altpl: altpl_component_clk0	0.384	0.000		altpli0:inst[altpli:altpli_component[_clk0	0.303	0.000
2	altpil0:instjaltpil:altpil_component[_clk0 ummary (Setup) Clock	0.384 Slack	0.000 End Point TNS		altpll0:inst(altpl: altpl_component_clk0 ummary (Setup) Clock	0.303 0.384 Slack	0.000 0.000
2 51	altpll0.inst[altpll_altpll_component[_clk0 ummary (Setup) Clock inclk0	0.384 Slack 0.303	0.000 End Point TNS 0.000		altpll0:inst[altplLaltpl_component_clk0 ummary (Setup) Clock inclk0	0.303 0.384 Slack 0.303	0.000 0.000 End Point 0.000
1 2 5 1 2	altpll0.instialtplI.altpl[_componentl_clk0 ummary (Setup) Clock inclk0 altpl0.instialtplI.altpl[_componentl_clk0	0.384 Slack 0.303 0.384	0.000 End Point TNS 0.000 0.000		altpill:instaltpil:altpil_component_cik0 ummary (Setup) Clock incik0 altpil:instaltpil:altpil_component_cik0 altpil:instaltpil:altpil_component_cik0	0.303 0.384 Slack 0.303 0.384	0.000 0.000 End Point 1 0.000 0.000
1 2 1 2	atpll0.instialtpll.atpl_component[_clk0 ummary (Setup) Clock inclk0 atpll0.instjaltpll.atpl[_component[_clk0	0.384 Slack 0.303 0.384	0.000 End Point TNS 0.000 0.000		Inclusion altpill0:inst[altpil_altpil_component[_clk0 ummary (Setup) Clock inclk0 altpill0:inst[altpil_altpil_component[_clk0	0.303 0.384 Slack 0.303 0.384	0.000 0.000 End Point 1 0.000 0.000
1 2 1 2	atpll0.instialtpli.atpl_component[_clk0 ummary (Setup) Clock inclk0 atpll0.instialtpli.atpl[_component[_clk0	0.384 Slack 0.303 0.384	0.000 End Point TNS 0.000 0.000		altpill0:inst[altpil_altpil_component_clk0 ummary (Setup) Clock inclk0 altpill0:inst[altpil_altpil_component[_clk0	0.303 0.384 Slack 0.303 0.384	0.000 0.000 End Point 1 0.000 0.000

Figure 6–37. Splitting the View Pane Diagonally (Before and After Diagonal Split)

Drag the split icon downward to create a new window directly below the current window.

View Pane: Removing Split Windows

You can remove windows that you create in the **View** pane using the split icon by dragging the border of the window over the window you wish to remove (Figure 6–38).

S	ummary (Setup)		Θ	+	Fmax	x Summar	у		0+
	Clock	Slack	End Point TNS		Fm	nax (MHz)	Clock Na	ame	
1	inclk0	0.303	0.000		1 16	23.38	altpll0:ins	t[altpll:altpll_component[_clk0	
2	altpll0:inst altpll:altpll_component[_clk0	0.384	0.000		2 14:	34.72	inclk0		
					This regar comp or po clock	panel repor rdless of the puted for pa orts are drive ks, including	ts FMAX I e user-spe ths where on by the g generate	for every clock in the design, cified clock periods. FMAX is a the source and destination re same clock. Paths of different ad clocks, are ignored. For pa	only gisters ths
	Summ	ary (Sel	tup)					<mark>⊙ +</mark>	
	Cloc	k			Slack	k End Poi	int TNS		
	1 inclk	0			0.303	3 0.000			
	2 altpli);inst altp	ll:altpll_component(_clk0	0.384	4 0.000			

Figure 6–38. R	Removing a Spli	t Window (Befa	ore and After S	plit is Removed)
----------------	-----------------	----------------	-----------------	------------------

Tasks Pane

Use the **Tasks** pane to access common commands such as netlist setup report generation.

Common commands are located in the **Tasks** pane: **Open Project** and **Write SDC File**, and **Reset Design**. The other commands, including timing netlist setup and the generation of reports, are contained in the following folders:

- Netlist Setup
- Reports

Each command in the **Tasks** pane has an equivalent Tcl command that is displayed in the **Console** pane when the command runs.

Opening a Project and Writing a Synopsys Design Constraints File

To open a project in the Quartus II TimeQuest Timing Analyzer, double-click the **Open Project** task. If you launch the Quartus II TimeQuest Timing Analyzer from the Quartus II software GUI, the project opens automatically. You can add or remove constraints from the timing netlist after the Quartus II TimeQuest Timing Analyzer reads the initial SDC file. After the file is read, the initial SDC file becomes outdated compared to the constraints in the Quartus II TimeQuest Timing Analyzer. Use the **Write SDC File** command to generate an SDC file that is up-to-date and reflects the current state of constraints in the Quartus II TimeQuest Timing Analyzer.

Netlist Setup Folder

The **Netlist Setup** folder contains tasks that are used to set up the timing netlist for timing analysis. The three tasks located in this folder are **Create Timing Netlist**, **Read SDC File**, and **Update Timing Netlist**.

Use the **Create Timing Netlist** task to create a netlist that the Quartus II TimeQuest Timing Analyzer uses to perform static timing analysis. This netlist is used only for timing analysis by the Quartus II TimeQuest Timing Analyzer.

You must always create a timing netlist before you perform static timing analysis with the Quartus II TimeQuest Timing Analyzer.

Use the **Read SDC File** command to apply constraints to the timing netlist. By default, the **Read SDC File** command reads the *<current revision>.sdc* file.

Use the read_sdc command to read an SDC file that is not associated with the current revision of the design.

Use the **Update Timing Netlist** command to update the timing netlist after you enter constraints. You should use this command if any constraints are added or removed from the design.

Reports Folder

The **Reports** folder contains commands to generate timing summary reports of the static timing analysis results. The nine commands located in this folder are summarized in Table 6–45.

Table 6–45. Reports Folder Commands (Part 1 of 2)					
Report Task	Description				
Report f _{MAX} Summary	Generates a f _{MAX} summary report for all clocks in the design.				
Report Setup Summary	Generates a clock setup summary report for all clocks in the design.				

Table 6–45. Reports Folder Commands (Part 2 of 2)		
Report Task	Description	
Report Hold Summary	Generates a clock hold summary report for all clocks in the design.	
Report Recovery Summary	Generates a recovery summary report for all clocks in the design.	
Report Removal Summary	Generates a removal summary report for all clocks in the design.	
Report Clocks	Generates a summary report of all created clocks in the design.	
Report Clock Transfers	Generates a summary report of all clock transfers detected in the design.	
Report Minimum Pulse Width	Generates a summary report of all minimum pulse widths in the design.	
Report SDC	Generates a summary report of the constraints read from the SDC file.	
Report Unconstrained Paths	Generates a summary report of all unconstrained paths in the design.	
Report Ignored Constraints	Generates a summary report of all ignored SDC constraints for the design.	
Report Datasheet	Generates a datasheet report for the design.	

Macros Folder

The **Macros** folder contains commands that perform custom tasks available in the Quartus II TimeQuest Timing Analyzer utility package. These commands are: **Report All Summaries**, **Report Top Failing Paths**, and **Create All Clock Histograms**.

Table 6–46 describes the commands available in the Macros folder.

Table 6–46. Macros Folder Commands		
Macro Task	Description	
Report All Summaries	This command runs the Report Setup Summary , Report Hold Summary , Report Recovery Summary , Report Removal Summary , and Minimum Pulse Width commands to generate all summary reports.	
Report Top Failing Paths	This command generates a report containing a list of top failing paths.	
Create All Clock Histograms	This command runs the Create Slack Histogram command to generate a clock histogram for all clocks in the design.	
Report All I/O Timings	This command generates a report of all timing paths that start or end at a device port.	
Report All Core Timings	This command generates a report of all timing paths that start and end at the device register.	

Console Pane

The **Console** pane is both a message center for the Quartus II TimeQuest Timing Analyzer, and an interactive Tcl. The **Console** pane has two tabs: the **Console** tab and the **History** tab. All messages, such as info and warning messages, appear in this pane. Also, the **Console** tab allows you to enter and run Synopsys Design Constraints and Tcl commands. The **Console** tab shows the Tcl equivalent of all commands that you run in the **Tasks** pane. The **History** tab records all the Synopsys Design Constraints and Tcl commands that are run.

To run the commands located in the **History** tab after the timing netlist has been updated, right-click the command, and click **Rerun**.

You can copy Tcl commands from the **Console** and **History** tabs to easily generate Tcl scripts to perform timing analysis.

Report Pane

Use the **Report** pane to access all reports generated from the **Tasks** pane, and by any custom report commands. When you select a report in the **Report** pane, the report is shown in the active window in the **View** pane.

If a report is out-of-date with respect to the current constraints, a "?" icon is shown next to the report.

Constraints

Use the Constraints menu to access commonly used constraints, exceptions, and commands. The following commands are available on the Constraints menu:

- Create Clock
- Create Generated Clock
- Set Clock Latency
- Set Clock Uncertainty
- Set Clock Groups
- Remove Clock

For example, use the **Create Clock** dialog box to create clocks in your design. Figure 6–39 shows the **Create Clock** dialog box.

Figure 6–39. Create Clock Dialog Box

Clock name:	clock_sys			
Period:	10.000	ns		
-Waveform edge	es			
Rising:	2.5	ns		
Falling:	7.5	ns	2.5	7.5 10.0
Targets:	clk]	
	1.			
SDC command:	create_clock -period 10).000 -nam	ne clock_sys -waveform {2.	5 7.5} clk
				ancel Help

The following commands specify timing exceptions, and are available on the Constraints menu:

- Set False Path
- Set Multicycle Path
- Set Maximum Delay
- Set Minimum Delay

All the dialog boxes used to specify timing constraints or exceptions from commands have an SDC command field. This field contains the SDC command that is run when you click **OK**.

All commands and constraints created in the Quartus II TimeQuest Timing Analyzer user interface are echoed in the **Console** pane.

The constraints specified with Constraints menu commands are not saved to the current SDC file automatically. You must run the **Write SDC File** command to save your constraints.

The following commands are available on the Constraints menu in the Quartus II TimeQuest Timing Analyzer:

- Generate SDC File from QSF
- Read SDC File
- Write SDC File

The **Generate SDC File from QSF** command runs a Tcl script that converts the Quartus II Classic Timing Analyzer constraints in a QSF file to an SDC file for the Quartus II TimeQuest Timing Analyzer. The file *<current revision>.sdc* is created by this command.

For information about the **Generate SDC File from QSF** command, refer to the *Switching to the Quartus II TimeQuest Timing Analyzer* chapter in volume 3 of the *Quartus II Handbook*.

The **Generate SDC File from QSF** command attempts to convert all timing constraints and exceptions in the QSF file to their equivalent SDC file constraints. However, not all QSF file constraints are convertible to SDC file constraints. Review the SDC file after it is created to ensure that all constraints have been successfully converted.

The **Read SDC File** command reads the *<current revision>.sdc* file.

When you select the **Write SDC File** command, an up-to-date SDC file that reflects the current state of constraints in the Quartus II TimeQuest Timing Analyzer is generated.

Name Finder

Use the **Name Finder** dialog box to select the target for any constraints or exceptions in the Quartus II TimeQuest Timing Analyzer GUI. The Name Finder allows you to specify collections, filters, and filter options. The **Collections** field in the **Name Finder** dialog box allows you to specify the type of name to select. To select the type, in the **Collection** list, select the desired collection API including:

- get_cells
- get_clocks
- get_keepers
- get_nets
- get_nodes
- get_pins
- get_ports
- get_registers

For more information about the various collection APIs, refer to "Collections" on page 6–23.

The **Filter** field allows you to filter names based on your own criteria including wildcards characters. You can further refine your results using the following filter options.

- Case-insensitive
- Hierarchical
- Compatibility mode

For more information about the filter options, refer to "Wildcard Assignments and Collections" on page 6–79.

The **Name Finder** dialog box also provides an SDC command field that displays the currently selected name search command. You can copy the value from this field and use it for other constraint target fields. The Name Finder dialog box is shown in Figure 6–40.

Figure 6-40. Name Finder Dialog Box

<u>C</u> ollection:	get_cells	▼ <u>F</u> ilter:	×			
Options Vase-insen: Hierarchica Compatibilit Matches List 8 matches fou acq_ck acq_data_in[acq_trigger_in altera_interma altera_reserver altera_reserver altera_reserver	itive mode ind 10 10 10 10 10 10 10 10 10 10		>>><<	2 selected names acq_trigger_in[0] altera_reserved_tdo		
<u>S</u> DC command:	[get_cells -no_c	ase {acq_trigger_	_in[0] altera_re	eserved_tdo}]		
					(

Target Pane

When using the TimeQuest GUI, you have the ability to split the **View** pane into multiple windows. The splitting feature allows you to display multiple reports in the **View** pane. After splitting the **View** pane, the last active window is updated with any new reports. You can change this behavior by changing the state of each split window. You can do this by clicking on the target circle in the upper right-hand corner (Figure 6–41). Table 6–47 describes the state of each window.

Figure 6–41. Target Pane

Table 6–47. View Pane Window State		
State	Description	
Partially Filled Red Circle	Indicates that the active window will display any new reports.	
Fully Filled Red Circle	Indicates that the window, independent of it being the active window, will display any new reports.	
Empty Circle	Indicates that the window will not display any new reports.	

Clicking on the circle in the upper right-hand corner of an active window changes the state of the window.

SDC Editor

The TimeQuest GUI also provides an SDC editor. The SDC editor provides an easy and convenient way to write, edit, and read SDC files directly from the tool. The SDC editor is context sensitive. After an SDC constraint or exception has been entered, a tooltip appears that shows the options and format for the constraint or exception, as shown in Figure 6–42.

Figure 6–42. SDC Editor

P

The Constraints menu, on the menu bar, allows you to bring up the **Constraints** dialog box. After you have finished entering all required parameters, the SDC is inserted at the current cursor position.

Conclusion

The Quartus II TimeQuest Timing Analyzer caters to the needs of complex designs, resulting in increased productivity and efficiency through its intuitive user interface, support of industry-standard constraints format, and scripting capabilities. The Quartus II TimeQuest Timing Analyzer is a next-generation timing analysis tool that supports the industry-standard SDC format and allows designers to create, manage, and analyze complex timing constraints, and to perform advanced timing verification.

Referenced Documents

- This chapter references the following documents:
- Introduction to Quartus II Manual
- I/O Management chapter in volume 2 of the Quartus II Handbook
- SDC and TimeQuest API Reference Manual
- Switching to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook

Document Revision History

Table 6–48 shows the revision history for this chapter.

Table 6–48. Document Revision History				
Date and Version	Changes Made	Summary of Changes		
October 2007 v7.2.0	 Updated for the Quartus II software version 7.1, including: Updated organization flow of the Compilation Flow with TimeQuest Guidelines, Timing Analysis Overview, and Specify Design Timing Requirements sections Added new information on Clock as Data Analysis 	Updated for the Quartus II software version 7.2.		
May 2007 v7.1.0	 Updated for the Quartus II software version 7.1, including: Added support of report_path in "Timing Reports" on page 6–57 Added report_timing information, especially on page 6-11 Added new information under the following headings: "Derive Clock Uncertainty" on page 6–40 "report_rskm" on page 6–69 "report_tccs" on page 6–69 "report_path" on page 6–70 Replaced the "Fast Timing Model Analysis" section with "Multi-Corner Analysis" on page 6–76 Performed general 7.1 updates 	Updated for the Quartus II software version 7.1.		
March 2007 v7.0.0	Updated Quartus II software 7.0 revision and date only. No other changes made to chapter.	_		
November 2006 v6.1.0	 Updated for the Quartus II software version 6.1, including: New "Getting Started" section, including descriptions of the Create Clock and Create Generated Clock dialog boxes/commands, sections on Specifying Clock Requirements, Specifying Input and Output Port Requirements, and Reporting SDC Editor Usability enhancements to the GUI Updated SDC support Numerous changes throughout chapter 	Updated for the Quartus II software version 6.1.		
July 2006 v6.0.1	 Updated for the Quartus II software version 6.0.1: Fixed typo in report_clock_transfers command on page 6-15. 	_		
May 2006 v6.0.0	Initial release.	_		

7. Switching to the Quartus II TimeQuest Timing Analyzer

QII53019-7.2.0

Introduction

The Quartus II TimeQuest Timing Analyzer provides more powerful timing analysis features than the Quartus II Classic Timing Analyzer. This chapter describes the benefits of switching to the Quartus II TimeQuest Timing Analyzer, the differences between the Quartus II TimeQuest and Quartus II Classic Timing Analyzers, and the process you should follow to switch a design from using the Quartus II Classic Timing Analyzer to the Quartus II TimeQuest Timing Analyzer.

Benefits of Switching to the Quartus II TimeQuest Analyzer

Increasing design complexity requires a timing analysis tool with greater capabilities and flexibility. The Quartus II TimeQuest Timing Analyzer offers the following benefits:

- Industry-standard Synopsys Design Constraint (SDC) support increases productivity.
- Simple, flexible reporting uses industry-standard terminology and makes timing sign-off faster.

For more detailed information about the features and capabilities of the Quartus II TimeQuest Timing Analyzer, refer to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the *Quartus II Handbook*.

These features ease constraint and analysis of modern, complex designs. SDC constraints support complex clocking schemes, high-speed interfaces, and more logic. An example includes designs that have multiplexed clocks, regardless of whether they are switched on or off chip. Designs with source-synchronous interfaces, such as DDR memory interfaces, are much simpler to constrain and analyze with the Quartus II TimeQuest Timing Analyzer.

There are three main differences between the Quartus II Classic and Quartus II TimeQuest Timing Analyzers. Unlike the Quartus II Classic Timing Analyzer, the Quartus II TimeQuest Timing Analyzer has the following three benefits:

- All clocks are related by default. (Refer to "Related and Unrelated Clocks" on page 7–13.)
- The default hold multicycle value is zero. (Refer to "Hold Multicycle" on page 7–24.)

You must constrain all ports and ripple clocks. (Refer to "Automatic
Clock Detection" on page 7–19.)

Chapter Contents

	"Switching to the Quartus II TimeQuest Analyzer" describes the four-step process you should follow to switch a design to the Quartus II TimeQuest Timing Analyzer.			
	"Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers" on page 7–5 covers terminology, constraints, clocks, hold multicycle, and other differences.			
	"Timing Assignment Conversion" on page 7–33 is a comprehensive guide to converting Quartus II Classic QSF timing assignments to Quartus II TimeQuest SDC constraints.			
	"Conversion Utility" on page 7–55 describes a utility that helps you convert Classic QSF timing assignments toQuartus II TimeQuest SDC constraints.			
	"Notes" on page 7–68 includes notes about support for specific features in the current version of the Quartus II TimeQuest Timing Analyzer.			
Switching to the Quartus II TimeQuest	You should use the following process to switch a design from the Quartus II Classic Timing Analyzer to the Quartus II TimeQuest Timing Analyzer. The process is composed of the following steps, which are described in detail in the next sections:			
Analyzer	 Compile your design and perform timing analysis with the Quartus II Classic Timing Analyzer (page 7–2). 			
	2. Create an SDC file that contains timing constraints (page 7–3).			
	3. Perform timing analysis with the Quartus II TimeQuest Timing Analyzer and examine the reports (page 7–4).			
	4. Set the default timing analyzer to TimeQuest (page 7–4).			
	Compile Your Design			
	To begin, compile your design with the Quartus [®] II software. You should run the Quartus II Classic Timing Analyzer during compilation because it is easier to convert your assignments to SDC constraints when you create an SDC file. To run the Quartus II Classic Timing Analyzer in the			

Quartus II GUI, on the Processing menu, click Start, then click Start

Timing Analyzer. To run the Quartus II Classic Timing Analyzer if you are a command-line user, type quartus_tan <project> + at a system command prompt.

Create an SDC File

The Quartus II TimeQuest Timing Analyzer supports SDC format constraints. If you are familiar with SDC terminology, you can create an SDC file with any text editor and skip to "Perform Timing Analysis with the Quartus II TimeQuest Timing Analyzer" on page 7–4. Name the SDC file *<revision>.sdc* (*<revision>* is the current revision of your project) and save it in your project directory.

Refer to the *SDC and TimeQuest Tcl API Reference Manual* for a TimeQuest SDC command reference.

Alternately, you can use a Quartus II TimeQuest conversion utility to help you convert the timing assignments in an existing QSF file to corresponding SDC constraints.

Conversion Utility

To run the Quartus II TimeQuest conversion utility, click **Generate SDC file from QSF** on the Constraints menu. You can also run the conversion utility by typing either of the following commands at a system command prompt:

```
✓ quartus_tan --qsf2sdc <project name> ↔
```

or

🗸 quartus_sta --qsf2sdc <project name> 🕂

The SDC file created by the conversion utility is named <*revision*>.sdc.

For information about how to run the Quartus II TimeQuest Timing Analyzer, refer to "Run the Quartus II TimeQuest Analyzer" on page 7–4.

If you use the conversion utility, you must review the SDC file to ensure it is correct and complete, and make changes if necessary. Refer to "Constraint File Priority" on page 7–10 for the recommended way to make changes.

The conversion utility cannot convert some types of Quartus II Classic assignments for the following reasons:

No corresponding SDC constraint exists

 Multiple SDC constraints are valid, so correct conversion requires knowledge of the intended function of your design

You must manually convert any such assignments based on the guidelines in "Timing Assignment Conversion" on page 7–33.

Perform Timing Analysis with the Quartus II TimeQuest Timing Analyzer

When your SDC file is complete, use the reporting capabilities in the Quartus II TimeQuest Timing Analyzer. If you use the Quartus II TimeQuest GUI, double-click any of the reports listed in the **Task** pane. You can also type commands in the Quartus II TimeQuest Tcl shell to generate reports.

You should also review "Notes" on page 7–68 to ensure the Quartus II TimeQuest Timing Analyzer supports all stages of your design flow.

For complete information about how to use the Quartus II TimeQuest Timing Analyzer, and descriptions of commands and reports, refer to the *Quartus II TimeQuest Timing Analyzer* chapter in volume 3 of the *Quartus II Handbook*, and the *SDC and TimeQuest Tcl API Reference Manual*.

Run the Quartus II TimeQuest Analyzer

If you are using the Quartus II software, to open the Quartus II TimeQuest GUI, on the Tools menu, click **TimeQuest Timing Analyzer**. The Quartus II TimeQuest GUI automatically opens the project you have open in the Quartus II GUI.

If you use the system command prompt to open the Quartus II TimeQuest Timing Analyzer, type quartus_staw + to open the Quartus II TimeQuest GUI, or type quartus_sta -s + to start the Quartus II TimeQuest Timing Analyzer in Tcl shell mode. Use the **project_open** command to open your project, or, on the File menu, click **Open Project**.

Set the Default Timing Analyzer

To use the Quartus II TimeQuest Timing Analyzer as the default timing analyzer for your project, turn on **Use TimeQuest Timing Analyzer during compilation**. In the Quartus II GUI, on the Assignments menu, click **Settings**, then click the **Timing Analysis Settings** category, and select **Use TimeQuest Timing Analyzer during compilation**. You can make the same setting in your project's QSF file with the following Tcl command: set_global_assignment -name \
USE_TIMEQUEST_TIMING_ANALYZER ON

This setting directs the Quartus II software to use the Quartus II TimeQuest Timing Analyzer instead of the Quartus II Classic Timing Analyzer.

The setting to make the Quartus II TimeQuest Timing Analyzer the default Timing Analyzer is specific to each project, so you can decide on a per-project basis whether to use the Quartus II TimeQuest Timing Analyzer or the Quartus II Classic Timing Analyzer.

If you want to use the Quartus II Classic Timing Analyzer instead of the Quartus II TimeQuest timing analyzer, ensure **Use Classic Timing Analyzer during compilation** is selected. You can delete the *<revision>.sdc* file, because the Quartus II Classic Timing Analyzer does not use it.

In the Quartus II software, a timing analyzer performs two functions:

- Processing timing constraints and exceptions that affect how your design is placed and routed
- Reporting after place and route is complete so you know whether the design meets timing requirements

Although you can use one timing analyzer to process timing constraints during place and route and the other for reporting, you should use the same timing analyzer for both. The Quartus II Classic Timing Analyzer uses assignments in the QSF file, and theQuartus II TimeQuest Timing Analyzer uses constraints in the SDC file. Any differences between the timing assignments in the two files may cause inconsistent results.

TheQuartus II TimeQuest Timing Analyzer is different from the Quartus II Classic Timing Analyzer in the following ways:

- Terminology (page 7–5)
- Constraints (page 7–7)
- Clocks (page 7–13)
- Hold Multicycle (page 7–24)
- Fitter Behavior (page 7–27)
- Reporting (page 7–27)
- Scripting API (page 7–32)

Terminology

This section introduces the industry-standard SDC terminology that the Quartus II TimeQuest Timing Analyzer uses.

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers ••••

For more detailed information about this terminology, refer to the *Quartus II TimeQuest Timing Analyzer* chapter in volume 3 of the *Quartus II Handbook*.

Netlist

The Quartus II TimeQuest Timing Analyzer uses SDC naming conventions for netlists. Netlists consist of cells, pins, nets, ports, and clocks.

- Cells are instances of fundamental hardware elements in Altera[®] FPGAs (such as logic elements, look-up tables, and registers).
- Pins are inputs and outputs of cells.
- Nets are connections between output pins and input pins.
- Ports are top-level module inputs and outputs (device inputs and outputs).
- Clocks are abstract objects outside the netlist.
- The terminology of pins and ports is opposite to that of the Quartus II Classic Timing Analyzer. In the Quartus II Classic Timing Analyzer, ports are inputs and outputs of cells, and pins are top-level module inputs and outputs (device inputs and outputs).

Figure 7–1 shows a simple design, and Figure 7–2 shows the Quartus II TimeQuest netlist representation of the design. Netlist elements in Figure 7–2 are labeled to illustrate the SDC terminology.

Figure 7–2. Quartus II TimeQuest Timing Analyzer Netlist

Collections

In addition to standard SDC collections, the Quartus II TimeQuest Timing Analyzer supports the following Altera-specific collection types:

- **Keepers**—Non-combinational nodes in a netlist
- Nodes—Nodes can be combinational, registers, latches, or ports (device inputs and outputs)
- **Registers**—Registers or latches in the netlist

You can use the **get_keepers**, **get_nodes**, or **get_registers** commands to access these collections.

Constraints

The Quartus II Classic and Quartus II TimeQuest Timing Analyzers store constraints in different files, support different methods for constraint entry, and prioritize constraints differently. The following sections detail these differences.

Constraint Files

The Quartus II TimeQuest Timing Analyzer stores all SDC timing constraints in SDC files. The Quartus II Classic Timing Analyzer stores all timing assignments in your project's Quartus II Settings File (QSF) file. The QSF file contains all your project's assignments and settings except for the Quartus II TimeQuest Timing Analyzer constraints. The Quartus II TimeQuest Timing Analyzer ignores the timing assignments in your QSF file except when the conversion utility converts Quartus II Quartus II Classic QSF timing assignments to Quartus II TimeQuest SDC constraints. There is no automatic process that keeps timing constraints synchronized between your QSF and SDC files. If you want to keep the constraints synchronized, you must convert them manually.

Constraint Entry

In the Quartus II Classic Timing Analyzer, you enter timing assignments with the Settings dialog box, the Assignment Editor, or with commands in Tcl scripts. The Quartus II TimeQuest Timing Analyzer does not use the Assignment Editor for its constraints, and you cannot use the Assignment Editor to enter SDC constraints. You must use one of the following methods to enter Quartus II TimeQuest constraints:

- Enter constraints at the Tcl prompt in the Quartus II TimeQuest Timing Analyzer
- Enter constraints in an SDC file with a text editor or SDC editor
- Use the constraint entry commands on the Constraints menu in the Quartus II TimeQuest GUI

You can enter timing assignments for the Quartus II Classic Timing Analyzer even if no timing netlist exists for your design. The Quartus II TimeQuest Timing Analyzer requires that a netlist exist for interactive constraint entry. Each Quartus II TimeQuest Timing Analyzer constraint is a Tcl command evaluated in real-time, if entered directly in the Tcl console. As part of this evaluation, the Quartus II TimeQuest Timing Analyzer validates all names. To do this, SDC commands can only be evaluated after a netlist is created. An SDC file can be created at any time using the Quartus II TimeQuest Timing Analyzer or any other text editor, but a netlist is required before an SDC file can be sourced. You must create a timing netlist in the Quartus II TimeQuest Timing Analyzer before you can enter constraints with either of the following interactive methods:

- At the Tcl console of the Quartus II TimeQuest Timing Analyzer
- With commands on the Constraints menu in the Quartus II TimeQuest GUI

If you enter constraints with a text editor separate from the Quartus II TimeQuest Timing Analyzer, no timing netlist is required.

To create a timing netlist in the Quartus II TimeQuest Timing Analyzer, use the **create_timing_netlist** command, or double-click **Create Timing Netlist** in the Task pane of the Quartus II TimeQuest GUI.
If you have never compiled your design, and you want to use the Quartus II TimeQuest Timing Analyzer to enter constraints interactively, you must synthesize your design before you create a timing netlist. To synthesize your design, type quartus_map <project name> + at a system command prompt, or, if you use the Quartus II GUI, ensure that your project is open, then click Start on the Processing menu, and click Start Analysis and Synthesis.

To create the netlist, open the Quartus II TimeQuest Timing Analyzer. Then, on the Netlist menu, click **Create Timing Netlist...**, select **Post-map**, and click **OK**. Alternately, type create_timing_netlist -post_map ← at the Tcl Console.

Time Units

Enter time values are in default time units of nanoseconds (ns) with up to three decimal places. Note that the Quartus II TimeQuest Timing Analyzer does not display the default time unit when it displays time values.

You can specify a different default time unit with the **set_time_format -unit** <*default time unit*> command, or specify another unit when you enter a time value, for example, 300ps.

Specifying time units with the value is not part of the standard SDC format. This is a Quartus II TimeQuest extension.

You can specify clock constraints with period or frequency in the Quartus II TimeQuest Timing Analyzer. For example, you can use either of the following constraints:

create_clock -period 10.000

(assuming default units and decimal places)

- create_clock -period "100 MHz"
- create_clock -period "10 ns"

MegaCore Functions

If you change any MegaCore function settings and regenerate the core after you convert your timing assignments to SDC constraints, you must manually update the SDC constraints or reconvert your assignments. You must update or reconvert, because changes to MegaCore function settings can affect timing assignments embedded in the hardware description language files of the core. The timing assignments are not converted automatically when the core settings change. You should make a backup copy of your SDC file before reconverting assignments. If you made changes to the SDC file, you can manually copy the updated MegaCore timing constraints to your SDC file.

Bus Name Format

In the Quartus II Classic Timing Analyzer, you can make a timing assignment to all bits in a bus with the bus name (or the bus name followed by an asterisk enclosed in square brackets) as the target. For example, to make an assignment to all bits of a bus called address, use address or address [*] as the target of the assignment.

In the Quartus II TimeQuest Timing Analyzer, you must use the bus name followed by square brackets enclosing an asterisk, like this: address [*].

Constraint File Priority

The Quartus II TimeQuest Timing Analyzer searches for SDC files with a specific priority, as shown in Figure 7–3.

If you specify constraints in multiple SDC files, or if you use a single SDC file with a name other than *<revision>.sdc*, you must add the files to your project so the Quartus II TimeQuest Timing Analyzer can find them. If you use the Quartus II software, click Add/Remove Files in Project on the Project menu, and add the appropriate SDC files. You can also add SDC files to your project with the following Tcl command in your QSF file, repeated once for each SDC file:

set_global_assignment -name SDC_FILE <SDC file name>

The Quartus II TimeQuest Timing Analyzer reads constraint files from the files list in the order they are listed, first to last.

If you use an SDC file created by the conversion utility, you should place it before all other SDC files in the list of files. When conflicting constraints apply to the same node, the last constraint has the highest priority. Therefore, SDC files with your additions or changes should be listed after the SDC file created by the conversion utility, so your constraints have higher priority.

Beginning with version 6.1, the Quartus II TimeQuest Timing Analyzer does not run the conversion utility automatically when it cannot find an SDC file according to the priority shown in Figure 7–3. It may prompt you to run the conversion utility from the Constraints menu in the Quartus II TimeQuest GUI.

You must review the SDC file as you would when manually running the conversion utility. Refer to "Reviewing Conversion Results" on page 7–64 for information about how to review the converted constraints.

If no SDC file exists when you run the Quartus II Fitter, and you have turned on **Use TimeQuest Timing Analyzer during compilation**, the Fitter does not create an SDC file automatically, but it attempts to meet a default 1 GHz constraint on all clocks in your design.

Constraint Priority

The Quartus II Classic Timing Analyzer prioritizes assignments based on the specificity of the nodes to which they are assigned. The more specific an assignment is, the higher its priority. The Quartus II TimeQuest Timing Analyzer simplifies these precedence rules. When overlaps occur in the nodes to which the constraints apply, constraints at the bottom of the file take priority over constraints at the top of the file. As an example, in the Quartus II Classic Timing Analyzer, point-to-point multicycle assignments have higher priority than single point multicycle assignments. The two assignments in Example 7–1 result in a multicycle assignment of 2 between A_reg and all nodes beginning with B, including B_reg. The single point assignment does not apply to paths from A_reg to B_reg, because the specific point-to-point assignment takes priority over the general single point assignment.

Example 7-1. Quartus II Classic Timing Analyzer Multicycle Assignments set_instance_assignment -name MULTICYCLE -from A_reg -to B* 2 set_instance_assignment -name MULTICYCLE -to B_reg 3

Example 7–2 shows SDC versions of the Quartus II Classic Timing Analyzer timing assignments above. However, the Quartus II TimeQuest Timing Analyzer evaluates the constraints top to bottom (regardless of point-to-point or single point), so the path from A_reg to B_reg receives a multicycle exception of 3 because it is second in order.

Example 7–2. Quartus II TimeQuest Timing Analyzer Multicycle Exceptions

set_multicycle_path -from [get_keepers A_reg] -to [get_keepers B*] 2
set_multicycle_path -to [get_keepers B_reg] 3

Ambiguous Constraints

Because of new capabilities in the Quartus II TimeQuest Timing Analyzer, some Quartus II Classic assignments can be ambiguous after conversion by the conversion utility. These assignments require manual updating based on your knowledge of your design.

Figure 7–4 shows a ripple clock circuit. The explanation that follows shows an ambiguous constraint for that circuit, and how to edit the constraint to remove the ambiguity in the Quartus II TimeQuest Timing Analyzer.

Figure 7–4. Ripple Clock Circuit

In the Quartus II Classic Timing Analyzer, the following QSF multicycle assignment from clk_a to clk_b with a value of 2 applies to paths transferring data from the clk_a domain to the clk_b domain.

```
set_instance_assignment -name MULTICYCLE -from clk_a -to clk_b 2
```

In Figure 7–4, this assignment applies to the path from reg_c to reg_d. In the Quartus II TimeQuest Timing Analyzer, the use of the clock node names in the following equivalent multicycle exception is ambiguous.

```
set_multicycle_path -setup -from clk_a -to clk_b 2
```

The exception could apply to the path between clk_a and clk_b, or it could apply to paths from one ripple clock domain to the other ripple clock domain (reg_c to reg_d).

The Quartus II TimeQuest exceptions shown in Example 7–3 are not ambiguous because they use collections to explicitly specify the targets of the exception.

Example 7–3. Unambiguous Quartus II TimeQuest Timing Analyzer Exceptions

```
# Applies to path from reg_c to reg_d
set_multicycle_path -setup -from [get_clocks clk_a] \
    -to [get_clocks clk_b] 2
# Applies to path from clk_a to clk_b
set_multicycle_path -setup -from [get_registers clk_a] \
    -to [get_registers clk_b] 2
```

Clocks

The Quartus II Classic and Quartus II TimeQuest Timing Analyzers detect, analyze, and report clocks differently. The following sections describe these differences.

Related and Unrelated Clocks

In the Quartus II TimeQuest Timing Analyzer, all clocks are related by default, and you must add assignments to indicate unrelated clocks. However, in the Quartus II Classic Timing Analyzer, all base clocks are unrelated by default. All derived clocks of a base clock are related to each other, but are unrelated to other base clocks and their derived clocks.

You can change the default behavior of the Quartus II Classic Timing Analyzer to treat all clocks as related clocks. On the Assignments menu, click **Timing Analysis Settings**. Click **More Settings** and then select **Cut paths between unrelated clock domains**. Ensure that the setting is off.

Figure 7–5 on page 7–14 shows a simple circuit with a path between two clock domains. The Quartus II TimeQuest Timing Analyzer analyzes the path from reg_a to reg_b because all clocks are related by default. The Quartus II Classic Timing Analyzer does not analyze the path from reg_a to reg_b by default.

Figure 7–5. Cross Clock Domain Path

To make clocks unrelated in the Quartus II TimeQuest Timing Analyzer, use the **set_clock_groups** command with the <code>-exclusive</code> option. For example, the following command makes <code>clock_a</code> and <code>clock_b</code> unrelated, so the Quartus II TimeQuest Timing Analyzer does not analyze paths between the two clock domains.

```
set_clock_groups -exclusive -group {clock_a} -group {clock_b}
```

Clock Offset

In the Quartus II TimeQuest Timing Analyzer, clocks can have non-zero values for the rising edge of the waveform, a feature that the Quartus II Classic Timing Analyzer does not support. To specify an offset for your clock, use the waveform option for the **create_clock** command to specify the rising and falling edge times, as shown in this example:

-waveform { <rising edge time> <falling edge time> }

Figure 7–6 shows a clock constraint with an offset in the Quartus II TimeQuest Timing Analyzer GUI.

Figure 7–6. Create Clock Screen

Clock name:	a		
Period:	10.000 ns		
-Waveform edge	38		
Rising:	2 ns		
Falling:	5 ns	2.0 5.0	10.0
Targets:	[get_ports clk]		
SDC command:	create_clock -period 10.000 -nar	ne a -waveform {2 5} [get_ports clk]	

Clock offset affects setup and hold relationships. Launch and latch edges are evaluated after offsets are applied. Depending on the offset, the setup relationship can be the offset value, or the difference between the period and offset. You should not use clock offset to emulate latency. You should use the clock latency constraint instead. Refer to "Offset and Latency Example" on page 7–15 for an example that illustrates the different effects of offset and latency.

Clock Latency

The Quartus II TimeQuest Timing Analyzer does not ignore early clock latency and late clock latency differences when the clock source is the same, as the Quartus II Classic Timing Analyzer does. When you specify latencies, you should take common clock path pessimism into account and use uncertainty to control pessimism differences for clock-to-clock data transfers. Unlike clock offset, clock latency affects skew, and launch and latch edges are evaluated before latencies are applied, so the setup relationship is always equal to the period.

Offset and Latency Example

Figure 7–7 shows a simple register-to-register circuit used to illustrate the different effects of offset and latency. The examples show why you should not use clock offset to emulate clock latency. You should always turn on

the **Enable Clock Latency** option in the Quartus II Classic Timing Analyzer. This option is in the **More Settings** box of the **Timing Settings** dialog box.

The period for clk is 10 ns, and the period for the PLL output is 10 ns. The PLL compensation value is -2 ns. The network delay from the PLL to reg_a equals the network delay from clk to reg_b. Finally, the delay from reg_a to reg_b is 3 ns.

Clock Offset Scenario

Treat the PLL compensation value of -2 ns as a clock offset of -2 ns with a clock skew of 0 ns. Launch and latch edges are evaluated after offsets are applied, so the setup relationship is 2 ns (Figure 7–8).

Figure 7–8. Setup Relationship Using Offset

Equation 1 shows how to calculate the slack value for the path from reg_a to reg_b.

 (1) slack = clock arrival – data arrival slack = setup relationship + clock skew – reg_to_reg delay slack = 2ns + 0ns – 3ns slack = -1ns

The negative slack requires a multicycle assignment with a value of 2 and a hold multicycle assignment with a value of 1 to correct. With these assignments from reg_a to reg_b, the setup relationship is then 12 ns, resulting in a slack of 9 ns.

Clock Latency Scenario

Treat the PLL compensation value of –2 ns as latency with a clock skew of 2 ns. Because launch and latch edges are evaluated before latencies are applied, the setup relationship is 10 ns (the period of clk and the PLL) (Figure 7–9).

Figure 7–9. Setup Relationship Using Latency

Equation 2 shows how to calculate the slack value for the path from reg_a to reg_b.

(2) slack = clock arrival - data arrival

slack = setup relationship + clock skew - reg_to_reg delay

slack = 10ns + 2ns - 3nsslack = 9ns

The slack of 9 ns is identical to the slack computed in the previous example, but because this example uses latency instead of offset, no multicycle assignment is required.

Clock Uncertainty

The Quartus II Classic Timing Analyzer ignores **Clock Setup Uncertainty** and **Clock Hold Uncertainty** assignments when you specify a setup or hold relationship between two clocks. However, the Quartus II TimeQuest Timing Analyzer does not ignore clock uncertainty when you specify a setup or hold relationship between two clocks. Figures 7–10 and 7–11 illustrate the different behavior between the Quartus II TimeQuest and Quartus II Classic Timing Analyzers.

In both figures, the constraints are identical. There is a 20-ns period for clk_a and clk_b. There is a setup relationship (a **set_max_delay** exception in the Quartus II TimeQuest Timing Analyzer) of 7 ns from clk_a to clk_b, and a clock setup uncertainty constraint of 1 ns from clk_a to clk_b. The actual setup relationship in the Quartus II TimeQuest Timing Analyzer is 1 ns less than in the Quartus II Classic Timing Analyzer because of the way they analyze clock uncertainty.

Figure 7–10. Quartus II Classic Timing Analyzer Behavior

Figure 7–11. Quartus II TimeQuest Timing Analyzer Behavior

Derived and Generated Clocks

Generated clocks in the Quartus II TimeQuest Timing Analyzer are different than derived clocks in the Quartus II Classic Timing Analyzer. In the Quartus II Classic Timing Analyzer, the source of a derived clock must be a base clock. However, in the Quartus II TimeQuest Timing Analyzer, the source of a generated clock can be any other clock in the design (including virtual clocks), or any node to which a clock propagates through the clock network. Because generated clocks are related through the clock network, you can specify generated clocks for isolated modules, such as IP, without knowing the details of the clocks outside of the module.

In the Quartus II TimeQuest Timing Analyzer, you can specify generated clocks relative to specific edges and edge shifts of a master clock, a feature that the Quartus II Classic Timing Analyzer does not support.

Figure 7–12 shows a simple ripple clock that you should constrain with generated clocks in the Quartus II TimeQuest Timing Analyzer.

The Quartus II TimeQuest Timing Analyzer constraints shown in Example 7–4 constrain the clocks in the circuit above. Note that the source of each generated clock can be the input pin of the register itself, not the name of another clock.

Example 7–4. Generated Clock Constraints

```
create_clock -period 10 -name clk clk
create_generated_clock -divide_by 2 -source reg_a|CLK -name reg_a reg_a
create_generated_clock -divide_by 2 -source reg_b|CLK -name reg_b reg_b
```

Automatic Clock Detection

The Quartus II Classic and Quartus II TimeQuest Timing Analyzers identify clock sources of registers that do not have a defined clock source. The Quartus II Classic Timing Analyzer traces back along the clock network, through registers and logic, until it reaches a top-level port in your design. The Quartus II TimeQuest Timing Analyzer also traces back along the clock network, but it stops at registers.

You can use two SDC commands in the Quartus II TimeQuest Timing Analyzer to automatically detect and create clocks for unconstrained clock sources:

- derive_clocks—creates clocks on sources of clock pins that do not already have at least one clock sourcing the clock pin
- derive_pll_clocks—identifies PLLs and creates generated clocks on the clock output pins

derive_clocks Command

Figure 7–13 shows a simple circuit with a divide-by-2 register and indicates the clock network delays as A, B, and C. The following explanation describes how the Quartus II Classic and Quartus II TimeQuest Timing Analyzers detect the clocks in Figure 7–13.

Figure 7–13. Circuit for derive_clocks Example

The Quartus II Classic Timing Analyzer detects that clk is the clock source for registers reg_a, reg_b, and reg_c. It detects that clk is the clock source for reg_c because it traces back along the clock network for reg_c through reg_a, until it finds the clk port. The Quartus II Classic Timing Analyzer computes the clock arrival time for reg_c as A + C.

The **derive_clocks** command in the Quartus II TimeQuest Timing Analyzer creates two base clocks, one on the clk port and one on reg_a, because the command does not trace through registers on the clock network. The clock arrival time for reg_c is C because the clock starts at reg_a. To make theQuartus II TimeQuest Timing Analyzer compute the same clock arrival time (A + C) as the Quartus II Classic Timing Analyzer for **reg_c**, make the following modifications to the clock constraints created by the **derive_clocks** command:

- Change the base clock named reg_a to a generated clock
- Make the source the clock pin of reg_a (reg_a|clk) or the port clk
- Add a -divide_by 2 option

These modifications cause the clock arrival times to reg_c to match between the Quartus II Classic Timing Analyzer and the Quartus II TimeQuest Timing Analyzer. However, the clock for reg_c is shown as reg_a instead of clk, and the launch and latch edges may change for some paths due to the divide-by-2.

You can use the **derive_clocks** command at the beginning of your design cycle when you do not know all of the clock constraints for your design, but you should not use it during timing sign-off. Instead, you should constrain each clock in your design with the **create_clock** or **create_generated_clocks** commands.

The **derive_clocks** command detects clocks in your design using the following rules:

- 1. An input clock port is detected as a clock only if there are no other clocks feeding the destination registers.
 - a. Input clock ports are not detected automatically if they feed only other base clocks.
 - b. If other clocks feed the port's register destinations, the port is assumed to be an enable or data port for a gated clock.
 - c. When no clocks are defined, and multiple clocks feed a destination register, the auto-detected clock is selected arbitrarily.
- 2. All ripple clocks (registers in a clock path) are detected as clocks automatically using the same rules for input clock ports. If both an input port and a register feed register clock pins, the input port is selected as the clock.

The following examples show how the **derive_clocks** command detects clocks in the simple circuit, shown in Figure 7–14.

- If you do not make any clock settings, and then you run derive_clocks, it detects a_in as a clock according to rule 1, because there are no other clocks feeding the register.
- If you create a clock with b as its target, and then you run derive_clocks, it does not detect a_in as a clock according to rule 1a, because a_in feeds only another clock.

The following examples show how the **derive_clocks** command detects clocks in the simple circuit shown in Figure 7–15.

- If you do not make any clock settings and then you run derive_clocks, it selects a clock arbitrarily, according to rule 1c.
- If you create a clock with a_in as its target and then you run derive_clocks, it does not detect b_in as a clock according to rule 1b, because another clock (a_in) feeds the register.

derive_pll_clocks Command

The **derive_pll_clocks** command names the generated clocks according to the names of the PLL output pins by default, and you cannot change these generated clock names. If you want to use your own clock names, you must use the **create_generated_clock** command for each PLL output clock and specify the names with the -name option.

If you use the PLL clock-switchover feature, the **derive_pll_clocks** command creates additional generated clocks on each output clock pin of the PLL based on the secondary clock input to the PLL. This may require **set_clock_groups** or **set_false_path** commands to cut the primary and secondary clock outputs. For information about how to make clocks unrelated, refer to "Related and Unrelated Clocks" on page 7–13.

Hold Relationship

The Quartus II TimeQuest and Quartus II Classic Timing Analyzers choose the worst-case hold relationship differently. Refer to Figure 7–16 for sample waveforms to illustrate the different effects.

The Quartus II Classic Timing Analyzer first identifies the worst-case setup relationship. The worst-case setup relationship is **Setup B**. Then the Quartus II Classic Timing Analyzer chooses the worst-case hold relationship (Hold Check B1 or Hold Check B2) for that specific setup relationship, Setup B. The Quartus II Classic Timing Analyzer chooses Hold Check B2 for the worst-case hold relationship.

However, the Quartus II TimeQuest Timing Analyzer calculates worstcase hold relationships for all possible setup relationships and chooses the absolute worst-case hold relationship. The Quartus II TimeQuest Timing Analyzer checks two hold relationships for every setup relationship:

- Data launched by the current launch edge not captured by the previous latch edge (Hold Check A1 and Hold Check B1)
- Data launched by the next launch edge not captured by the current latch edge (Hold Check A2 and Hold Check B2)

The Quartus II TimeQuest Timing Analyzer chooses Hold Check A2 as the absolute worst-case hold relationship.

Clock Objects

The Quartus II Classic Timing Analyzer treats nodes with clock settings assigned to them as special objects in the timing netlist. Any node in the timing netlist with a clock setting is treated as a clock object, regardless of its actual type, such as a register. When a register has a clock setting

assigned to it, the Quartus II Classic Timing Analyzer does not analyze register-to-register paths beginning or ending at that register. Figure 7–17 shows a circuit that illustrates this situation.

Figure 7–17. Clock Objects

With no clock assignments on any of the registers, the Quartus II Classic Timing Analyzer analyzes timing on the path from reg_a to reg_b, and from reg_c to reg_d. If you make a clock setting assignment to reg_b, reg_b is no longer considered a register node in the netlist, and the path from reg_a to reg_b is no longer analyzed.

In the Quartus II TimeQuest Timing Analyzer, clocks are abstract objects that are associated with nodes in the timing netlist. The Quartus II TimeQuest Timing Analyzer analyzes the path from reg_a to reg_b even if there is a clock assigned to reg_b.

Hold Multicycle

The hold multicycle value numbering scheme is different in the Quartus II Classic and Quartus II TimeQuest Timing Analyzers. Also, you can choose between two values for the default hold multicycle value in the Quartus II Classic Timing Analyzer but you cannot change the default value in the Quartus II TimeQuest Timing Analyzer. The hold multicycle value specifies which clock edge is used for hold analysis when you change the latch edge with a multicycle assignment.

In the Quartus II Classic Timing Analyzer, the hold multicycle value is based on 1, and is the number of clock cycles away from the setup edge. In the Quartus II TimeQuest Timing Analyzer, the hold multicycle value is based on zero, and is the number of clock cycles away from the default hold edge. In the Quartus II TimeQuest Timing Analyzer, the default hold edge is one edge before or after the setup edges. Subtract 1 from any hold multicycle value in theQuartus II Classic Timing Analyzer to compute the equivalent value for the Quartus II TimeQuest Timing Analyzer. In the Quartus II Classic Timing Analyzer, you can set the default value of the hold multicycle assignment to **One** or **Same as Multicycle**. The default value applies to any multicycle assignment in your design that does not also have a multicycle hold assignment. Figure 7–18 illustrates the difference between **One** and **Same as Multicycle** for a multicycle assignment of 2 using the Quartus II Classic Timing Analyzer.

If the default value is **One**, the Quartus II Classic Timing Analyzer uses the clock edge one before the setup edge for hold analysis. If the default value is **Same as Multicycle**, the Quartus II Classic Timing Analyzer uses the clock edge that is *<value of multicycle assignment>* edges back from the setup edge.

Figure 7–19 shows simple waveforms for a cross-clock domain transfer with the indicated setup and hold edges.

In the Quartus II TimeQuest Timing Analyzer, only a multicycle exception of 2 is required to constrain the design for the indicated setup and hold relationships.

In the Quartus II Classic Timing Analyzer, if the **Default Hold Multicycle** value is **One**, only a multicycle assignment of 2 is required to constrain the design.

In the Quartus II Classic Timing Analyzer, if the **Default Hold Multicycle** value is **Same as Multicycle**, you must make two assignments to constrain the design:

- A multicycle assignment of 2
- A hold multicycle assignment of 1 to override the default value

Figure 7–20 shows simple waveforms for a different cross-clock domain transfer with indicated setup and hold edges. The following explanation shows what exceptions to apply to achieve the desired setup and hold relationships.

In the Quartus II TimeQuest Timing Analyzer, you must use the following two exceptions:

- A multicycle exception of 2
 - A hold multicycle exception of 1, because the hold edge is one edge behind the default hold edge, which is one edge after the setup edge.

In the Quartus II Classic Timing Analyzer, if the **Default Hold Multicycle** value is **One**, you must make two assignments to constrain the design:

- A multicycle assignment of 2
- A hold multicycle assignment of 2 to override the default value

In the Quartus II Classic Timing Analyzer, if the **Default Hold Multicycle** value is **Same as Multicycle**, only a multicycle assignment of 2 is required to constrain the design.

You should always add a hold multicycle assignment for every multicycle assignment to ensure the correct exceptions are applied regardless of the timing analyzer you use, or, for the Quartus II Classic Timing Analyzer, the **Default Hold Multicycle** setting.

Fitter Behavior

The behavior for one value of the **Optimize hold time** Fitter assignment differs between the Quartus II TimeQuest Timing Analyzer and the Quartus II Classic Timing Analyzer. When you set the Quartus II TimeQuest Timing Analyzer as the default timing analyzer, the **I/O Paths and Minimum TPD Paths** value directs the Fitter to optimize all hold time paths, which has the same affect as the **All Paths** value.

Fitter Performance

If you use the Quartus II TimeQuest Timing Analyzer as your default timing analyzer, the Fitter memory use and compilation time may increase. However, the timing analysis time may decrease.

Reporting

The Quartus II TimeQuest Timing Analyzer provides a more flexible and powerful interface for reporting timing analysis results than the Quartus II Classic Timing Analyzer. Although the interface and constraints are more flexible and powerful, both analyzers use the same device timing models, except for device families that support rise/fall analysis. The Quartus II Classic Timing Analyzer does not support rise/fall analysis, but the Quartus II TimeQuest Timing Analyzer does. Therefore, you may see slightly different delays on identical paths in device families that support rise/fall analysis if you analyze timing in both analyzers.

This means that both analyzers report identical delays along identically constrained paths in your design. The Quartus II TimeQuest Timing Analyzer allows you to constrain some paths that you could not constrain with the Quartus II Classic Timing Analyzer. Differently constrained paths result in different reported values, but for identical paths in your design that are constrained the same way, the delays are exactly the same. Both timing analyzers use the same timing models.

•••

For information about reporting with the Quartus II TimeQuest Timing Analyzer, refer to the *Quartus II TimeQuest Timing Analyzer* chapter in volume 3 of the *Quartus II Handbook*.

Paths and Pairs

In reporting, the most significant difference between the two analyzers is that the Quartus II TimeQuest Timing Analyzer reports paths, while the Quartus II Classic Timing Analyzer reports pairs. Path reporting means that the analyzer separately reports every path between two registers. Pair reporting means that the analyzer reports only the worst-case path between two registers. One benefit of path reporting over pair reporting is that you can more easily identify common points in failing paths that may be good targets for optimization.

If your design does not meet timing constraints, this reporting difference can give the impression that there are many more timing failures when you use the Quartus II TimeQuest Timing Analyzer. Figure 7–21 shows a sample circuit followed by a description of the differences between path and pair reporting.

Figure 7–21. Failing Paths

There is an 8-ns period constraint on clk, resulting in two paths that fail timing: regA \rightarrow C \rightarrow regB and regA \rightarrow D \rightarrow regB. The Quartus II Classic Timing Analyzer reports only worst-case path regA \rightarrow C \rightarrow regB. The Quartus II TimeQuest Timing Analyzer reports both failing paths regA \rightarrow C \rightarrow regB and regA \rightarrow D \rightarrow regB. It also reports path regA \rightarrow E \rightarrow regB with positive slack.

Default Reports

The Quartus II TimeQuest Timing Analyzer generates only a small number of reports by default, as compared to the Quartus II Classic Timing Analyzer, which generates every report by default. With the Quartus II TimeQuest Timing Analyzer, you generate desired reports on demand. To learn how to create custom reports, refer to the *Quartus II Quartus II TimeQuest Timing Analyzer* chapter in volume 3 of the *Quartus II Handbook*.

Netlist Names

The Quartus II Classic Timing Analyzer uses register names in reporting, but theQuartus II TimeQuest Timing Analyzer uses register pin names (with the exception of port names of the top-level module). Buried nodes or register names are used when necessary.

Example 7–5 shows how register names are used in Quartus II Classic Timing Analyzer reports.

Example 7–5. Netlist Names in the Quartus II Classic Timing Analyzer

```
Info: + Shortest register to register delay is 0.538 ns
Info: 1: + IC(0.000 ns) + CELL(0.000 ns) = 0.000 ns; Loc. =
LCFF_X1_Y5_N1;
Fanout = 1; REG Node = 'inst'
Info: 2: + IC(0.305 ns) + CELL(0.149 ns) = 0.454 ns; Loc. =
LCCOMB_X1_Y5_N20; Fanout = 1; COMB Node = 'inst3~feeder'
Info: 3: + IC(0.000 ns) + CELL(0.084 ns) = 0.538 ns; Loc. =
LCFF_X1_Y5_N21; Fanout = 1; REG Node = 'inst3'
Info: Total cell delay = 0.233 ns ( 43.31 % )
Info: Total interconnect delay = 0.305 ns ( 56.69 % )
```

Example 7–6 shows the same information as presented in a Quartus II TimeQuest Timing Analyzer report. In this example, register pin names are used in place of register names.

Example 7–6. Netlist Names in the Quartus II TimeQuest Timing Analyzer

Info:	3.788	0.250	uTco	inst
Info:	3.788	0.000 RR	CELL	inst regout
Info:	4.093	0.305 RR	IC	inst3~feeder datad
Info:	4.242	0.149 RR	CELL	inst3~feeder combout
Info:	4.242	0.000 RR	IC	inst3 datain
Info:	4.326	0.084 RR	CELL	inst3

Non-Integer Clock Periods

In some cases when related clock periods are not integer multiples of each other, a lack of precision in clock period definition in the Quartus II TimeQuest Timing Analyzer can result in reported setup or hold relationships of a few picoseconds. In addition, launch and latch times for the relationships can be very large. If you experience this, use the **set_max_delay** and **set_min_delay** exceptions to specify the correct relationships. The Quartus II Classic Timing Analyzer can maintain additional information about clock frequency that mitigates the lack of precision in clock period definition.

When the clock period cannot be expressed as an integer in terms of picoseconds, then you have the problem detailed in Figure 7–22. This figure shows two clocks: clk_a has a 10 ns period, and clk_b has a 6.667 ns period.

There is a 1 ps setup relationship at 20 ns because you cannot specify the 6.667 ns period beyond picosecond precision. You should apply the maximum and minimum delay exceptions shown in Example 7–7 between the two clocks to specify the correct relationships.

Example 7–7. Minimum and Maximum Delay Exceptions

set_max_delay -from [get_clocks clk_a] -to [get_clocks clk_b] 3.333
set_min_delay -from [get_clocks clk_a] -to [get_clocks clk_b] 0

Other Features

The Quartus II TimeQuest Timing Analyzer reports time values without units. By default, the units are nanoseconds, and three decimal places are displayed. You can change the default time unit and decimal places with the **set_time_format** command.

When you use the Quartus II TimeQuest Timing Analyzer in a Tcl shell, output is ASCII-formatted, and columns are aligned for easy reading on 80-column consoles. Example 7–8 shows sample output from a **report_timing** command from the Quartus II TimeQuest Timing Analyzer.

```
tcl> report_timing -from inst -to inst5
Info: Report Timing: Found 1 setup paths (0 violated). Worst case slack is 3.634
   Info: -from [get keepers inst]
   Info: -to [get_keepers inst5]
Info: Path #1: Slack is 3.634
   Info: From Node : inst
   Info: To Node
                   : inst5
   Info: Launch Clock : clk a
   Info: Latch Clock : clk b
   Info:
   Info: Data Arrival Path:
   Info:
   Info: Total (ns) Incr (ns) Type Node
   Info: ______ = ____ = ____ = ____
  Info:
   Info: Data Required Path:
   Info:
   Info: Total (ns) Incr (ns)
                              Type Node
   Info: ______ = ____ = ____ = ____

        4.000
        4.000
        latch edge time

        7.041
        3.041
        R
        clock network delay

        7.077
        0.036
        uTsu
        inst5

   Info
   Info:
   Info:
   Info:
   Info: Data Arrival Time : 3.443
Info: Data Required Time : 7.077
   Info: Slack
                              3.634
                       :
   Info:
1 3.634
```

Example 7–8. ASCII-Formatted Quartus II TimeQuest Timing Analyzer Report

Scripting API

In versions of the Quartus II software earlier than 6.0, the **::quartus::project** Tcl package contained the following SDC-like commands for making timing assignments:

- create_base_clock
- create_relative_clock
- get_clocks
- set_clock_latency
- set_clock_uncertainty
- set_input_delay
- set_multicycle_assignment
- set_output_delay
- set_timing_cut_assignment

These commands are not SDC-compliant. Beginning with version 6.0, these commands are in a new package called

::quartus::timing_assignment. To ensure backward compatibility with existing Tcl scripts, the **::quartus::timing_assignment** package is loaded by default in the following executables:

- quartus
- quartus_sh
- quartus_cdb
- quartus_sim
- quartus_stp
- quartus_tan

The **::quartus::timing_assignment** package is not loaded by default in the **quartus_sta** executable. The **::quartus::sdc** Tcl package includes SDC-compliant versions of the commands listed above. That package is available only in the **quartus_sta** executable, and it is loaded by default.

Timing Assignment Conversion

This section describes Quartus II Classic QSF timing assignments and their equivalent Quartus II TimeQuest constraints. You can convert many Quartus II Classic timing assignments to SDC constraints. Some Quartus II Classic timing assignments can be converted to two different SDC constraints, and you must understand the intended functionality of the design to make an appropriate conversion. You cannot convert some Quartus II Classic timing assignments because there is no equivalent SDC constraint.

This section includes the following topics, arranged alphabetically:

Clock Enable Multicycle
Clock Latency
Clock Settings
Clock Uncertainty
Cut Timing Path
Default Required f _{MAX} Assignment
Hold Relationship
Input and Output Delay
Inverted Clock
Maximum Clock Arrival Skew
Maximum Data Arrival Skew
Maximum Delay
Minimum Delay
Minimum t _{CO} Requirement
Minimum t _{PD} Requirement
Multicycle
Not a Clock
Setup Relationship
t _{CO} Requirement
t _H Requirement
t _{PD} Requirement
t _{SU} Requirement
Virtual Clock Reference 7–36

Setup Relationship

The **Setup Relationship** assignment overrides the setup relationship between two clocks. By default, the Quartus II Classic Timing Analyzer automatically calculates the setup relationship based on your clock settings. The QSF variable for the **Setup Relationship** assignment is SETUP_RELATIONSHIP. In the Quartus II TimeQuest Timing Analyzer, use the **set_max_delay** command to specify the maximum setup relationship for a path. The setup relationship value is the time between latch and launch edges before the Quartus II TimeQuest Timing Analyzer accounts for clock latency, source μt_{CO} , or destination μt_{SU} .

Hold Relationship

The **Hold Relationship** assignment overrides the hold relationship between two clocks. By default, the Quartus II Classic Timing Analyzer automatically calculates the hold relationship based on your clock settings. The QSF variable for the **Hold Relationship** assignment is HOLD_RELATIONSHIP. In the Quartus II TimeQuest Timing Analyzer, use the **set_min_delay** command to specify the minimum hold relationship for a path.

Clock Latency

Table 7–1 shows the equivalent SDC constraints for each of these Quartus II Classic assignments.

Table 7–1. Quartus II Classic and SDC Equivalent Constraints			
Quartus II Classic Timing Assignment		SDC Constraint	
Assignment Name	QSF Variable		
Early Clock Latency	EARLY_CLOCK_LATENCY	set_clock_latency -source -late	
Late Clock Latency	LATE_CLOCK_LATENCY	set_clock_latency -source -early	

For more information about clock latency support in the Quartus II TimeQuest Timing Analyzer, refer to "Clock Latency" on page 7–15.

Clock Uncertainty

This section describes the conversion for the following Quartus II Classic assignments:

- Clock Setup Uncertainty
- Clock Hold Uncertainty

Table 7–2 shows the equivalent SDC constraints for each of these Quartus II Classic assignments.

Table 7–2. Quartus II Classic and SDC Equivalent Constraints		
Quartus II Classic Timing Assignment		SDC Constraint
Assignment Name	QSF Variable	SDC CONStraint
Clock Setup Uncertainty	CLOCK_SETUP_UNCERTAINTY	set_clock_uncertainty -setup
Clock Hold Uncertainty	CLOCK_HOLD_UNCERTAINTY	set_clock_uncertainty -hold

Inverted Clock

The Quartus II Classic Timing Analyzer detects inverted clocks automatically when the clock inversion occurs at the input of the LCELL that contains the register specified in the assignment. You must make an **Inverted Clock** assignment in all other situations for Quartus II Classic Timing Analyzer analysis. The QSF variable for the **Inverted Clock** assignment is INVERTED_CLOCK. The Quartus II TimeQuest Timing Analyzer detects inverted clocks automatically, regardless of the type of inversion circuit, in designs that target device families that support unateness: Stratix[®] II, Cyclone[®] II, and HardCopy[®] II. For designs that target any other device family, you must create a generated clock with the - invert option on the output of the cell that inverts the clock.

For more information about unateness, refer to the *Quartus II TimeQuest Timing Analyzer* chapter in volume 3 of the *Quartus II Handbook*.

Not a Clock

The **Not a Clock** assignment directs the Quartus II Classic Timing Analyzer that the specified node is not a clock source when it would normally be detected as a clock because of a global f_{MAX} requirement. The QSF variable for the **Not a Clock** assignment is NOT_A_CLOCK. This assignment is not supported in the Quartus II TimeQuest Timing Analyzer and there is no equivalent constraint. Appropriate clock constraints are created in the Quartus II TimeQuest Timing Analyzer only.

Default Required f_{MAX} Assignment

The **Default Required f**_{MAX} assignment allows you to specify an f_{MAX} requirement for the Quartus II Classic Timing Analyzer for all unconstrained clocks in your design. The QSF variable for the **Default Required f**_{MAX} assignment is FMAX_REQUIREMENT. You can use the

derive_clocks command to create clocks on sources of clock pins in your design that do not already have clocks assigned to them. You should constrain each individual clock in your design with the create_clock or created_generated_clock command, not the derive_clocks command. Refer to "Automatic Clock Detection" on page 7–19 to learn why you should constrain individual clocks in your design.

Virtual Clock Reference

The Virtual Clock Reference assignment allows you to define timing characteristics of a reference clock outside the FPGA. The QSF variable for the Virtual Clock Reference assignment is VIRTUAL_CLOCK_REFERENCE. The Quartus II TimeQuest Timing Analyzer supports virtual clocks by default, while the Quartus II Classic Timing Analyzer requires the Virtual Clock Reference assignment to indicate that a clock setting is for a virtual clock. To create a virtual clock in the Quartus II TimeQuest Timing Analyzer, use the create_clock or create_generated_clock commands with the -name option and no targets.

Figure 7–23 shows a simple circuit that requires a virtual clock, and the following example shows how to constrain the circuit. The circuit shows data transfer between an Altera FPGA and another device, and the clocks for the two devices are not related. You can constrain the path with an output delay assignment, but that assignment requires a virtual clock that defines the clock characteristics of the destination device.

Assume the circuit has the following assignments in the Quartus II Classic Timing Analyzer:

- Clock period of 10 ns on system_clk (clock for the Altera FPGA)
- Clock period of 8 ns on virt_clk (clock for the other device)
- Virtual Clock Reference setting for virt_clk is on (indicates that virt_clk is a virtual clock)

 Output Maximum Delay of 5 ns on dataout with respect to virt_clk (constrains the path between the two devices)

The SDC commands shown in Example 7–9 constrain the circuit the same way.

Example 7–9. SDC Constraints

```
# Clock for the Altera FPGA
create_clock -period 10 -name system_clk [get_ports system_clk]
# Virtual clock for the other device, with no targets
create_clock -period 8 -name virt_clk
# Constrains the path between the two devices
set_output_delay -clock virt_clk 5 [get_ports dataout]
```

Clock Settings

The Quartus II Classic Timing Analyzer includes a variety of assignments to describe clock settings. These include duty cycle, f_{MAX} , offset, and others. In the Quartus II TimeQuest Timing Analyzer, use the **create_clock** and **create_generated_clock** commands to constrain clocks.

Multicycle

Table 7–3 shows the equivalent SDC exceptions for each of these Quartus II Classic Timing Analyzer timing assignments.

Table 7–3. Quartus II Classic and SDC Equivalent Exceptions			
Quartus II Classic Timing Assignment		SDC Execution	
Assignment Name	QSF Variable	SDC Exception	
Multicycle (1)	MULTICYCLE	set_multicycle_path -setup -end	
Source Multicycle (2)	SRC_MULTICYCLE	set_multicycle_path -setup -start	
Multicycle Hold (3)	HOLD_MULTICYCLE	set_multicycle_path -hold -end	
Source Multicycle Hold	SRC_HOLD_MULTICYCLE	set_multicycle_path -hold -start	

Notes to Table 7–3:

- (1) A multicycle assignment is also known as a "destination multicycle setup" assignment.
- (2) A source multicycle assignment is also known as a "source multicycle setup" assignment.
- (3) A multicycle hold is also known as a "destination multicycle hold "assignment.

The default value and numbering scheme for the hold multicycle value is different in the Quartus II Classic and Quartus II TimeQuest Timing Analyzers. Refer to "Hold Multicycle" on page 7–24 for more information

about the difference between the default value and numbering scheme for the hold multicycle value in the Quartus II Classic and Quartus II TimeQuest Timing Analyzers.

For more information about how to convert the hold multicycle value, see the *Quartus II TimeQuest Timing Analyzer* chapter in volume 3 of the *Quartus II Handbook*.

Clock Enable Multicycle

The Quartus II Classic Timing Analyzer supports the following clock enable multicycle assignments. Corresponding types of multicycle assignments are applied to all registers enabled by the targets of the specified clock.

- Clock Enable Multicycle
- Clock Enable Source Multicycle
- Clock Enable Multicycle Hold
- Clock Enable Source Multicycle Hold

The Quartus II TimeQuest Timing Analyzer supports clock-enabled multicycle constraints with the **get_fanouts** command. Use the **get_fanouts** command to create a collection of nodes that have a common source signal, such as a clock enable.

I/O Constraints

FPGA I/O timing assignments have typically been made with FPGA-centric t_{SU} and t_{CO} requirements for the Quartus II Classic Timing Analyzer. However, the Quartus II Classic Timing Analyzer also supports input and output delay assignments to accommodate industry-standard, system-centric timing constraints. Where possible, you should use system-centric constraints to constrain your designs for the Quartus II TimeQuest Timing Analyzer. Table 7–4 includes Quartus II Classic I/O assignments, the equivalent FPGA-centric SDC constraints, and recommended system-centric SDC constraints.

For setup checks (t_{SU} and t_{CO}), *<latch* – *launch*> equals the clock period for same-clock transfers. For hold checks (t_H and Minimum t_{CO}), *<latch* – *launch*> equals 0 for same clock transfers. Conversions from Quartus II Classic assignments to set_input_delay and set_output_delay constraints work well only when the source and destination registers' clocks are the same (same clock and polarity). If the source and

destination registers' clocks are different, the conversion may not be straightforward and you should take extra care when converting to set_input_delay and set_output_delay constraints.

Table 7–4. Quartus II Classic and Quartus II TimeQuest Timing Analyzers Equivalent I/O Constraints			
Classic	FPGA-centric SDC	System-centric SDC	
t_{SU} Requirement	set_max_delay < <i>t_{SU} requirement</i> >	set_input_delay -max < <i>latch</i> – <i>launch</i> – t _{SU} requirement>	
t _H Requirement	set_min_delay $- < t_H requirement > (1)$	set_input_delay -min < <i>latch</i> – <i>launch</i> + t _H requirement>	
t _{CO} Requirement	set_max_delay <t<sub>co requirement></t<sub>	set_output_delay -max < <i>latch</i> – <i>launch</i> – t _{CO} requirement>	
Minimum t _{CO} Requirement	<pre>set_min_delay <minimum t<sub="">CO requirement></minimum></pre>	set_output_delay -min < <i>latch –</i> <i>launch – minimum t_{CO} requirement</i> >	
t _{PD} Requirement	set_max_delay <t<sub>PD requirement></t<sub>	(2)	
Minimum t _{PD} Requirement	<pre>set_min_delay <minimum t<sub="">PD requirement></minimum></pre>	(2)	

Notes to Table 7–4:

- (1) Refer to " t_H Requirement" on page 7–43 for an explanation about why this exception uses the negative t_H requirement.
- (2) The input and output delays can be used for t_{PD} paths, such that they will be analyzed as a system f_{MAX} path. This is a feature unique to the Quartus II TimeQuest Timing Analyzer.

Input and Output Delay

Table 7–5 shows the equivalent SDC exceptions for each of these Quartus II Classic Timing Analyzer timing assignments.

Table 7–5. Quartus II Classic and SDC Equivalent Exceptions			
Quartus II Classic Timing Assignment		CDC Execution	
Assignment Name	QSF Variable	SDC Exception	
Input Maximum Delay	INPUT_MAX_DELAY	set_input_delay -max	
Input Minimum Delay	INPUT_MIN_DELAY	set_input_delay -min	
Output Maximum Delay	OUTPUT_MAX_DELAY	set_output_delay -max	
Output Minimum Delay	OUTPUT_MIN_DELAY	set_output_delay -min	

In some circumstances, you may receive the following warning message when you update the SDC netlist:

```
Warning: For set_input_delay/set_output_delay, port
"<port>" does not have delay for flag (<rise | fall>,
<min | max>)
```

This warning occurs whenever port constraints have maximum or minimum delay assignments, but not both. In the Quartus II Classic Timing Analyzer, device inputs can have **Input Maximum Delay** assignments, **Input Minimum Delay** assignments, or both, and device outputs can have **Output Maximum Delay** assignments, **Output Minimum Delay** assignments, or both.

To avoid receiving the warning, your SDC file must specify both the -max and -min options for each port, or specify neither. If a device I/O in your design includes both the maximum and minimum delay assignments in the Quartus II Classic Timing Analyzer, the conversion utility converts both, and no warning appears about that device I/O. If a device I/O has only maximum or minimum delay assignments in the Quartus II Classic Timing Analyzer, you have the following options:

- Add the missing minimum or maximum delay assignment to the device I/O before performing the conversion.
- Modify the SDC constraint after the conversion to add appropriate -max or -min values.
- Modify the SDC constraint to remove the -max or -min option so the value is used for both by default.

t_{su} Requirement

The **t**_{SU} **Requirement** assignment specifies the maximum acceptable clock setup time for the input (data) pin. The QSF variable for the **t**_{SU} **Requirement** assignment is TSU_REQUIREMENT. You can convert the **t**_{SU} **Requirement** assignment to the **set_max_delay** command or the **set_input_delay** command with the -max option. The delay value for the **set_input_delay** command is *<latch -launch -t*_{SU} *requirement>*. Refer to the labeled paths in Figure 7–24 to understand the names in Equations 3 and 4.

Figure 7–24. Path Names

Equation 3 shows the derivation of this conversion.

The delay value is the difference between the period of the clock source of the register and the t_{SU} Requirement value, as shown in Figure 7–25.

The delay value for the **set_max_delay** command is the t_{SU} **Requirement** value. Equation 4 shows the derivation of this conversion.

```
(4) required - arrival > 0
```

required = latch + board.dstclk + dst.clk - dst.utsu arrival = launch + board.srcclk + src.clk + src.utco + src.out + srctodst + dst.in max delay = latch + board.dstclk + - launch - board.srcclk - src.clk - src.out - srctodst

required = max_delay + dst.clk - dst.utsu arrival = dst.in (max_delay + dst.clk - dst.utsu) - (dst.in) > 0

 t_{su} requirement - $t_{su} > 0$ actual $t_{su} = dst.in + dst.utsu - dst.clk$ t_{su} requirement - (dst.in + dst.utsu - dst.clk) > 0

set_max_delay = t_{su} requirement

Table 7–6 shows the different ways you can make t_{SU} assignments in the Quartus II Classic Timing Analyzer, and the corresponding options for the **set_max_delay** exception.

Table 7–6. t _{su} Requirement and set_max_delay Equivalence			
t_{SU} Requirement Options	set_max_delay Options		
-to < <i>pin</i> >	-from [get_ports <pin>] -to [get_registers *]</pin>		
-to < <i>clock</i> >	-from [get_ports *] -to [get_clocks < <i>clock</i> >]		
-to < <i>register</i> >	-from [get_ports *] -to [get_registers < register>]		
-from < <i>pin</i> > -to < <i>register</i> >	-from [get_ports <pin>] -to [get_registers <register>]</register></pin>		
-from < <i>clock</i> > -to < <i>pin</i> >	-from [get_ports <pin>] -to [get_clocks <clock>] (1)</clock></pin>		

Notes to Table 7–6:

 If the pin in this assignment feeds registers clocked by the same clock, it is equivalent to the first option, -to <pin>. If the pin feeds registers clocked by different clocks, use set_input_delay to constrain the paths properly.

To convert a global t_{SU} assignment to an equivalent SDC exception, use the command shown in Example 7–10.

Example 7–10. Converting a Global t_{su} Assignment to an Equivalent SDC Exception

set_max_delay -from [all_inputs] -to [all_registers] <tsu value>

t_H Requirement

The **t_H Requirement** specifies the maximum acceptable clock hold time for the input (data) pin. The QSF variable for the **t_H Requirement** assignment is TH_REQUIREMENT. You can convert the **t_H Requirement** assignment to the **set_min_delay** command, or the **set_input_delay** command with the -min option. The delay value for the **set_input_delay** command is <*latch* – *launch* + *t_H requirement*>. Refer to the labeled paths in Figure 7–26 to understand the names in Equations 5 and 6.

Equation 5 shows the derivation of this calculation.

```
(5)
      arrival - required > 0
      arrival = launch + board.srcclk + src.clk + src.utco + src.out + srctodst + dst.in
      required = latch + board.dstclk + dst.clk + dst.uth
      input delay = board.srcclk + src.clk + src.utcu + src.out + srctodst - board.dstclk
      arrival = launch + input delay + dst.in
      required = latch + dst.clk + dst.uth
      (launch + input_delay + dst.in) - (latch + dst.clk + dst.uth) > 0
      t_{\rm H} requirement – actual t_{\rm H} > 0
      actual t_{H} = dst.clk + dst.uth - dst.in
      t_{\rm H} requirement - (dst.clk + dst.uth - dst.in) > 0
      t<sub>H</sub> requirement = launch - latch + input_delay
      input_delay = latch - launch + t_H requirement
     The delay value for the set_min_delay command is the t<sub>H</sub> Requirement
     value. Equation 6 shows the derivation of this conversion.
(6)
      arrival - required > 0
      arrival = dst.in
      required = min delay + dst.clk + dst.uth
      dst.in - (min delay + dst.clk + dst.uth)
      t_{\rm H} requirement – actual t_{\rm H} > 0
      actual t_{H} = dst.clk + dst.uth - dst.in
```

 $t_{\rm H}$ requirement - (dst.clk + dst.uth - dst.in) > 0

set_min_delay = $-t_{\rm H}$ requirement
Table 7–7 shows the different ways you can make t_H assignments in the Quartus II Classic Timing Analyzer, and the corresponding options for the **set_min_delay** command.

Table 7–7. t _H Requirement and set_min_delay Equivalence		
t _H Requirement Options set_min_delay Options		
-to < <i>pin</i> >	-from [get_ports <pin>] -to [get_registers *]</pin>	
-to < <i>clock</i> >	-from [get_ports *] -to [get_clocks < <i>clock</i> >]	
-to <i><register></register></i>	-from [get_ports *] -to [get_registers < register>]	
-from < <i>pin</i> > -to < <i>register</i> >	-from [get_ports <pin>] -to [get_registers <register>]</register></pin>	
-from < <i>clock</i> > -to < <i>pin</i> >	-from [get_ports <pin>] -to [get_clocks <clock>] (1)</clock></pin>	

Notes to Table 7–7:

 If the pin in this assignment feeds registers clocked by the same clock, it is equivalent to the first option, -to <pin>. If the pin feeds registers clocked by different clocks, use set_input_delay to constrain the paths properly. Refer to "Input and Output Delay" on page 7–39 for additional information.

To convert a global t_H assignment to an equivalent SDC exception, use the command shown in Example 7–11.

Example 7-11. Converting a Global t_H Assignment to an Equivalent SDC Exception set min delay -from [all inputs] -to [all registers] <*negative* t_H value>

t_{co} Requirement

The **t**_{CO} **Requirement** assignment specifies the maximum acceptable clock to output delay to the output pin. The QSF variable for the **t**_{CO} **Requirement** assignment is TCO_REQUIREMENT. You can convert the **t**_{CO} **Requirement** assignment to the **set_max_delay** command or the **set_output_delay** with the -max option. The delay value for the **set_output_delay** command is <*latch* – *launch* + *t*_{CO} *requirement*>. Refer to the labeled paths in Figure 7–27 to understand the names in Equations 7 and 8.

Figure 7–27. Path Names

Equation 7 shows the derivation of this conversion.

The delay value is the difference between the period of the clock source of the register and the t_{CO} **Requirement** value, as illustrated in Figure 7–28.

Figure 7–28. t_{c0} Requirement

The delay value for the **set_max_delay** command is the t_{CO} Requirement value. Equation 8 shows the derivation of this conversion.

(8) required - arrival > 0
required = set_max_delay
arrival = src.clk + src.utco + src.out
set_max_delay - (src.clk + src.utco + src.out) > 0

$$\begin{split} t_{co} \ requirement - actual \ t_{co} > 0 \\ actual \ t_{co} \ = \ src.clk + src.utco + src.out \\ t_{co} \ requirement - (src.clk + src.utco + src.out) > 0 \end{split}$$

set_max_delay = t_{co} requirement

Table 7–8 shows the different ways you can make t_{CO} assignments in the Quartus II Classic Timing Analyzer, and the corresponding options for the **set_max_delay** exception.

Table 7–8. t _{co} Requirement and set_max_delay Equivalence		
t _{CO} Requirement Options set_max_delay Options		
-to <pin></pin>	-from [get_registers *] -to [get_ports <pin>]</pin>	
-to < <i>clock</i> >	-from [get_clocks < clock>] -to [get_ports *]	
-to < <i>register</i> >	-from [get_registers <register>] -to [get_ports *]</register>	
-from <register> -to <pin></pin></register>	-from [get_registers < register>] -to [get_ports < pin>]	
-from < <i>clock</i> > -to < <i>pin</i> >	<pre>> -from [get_clocks <clock>] -to [get_ports <pin>] (1)</pin></clock></pre>	

Notes to Table 7–8:

If the pin in this assignment feeds registers clocked by the same clock, it is equivalent to the first option,
 to <pin>. If the pin feeds registers clocked by different clocks, you should use set_output_delay to constrain the paths properly.

To convert a global t_{CO} assignment to an equivalent SDC exception, use the command in Example 7–12.

Example 7–12. Converting a Global t_{co} Assignment to an Equivalent SDC Exception

set_max_delay -from [all registers] -to [all_outputs] <t_{CO} value>

Minimum t_{co} Requirement

The **Minimum** t_{CO} **Requirement** assignment specifies the minimum acceptable clock to output delay to the output pin. The QSF variable for the **Minimum** t_{CO} **Requirement** assignment is MIN_TCO_REQUIREMENT. You can convert the **Minimum** t_{CO} **Requirement** assignment to the **set_min_delay** command or the **set_output_delay** command with the -min option. The delay value for the **set_output_delay** command is *<latch - launch + minimum* t_{CO} *requirement>*. Refer to the labeled paths in Figure 7–29 to understand the names in Equations 9 and 10.

Equation 9 shows the derivation of this conversion.

The delay value for the **set_min_delay** command is the **Minimum** t_{CO} **Requirement**. Equation 10 shows the derivation of this conversion.

(10)	arrival – required > 0
	arrival = src.clk + src.utco + src.out
	required = min_delay
	$(src.clk + src.utco + src.out) - (set_min_delay) > 0$
	minimum t_{co} – minimum t_{co} requirement > 0
	minimum t_{co} = src.clk + src.utco + src.out
	$(src.clk + src.utco + src.out) - minimum t_{co} requirement > 0$
	set_min_delay = minimum t _{co} requirement

Table 7–9 shows the different ways you can make minimum t_{CO} assignments in the Quartus II Classic Timing Analyzer, and the corresponding options for the **set_min_delay** exception.

Table 7–9. Minimum t _{co} Requirement and set_min_delay Equivalence		
Minimum t _{co} Requirement Options set_min_delay Options		
-to < <i>pin</i> >	-from [get_registers *] -to [get_ports <pin>]</pin>	
-to < <i>clock</i> >	-from [get_clocks < <i>clock</i> >] -to [get_ports *]	
-to < <i>register</i> >	-from [get_registers <register>] -to [get_ports *]</register>	
-from < <i>register</i> > -to < <i>pin</i> >	-from [get_registers < <i>register</i> >] -to [get_ports < <i>pin</i> >]	
-from < <i>clock</i> > -to < <i>pin</i> > -from [get_clocks < <i>clock</i> >] -to [get_ports < <i>pin</i> >] (1)		

Notes to Table 7–9:

 If the pin in this assignment feeds registers clocked by the same clock, it is equivalent to the first option, -to <pin>. If the pin feeds registers clocked by different clocks, you should use set_output_delay to constrain the paths properly.

To convert a global **Minimum** t_{CO} **Requirement** to an equivalent SDC exception, use the command shown in Example 7–13.

Example 7–13. Converting a Global minimum t_{co} Requirement to an Equivalent SDC Exception

set_min_delay -from [all_registers] -to [all_outputs] <minimum t_{CO} value>

t_{PD} Requirement

The t_{PD} Requirement assignment specifies the maximum acceptable input to non-registered output delay, that is, the time required for a signal from an input pin to propagate through combinational logic and appear at an output pin. The QSF variable for the t_{PD} Requirement assignment is TPD_REQUIREMENT. You can use the set_max_delay command in the Quartus II TimeQuest Timing Analyzer as an equivalent constraint as long as you account for input and output delays. The t_{PD} Requirement assignment does not take into account input and output delays, but the set_max_delay exception does, so you must modify the set_max_delay value to take into account input and output delays.

Combinational Path Delay Scenario

Figure 7–30 shows a simple circuit followed by an example of a t_{PD} **Requirement** to set_max_delay conversion.

Assume the circuit has the following assignments in the Quartus II Classic Timing Analyzer:

- Clock period of 10 ns
- **t**_{PD} **Requirement** from a_in to comb_out of 10 ns
- Input Max Delay on a in relative to clk of 2 ns
- Output Max Delay on comb_out relative to clk of 2 ns

The path from a_in to comb_out is not affected by the input and output delays. The slack is equal to the <tp>Requirement from a_in to comb_out> - ath delay from a_in to comb_out>.

Assume the circuit has the SDC constraints shown in Example 7–14 in the Quartus II TimeQuest Timing Analyzer:

Example 7–14. SDC Constraints

create_clock -period 10 -name clk [get_ports clk] set_max_delay -from a_in -to comb_out 10 set_input_delay -clk clk 2 [get_ports a_in] set_output_delay -clk clk 2 [get_ports comb_out]

The path from a_in to comb_out is affected by the input and output delays. The slack is equal to:

<set_max_delay value from a_in to comb_out> - <input delay> - <output delay> - path delay from
a_in to comb_out>

To convert a global t_{PD} Requirement assignment to an equivalent SDC exception, use the command shown in Example 7–15. You should add the input and output delays to the value of your converted t_{PD} Requirement (set_max_delay exception value) to achieve an equivalent SDC exception.

Example 7-15. Converting a Global t_{PD} Requirement Assignment to an Equivalent SDC Exception
set_max_delay -from [all_inputs] -to [all_outputs] <value>

Minimum ten Requirement

The **Minimum** t_{PD} **Requirement** assignment specifies the minimum acceptable input to non-registered output delay, that is, the minimum time required for a signal from an input pin to propagate through combinational logic and appear at an output pin. The QSF variable for the **Minimum** t_{PD} **Requirement** assignment is MIN_TPD_REQUIREMENT. You can use the **set_min_delay** command in the Quartus II TimeQuest Timing Analyzer as an equivalent constraint as long as you account for input and output delays. The **Minimum** t_{PD} **Requirement** assignment does not take into account input and output delays, but the **set_min_delay** exception does.

Refer to "Combinational Path Delay Scenario" on page 7–50 to see how input and output delays affect minimum and maximum delay exceptions.

To convert a global **Minimum** t_{PD} **Requirement** assignment to an equivalent SDC exception, use the following command:

Example 7-16. Converting a Global Minimum t_{PD} Requirement Assignment to an Equivalent SDC Exception
set_min_delay -from [all_inputs] -to [all_outputs] <value>

Cut Timing Path

The **Cut Timing Path** assignment in the Quartus II Classic Timing Analyzer is equivalent to the **set_false_path** command in the Quartus II TimeQuest Timing Analyzer. The QSF variable for the **Cut Timing Path** assignment is CUT.

Maximum Delay

The **Maximum Delay** assignment specifies the maximum required delay for the following types of paths:

- Pins to registers
- Registers to registers
- Registers to pins

The QSF variable for the **Maximum Delay** assignment is MAX_DELAY. This requirement overwrites the requirement computed from the clock setup relationship and clock skew. There is no equivalent constraint in the Quartus II TimeQuest Timing Analyzer.

I

The **Maximum Delay** assignment for the Quartus II Classic Timing Analyzer is not related to the **set_max_delay** exception in the Quartus II TimeQuest Timing Analyzer.

Minimum Delay

The **Minimum Delay** assignment specifies the minimum required delay for the following types of paths:

- Pins to registers
- Registers to registers
- Registers to pins

The QSF variable for the **Minimum Delay** assignment is MIN_DELAY. This requirement overwrites the requirement computed from the clock hold relationship and clock skew. There is no equivalent constraint in the Quartus II TimeQuest Timing Analyzer.

The **Minimum Delay** assignment for the Quartus II Classic Timing Analyzer is not related to the **set_min_delay** exception in the Quartus II TimeQuest Timing Analyzer.

Maximum Clock Arrival Skew

The **Maximum Clock Arrival Skew** assignment specifies the maximum clock skew between a set of registers. The QSF variable for the **Maximum Clock Arrival Skew** assignment is MAX_CLOCK_ARRIVAL_SKEW. In the Quartus II Classic Timing Analyzer, this assignment is specified between a clock node name and a set of registers. **Maximum Clock Arrival Skew** is not supported in the Quartus II TimeQuest Timing Analyzer.

Maximum Data Arrival Skew

The **Maximum Data Arrival Skew** assignment specifies the maximum data arrival skew between a set of registers, pins, or both. The QSF variable for the **Maximum Data Arrival Skew** assignment is MAX_DATA_ARRIVAL_SKEW. In this case, the data arrival delay represents the t_{CO} from the clock to the given register, pin, or both. This assignment is specified between a clock node and a set of registers, pins, or both.

The Quartus II TimeQuest Timing Analyzer does not support a constraint to specify maximum data arrival skew, but you can specify setup and hold times relative to a clock port to constrain an interface like this. Figure 7–31 shows a simplified source-synchronous interface used in the following example.

Constraining Skew on an Output Bus

This example constrains the interface so that all bits of the data_out bus go off-chip between 2 and 3 ns after the clk_out signal. Assume that clock_in and clock_out have a period of 8 ns.

The following equations and example shows how to create timing requirements that satisfy the timing relationships shown in Figure 7–32.

Figure 7–32. Source-Synchronous Timing Diagram

Equation 11 shows how to compute the value for the **set_output_delay -min** command that creates the 2 ns hold requirement on the destination. For hold requirement calculations in which source and destination clocks are the same, < latch > - < launch > = 0.

(11) latch - launch = 0ns
 output delay = latch - launch - 2ns
 output delay = -2ns

Equation 12 shows how to compute the value for the **set_output_delay** command that creates the 3 ns setup requirement on the destination. For setup requirement calculations in which source and destination clocks are the same, < latch> - < launch> = clock period.

(12) latch - launch = 8 nsoutput delay = latch - launch - 3 nsoutput delay = 5 ns

Refer to "I/O Constraints" on page 7–38 for an explanation of the above equations.

Example 7-17 shows the three constraints together.

Example 7–17. Constraining a DDR Interface

Conversion Utility

The Quartus II TimeQuest Timing Analyzer includes a conversion utility to help you convert Quartus II Classic timing assignments in a QSF file to SDC constraints in an SDC file. The utility can use information from your project report database (in the \db folder), if it exists, so you should compile your design before the conversion.

The conversion utility ignores all disabled QSF assignments. Disabled assignments say **No** in the **Enabled?** column of the Assignment Editor, and include the -disable option in the QSF file.

Refer to "Conversion Utility" on page 7–3 to learn how to run the conversion utility.

Unsupported Global Assignments

The conversion utility checks whether any of the global timing assignments in Table 7–10 exist in your project. Any global assignments not supported by the conversion utility are ignored during the conversion. Refer to the indicated page for information about each assignment, and how to manually convert these global assignments to SDC commands.

Table 7–10. Global Timing Assignments		
Assignment Name	QSF Variable	More Information
t _{SU} Requirement	TSU_REQUIREMENT	page 7–40
t _H Requirement	TH_REQUIREMENT	page 7–43
t _{CO} Requirement	TCO_REQUIREMENT	page 7–45
Minimum t _{CO} Requirement	MIN_TCO_REQUIREMENT	page 7–48
t _{PD} Requirement	TPD_REQUIREMENT	page 7–50
Minimum t _{PD} Requirement	MIN_TPD_REQUIREMENT	page 7–51

Recommended Global Assignments

Once any unsupported assignments have been identified, the conversion utility checks the global assignments in Table 7–11 to ensure they match the specified values.

Table 7–11. Recommended Global Assignments			
Quartus II Classic Assignment Name QSF Variable			
Cut off clear and preset signal paths	CUT_OFF_CLEAR_AND_PRESET_PATHS	ON	
Cut off feedback from I/O pins	CUT_OFF_IO_PIN_FEEDBACK	ON	
Cut off read during write signal paths	CUT_OFF_READ_DURING_WRITE_PATHS	ON	
Analyze latches as synchronous elements	ANALYZE_LATCHES_AS_SYNCHRONOUS_ELEMENTS	ON	
Enable Clock Latency	ENABLE_CLOCK_LATENCY	ON	
Display Entity Name	PROJECT_SHOW_ENTITY_NAME	ON	

The following assignments are checked to ensure the functionality of the Quartus II Classic Timing Analyzer with the specified values corresponds to the behavior of the Quartus II TimeQuest Timing Analyzer.

- Cut off clear and preset signal paths—Quartus II The TimeQuest Timing Analyzer does not support this functionality. You should use Recovery and Removal analysis instead to analyze register control paths. The Quartus II Classic Timing Analyzer does not support this option.
- Cut off feedback from I/O pins—The Quartus II TimeQuest Timing Analyzer does not match the functionality of the Quartus II Classic Timing Analyzer when this assignment is OFF.
- Cut off read during write signal paths—The Quartus II TimeQuest Timing Analyzer does not match the functionality of the Quartus II Classic Timing Analyzer when this assignment is OFF.
- Analyze latches as synchronous elements—The Quartus II TimeQuest Timing Analyzer analyzes latches as synchronous elements by default and does not match the functionality of the Quartus II Classic Timing Analyzer when this assignment is OFF. Beginning with version 5.1 of the Quartus II software, the Quartus II Classic Timing Analyzer analyzes latches as synchronous elements by default.
- Enable Clock Latency—The Quartus II TimeQuest Timing Analyzer includes clock latency in its calculations. The Quartus II TimeQuest Timing Analyzer does not match the functionality of the Quartus II Classic Timing Analyzer when this assignment is OFF. Latency on a clock can be viewed as a simple delay on the clock path, and affects clock skew. This is in contrast to an offset, which alters the setup and hold relationship between two clocks. Refer to "Offset and Latency Example" on page 7–15 for an example of the different effects of offset and latency. When you turn on Enable Clock Latency in the Quartus II Classic Timing Analyzer, it affects the following aspects of timing analysis:
 - Early Clock Latency and Late Clock Latency assignments are honored
 - The compensation delay of a PLL is analyzed as latency
 - For clock settings where you do not specify an offset, the automatically computed offset is treated as latency.
- Display Entity Name—Any entity-specific assignments are ignored in the Quartus II TimeQuest Timing Analyzer because they do not include the entity name when this option is ON.

If your design meets timing requirements in the Quartus II Classic Timing Analyzer without all of the settings recommended in Table 7–11 on page 7–56, you should perform one of the following actions.

- Change the settings and re-constrain and re-verify as necessary. or
- Add or modify SDC constraints as appropriate because analysis in the Quartus II TimeQuest Timing Analyzer may be different after conversion.

Clock Conversion

Next, the conversion utility adds the **derive_pll_clocks** command to the SDC file. This command creates generated clocks on all PLL outputs in your design each time the SDC file is read. The command does not add a clock on the FPGA port that drives the PLL input.

The conversion utility includes the **derive_pll_clocks -use_tan_name** command in the SDC file it creates. The -use_tan_name option overrides the default clock naming behavior (the PLL pin name) so the clock name is the same as the net name in the Quartus II Classic Timing Analyzer.

Including the -use_tan_name option ensures that the conversion
utility converts clock-to-clock exceptions properly. If you remove the
-use_tan_name option, you must also edit references to the clock
names in other SDC commands so that they match the PLL pin names.

If your design includes a global f_{MAX} assignment, the assignment is converted to a **derive_clocks** command. The behavior of a global f_{MAX} assignment is different from the behavior of clocks created with the **derive_clocks** command, and you should use the **report_clocks** command when you review conversion results to evaluate the clock settings. Refer to "Automatic Clock Detection" on page 7–19 for an explanation of the differences. As soon as you know the appropriate clock settings, you should use **create_clock** command.

The conversion utility adds a **post_message** command before the **derive_clocks** command to remind you that the clocks are derived automatically. The Quartus II TimeQuest Timing Analyzer displays the reminder the first time it reads the SDC file. Remove or comment out the **post_message** command to prevent the message from displaying.

Next, the conversion utility identifies and converts clock settings in the QSF file. If a project database exists, the utility also identifies and converts any additional clocks in the report file that are not in the QSF, such as PLL base clocks.

If you change the PLL input frequency, you must modify the SDC constraint manually.

The conversion utility ignores clock offsets on generated clocks. Refer to "Clock Offset" on page 7–14 for information about how to use offset values in the Quartus II TimeQuest Timing Analyzer.

Instance Assignment Conversion

Next, the conversion utility converts the following instance assignments in Table 7–12. Refer to the indicated page for information about each assignment.

Table 7–12. Instance Timing Assignments			
Assignment Name QSF Variable		More Information	
Late Clock Latency	LATE_CLOCK_LATENCY	page 7, 34	
Early Clock Latency	EARLY_CLOCK_LATENCY	page 7–34	
Clock Setup Uncertainty	CLOCK_SETUP_UNCERTAINTY	page 7, 24	
Clock Hold Uncertainty	CLOCK_HOLD_UNCERTAINTY	page 7–34	
Multicycle (1)	MULTICYCLE		
Source Multicycle (2)	SRC_MULTICYCLE	page 7, 27	
Multicycle Hold (3)	HOLD_MULTICYCLE	page 7-37	
Source Multicycle Hold	SRC_HOLD_MULTICYCLE		
Clock Enable Multicycle	CLOCK_ENABLE_MULTICYCLE		
Clock Enable Source Multicycle	CLOCK_ENABLE_SOURCE_MULTICYCLE	page 7, 29	
Clock Enable Multicycle Hold	CLOCK_ENABLE_MULTICYCLE_HOLD	page 7–36	
Clock Enable Source Multicycle Hold	CLOCK_ENABLE_SOURCE_MULTICYCLE_HOLD		
Cut Timing Path	CUT	page 7–52	
Input Maximum Delay	INPUT_MAX_DELAY		
Input Minimum Delay	INPUT_MIN_DELAY	page 7, 20	
Output Maximum Delay	OUTPUT_MAX_DELAY	page 7-39	
Output Minimum Delay	OUTPUT_MIN_DELAY		

Notes to Table 7–12:

- (1) A multicycle assignment can also be known as a "destination multicycle setup" assignment.
- (2) A source multicycle assignment can also be known as a "source multicycle setup" assignment.
- (3) A multicycle hold can also be known as a "destination multicycle hold" assignment.

Depending on input and output delay assignments, you may receive a warning message when the SDC file is read. The message warns that the **set_input_delay** commands, **set_output_delay** commands, or both are

missing the -max option, -min option, or both. Refer to "Input and Output Delay" on page 7–39 for an explanation of why the warning occurs and how to avoid it.

Beginning in version 7.1 of the Quartus II software, the conversion utility automatically adds multicycle hold exceptions for each multicycle setup assignment. The value of each multicycle hold exception depends on the **Default hold multicycle** assignment value in your project. If the value is **One**, the conversion utility uses a value of 0 (zero) for each multicycle hold exception it adds. If the value is **Same as multicycle**, the conversion utility uses a value one less than the corresponding multicycle setup assignment value for each multicycle hold exception it adds. Refer to "Hold Multicycle" on page 7–24 for more information on hold multicycle differences between the Quartus II Classic and Quartus II TimeQuest Timing Analyzers.

Next, the conversion utility converts the following instance assignments in Table 7–13. Refer to the indicated page for information about each assignment. If the t_{PD} and minimum t_{PD} assignment targets also have input or output delays that apply to them, the t_{PD} and minimum t_{PD} conversion values may be incorrect. This is described in more detail on the indicated pages for the appropriate assignments.

Table 7–13. Instance Timing Assignments			
Assignment Name QSF Variable More Informati			
t _{PD} Requirement (1)	TPD_REQUIREMENT	page 7–50	
Minimum t _{PD} Requirement (1)	MIN_TPD_REQUIREMENT	page 7–51	
Setup Relationship	SETUP_RELATIONSHIP	page 7–33	
Hold Relationship	HOLD_RELATIONSHIP	page 7–34	

Note to Table 7–13:

(1) Refer to " t_{PD} and Minimum t_{PD} Requirement Conversion" on page 7–71 for more information about how the conversion utility converts single-point t_{PD} and minimum t_{PD} assignments.

The conversion utility converts Quartus II Classic I/O timing assignments to FPGA-centric SDC constraints. Table 7–14 includes Quartus II Classic assignments, the equivalent FPGA-centric SDC constraints, and recommended system-centric SDC constraints.

Table 7–14. Quartus II Classic and Quartus II TimeQuest Equivalent Constraints			
Quartus II Classic	FPGA-Centric SDC	System-Centric SDC	More Information
t _{SU} Requirement (1)	set_max_delay	set_input_delay -max	page 7–40
t _H Requirement (1)	set_min_delay	set_input_delay -min	page 7–43
t _{CO} Requirement (2)	set_max_delay	set_output_delay -max	page 7–45
Minimum t _{CO} Requirement (2)	set_min_delay	set_output_delay -min	page 7–48

Notes to Table 7–14:

 Refer to "t_{PD} and Minimum t_{PD} Requirement Conversion" on page 7–71 for more information about how the conversion utility converts this type of assignment.

(2) Refer to " t_{CO} Requirement Conversion" on page 7–62 for more information about how the conversion utility converts this type of assignment.

The conversion utility can convert Quartus II Classic I/O timing assignments only to the FPGA-centric constraints without additional information about your design. Making system-centric constraints requires information about the external circuitry interfacing with the FPGA such as external clocks, clock latency, board delay, and clocking exceptions. You cannot convert Quartus II Classic timing assignments to system-centric constraints without that information. If you use the conversion utility, you can modify the SDC constraints to change the FPGA-centric constraints to system-centric constraints as appropriate.

PLL Phase Shift Conversion

The conversion utility does not account for PLL phase shifts when it converts values of the following FPGA-centric I/O timing assignments:

- t_{SU} Requirement
- t_H Requirement
- t_{CO} Requirement
- Minimum t_{CO} Requirement

If any of your paths go through PLLs with a phase shift, you must correct the converted values for those paths according to the following formula:

(13)

<correct value> = <converted value $> - \frac{(< pll output period > × < phase shift>)}{360}$

Example 7–18 shows the incorrect conversion result for a t_{CO} assignment and how to correct it. For the example, assume the PLL output frequency is 200 MHz (period is 5 ns), the phase shift is 90 degrees, the t_{CO} **Requirement** value is 1 ns, and it is made to data [0]. The QSF file contains the following assignment:

Example 7–18. Assignment

set_instance_assignment -name TCO_REQUIREMENT -to data[0] 1.0

The conversion utility generates the SDC command shown in Example 7–19.

Example 7–19. SDC Command

```
set_max_delay -from [get_registers *] -to [get_ports data[0]] 1.0
```

To correct the value, use the formula and values above, as shown in the following example:

$$1.0 - \frac{(5 \times 90)}{360} = -0.25$$

Then, change the value so the SDC command looks like Example 7–20.

```
Example 7-20. SDC Command with Correct Values
set_max_delay -from [get_registers *] -to [get_ports data[0]] -0.25
```

t_{CO} Requirement Conversion

The conversion utility uses a special process to convert t_{CO} Requirement and Minimum t_{CO} Requirement assignments. In addition to the set_max_delay or set_min_delay commands, the conversion utility adds a set_output_delay constraint relative to a virtual clock named N/C (Not a Clock). It also creates the virtual clock named N/C with a period of 10 ns. Adding the virtual clock allows you to report timing on the output paths. Without the virtual clock N/C, the clock used for reporting would be blank. Example 7–21 shows how the conversion utility converts a t_{CO} Requirement assignment of 5.0 ns to data[0].

Example 7–21. Converting a t_{co} Requirement Assignment of 5.0 ns to data[0]

```
set_max_delay -from [get_registers *] -to [get_ports data[0]]
set_output_delay -clock "N/C" 0 [get_ports data[0]]
```

Entity-Specific Assignments

Next, the conversion utility converts the entity-specific assignments listed in Table 7–15 that exist in the **Timing Analyzer Settings** report panel. This usually occurs if you have any timing assignments in your Verilog HDL or VHDL source, which can include MegaCore function files. These entity-specific assignments cannot be automatically converted unless your project is compiled and a \db directory exists.

Table 7–15. Entity-Specific Timing Assignments		
Quartus II Classic	QSF Variable	More Information
Multicycle	MULTICYCLE	
Source Multicycle	SRC_MULTICYCLE	nogo 7, 97
Multicycle Hold	HOLD_MULTICYCLE	page 7–37
Source Multicycle Hold	SRC_HOLD_MULTICYCLE	
Setup Relationship	SETUP_RELATIONSHIP	page 7–33
Hold Relationship	HOLD_RELATIONSHIP	page 7–34
Cut Timing Path	CUT	page 7–52

You must manually convert all other entity-specific timing assignments.

Paths between Unrelated Clock Domains

Beginning in version 7.1 of the Quartus II software, the conversion utility can create exceptions that cut paths between unrelated clock domains, which matches the default behavior of the Quartus II Classic Timing Analyzer. When **Cut paths between unrelated clock domains** is on, the conversion utility creates clock groups with the set_clock_groups command and uses the -exclusive option to cut paths between the clock groups.

Unsupported Instance Assignments

Finally, the conversion utility checks for the following unsupported instance assignments listed in Table 7–16 and warns you if any exist. Refer to the indicated page for information about each assignment.

You can manually convert some of the assignments to SDC constraints.

Table 7–16. Instance Timing Assignments		
Assignment Name	QSF Variable	More Information
Inverted Clock	INVERTED_CLOCK	page 7–35
Maximum Clock Arrival Skew	MAX_CLOCK_ARRIVAL_SKEW	page 7–53
Maximum Data Arrival Skew	MAX_DATA_ARRIVAL_SKEW	page 7–53
Maximum Delay	MAX_DELAY	page 7–52
Minimum Delay	MIN_DELAY	page 7–52
Virtual Clock Reference	VIRTUAL_CLOCK_REFERENCE	page 7–36

Reviewing Conversion Results

You must review the messages that are generated during the conversion process, and review the SDC file for correctness and completeness. Warning and critical warning messages identify significant differences between the Quartus II Classic Timing Analyzer and Quartus II TimeQuest Timing Analyzer behaviors. In some cases, warning messages indicate that the conversion utility ignored assignments because it could not determine the intended functionality of your design. You must add to or modify the SDC constraints as necessary based on your knowledge of the design.

The conversion utility creates an SDC file with the same name as your current revision, *<revision>.sdc*, and it overwrites any existing *<revision>.sdc* file. If you use the conversion utility to create an SDC file, you should make additions or corrections in a separate SDC file, or a copy of the SDC file created by the conversion utility. That way, you can re-run the conversion utility later without overwriting your additions and changes. If you have constraints in multiple SDC files, refer to "Constraint File Priority" on page 7–10 to learn how to add constraints to your project.

Warning Messages

The conversion utility may generate any of the following warning messages. Refer to the information provided for each warning message to learn what to do in that instance.

Ignored QSF Variable <assignment>

The conversion utility ignored the specified assignment. Determine whether an equivalent constraint is necessary and manually add one if appropriate. Refer to "Timing Assignment Conversion" on page 7–33 for information about conversions for all QSF timing assignments.

Global <*name*> = <*value*>

The conversion utility ignored the global assignment *<name>*. Manually add an equivalent constraint if appropriate. Refer to "Unsupported Global Assignments" on page 7–56 for information about conversions for these assignments.

QSF: Expected <name> to be set to <expected value> but it is set to <actual value>

The behavior of the Quartus II TimeQuest Timing Analyzer is closest to the Quartus II Classic Timing Analyzer when the value for the specified assignment is the expected value. Because the actual assignment value is not the expected value in your project, the Quartus II TimeQuest Timing Analyzer analysis may be different from the Quartus II Classic Timing Analyzer analysis. Refer to "Recommended Global Assignments" on page 7–56 for an explanation about the indicated QSF variable names.

QSF: Found Global Fmax Requirement. Translation will be done using derive_clocks

Your design includes a global f_{MAX} requirement, and the requirement is converted to the **derive_clocks** command. Refer to "Default Required f_{MAX} Assignment" on page 7–35 for information about how to convert to an SDC constraint.

TAN Report Database not found. HDL based assignments will not be migrated

You did not analyze your design with the Quartus II Classic Timing Analyzer before running the conversion utility. As a result, the conversion utility did not convert any timing assignments in your HDL source code to SDC constraints. If you have timing assignments in your HDL source code, you must find and convert them manually, or analyze your design with the Quartus II Classic Timing Analyzer and rerun the conversion utility.

Ignored Entity Assignment (Entity <entity>): <variable> = <value> -from <from> -to <to>

The conversion utility ignored the specified entity assignment because the utility cannot automatically convert the assignment. Table 7–15 on page 7–63 lists the entity-specific assignments the script can convert automatically. Refer to "Timing Assignment Conversion" on page 7–33 for information about how to convert the entity assignment manually.

Ignoring OFFSET_FROM_BASE_CLOCK assignment for clock <*clock>*

In some cases, this assignment is used to work around a limitation in how the Quartus II Classic Timing Analyzer handles some forms of clock inversion. The conversion script ignores the assignment because it cannot determine whether the assignment is used as a workaround. Review your clock setting and add the assignment in your SDC file if appropriate. Refer to "Clock Offset" on page 7–14 for more information about converting clock offset.

Clock <*clock*> has no FMAX_REQUIREMENT - No clock was generated

The conversion utility did not convert the clock named *<clock>* because it has no f_{MAX} requirement. You should add a clock constraint with an appropriate period to your SDC file.

No Clock Settings defined in QSF file

If your QSF file has no clock settings, ignore this message. You must add clock constraints in your SDC file manually.

Clocks

Ensure that the conversion utility converted all clock assignments correctly. Run **report_clocks**, or double-click **Report Clocks** in the Tasks pane in the Quartus II TimeQuest Timing Analyzer GUI. Make sure that the right number of clocks is reported. If any clock constraints are missing, you must add them manually with the appropriate SDC commands (**create_clock** or **create_generated_clock**). Confirm that each option for each clock is correct.

The Quartus II TimeQuest Timing Analyzer can create more clocks, such as:

- derive_clocks selecting ripple clocks
 - derive_pll_clocks,adding
 - Extra clocks for PLL switchover
 - Extra clocks for LVDS pulse-generated clocks (~load_reg)

Clock Transfers

After you confirm that all clock assignments are correct, run **report_clock_transfers**, or double-click **Report Clock Transfers** in the Tasks pane in the Quartus II TimeQuest Timing Analyzer GUI. The

command generates a summary table with the number of paths between each clock domain. If the number of cross-clock domain paths seems high, remember that all clock domains are related in the Quartus II TimeQuest Timing Analyzer. You must cut unrelated clock domains. Refer to "Related and Unrelated Clocks" on page 7–13 for information about how to cut unrelated clock domains.

Path Details

If you have unexpected differences between the Quartus II Classic and Quartus II TimeQuest Timing Analyzers on some paths, follow these steps to identify the cause of the difference.

- 1. List the path in the Quartus II Classic Timing Analyzer.
- 2. Report timing on the path in the Quartus II TimeQuest Timing Analyzer.
- 3. Compare slack values.
- 4. Compare source and destination clocks.
- Compare the launch/latch times in the Quartus II TimeQuest Timing Analyzer to the setup/hold relationship in the Quartus II Classic Timing Analyzer. The times are absolute in the Quartus II TimeQuest Timing Analyzer and relative in the Quartus II Classic Timing Analyzer.
- 6. Compare clock latency values.

Unconstrained Paths

Next, run report_ucp, or double-click **Report Unconstrained Paths** in the Tasks pane in the Quartus II TimeQuest Timing Analyzer GUI. This command generates a series of reports that detail any unconstrained paths in your design. If your design was completely constrained in the Quartus II Classic Timing Analyzer but there are unconstrained paths in the Quartus II TimeQuest Timing Analyzer, some assignments may not have been converted properly. Also, some of the assignments could be ambiguous. The Quartus II TimeQuest Timing Analyzer analyzes more paths than the Quartus II Classic Timing Analyzer does, so any unconstrained paths might be paths you could not constrain in the Quartus II Classic Timing Analyzer.

Bus Names

If your design includes Quartus II Classic Timing Analyzer timing assignments to buses, and the bus names do not include square brackets enclosing an asterisk, such as: address [*], you should review the SDC constraints to ensure the conversion is correct. Refer to "Bus Name Format" on page 7–10 for more information.

Other

Review the notes listed in "Conversion Utility" on page 7-71.

Re-Running the Conversion Utility

You can force the conversion utility to run even if it can find an SDC file according to the priority described in "Constraint File Priority" on page 7–10. Any method described in "Conversion Utility" on page 7–3 forces the conversion utility to run even if it can find an SDC file.

Notes This section describes notes for the Quartus II TimeQuest Timing Analyzer.

Output Pin Load Assignments

The Quartus II TimeQuest Timing Analyzer takes **Output Pin Load** values into account when it analyzes your design. If you change **Output Pin Load** assignments and do not recompile before you analyze timing, you must use the -force_dat option when you create the timing netlist. Type the following command at the Tcl console of the Quartus II TimeQuest Timing Analyzer:

```
create_timing_netlist -force_dat 🕶
```

If you change **Output Pin Load** assignments and recompile before you analyze timing, do not use the -force_dat option when you create the timing netlist. You can create the timing netlist with the **create_timing_netlist** command, or with the **Create Timing Netlist** task in the Tasks pane.

Also note that the SDC set_output_load command is not supported, so you must make all output load assignments in the Quartus II Settings File (.qsf).

Constraint Target Types

In version 6.0 of the Quartus II software, the Quartus II TimeQuest Timing Analyzer did not support constraints between clocks and non-clocks. Beginning with version 6.1, the Quartus II TimeQuest Timing Analyzer supports mixed exception types; you can apply an exception of any clock/node combination.

DDR Constraints with the DDR Timing Wizard

The DDR Timing Wizard (DTW) creates an SDC file that contains constraints for a DDR interface. You can use that SDC file with the Quartus II TimeQuest Timing Analyzer to analyze only the DDR interface part of a design.

You should use the SDC file created by DTW for constraining a DDR interface in the Quartus II TimeQuest Timing Analyzer. Additionally, your QSF should not contain timing assignments for the DDR interface if you plan to use the conversion utility to create an SDC file. You should run the conversion utility before you use DTW, and you should choose not to apply assignments to the QSF.

However, if you used DTW and chose to apply assignments to a QSF, before you used the conversion utility, you should remove the DTW-generated QSF timing assignments and re-run the conversion utility. The conversion utility creates some incompatible SDC constraints from the DTW QSF assignments.

HardCopy Stratix Device Handoff

If you target the HardCopy device family, you should not use the Quartus II TimeQuest Timing Analyzer. The Quartus II TimeQuest Timing Analyzer is not supported for the HardCopy Stratix design process. The Quartus II TimeQuest Timing Analyzer supports HardCopy II series devices.

Unsupported SDC Features

Some SDC commands and features are not supported by the current version of the Quartus II TimeQuest Timing Analyzer. The following commands are included:

- The **get_designs** command, because the Quartus II software supports a single design, so this command is not necessary
- True latch analysis with time-borrowing feature; it can, however, convert latches to negative-edge-triggered registers
- The case analysis feature

Loads, clock transitions, input transitions, and other features

Constraint Passing

The Quartus II software can read constraints generated by other EDA software, and write constraints to be read by other EDA software.

Other synthesis software can generate constraints that target the QSF file. If you change timing constraints in synthesis software after creating an SDC file for the Quartus II TimeQuest Timing Analyzer, you must update the SDC constraints. You can use the conversion utility, or update the SDC file manually.

Optimization

Gate-level re-timing is not supported if you turn on the Quartus II TimeQuest Timing Analyzer as your default timing analyzer.

If you use physical synthesis with the Quartus II TimeQuest Timing Analyzer, the design may have lower performance.

Clock Network Delay Reporting

In the Quartus II software version 6.0, the Quartus II TimeQuest Timing Analyzer reports delay on the clock network as a single number, rather than node-to-node segments, as the Quartus II Classic Timing Analyzer does. Beginning with version 6.0 SP1, the TimeQuest Timing Analyzer reports delay on the clock network by node-to-node segments.

PowerPlay Power Analysis

You must perform the following steps to generate an **Early Power Estimator** output file when you use the Quartus II TimeQuest Timing Analyzer and your design targets one of the following device families:

- Cyclone
- Stratix
- HardCopy Stratix

To generate an **Early Power Estimator** output file for designs targeting those families, you must perform the following steps.

 Turn off the Quartus II TimeQuest Timing Analyzer. Refer to "Set the Default Timing Analyzer" on page 7–4 to learn how to turn off the Quartus II TimeQuest Timing Analyzer.

- 2. Manually convert your Quartus II TimeQuest Timing Analyzer timing constraints in the SDC file to Quartus II Classic Timing Analyzer timing assignments. You can use the Assignment Editor to enter your Quartus II Classic Timing Analyzer timing assignments in your QSF file.
- 3. Perform Quartus II Classic timing analysis.
- 4. Generate an Early Power Estimator output file.
- 5. Turn on the Quartus II TimeQuest Timing Analyzer.

Project Management

If you use the **project_open** Tcl command in the Quartus II TimeQuest Timing Analyzer to open a project compiled with an earlier version of the Quartus II software, the Quartus II TimeQuest Timing Analyzer overwrites the compilation results (**db** folder) without warning. Opening a project any other way results in a warning, and you can choose not to open the project.

Conversion Utility

This section describes the notes for the QSF assignment to SDC constraint conversion utility.

*t*_{PD} and Minimum *t*_{PD} Requirement Conversion

The conversion utility treats the targets of single-point t_{PD} and minimum t_{PD} assignments as device outputs. It does not correctly convert targets of single-point t_{PD} and minimum t_{PD} assignments that are device inputs. The following QSF assignment applies to an a device input named d_in:

```
set_intance_assignment -name TPD_REQUIREMENT -to d_in "3 ns"
```

The conversion utility creates the following SDC command, regardless of whether d_in is a device input or device output:

```
set max delay "3 ns" -from [get ports *] -to [get ports d in]
```

You must update any incorrect SDC constraints manually.

Referenced Documents

This chapter references the following documents:

- Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook
- SDC and TimeQuest Tcl API Reference Manual

Document Revision History

Table 7–17 shows the revision history for this chapter.

Table 7–17. Document Revision History (Part 1 of 2)		
Date and Version	Changes Made	Summary of Changes
October 2007 v7.2.0	No changes were made to the content.	_
May 2007 v.7.1.0	 Updated chapter for Quartus II software version 7.1, including: Minor changes to the "Timing Assignment Conversion" section, including: Updated data on Table 7–6 on page 7–43 Updated data on Table 7–7 on page 7–45 Updated data on Table 7–8 on page 7–47 Updated data on Table 7–9 on page 7–49 Updated data on Table 7–12 on page 7–59 Added multicycle_hold information on pages 7–60 and 7–60 Added new section "Paths between Unrelated Clock Domains" on page 7–63 Added new section "Ignored Entity Assignment (Entity <entity>): <variable> = <value> -from <from> -to <to>" on page 7–65.</to></from></value></variable></entity> 	Changes made to this chapter reflect the software changes made in version 7.1.
March 2007 v7.0.0	Updated Quartus II software 7.0 revision and date only. No other changes made to chapter.	—
November 2006 v6.1.0	 Minor changes made to reflect the Quartus II software version 6.1.0, including: Changed wording on pages 7–4 and 7–5, regarding setting the default timing analyzer. Changed Figure 7–3 on page 7–10 to reflect that the TimeQuest Timing Analyzer does not create nor convert any constraints. Changed explanation of Figure 7–3 to reflect that TimeQuest does not create nor convert any constraints. Changed wording in "Constraint Target Types" to reflect that the TimeQuest Timing Analyzer now supports mixed exception types. 	Changes made to this chapter reflect the software changes made in version 6.1, GUI changes that were made to select the default timing analyzer, and support for mixed exception types.

Table 7–17. Document Revision History (Part 2 of 2)		
Date and Version	Changes Made	Summary of Changes
July 2006 v6.0.1	 Updated for the Quartus II software version 6.0.1: Added section on Clock Objects on page 7-24. Added examples of Netlist Names on page 7-29. Replaced figure 7-23 and example 7-9 on page 7-36. Added note 4 to table 7-6 on page 7-43. Added "Display Entity Name" to table 7-11 on page 7-57. Added information to Clock Conversion on pages 7-58 and 7-59. Added note 3 to table 7-12 on page 7-60. Added information to Clocks section on page 7-67. Added Path Details and Unconstrained Paths sections on page 7-68. Added information to Clock Network Delay Reporting on page 7-72. Added hand paragraph in Conversion Utility section on page 7-73. Changed "constraint" to "exception" in many places. 	_
May 2006 v6.0.0	Initial release.	_

8. Quartus II Classic Timing Analyzer

QII53004-7.2.0

Introduction

Static timing analysis is a method for analyzing, debugging, and validating the timing performance of a design. The classic timing analyzer analyzes the delay of every design path and analyzes all timing requirements to ensure correct circuit operation. Static timing analysis, used in conjunction with functional simulation, allows you to verify overall design operation.

For information about switching to the Quartus II TimeQuest Timing Analyzer, refer to the *Switching to the Quartus II TimeQuest Timing Analyzer* chapter in volume 3 of the *Quartus II Handbook*.

As part of the compilation flow, the Quartus[®] II software automatically performs a static timing analysis so that you do not need to launch a separate timing analysis tool. The Quartus II Classic Timing Analyzer checks every path in the design against your timing constraints for timing violations and reports results in the Timing Analysis reports, giving you immediate access to the data.

This chapter assumes you have some Tcl expertise; Tcl commands are used throughout this chapter to describe alternative methods for making timing analysis assignments. Refer to "Timing Analysis Using the Quartus II GUI" on page 8–43 for GUI-equivalent timing constraints.

This chapter details the following aspects of timing analysis:

- "Timing Analysis Tool Setup" on page 8–2
- "Static Timing Analysis Overview" on page 8–2
- "Clock Settings" on page 8–8
- "Clock Types" on page 8–9
- "Clock Uncertainty" on page 8–11
- "Clock Latency" on page 8–12
- "Timing Exceptions" on page 8–15
- "I/O Analysis" on page 8–26
- "Asynchronous Paths" on page 8–30
- "Skew Management" on page 8–34
- "Generating Timing Analysis Reports with report_timing" on page 8–36
- "Other Timing Analyzer Features" on page 8–38
- "Timing Analysis Using the Quartus II GUI" on page 8–43
- "Scripting Support" on page 8–52
- "MAX+PLUS II Timing Analysis Methodology" on page 8–58

Timing Analysis Tool Setup

The Quartus II software version 6.0 and above supports two static timing analysis tools namely, the classic timing analyzer and the Quartus II TimeQuest Timing Analyzer. Use the **Timing Analysis** option under the Settings menu to set the Timing Analyzer that is used in the compilation process.

Arria GX is not supported by the Quartus II Classic Timing Analyzer. To perform a static timing analysis for Arria GX, the Quartus II TimeQuest Timing Analyzer must be enabled.

The following steps set the classic timing analyzer as the default timing analysis tool in the Quartus II software.

- 1. On the Assignments menu, click **Settings**. The Settings dialog box appears.
- 2. In the Category list, click the icon next to **Timing Analysis Settings** to expand the folder.
- 3. Select the **Use Classic Timing Analyzer during compilation** radio button.

Refer to the *Quartus II TimeQuest Timing Analyzer* chapter of the *Quartus II Handbook* for more information about the Quartus II TimeQuest Timing Analyzer.

Static Timing Analysis Overview

This section provides information about static timing analysis concepts used throughout this chapter and used by the Quartus II Classic Timing Analyzer. A complete understanding of the concepts presented in this section allows you to take advantage of the powerful static timing analysis features available in the Quartus II software.

Various paths exist within any given design which connect design elements together, including the path from an output of a register to the input of another register. Timing paths play a significant role during a static timing analysis. Understanding the types of timing paths is important for timing closure and optimization. Some of the commonly analyzed paths are described in this section and are shown in Figure 8–1.

- Clock paths—Clock paths are the paths from device pins or internally generated clocks (nodes designated as a clock via a clock setting) to the clock ports of sequential elements such as registers.
- Data paths—Data paths are the paths from the data output port of a sequential element to the data input port of another sequential element.

• **Asynchronous paths**—Asynchronous paths are paths from a node to the asynchronous set or clear port of a sequential element.

Once the path types are identified, the classic timing analyzer computes data and clock arrival times for all valid register-to-register paths. Data arrival time is the delay from the source clock to the destination register. TheQuartus II Classic Timing Analyzer calculates this delay by adding the clock path delay to the source register, the micro clock-to-out (μ t_{CO}) of the source register, and the data path delay from the source register to the destination register. Clock arrival time is the delay from the destination clock node to the destination register. Figure 8–2 shows a data arrival path and a clock arrival path.

Figure 8–2. Data Arrival and Clock Arrival

In addition to identifying various paths within a design, the Quartus II Classic Timing Analyzer analyzes clock characteristics to compute the worst-case requirement between any two registers in a single register-to-register path. You must use timing constraints to specify the characteristics of all clock signals in the design before this analysis occurs.

The active clock edge that sends data out of a sequential element, acting as a source for the data transfer, is the launch edge. The active clock edge that captures data at the data port of a sequential element, acting as a destination for the data transfer, is the latch edge. Figure 8–3 shows a single-cycle system that uses consecutive clock edges to transmit and capture data, a register-to-register path, and the corresponding launch and latch edges timing diagram. In this example, the launch edge sends the data out of register reg1 at 0 ns, and register reg2 latch edge captures the data at 5 ns.

By analyzing specific paths relative to the launch and latch edges, the Quartus II Classic Timing Analyzer performs clock setup and clock hold checks, validating them against your timing assignments.

Clock Analysis

A comprehensive static timing analysis includes analysis of register-to-register, I/O, and asynchronous reset paths. Static Timing Analysis tools use data required times, data arrival times, and clock arrival times to verify circuit performance and detect possible timing violations. The Quartus II Classic Timing Analyzer determines the timing relationships that must be met for the design to correctly function, and checks arrival times against required times to verify timing.

Clock Setup Check

To determine if a design meets performance, the Quartus II Classic Timing Analyzer calculates clock timing, timing requirements, and timing exceptions to perform a clock setup check at each destination register based on the source and destination clocks and timing constraints, or exceptions that are applicable to those paths. A clock setup check ensures that data launched by a source register is latched correctly by the destination register. To perform a clock setup check, the Quartus II Classic Timing Analyzer determines the clock arrival time and data arrival time at the destination register by using the longest path for the data arrival time and the shortest path for the clock arrival time. The Quartus II Classic Timing Analyzer then checks that the difference is greater than or equal to the micro setup (t_{SU}) of the destination register as shown in Equation 1.

- (1) Clock Arrival Time Data Arrival Time \geq micro t_{SII}
 - By default, the Quartus II Classic Timing Analyzer assumes the launched and latched edges happen on consecutive active clock edges.

The results of clock setup checks are reported in terms of slack. Slack is the margin by which a timing requirement is met or not met. Positive slack indicates the margin by which a requirement is met, and negative slack indicates the margin by which a requirement is not met. The Quartus II Classic Timing Analyzer determines clock setup slack using Equations 2 through 5.

- (2) Clock Setup Slack = Data Required Time Data Arrival Time
- (3) Data Required = Clock Arrival Time micro t_{SII}–Setup Uncertainty
- (4) Clock Arrival Time = Latch Edge + Shortest Clock Path to Destination Register
- (5) Data Arrival Time = Launch Edge + Longest Clock Path to Source Register + micro t_{c0} + Longest Data Delay

The Quartus II Classic Timing Analyzer reports clock setup slack using Equations 6 through 9 (which are equivalent to Equations 2 through 5).

- (6) Clock Setup Slack = Largest Register-to-Register Requirement Longest Register-to-Register Delay
- (7) Largest Register-to-Register Requirement = Setup Relationship between Source and Destination + Largest Clock Skew - micro t_{CO} of Source Register - micro t_{SU} of Destination Register
- (8) Setup Relationship between Source & Destination Register = Latch Edge Launch Edge Setup Uncertainty
- (9) Largest Clock Skew = Shortest Clock Path to Destination Register Longest Clock Path to Source Register

Both sets of equations can be used to determine the slack value of any path.

Clock Hold Check

To prevent hold violations, the Quartus II Classic Timing Analyzer calculates clock timing, timing requirements, and timing exceptions to perform a clock hold check at each destination register. A clock hold check ensures data launched from the source register is not captured by an active clock edge earlier than the setup latch edge, and that the destination register does not capture data launched from the next active launch edge. To perform a clock hold check, the Quartus II Classic Timing Analyzer determines the clock arrival time and data arrival time at the destination register using the shortest path for the data arrival time and the longest path for the clock arrival time. The Quartus II Classic Timing Analyzer checks that the difference is greater than or equal to the micro hold time (t_H) of the destination register, as shown in Equation 10.

(10) Data Arrival Time – Clock Arrival Time $\ge t_{H}$

The Quartus II Classic Timing Analyzer determines clock hold slack using Equations 11 through 14.

- (11) Clock Hold Slack = Data Arrival Time Data Required Time
- (12) Data Required Time = Clock Arrival Time + micro t_{H} + Hold Uncertainty
- (13) Clock Arrival Time = Latch Edge + Longest Clock Path to Destination Register
- (14) Data Arrival Time = Launch Edge + Shortest Clock Path to Source Register + micro t_{CO} + Shortest Data Delay

The Quartus II Classic Timing Analyzer reports clock hold slack using Equations 15 through 18.

- (15) Clock Hold Slack = Shortest Register-to-Register Delay Smallest Register-to-Register Requirement
- (16) Smallest Register-to-Register Requirement = Hold Relationship between Source & Destination + Smallest Clock Skew ⁻ micro t_{co} of Source Register ⁺ micro t_H of Destination Register
- (17) Hold Relationship between Source and Destination Register = Latch Launch + Hold Uncertainty
- (18) Smallest Clock Skew = Longest Clock Path from Clock to Destination Register Shortest Clock Path from Clock to Source Register

These equations can be used to determine the slack value of any path.
Multicycle Paths

Multicycle paths are data paths that require more than one clock cycle to latch data at the destination register. For example, a register may be required to capture data on every second or third rising clock edge. Figure 8–4 shows an example of a multicycle path between a multiplier's input registers and output register where the destination latches data on every other clock edge.

Refer to "Multicycle" on page 8–15 for more information about multicycle exceptions.

Figure 8–4. Example Diagram of a Multicycle Path

Figure 8–5 shows the default clock setup analysis launch and latch edges where multicycle assignment is equal to 1.

Figure 8–6 shows an analysis similar to Figure 8–5, but with a multicycle of 2.

Clock Settings

You can use individual and default clock settings to define the clocks in your design. You can base these clock settings on other clock settings already defined in your design.

To ensure the Quartus II Fitter achieves the desired performance requirements and the Quartus II Classic Timing Analyzer performs a thorough static timing analysis, you must specify all timing assignments prior to compiling the design.

Individual Clock Settings

Individual clock settings allow you to specify clock properties including performance requirements, offsets, duty cycles, and other properties for individual clock signals in your design.

You can define individual clock settings using the create_base_clock Tcl command. The following example defines an individual clock setting named sys_clk with a requirement of 100 MHz (10 ns), and assigns it to clock node clk.

create_base_clock -fmax 100MHz -target clk sys_clk

Default Clock Settings

You can assign a project-wide clock requirement to constrain all detected clocks in a design that do not have individual clock settings.

The set_global_assignment -name FMAX_REQUIREMENT Tcl command specifies a global default requirement assignment. The following example defines a 100 MHz default clock requirement:

set global assignment -name FMAX REQUIREMENT "100.0 MHz"

P

For best placement and routing results, apply individual clock settings to all clocks in your design. All clocks adopting the default F_{MAX} are by default unrelated.

Clock Types

This section describes the types of clocks recognized by the Timing Analyzer:

- Base clocks
- Derived clocks
- Undefined clocks
- PLL clocks

Base Clocks

A base clock is independent of other clocks in a design. For example, a base clock is typically a clock signal driven directly by a device pin. A base clock is defined by individual clock settings, or automatically detected using the default clock setting.

You can use the create_base_clock Tcl command to define a base clock setting and assign the clock setting to a clock node. The following Tcl command creates a clock setting called sys_clk with a requirement of 5 ns (200 MHz) and applies the clock setting to clock node main_clk:

create_base_clock -fmax 5ns -target main_clk sys_clk

Derived Clocks

A derived clock is based on a previously defined base clock. For a derived clock, you can specify the phase shift, offset, multiplication and division factors, and duty cycle relative to the base clock.

You can use the create_relative_clock Tcl command to define and assign a derived clock setting. The following example creates a derived clock setting named system_clockx2 that is twice as fast as the base clock system_clock applied to clock node clkx2.

create_relative_clock -base_clock system_clock -duty_cycle 50 \
-multiply 2 -target clkx2 system_clockx2

Undefined Clocks

The Quartus II Classic Timing Analyzer detects undeclared clocks in your design and displays a warning similar to the following:

Warning: Found pins functioning as undefined clocks and/or memory enables

Info: Assuming node "clk_src" is an undefined clock
Info: Assuming node "clk_dst" is an undefined clock

The Quartus II Classic Timing Analyzer reports actual data delay for undefined clocks, but because no clock requirements exist for undefined clocks, the Quartus II Classic Timing Analyzer does not report slack for any register-to-register paths driven by an undefined clock.

PLL Clocks

Phase-locked loops (PLLs) are used for clock synthesis in Altera[®] devices. This device feature is configured and connected to your design using the altpl1 megafunction included with the Quartus II software. Using the MegaWizard[®] Plug-In Manager, you can customize the input clock frequency, multiplication factors, division factors, and other parameters of the altpl1 megafunction.

For more information about using the PLL feature in your design, refer to the *altpll Megafunction User Guide* or the handbook for the targeted device family.

For PLLs, the Quartus II Classic Timing Analyzer automatically creates derived clock settings based on the parameterization of the PLL and automatically creates a base clock setting for the input clock pin. For example, if the input clock frequency to a PLL is 100 MHz and the multiplication and division ratio is 5:2, the clock period of the PLL clock is set to 4.0 ns and is automatically calculated by the Quartus II Classic Timing Analyzer.

For the Stratix[®] and Cyclone[®] device families, you can override the PLL input clock frequency by applying a clock setting to the input clock pin of the PLL. For example, if the PLL input clock period is set to 10 ns (100 MHz) with a multiplication and division ratio of 5:2, but a clock setting of 20 ns (50 MHz) is applied to the input clock pin of the PLL, the setup relationship is 8.0 ns (125 MHz) and not 4.0 ns (250 MHz). The Quartus II Classic Timing Analyzer issues a message similar to the following:

Warning: ClockLock PLL "mypll_test:inst|altpll:altpll_component|_clk1" input frequency requirement of 200.0 MHz overrides default required fmax of 100.0 MHz -- Slack information will be reported

P

You cannot override the PLL output clock frequency with a clock setting in the Quartus II Classic Timing Analyzer.

Clock Uncertainty

You can use **Clock Setup Uncertainty** and **Clock Hold Uncertainty** assignments to model jitter, skew, or add a guard band associated with clock signals.

When a clock uncertainty assignment exists for a clock signal, the Timing Analyzer performs the most conservative setup and hold checks. For clock setup check, the setup uncertainty is subtracted from the data required time. Figure 8–7 shows an example of clock sources with a clock setup uncertainty applied.

You can create clock uncertainty assignments using the Tcl command set_clock_uncertainty. The set_clock_uncertainty assignment used with the switch -setup specifies a clock setup uncertainty assignment. The following example creates a **Clock Setup Uncertainty** assignment with a value of 2 ns applied to clock signal clk:

```
set_clock_uncertainty -to clk -setup 2ns
```

For the clock hold check, the hold uncertainty is added to the data required time. Figure 8–8 shows an example of clock setup check with a clock setup uncertainty and clock hold uncertainty applied.

Figure 8–8. Clock Hold Uncertainty

You can use the set_clock_uncertainty Tcl command with the option -hold to specify a **Clock Hold Uncertainty** assignment. The following example creates a **Clock Hold Uncertainty** assignment with a value of 2 ns for clock signal clk.

set_clock_uncertainty -to clk -hold 2ns

You can also apply the clock uncertainty assignments between two clock sources. The following example creates a **Clock Setup Uncertainty** assignment for clock setup checks where clk1 is the source clock and clk2 is the destination clock:

set_clock_uncertainty -from clk1 -to clk2 -setup 2ns

Clock Latency

You can use clock latency assignments to model delays from the clock source. For example, you can use clock latency to model an external delay from an ideal clock source, such as an oscillator, to the clock pin or port of the device.

The **Early Clock Latency** assignment allows you to specify the shortest or earliest delay of the clock source. Conversely, the **Late Clock Latency** assignment allows you to specify the longest or latest delay of the clock source.

During setup analysis, the Quartus II Classic Timing Analyzer adds the Late Clock Latency assignment value to the source clock path delay and adds the Early Clock Latency assignment value to the destination clock path delay when determining clock skew for the path. During clock hold analysis, the Quartus II Classic Timing Analyzer adds the Early Clock Latency assignment value to the source clock path delay and adds the Late Clock Latency assignment value to the destination clock path delay when determining clock skew for the path.

The **Early Clock Latency** and **Late Clock Latency** assignments do not change the latch and launch edges defined by the clock setting and therefore does not change the setup or hold relationships between source and destination clocks. The clock latency assignments add only delay to the clock network and therefore only affects clock skew.

Figure 8–9 shows the clock edges used to calculate clock skew for a setup check when the **Early Clock Latency** and **Late Clock Latency** assignments are used.

Figure 8–9. Clock Setup Check Clock Skew

Figure 8–10 shows the clock edges used to calculate clock skew for a hold check when the **Early Clock Latency** and **Late Clock Latency** assignments are used.

Figure 8–10. Clock Hold Check Clock Skew

The Quartus II Classic Timing Analyzer ignores clock latency if the clock signal at the source and destination registers are the same.

You can use the set_clock_latency Tcl command with the switches -early or -late to specify an **Early Clock Latency** assignment or **Late Clock Latency** assignment, respectively. Example 8–1 specifies that the clock signal at clk2 arrives as early as 1.8 ns and as late as 2.0 ns.

```
Example 8-1. Specifying Early or Late Clock Latency at clk2
set_clock_latency -early -to clk2 1.8ns
set_clock_latency -late -to clk2 2ns
```

The early clock latency default value is the same as the late clock latency delay, and the late clock latency default value is the same as the early clock latency delay, if only one is specified.

The Enable Clock Latency option must be set to ON for the Quartus II Classic Timing Analyzer to analyze clock latency. When this option is set to ON, the Quartus II Classic Timing Analyzer reports clock latency as part of the clock skew calculation for either the source or destination clock path depending upon the analysis performed. To set the Enable Clock Latency option to ON, you can use the following Tcl command:

set_global_assignment -name ENABLE_CLOCK_LATENCY ON

When the **Enable Clock Latency** option is enabled, the Quartus II Classic Timing Analyzer automatically calculates latencies for derived clocks instead of automatically calculating offsets; for example, PLL compensation delays. These clock path delays are accounted for as clock skew instead of part of the setup or hold relationship as done with offsets.

For more information about clock latency, refer to AN 411: Understanding PLL timing for Stratix II Devices.

Timing Exceptions

Timing exceptions allow you to modify the default behavior of the Quartus II Classic Timing Analyzer. This section describes the following timing exceptions:

- Multicycle
- Setup relationship and hold relationship
- Maximum delay and minimum delay
- False paths
- Not all timing exceptions presented in this chapter are applicable to the HardCopy[®] II devices. If you are designing for the HardCopy II device family, refer to the *Timing Constraint for HardCopy II* chapter in the *HardCopy II Handbook*.

Multicycle

By default, the Quartus II Classic Timing Analyzer performs a single-cycle analysis for all valid register-to-register paths in the design. Multicycle assignments specify the number of clock periods before a source register launches the data or a destination register latches the data. Multicycle assignments adjust the latch or launch edges, which relaxes the required clock setup check or clock hold check between the source and destination register pairs. You can specify multicycles separately for setup and hold, and multicycles can be based on the source clock or destination clock. Apply **Multicycle** exception to time groups, clock nodes, or common clock enables.

Destination Multicycle Setup Exception

A destination multicycle setup, referred to as a **Multicycle** exception, specifies the minimum number of clock cycles required before a register should latch a value. A **Multicycle** exception changes the latch edge by relaxing the required setup relationship. Figure 8–11 shows a timing diagram for a multicycle path that exists in a design with related clocks, and with the latch edge label for a clock setup check.

By default, the **Multicycle** exception value is 1.

Figure 8–11. Multicycle Setup		
Source Clock		
Default Cl	lock Setup Check Latch Edge Multicycle = 2	
Destination Clock		
-	20 ns -10 ns 0 ns 10 ns 20 ns 30 ns	

You can apply **Multicycle** exception between any two registers or between any two clock domains. Use the Tcl command set_multicycle_assingment, and the switch -setup and -end. For example, to apply a **Multicycle** exception of 2 between all registers clocked by source clock clk_src, and all registers clocked by destination clock clk_dst, enter the following Tcl command:

set multicycle assignment -setup -end -from clk src -to clk dst 2

To apply a **Multicycle** exception of 2 between the source register reg1 and the destination register reg2, enter the following Tcl command:

set_multicycle_assignment -setup -end -from reg1 -to reg2 2

Destination Multicycle Hold Exception

A destination multicycle hold, referred to as a **Multicycle Hold** exception, modifies the latch edge used for a clock hold check for the register-to-register path based on the destination clock. A **Multicycle Hold** exception changes the latch edge by relaxing the required hold relationship. Figure 8–12 shows a timing diagram labeling the latching edge for a clock setup check.

If no **Multicycle Hold** value is specified, the **Multicycle Hold** value defaults to the value of the multicycle exception.

Figure 8–12. Multicycle Hold

You can create **Multicycle Hold** exceptions with the Tcl command set_multicycle_assingment and the switch -hold and -end. The following example specifies a **Multicycle Hold** exception of 3 from register reg1 to register reg2:

```
set multicycle assignment -hold -end -from reg1 -to reg2 3
```

By default, the hold multicycle is set to equal that of the setup multicycle value along the same path. For example, if a setup multicycle of 2 has been applied to a register-to-register path without a separate hold multicycle, the hold multicycle value would be set to 2. The default hold multicycle value can also be changed to a value of 1. This forces all paths with a setup multicycle assignment to have a default hold multicycle of 1. To change the default hold multicycle value, in the **Settings** dialog box, click the **More Timing Settings** option.

If your design requires a hold multicycle value not equal to the setup multicycle or 1, you must explicitly apply a hold multicycle assignment to the path.

Source Multicycle Setup Exception

A source multicycle setup, referred to as **Source Multicycle Setup** exception, is used to extend the required delay by adjusting the source clock's launch edge rather than the destination clock's latch edge; for example, multicycle setup. **Source Multicycle** exceptions are useful when the source and destination registers are clocked by related clocks at different frequencies. Figure 8–13 shows an example of a **Source Multicycle** exception with the launch edge labeled for a clock setup check.

Figure 8–13. Source Multicycle

You can create **Source Multicycle Setup** exceptions with the Tcl command set_multicycle_assignment and the switches -setup and -start. The following example specifies a **Source Multicycle** exception of 3 from register reg1 to register reg2:

set multicycle_assignment -setup -start -from reg1 -to reg2 3

By default, the hold multicycle is set to equal that of the setup multicycle value along the same path. For example, if a setup multicycle of 2 has been applied to a register-to-register path without a separate hold multicycle, the hold multicycle value would be set to 2. The default hold multicycle value can also be changed to a value of 1. This forces all paths with a setup multicycle assignment to have a default hold multicycle of 1. To change the default hold multicycle value, in the **Settings** dialog box, click the **More Timing Settings** option.

If your design requires a hold multicycle value not equal to the setup multicycle or 1, you must explicitly apply a hold multicycle assignment to the path.

Source Multicycle Hold Exception

The **Source Multicycle Hold** exception modifies the latch edge used for a clock hold check for the register-to-register path based on the source clock. **Source Multicycle Hold** exceptions increase the required hold delay by adding source clock cycles. Figure 8–14 shows an example of a source multicycle hold with launch edge labeled for a clock hold check.

You can create **Source Multicycle Hold** exceptions with the Tcl command set_multicycle_assingment and the switch -setup and -start. The following example specifies a **Source Multicycle Hold** exception of 3 from register reg1 to register reg2:

set_multicycle_assignment -hold -start -from reg1 -to reg2 3

Default Hold Multicycle

The Quartus II Classic Timing Analyzer sets the hold multicycle value to equal the multicycle value when a multicycle exception has been entered without a corresponding hold multicycle. You can change the behavior with the DEFAULT_HOLD_MULTICYCLE assignment. The value of the assignment can either be "ONE" or "SAME AS MULTICYCLE".

The assignment has the following syntax:

set_global_assignment -name DEFAULT_HOLD_MULTICYCLE "<value>"

Clock Enable Multicycle

For all enable-driven registers, the setup relationship or hold relationship can be modified with the Clock Enable Multicycle, Clock Enable Multicycle Hold, Clock Enable Source Multicycle, or Clock Enable Multicycle Source Hold.

The **Clock Enable Multicycle** modifies the latching edge when a clock setup check is performed for all registers driven by the specified clock enables, and the **Clock Enable Multicycle Hold** modifies the latching edge when a clock hold check is performed for all registers driven by the specified clock enable. The **Clock Enable Source Multicycle** modifies the launching edge when a clock setup check is performed for all enabled driven registers, and the **Clock Enable Source Multicycle Hold** modifies the launching edge when a clock hold check is performed for all enabled driven registers. Clock enable-based multicycle exceptions apply only to registers using dedicated clock enable circuitry. If the enable is synthesized into a logic cell; for example, due to signal prioritization, the multicycle does not apply.

The Clock Enable Multicycle, Clock Enable Multicycle Hold, Clock Enable Source Multicycle, and Clock Enable Multicycle Source Hold can be either a single-point or a point-to-point assignment. Figure 8–15 shows an example of a single-point assignment. In this example, register Reg A has the single-point assignment applied. This has the affect of modifying a register-to-register latching edge whose enable port is driven by register Reg A. All register-to-register paths with enables driven by the single-point assignment are affected, even those driven by different clock sources.

Point-to-point assignments apply to all paths where the source registers' enable ports are driven by the source (from) node and the destination registers' enable ports are driven by the destination (to) node. Figure 8–16 shows an example of a point-to-point assignment made to different source and destination registers. In this example, register Reg A is specified as the source, and register Reg B is specified as the destination for the assignment. Only register-to-register paths that have their enables driven by the assigned point-to-point registers have their latching edges modified.

Figure 8–16. Different Source and Destination Point-to-Point Assignment Clock Enable Multicycle

Figure 8–17 shows an example of a point-to-point assignment made to the same source and destination register. In this example, register Reg A has been specified as both the source and register for the assignment. Only register-to-register paths that have both the source-enable port and destination-enable port has the latching edge modified by the assigned point-to-point assignment.

You can use the set_instance_assignment -name CLOCK_ENABLE_MULTICYCLE and set_instance_assignment -name CLOCK_ENABLE_MULTICYCLE_HOLD Tcl commands to specify either a **Clock Enable Multicycle** or a **Clock Enable Multicycle Hold** assignment, respectively. The following example specifies a single-point **Clock Enable Multicycle** assignment of 2 ns to reg1:

set_instance_assignment -name CLOCK_ENABLE_MULTICYCLE 2 -to reg1

The following example specifies a point-to-point **Clock Enable Multicycle Hold** assignment of 2 from register reg1 to register reg2:

```
set_instance_assignment -name CLOCK_ENABLE_MULTICYCLE_HOLD 2 \
-from reg1 -to reg2
```

You can use the set_instance_assignment -name CLOCK_ENABLE_SOURCE_MULTICYCLE and set_instance_assignment -name CLOCK_ENABLE_MULTICYCLE_SOURCE_HOLD Tcl commands to specify either a Clock Enable Multicycle or Clock Enable Multicycle Hold assignment, respectively. The following example specifies a single-point Clock Enable Multicycle assignment of 2 ns to reg1:

```
set_instance_assignment -name CLOCK_ENABLE_SOURCE_MULTICYCLE \
2 -to reg1
```

The following example specifies a point-to-point **Clock Enable Multicycle Hold** assignment of 2 from register reg1 to register reg2:

```
set_instance_assignment -name \
CLOCK ENABLE SOURCE MULTICYCLE HOLD 2 -from reg1 -to reg2
```

Setup Relationship and Hold Relationship

By default, the Quartus II Classic Timing Analyzer determines all setup and hold relationships based on clock settings. The **Setup Relationship** and **Hold Relationship** exceptions allow you to override any default setup or hold relationships. Example 8–2 shows the path details of a register-to-register path that has a 10 ns clock setting applied to the clock signal driving the 2 registers.

Example 8–2. Default Setup Relationship with 10 ns Clock Setting

Info: Slack time is 9.405 ns for clock "data_clk" between source register "reg9" and destination register "reg10" Info: Fmax is restricted to 500.0 MHz due to tcl and tch limits Info: + Largest register to register requirement is 9.816 ns Info: + Setup relationship between source and destination is 10.000 ns Info: + Latch edge is 10.000 ns Info: - Launch edge is 0.000 ns Info: + Largest clock skew is 0.000 ns Info: - Micro clock to output delay of source is 0.094 ns Info: - Micro setup delay of destination is 0.090 ns Info: - Longest register to register delay is 0.411 ns

In Example 8–3, a 15 ns **Setup Relationship** exception is applied to the register-to-register path, overriding the default 10 ns setup relationship.

Example 8–3. Setup Relationship Assignment of 15 ns

```
Info: Slack time is 14.405 ns for clock "data_clk" between source register "reg9" and
destination register "reg10"
Info: Fmax is restricted to 500.0 MHz due to tcl and tch limits
Info: + Largest register to register requirement is 14.816 ns
Info: + Setup relationship between source and destination is 15.000 ns
Info: Setup Relationship assignment value is 15.000 ns between source "reg9" and
destination "reg10"
Info: + Largest clock skew is 0.000 ns
Info: Total interconnect delay = 1.583 ns ( 51.31 % )
Info: - Micro clock to output delay of source is 0.094 ns
Info: - Micro setup delay of destination is 0.090 ns
Info: - Longest register to register delay is 0.411 ns
```

You can create a **Setup Relationship** exception with the Tcl command set_instance_assignment -name SETUP_RELATIONSHIP. The following example specifies a **Setup Relationship** exception of 5 ns from register reg1 to register reg2:

```
set_instance_assignment -name SETUP_RELATIONSHIP 5ns -from reg1 \backslash -to reg2
```

You can use **Hold Relationship** exception to override the default hold relationship of any register-to-register paths.

You can use the set_instance_assignment -name HOLD_RELATIONSHIP Tcl command to specify a hold relationship assignment. The following example specifies a **Hold Relationship** exception of 1 ns from register reg1 to register reg2:

set_instance_assignment -name HOLD_RELATIONSHIP lns -from reg1 $\$ -to reg2

Maximum Delay and Minimum Delay

You can use **Maximum Delay** and **Minimum Delay** assignments to specify delay requirements for pin-to-register, register-to-register, and register-to-pin paths. The **Maximum Delay** assignment overrides any setup relationship for any path. The **Minimum Delay** assignment overrides any hold relationship for any path.

The Quartus II Classic Timing Analyzer ignores the effects of clock skew when checking a design against **Maximum Delay** and **Minimum Delay** assignments.

You can use the set_instance_assignment -name MAX_DELAY and set_instance_assignment -name -MIN_DELAY Tcl commands to specify a **Maximum Delay** assignment or a **Minimum Delay** assignment, respectively. The following example specifies a maximum delay of 2 ns between source register reg1 and destination register reg2:

set_instance_assignment -name MAX_DELAY 2ns -from reg1 -to reg2

The following example specifies a minimum delay of 1 ns between input pin data_in to destination register dst_reg:

```
set_instance_assignment -name MIN_DELAY 1ns -from data_in -to \ dst_reg
```

False Paths

A false path is any path that is not relevant to a circuit's operation, such as test logic. There are several global assignments to cut different classes of paths, such as unrelated clock domains and paths through bidirectional pins, but you can also cut an individual timing path to a specific false path.

The Timing Analyzer provides the following three global options that allow you to remove false paths from your design:

- Cut off feedback from I/O pins
- Cut off read-during-write signal paths
- Cut paths between unrelated clock domains

You can use the set_global_assignment -name CUT_OFF_IO_PIN_FEEDBACK ON Tcl command to cut the feedback path when a bidirectional I/O pin is connected directly or indirectly to both the input and output of a latch. You can use the set_global_assignment -name CUT_OFF_READ_DURING_WRITE_PATHS ON Tcl command to cut the path from the write-enable register through memory element to a destination register.

You can use the set_global_assignment -name CUT_OFF_PATHS_BETWEEN_CLOCK_DOMAINS ON Tcl command to cut paths between register-to-register where the source and destination clocks are different.

You can use the set_timing_cut_assignment Tcl command to cut specific timing paths. In Figure 8–18, the path from inst1 through the multiplexer to inst2 is used only for design testing. This false path is not required under normal operation and does not need to be analyzed during static timing analysis. Figure 8–18 shows an example of a false path.

Figure 8–18. False Path Signal

To cut the timing path from source register inst1 to destination register inst2, enter the following Tcl command:

set_timing_cut_assignment -from inst1 -to inst2

You can also use the set_timing_cut_assignment Tcl command as a single point assignment. When you use the single point assignment, all fanout of the node is cut. For example, the following Tcl command cuts all timing paths originating for node src_reg:

set_timing_cut_assignment -to src_reg

I/O Analysis

The I/O analysis performed by the Quartus II Classic Timing Analyzer ensures your Altera FPGA design meets all timing specifications for interfacing with external devices. This section describes assignments relevant to I/O analysis and other I/O analysis features and options available with the Quartus II Classic Timing Analyzer.

External Input Delay and Output Delay Assignments

External input and output delays represent delays from or to external devices or boards traces. You can make **Input Delay** and **Output Delay** assignments to ensure the Quartus II Classic Timing Analyzer can perform a full system analysis. By providing **Input Delays** and **Output Delays**, the Quartus II Classic Timing Analyzer is able to perform clock setup and clock hold checks for these paths. This also allows other timing assignments, such as multicycle or clock uncertainty, to be applied to input and output paths.

- P
- Do not combine individual or global t_{SU} , t_{H} , t_{PD} , t_{CO} , minimum t_{CO} , or minimum t_{PD} assignments with **Input Delay** or **Output Delay** assignments.

Input Delay Assignment

External input delays are specified with either **Input Maximum Delay** or **Input Minimum Delay** assignments. Make **Input Maximum Delay** assignments to specify the maximum delay of a signal from an external register to a specified input or bidirectional pin on the FPGA relative to a specified clock source. Make **Input Minimum Delay** assignments to specify the minimum delay of a signal from an external register to a specified input or bidirectional pin on the FPGA relative to a specified input or bidirectional pin on the FPGA relative to a specified input or bidirectional pin on the FPGA relative to a specified clock source.

When performing a clock setup check, the Quartus II Classic Timing Analyzer adds the **Input Maximum Delay** assignment value to the data arrival time (or subtracts the assignment value from the point-to-point requirement).

When performing a clock hold check, the Quartus II Classic Timing Analyzer adds the **Input Minimum Delay** assignment value to the data arrival time (or subtracts the assignment value from the point-to-point requirement).

The value of the input delay assignment usually represents the sum of the t_{CO} of the external device, the actual board delay to the input pin of the Altera device, and the board clock skew.

The **Input Minimum Delay** defaults to the **Input Maximum Delay** and the **Input Maximum Delay** defaults to the Input **Minimum Delay** if only one is specified.

For example, the Input Maximum Delay and Input Minimum Delay can be used to model the delay associated with an external device driving into an Altera FPGA. Figure 8–19 shows an example of the input delay path. For Figure 8–19, the Input Maximum Delay can be calculated as shown in Equation 19.

(19) Input Maximum Delay = External Device Board Clock Path + External Device t_{C0} + External Device to Altera Device Board Delay ⁻ External Clock Path to Altera Device

Use the Tcl command set_input_delay to specify an input delay. The following example specifies an **Input Maximum Delay** assignment of 1.5 ns from clock node clk to input pin data_in:

set_input_delay -clk_ref clk -to "data_in" -max 1.5ns

The following example specifies an **Input Minimum Delay** assignment of 1 ns from clock node clk to input pin data_in:

set_input_delay -clk_ref clk -to "data_in" -min 1ns

When using **Input Delay** assignments, specify a particular clock reference. The clock reference is the clock that feeds the external register's clock port that feeds the Altera device. This allows the Quartus II Classic Timing Analyzer to perform the proper analysis for the input path.

The t_{SU}, t_H, t_{PD}, and min t_{PD} timing paths reported for input pins, where input delay internal to the Altera FPGA assignments has been applied, include only the data delay from these pins and do not account for any clock setup relationships, clock hold relationships, or slack.

Output Delay Assignment

You can specify external output delays with either **Output Maximum Delay** or **Output Minimum Delay** assignments. Make **Output Maximum Delay** assignments to specify the maximum delay of a signal from the specified FPGA output pin to an external register, relative to a specified clock source. Make **Output Minimum Delay** assignments to specify the minimum delay of a signal from the specified FPGA output pin to an external register relative to a specified clock source.

When performing a clock setup check, the Quartus II Classic Timing Analyzer subtracts the **Output Maximum Delay** assignment value from the data required time (or subtracts the assignment value from the pointto-point requirement).

When performing a clock hold check, the Quartus II Classic Timing Analyzer subtracts the **Output Minimum Delay** assignment value from the data required time (or subtracts the assignment value from the pointto-point requirement).

The value of this assignment usually represents the sum of the t_{SU} of the external device, the actual board delay from the output pin of the Altera device, and the board clock skew.

The **Output Minimum Delay** default value is the same as the **Output Maximum Delay**, and the **Output Maximum Delay** default value is the same as the **Output Minimum Delay** if only one is specified.

For example, use the **Output Maximum Delay** and **Output Minimum Delay** to model the delay associated with outputs for an Altera FPGA driving into an external device. Figure 8–20 shows an example of an output delay path. For Figure 8–20 the **Output Maximum Delay** can be calculated, as shown in Equation 20.

(20) Output Maximum Delay = Altera Device to External Device Board Delay + External Device t_{SU} + External Clock Path to Altera Device -External Device Board Clock Path

Figure 8–20. Output Delay

The Tcl command set_output_delay specifies an **Output Delay** assignment. The following example specifies an **Output Maximum Delay** assignment of 2 ns from clock clk to output pin data_out:

```
set_output_delay -clk_ref clk -to data_out -max 2ns
```

The following example specifies an **Output Minimum Delay** assignment of 1 ns from clock clk to output pin data_out:

```
set_output_delay -clk_ref clk -to data_out -min 1ns
```

When using output delay assignments, specify a specific clock reference. The clock reference is the clock that feeds the external register's clock port that is fed by the Altera device. This allows the Quartus II Classic Timing Analyzer to perform the correct static timing analysis on the output path.

Virtual Clocks

You can use virtual clocks to model clock signals outside of the Altera FPGA, that is, clocks that do not directly drive anything within the Altera FPGA. For example, you can use a virtual clock to model a clock signal feeding an external output register that feeds the Altera FPGA.

Using the -virtual option of the create_base_clock Tcl command specifies a virtual clock assignment.

Before a you can use virtual clock for either an input or output delay assignment, the virtual clock must have the **Virtual Clock Reference** assignment enabled for the virtual clock setting.

The code in Example 8–4 creates a virtual clock named virt_clk, with a 200 MHz requirement, and uses the virtual clock setting as the clock reference for the input delay assignment.

Example 8-4. Creating a Virtual Clock Named virt_clk

#create the virtual clock setting
create_base_clock -fmax 200MHz -virtual virt_clk
#enable the virtual clock reference for the virtual clock setting
set_instance_assignment -name VIRTUAL_CLOCK_REFERENCE On -to virt_clk

#use the virtual clock setting as the clock reference for the input delay assignment set_input_delay -clk_ref virt_clk -to data_in -max 2ns

Asynchronous Paths

The Quartus II Classic Timing Analyzer can analyze asynchronous signals that connect to the clear, preset, or load ports of a register. This section explains how the Quartus II Classic Timing Analyzer analyzes asynchronous paths.

Recovery and Removal

Recovery time is the minimum length of time an asynchronous control signal; for example, clear and preset, must be stable before the active clock edge. Removal time is the minimum length of time an asynchronous control signal must be stable after the active clock edge. The **Enable Recovery/Removal** analysis option reports the results of recovery and removal checks for paths that end at an asynchronous clear, preset, or load signal of a register.

Enable the recovery and removal analysis with the following Tcl command:

set_global_assignment -name ENABLE_RECOVERY_REMOVAL_ANALYSIS ON

With this option enabled, the Quartus II Classic Timing Analyzer reports the result of the recovery analysis and removal analysis.

By default, the recovery and removal analysis is disabled. You should enable his option for all designs that contain asynchronous controls signals.

Recovery Report

When you set ENABLE_RECOVERY_REMOVAL_ANALYSIS to **ON**, the Quartus II Classic Timing Analyzer determines the recovery time as the minimum amount of time required between an asynchronous control signal becoming inactive and the next active clock edge, compares this to your design, and reports the results as slack. The Recovery report alerts you to conditions where an active clock edge occurs too soon after the asynchronous input becomes inactive, rendering the register's data uncertain.

The recovery slack time calculation is similar to the calculation for clock setup slack, which is based on data arrival time and data required time except for asynchronous control signals. If the asynchronous control is registered, the Quartus II Classic Timing Analyzer calculates the recovery slack time using Equations 21 through 23.

- (21) Recovery Slack Time = Data Required Time Data Arrival Time
- (22) Data Arrival Time = Launch Edge + Longest Clock Path to Source Register + micro t_{co} of Source Register ⁺ Longest Register-to-Register Delay
- (23) Data Required Time = Latch Edge + Longest Clock Path to Source Register + micro t_{SU} of Destination Register

Example 8–5 shows recovery time as reported by the Timing Analyzer.

Example 8–5. Recovery Time Reporting for a Registered Asynchronous Reset Signal

```
Info: Slack time is 8.947 ns for clock "a_clk" between source register "async_reg1" and destination
register "reg_1"
Info: Requirement is of type recovery
Info: - Data arrival time is 4.028 ns
Info: + Launch edge is 0.000 ns
Info: + Longest clock path from clock "a_clk" to source register is 3.067 ns
Info: + Micro clock to output delay of source is 0.094 ns
Info: + Longest register to register delay is 0.867 ns
Info: + Data required time is 12.975 ns
Info: + Latch edge is 10.000 ns
Info: + Shortest clock path from clock "a_clk" to destination register is 3.065 ns
Info: - Micro setup delay of destination is 0.090 ns
```

If the asynchronous control is not registered, the Quartus II Classic Timing Analyzer uses Equations 24 through Equations 26 to calculate the recovery slack time.

(24) Recovery Slack Time = Data Required Time – Data Arrival Time

- (25) Data Arrival Time = Launch Edge + Maximum Input Delay + Maximum Pin-to-Register Delay
- (26) Data Required Time = Latch Edge + Shortest Clock Path to Destination Register Delay micro t_{SII} of Destination Register

Example 8–6 shows recovery time as reported by the Timing Analyzer.

If the asynchronous reset signal is from a device pin, an **Input Maximum Delay** assignment must be made to the asynchronous reset pin for the Quartus II Classic Timing Analyzer to perform recovery analysis on that path.

Removal Report

When you set ENABLE_RECOVERY_REMOVAL_ANALYSIS to **ON**, the Quartus II Classic Timing Analyzer determines the removal time as the minimum amount of time required between an active clock edge that occurs while an asynchronous input is active, and the deassertion of the asynchronous control signal. The Quartus II Classic Timing Analyzer then compares this to your design and reports the results as slack. The Removal report alerts you to a condition in which an asynchronous input signal goes inactive too soon after a clock edge, thus rendering the register's data uncertain.

The removal time slack calculation is similar to the one used to calculate clock hold slack, which is based on data arrival time and data required time except for asynchronous control signals. If the asynchronous control is registered, the Quartus II Classic Timing Analyzer uses Equations 27 through 29 to calculate the removal slack time.

(27) Removal Slack Time = Data Arrival Time – Data Required Time

- (28) Data Arrival Time = Launch Edge + Shortest Clock Path from Source Register Delay + micro t_{CO} of Source Register + Shortest Register-to-Register Delay
- $\begin{array}{rl} \mbox{(29)} & \mbox{Data Required Time} &= \mbox{Latch Edge} + \mbox{Longest Clock Path to Destination Register Delay} + \\ & \mbox{micro } t_{H} \mbox{ of Destination Register} \end{array}$

Example 8–7 shows removal time as reported by the Quartus II Classic Timing Analyzer.

Example 8–7. Removal Time Reporting for a Registered Asynchronous Reset Signal

```
Info: Minimum slack time is 814 ps for clock "a_clk" between source register "async_reg1"
and destination register "reg_1"
Info: Requirement is of type removal
Info: + Data arrival time is 4.028 ns
Info: + Launch edge is 0.000 ns
Info: + Shortest clock path from clock "a_clk" to source register is 3.067 ns
Info: + Micro clock to output delay of source is 0.094 ns
Info: + Shortest register to register delay is 0.867 ns
Info: + Latch edge is 0.000 ns
Info: + Latch edge is 0.000 ns
Info: + Longest clock path from clock "a_clk" to destination register is 3.065 ns
Info: + Longest clock path from clock "a_clk" to destination register is 3.065 ns
```

If the asynchronous control is not registered, the Quartus II Classic Timing Analyzer uses Equations 30 through 32 to calculate the removal slack time.

- (30) Removal Slack Time = Data Arrival Time Data Required Time
- (31) Data Arrival Time = Launch Edge + Input Minimum Delay of Pin + Minimum Pin-to-Register Delay

Example 8–8 shows removal time as reported by the Quartus II Classic Timing Analyzer.

Example 8–8. Removal Time Reporting for a Non-Registered Asynchronous Reset Signal

If the asynchronous reset signal is from a device pin, an **Input Minimum Delay** assignment must be made to the asynchronous reset pin for the Quartus II Classic Timing Analyzer to perform a removal analysis on this path.

Skew Management

Clock skew is the difference in the arrival times of a clock signal at two different registers, which can be caused by path length differences between two clock paths, or by using gated or rippled clocks. As clock periods become shorter and shorter, the skew between data arrival times and clock arrival times becomes more significant. The Quartus II Classic Timing Analyzer provides two assignments for analyzing and constraining skew for data and clock signals.

Maximum Clock Arrival Skew

Make **Maximum Clock Arrival Skew** assignments to specify the maximum allowable clock arrival skew between a clock signal and various destination registers. The Quartus II Classic Timing Analyzer compares the longest clock path to the registers' clock port and the shortest clock path to the registers' clock port to determine if your maximum clock arrival skew is achieved. Maximum clock arrival skew is calculated using Equation 33.

(33) Maximum Clock Arrival Skew = Longest Clock Path – Shortest Clock Path

For example, if the delay from clock pin clk to the clock port of register reg1 is 1.0 ns, and the delay from clock pin clk to the clock port of register reg2 is 3.0 ns, as shown in Figure 8–21, the Quartus II Classic Timing Analyzer provides a clock skew slack time of 2.0 ns.

Figure 8–21. Clock Arrival Paths

You should apply the **Maximum Clock Arrival Skew** assignment to a clock node and a group of registers. When you make a **Maximum Clock Arrival Skew** assignment, the Fitter attempts to satisfy the skew requirement.

You can use the set_instance_assignment -name max_clock_arrival_skew Tcl command to specify a **Maximum Clock Arrival Skew** assignment. The following example specifies a maximum clock arrival skew of 1 ns from clock signal clk to the bank of registers matching reg*:

set instance assignment -name max clock arrival skew 1ns -from clk -to reg*

Maximum Data Arrival Skew

Make **Maximum Data Arrival Skew** assignments to specify the maximum allowable data arrival skew to various destination registers or pins. The Quartus II Classic Timing Analyzer compares the longest data arrival path to the shortest data arrival path to determine if your specified maximum data arrival skew is achieved. Maximum data arrival skew is calculated using Equation 34.

(34) Maximum Data Arrival Skew = Longest Data Arrival Path – Shortest Data Arrival Path

For example, if the data arrival time to output pin out1 is 2.0 ns, the data arrival time to output pin out2 is 1.5 ns, and the data arrival time to output pin out3 is 1.0 ns, as shown in Figure 8–22, the Quartus II Classic Timing Analyzer provides a maximum data arrival skew slack time of 1.0 ns.

Figure 8–22. Data Arrival Paths

When you make a **Maximum Data Arrival Skew** assignment, the Fitter attempts to satisfy the skew requirement.

You can use the set_instance_assignment -name max_data_arrival_skew Tcl command to specify a maximum data arrival skew value. The following example specifies a maximum data arrival skew of 1 ns from clock signal clk to the bank of output pins dout:

set_instance_assignment -name max_data_arrival_skew lns -from clk -to dout[*]

Generating Timing Analysis Reports with report_timing

The Quartus II Classic Timing Analyzer includes the report_timing Tcl command for generating text-based timing analysis reports. You can customize the output of report_timing using multiple switches that allow the generation of both detailed and general timing reports on any path in the design.

The report_timing Tcl command is available in the quartus_tan executable.

Prior to using the report_timing Tcl command, you must open a Quartus II project and create a timing netlist. For example, the following two Tcl commands accomplish this:

project_open my_project
create timing netlist

The report_timing Tcl command provides -from and -to switches for filtering specific source and destination nodes. For example, the following report_timing Tcl command reports all clock setup paths, with the switch -clock_setup, between registers src_reg* and dst_reg*. The -npaths 20 switch limits the report to 20 paths.

```
report_timing -clock_setup -from src_reg* -to dst_reg* -npaths 20
```

The switches -clock_filter and -src_clock_filter are also available for filtering based on specific clock sources. For example, the following report_timing Tcl command reports all clock setup paths where the destination registers are clocked by clk:

```
report_timing -clock_setup -clock_filter clk
```

The following example reports clock setup paths where the destination registers are clocked by clk, and the source registers are clocked by src_clock.

```
<code>report_timing -clock_setup -clock_filter clk -src_clock_filter \ src_clk</code>
```

Example 8–9 is an example script that can be sourced by the quartus_tan executable:

Example 8–9. Source for the quartus_tan Executable

```
# Open a project
project_open my_project
# Always create the netlist first
create timing netlist
# List clock setup paths for clock clk
# from registers abc* to registers xyz*
report_timing -clock_setup -clock_filter clk -from abc* -to xyz*
# List the top 5 pin-to-pin combinational paths
report timing -tpd -npaths 5
# List the top 5 pin-to-pin combinational paths and
# write output to an out.tao file
report timing -tpd -npaths 5 -file out.tao
# Compute min tpd and append results to existing out.tao
report timing -min tpd -npaths 5 -file out.tao -append
# Show longest path (register to register data path) between a* and b*
report timing -longest paths -npaths 1
delete timing netlist
project close
```

Other Timing Analyzer Features

The Quartus II Classic Timing Analyzer provides many features for customizing and increasing the efficiency of static timing analysis, including:

- Wildcard assignments
- Assignment groups
- Fast corner analysis
- Early timing estimation
- Timing constraint checker
- Latch analysis

Wildcard Assignments

To simplify the tasks of making assignments to many node assignments, the Quartus II software accepts the * and ? wildcard characters. Use these wildcard characters to reduce the number of individual assignments you need to make for your design.

The "*" wildcard character matches any string. For example, given an assignment made to a node specified as reg*, the Quartus II Classic Timing Analyzer searches and applies the assignment to all design nodes that match the prefix reg with none, one, or several characters following, such as reg1, reg[2], regbank, and reg12bank.

The "?" wildcard character matches any single character. For example, given an assignment made to a node specified as reg?, the Quartus II Classic Timing Analyzer searches and applies the assignment to all design nodes that match the prefix reg and any single character following, such as reg1, rega, and reg4.

Assignment Groups

Assignment groups, also known as time groups, allow you to define a custom group of nodes to which you can assign timing assignments. You can also exclude specific nodes, wildcards, and time groups from a time group.

Use the timegroup Tcl command to create an assignment group. The following example creates an assignment group srcgrp and adds nodes with names that match src1* to the group:

timegroup srcgrp -add_member src1*

For example, Figure 8–23 has false paths between source register reg1 and destination register bank sram_reg, external_reg, internal_reg, and cam_reg that need to be cut. Without the use of assignment groups, the assignments required are:

```
set_timing_cut_assignment -from regl to sram_reg
set_timing_cut_assignment -from regl to external_reg
set_timing_cut_assignment -from regl to internal_reg
set_timing_cut_assignment -from regl to cam_reg
```

Figure 8–23. False Path

With an assignment group called dst_reg_bank, the assignments required are:

#create a time group called dst_reg timegroup dst_reg_bank -add_member sram_reg timegroup dst_reg_bank -add_member external_reg timegroup dst_reg_bank -add_member internal_reg timegroup dst_reg_bank -add_member cam_reg #cut timing paths set_timing_cut_assignment -from reg1 to dst_reg_bank

Once an assignment group has been defined, applicable timing assignment can be made to the time group without redefining the assignment group.

Assigning individual nodes to time groups and applying timing assignments to these time groups can improve the performance of the Quartus II Classic Timing Analyzer.

Fast Corner Analysis

Fast Corner Analysis uses timing models generated under best-case conditions (voltage, process, and temperature) for the fastest speed-grade device.

Both Fast Corner and Slow Corner static timing analysis reports are saved to the *<project name>.tan.rpt* file, potentially overwriting previous timing analysis reports. To preserve a copy of your reports, save the file with a new name before the next compilation or static timing analysis, or use the Combined Fast/Slow Analysis report feature.

The Quartus II software also reports minimum delay checks after a slow corner (default) analysis. These results are generated by reporting minimum delay checks using worst-case timing models.

To perform fast corner static timing analysis with the best-case timing models, you can use the switch --fast_model=on with the quartus_tan executable. The following Tcl command enables the fast timing models:

quartus_tan <project_name> --fast_model=on

Early Timing Estimation

The majority of Quartus II software compilation time is consumed by the place-and-route process used to obtain optimal design results. To accelerate the design process for large designs, the Quartus II software provides **Early Timing Estimation**. This feature provides a quick static timing analysis in a fraction of the time required for a full compilation by performing a preliminary place-and-route on the design without full optimizations, which reduces total compile time by up to five times compared to a fully fitted design.

An **Early Timing Estimate** fit is not fully optimized or legally routed. The timing delay report is only an estimate. Typically, the estimated delays are within 10% of those obtained with a full fit when the realistic setting is used.

The **Early Timing Estimate** has three settings for generating timing estimates: Realistic, Optimistic, and Pessimistic. Table 8–1 describes these settings.

Table 8–1. Early Timing Estimate Setting Options			
Setting	Description		
Realistic (default setting: estimates final timing using standard fitting)	Generates timing estimates that are likely to be closest to full compilation results.		
Optimistic (estimates best-case final timing)	Generates timing estimates that are unlikely to be exceeded by full compilation.		
Pessimistic (estimates worst-case final timing)	Generates timing estimates that are likely to be exceeded by full compilation.		

To use the **Early Timing Estimate** feature, enter the following Tcl command when performing a fit:

quartus_fit --early_timing_estimate[=<realistic|optimistic|pessimistic>]

After **Early Timing Estimate** is complete, a full timing report is generated based on the early placement and routing delays. In addition, you can view the preliminary logic placement in the Timing Closure floorplan. The early timing placement allows you to perform initial placement and view the timing interaction of various placement topology.

Timing Constraint Checker

Altera recommends that you enter all timing constraints into the Quartus II software prior to performing a full compilation. This ensures that the Fitter targets the correct timing requirements and ensures that the Quartus II Classic Timing Analyzer reports the correct violations for all timing paths in the design. To ensure that all constraints have been applied to design nodes, the **Timing Constraint Check** feature reports all unconstraint paths in your design. Example 8–10 shows the timing constraint check summary generated after a full compilation.

Example 8–10. Timing Constraint Check Summary

```
+-----+
; Timing Constraint Check Summary ;
+-----+
; Timing Constraint Check Status ; Analyzed - Tue Feb 28 11:42:31 2006 ;
; Quartus II Version ; 6.1 Internal Build 143 02/20/2006 SJ Full Version ;
; Revision Name ; test ;
; Top-level Entity Name ; Block1 ;
; Unconstrained Paths (Setup) ; 22 ;
; Unconstrained Reg-to-Reg Paths (Setup) ; 22 ;
; Unconstrained I/O Paths (Hold) ; 12 ;
; Unconstrained Reg-to-Reg Paths (Hold) ; 12 ;
```

To perform a timing constraint check, use the switch --check_constraints with the quartus_tan executable. The following Tcl command performs a timing constraint check on both setup and hold on the design system:

quartus_tan block1 --check_constraints=both

Latch Analysis

Latches are implemented in the Quartus II software as look-up-tables (LUTs) feeding back onto themselves. The Quartus II Classic Timing Analyzer can analyze these latches as synchronous elements rather than as combinational elements. The clock enables are analyzed as inverted clocks. The Quartus II Classic Timing Analyzer reports the results of setup and hold analysis on these latches.

You can turn on the **Analyze Latches As Synchronous Elements** option with the following Tcl command:

set global assignment -name ANALYZE LATCHES AS SYNCHRONOUS ELEMENTS ON
Timing Analysis Using the Quartus II GUI

In addition to the extensive scripting support available in the Quartus II Classic Timing Analyzer, the Quartus II software provides the Assignment Editor and other user interface tools, giving you access to the Quartus II Classic Timing Analyzer features and assignments.

Assignment Editor

The Assignment Editor is a spreadsheet-style interface used for adding, modifying, and deleting timing assignments.

To make timing assignments in the Assignment Editor, choose **Timing** from the category list to cause the Assignment Name column to display only timing assignments. Double-click **<<new>>** in the **Assignment Name** field, the **Assignment Name** list displays. Figure 8–24 shows the Assignment Editor with the Assignment Name list displaying timing assignment types.

Figure 8–24. Assignment Editor

🥩 As	signmen	t Editor				
-		I/O Standard Reserve Pin				^
	Category	Timing Multicycle tco				-
		th 				~
- 	<u>×</u>] <u>+</u> In	formation:				
	×I Ed	it: 🗙 🗸 <	<new>></new>			
12		From	То	Assignment Name	Value	Enabled
	1	< <new>></new>	< <new>></new>	_		
-35						1
₽ <i>₽</i> ⊘ ≢				Clock Enable Multicycle		
3				Clock Enable Multicycle H	Hold	
				Clock Enable Source Mul	ticyde	
9				Clock Enable Source Mul	ticycle Hold	
4				Clock Hold Uncertainty		
1.44.6				Clock Settings		
	<			Clock Setup Uncertainty		
				Cut Timing Path (Accept	s wildcards/groups)	
				Early Clock Latency		
				Hold Relationship (Accep	ots wildcards/groups)	, L
				Input Maximum Delay (A	Accepts wildcards/groups)
				Input Minimum Delay (A	ccepts wildcards/groups)	
				Input transition time (A	ccepts wildcards/groups)	
				Inverted Clock		
				Maximum Clock Arrival S	kaw (Accepte wildcarde/	Troupe)
				Maximum Data Arrival S	kew (Accepts wildcards/g	(oups)
				Maximum Data Arrival Si Maximum Dalay (Accord	e wildcarde/groupe)	ioups)
				Minimum Delay (Accept	wildcards/groups)	
				Accepts	miacai ua/gi oupa/	

For more information about the Assignment Editor, refer to the *Assignment Editor* chapter in volume 2 of the *Quartus II Handbook*.

Timing Settings

You can specify delay requirements and clock settings with the **Timing Analysis Settings** page of the **Settings** dialog box.

To access this page, on the Assignments menu, click **Settings**. In the Category list, click the **B** icon next to **Timing Analysis Settings** to expand the folder. (Be sure that the **Use Classic Timing Analyzer during compilation** radio button is turned on.) Click **Classic Timing Analyzer Settings**. The **Classic Timing Analysis Settings** page displays (Figure 8–25).

Figure 8–25. Timing Analysis Settings Dialog Box

 Files User Libraries (Current Project) Device Operating Conditions Compilation Process Settings EDA Tool Settings Filter Settings Timing Analyzer settings Filter Settings Timing Analyzer Settings Timing Analyzer Settings Classic Timing Analyzer Report Design Assistant SignalT ap II Logic Analyzer Simulator Settings PowerPlay Power Analyzer Settings PowerPlay Power Analyzer Settings Description: 	General	Classic Timing Analyzer Settings
	Initiatives (Current Project) User Libraites (Current Project) Operating Conditions Compilation Process Settings EDA Tool Settings Fitter Settings TimeQuest Timing Analyzer Classic Timing Analyzer Settings Classic Timing Analyzer Repor Assembler Design Assistant SignalTap II Logic Analyzer Simulator Settings PowerPlay Power Analyzer Settings	Specify settings for the Classic Timing Analyzer. Use the Assignment Editor for individual timing assignments. Note: These settings affect the Classic Timing Analyzer only. To specify TimeQuest Timing Analyzer settings: use the TimeQuest Timing Analyzer (Timing Analyzer settings menu). Delay requirements Report minimum timing checks tsu: ns Minimum delay requirements tco: ns Minimum too ttr: ns Minimum too Individual Clocks MHz Description: Escription:

Clock Settings Dialog Box

You can create or modify base clock settings or derived clock settings using the **Clock Settings** dialog box. To access this page, on the Assignments menu, click **Settings**. In the Category list, click the **B** icon next to **Timing Analysis Settings** to expand the folder. (Be sure that the **Use Classic Timing Analyzer during compilation** radio button is turned on.) Click on **Classic Timing Analyzer Settings**. The **Timing Analysis Settings** page displays. Under **Clock Settings**, click **Individual Clocks**. The **Individual Clock** dialog box is shown (Figure 8–26).

Figure 8–26. Individual Clocks Dialog Box

Indivi	dual (Clocks									×
Speci	fy settin	gs for each	clock that is pa	int of the projec	t. Assign the s	ettings to inp	ut clock signal	s.			
Nan		Tune	Emax	Dutu cucle	Period	Offeet	Phase shift	Node(s)	1 -	New	
aux_ sys_	.clk clk	derived absolute	100.0 MHz 100.0 MHz	50 50	10.000 ns 10.000 ns	100.0 ns	90			Edit Delete	
								OK		Cancel	

Click the **New** button in the **Individual Clocks** dialog box to access the **New Clock Settings** dialog box and create a base or derived clock setting (Figure 8–27).

Figure 8–27. New Settings Dialog Box

Clock settings name:	sys_clk_x2
Applies to node:	clk_x2
Relationship to other	clock settings
Independent of a	other clock settings
Required fmax:	200 MHz Resulting period: 5.000 ns
Duty cycle (%):	50
C Based on:	clk Derived Clock Requirements
Duty cycle (%):	

More Timing Settings Dialog Box

On the **Timing Analysis Settings** page of the **Settings** dialog box, click **More Settings** to display the **More Timing Settings** dialog box (Figure 8–28). The **More Timing Settings** dialog box provides access to many global timing analysis options.

Option Name:	Analuze latches as sunch	nronous elements	Reset
Setting:			Reset A
Description	Jon		
xisting optic	n settings:		
xisting optic Name:	n settings:	Setting:	
xisting optic Name: Analyze late Cut off feed	n settings: :hes as synchronous elem back from I/D pins	Setting: On On	
xisting optic Name: Analyze latc Cut off feed Cut off read	n settings: :hes as synchronous elem back from I/O pins during write signal paths	Setting: On On On	
xisting option Name: Analyze late Cut off feed Cut off read Cut off read	n settings: thes as synchronous elem back from I/O pins during write signal paths etween unrelated clock d	Setting: On On On On	
xisting optic Name: Analyze lato Cut off feed Cut off read Cut paths b Default hold Enable Cloc	n settings: thes as synchronous elem back from I/O pins during write signal paths etween unrelated clock d multicycle % Latency	Setting: On On On On Same as Multicycle Off	
xisting optic Name: Analyze late Cut off feed Cut off read Cut paths b Default hole Enable Cloc Enable Rec	n settings: shes as synchronous elem back from I/O pins during write signal paths etween unrelated clock d multicycle x: Latency overy/Removal analysis	Setting: On On On On Same as Multicycle Off Off	
xisting optic Name: Analyze late Cut off feed Cut off read Cut paths b Default hole Enable Cloc Enable Rec Ignore C	n settings: thes as synchronous elem back from I/D pins during write signal paths etween unrelated clock d f multicycle k: Latency overy/Removal analysis k: Settings the of Carl Clum Timb	Setting: On On On Same as Multicycle Off Off Off Off	
xisting optic Name: Analyze lato Cut off feed Cut off read Cut paths b Default hold Enable Cloo Enable Rec Ignore Cloo Report Com Report Com	in settings: shes as synchronous elem back from I/O pins during write signal paths etween unrelated clock d multicycle k. Latency overy/Removal analysis k. Settings k. Settings bined Fast/Slow Timing rahs Senarately	Setting: On On On Same as Multicycle Off Off Off Off	

Timing Reports

The Quartus II Classic Timing Analyzer report is a section of the Compilation Report containing the static timing analysis results. The Quartus II Classic Timing Analyzer report includes clock setup and clock hold measurements for all clock sources. The report also shows t_{CO} for all output pins, t_{SU} and t_H for all input pins, and t_{PD} for any pin-to-pin combinational paths in the design. Other reports are created for different analyses and device features.

In the **Settings** dialog box, you can specify the range of information to be reported in the timing analysis of the Compilation Report. To access this page, on the Assignments menu, click **Settings**. In the Category list, click the **B** icon next to **Timing Analysis Settings** to expand the folder. (Be sure that the **Use Classic Timing Analyzer during compilation** radio button is turned on.) Click the **B** icon next to **Classic Timing Analyzer Settings** to expand the folder. Click **Classic Timing Analyzer Reporting**. The **Classic Timing Analyzer Reporting** dialog box (Figure 8–29) appears.

General Files User Libraries (Current Project) Device Operating Conditions EDA Tool Settings EDA Tool Settings Fitter Settings Fitter Settings Timing Analysis Settings Timing Analysis Settings Classic Timing Analyzer Classic Timing Analyzer Classic Timing Analyzer Signal Tap II Logic Analyzer Logic Analyzer Interface Simulator Settings PowerPlay Power Analyzer Settings	Classic Timing Analyzer Reporting Specify the range of information to be reported in the timing analysis in the Compilation Report. Note: These settings affect the Classic Timing Analyzer only. To specify TimeQuest Timing Analyzer settings, use the TimeQuest Timing Analyzer (Timing Analyzer Settings menu). Show 10 slowest destination registers per clock. Show 10 slowest destination registers per clock. Show 200 worst-case paths in slack reports Exclude paths MHz Exclude paths with fmax greater than: ns Exclude paths with tsu less than: ns Exclude paths with tsu less than: ns Exclude paths with too less than: ns Exclude paths with too less than: ns Exclude paths with too less than: ns
--	--

If there are no timing assignments for the design, the Quartus II Classic Timing Analyzer does not generate slack reports for any detected clock nodes. The Quartus II Classic Timing Analyzer only reports slack measurements for pins with individual or global t_{SU} , t_{H} , or t_{CO} assignments. A positive slack indicates the margin by which the path surpasses the clock timing requirements. A negative slack indicates the margin by which the path fails the clock timing requirements.

This Timing Analysis report is also available in text format located in the design directory with the file name *<revision name>.tan.rpt*.

In the Compilation Report, select an analysis type under the Timing Analyzer folder to display the analysis report; for example, Clock Setup or Clock Hold. Figure 8–30 shows an example of a Clock Setup report for clock signal clk.

Figure 8–30. Timing Analysis Report

- 🚰 🖬 Flow Settings 📃 🔼	Cloc	k Setup: 'clk'								
Flow Non-Default Global Setti		Slack	Actual fmax (period)	From	To	From Clock	To Clock	Required Setup Relationship	Required Longest P2P Time	1
- 🗃 🖹 Flow Log	1	9.049 ns	91.32 MHz (period = 10.951 ns)	state_m:inst1 filter.tap4	acc:inst3 result[11]	clk	clk	20.000 ns	19.798 ns	-
🚑 🔲 Analysis & Synthesis	2	9.664 ns	96.75 MHz (period = 10.336 ns)	state_m:inst1 filter.tap3	acc:inst3 result[11]	clk	clk	20.000 ns	19.798 ns	
Fitter	3	9.796 ns	98.00 MHz (period = 10.204 ns)	state_m:inst1 filter.tap2	acc:inst3 result[11]	clk	clk	20.000 ns	19.798 ns	T
Assembler	4	10.239 ns	102.45 MHz (period = 9.761 ns)	taps:inst[xn[2]	acc:inst3 result[11]	clk	clk	20.000 ns	19.798 ns	T
Analyzer	5	10.283 ns	102.91 MHz (period = 9.717 ns)	taps:instkn[5]	acc:inst3 result[11]	clk	clk	20.000 ns	19.798 ns	T
Settings	6	10.319 ns	103.30 MHz (period = 9.681 ns)	state_m:inst1 filter.tap4	acc:inst3 result[10]	clk	clk	20.000 ns	19.798 ns	T
Clock Settings Summary	7	10.391 ns	104.07 MHz (period = 9.609 ns)	taps:inst[xn[0]	acc:inst3 result[11]	clk	clk	20.000 ns	19.773 ns	T
- A Clock Setup: 'dk'	8	10.480 ns	105.04 MHz (period = 9.520 ns)	taps:inst xn_2[0]	acc:inst3 result[11]	clk	clk	20.000 ns	19.798 ns	T
- 🗃 🐻 Clock Setup: 'clkx2'	9	10.523 ns	105.52 MHz (period = 9.477 ns)	taps:inst[xn[1]	acc:inst3 result[11]	clk	clk	20.000 ns	19.798 ns	Т
- 🚑 🔣 Clock Hold: 'clk'	10	10.757 ns	108.19 MHz (period = 9.243 ns)	taps:inst[xn_1[2]	acc:inst3 result[11]	clk	clk	20.000 ns	19.798 ns	Т
Clock Hold: 'clkx2'	11	10.768 ns	108.32 MHz (period = 9.232 ns)	taps:inst[xn[4]	acc:inst3 result[11]	clk	clk	20.000 ns	19.798 ns	T
and the second s	12	10.851 ns	109.30 MHz (period = 9.149 ns)	taps:inst[xn_2[2]	acc:inst3 result[11]	clk	clk	20.000 ns	19.798 ns	Т
A B B	13	10.934 ns	110.30 MHz (period = 9.066 ns)	state_m:inst1 filter.tap3	acc:inst3 result[10]	clk	clk	20.000 ns	19.798 ns	Т
- A Recovery: 'clkx2'	14	10.996 ns	111.06 MHz (period = 9.004 ns)	taps:inst[xn_1[4]	acc:inst3 result[11]	clk	clk	20.000 ns	19.798 ns	Т
Removal: 'clko2'	15	11.066 ns	111.93 MHz (period = 8.934 ns)	state_m:inst1 filter.tap2	acc:inst3 result[10]	clk	clk	20.000 ns	19.798 ns	Т
🛛 🍯 Messages 🗸 🗸	16	11.110 ns	112.49 MHz (period = 8.890 ns)	taps:inst xn[3]	acc:inst3[result[11]	clk	clk	20.000 ns	19.798 ns	T
	<									2

Advanced List Path

The **Advanced List Paths** dialog box provides detailed information about a specific path, such as interconnect and cell delays between any two valid register-to-register paths (Figure 8–31).

The **Advanced List Paths** dialog box allows you to select the type of paths you want listed. For example, you can obtain detailed information for Clock Setup and Clock Hold for a specific clock. In addition, the Tcl command field in the window matches the equivalent Tcl command you can use in either a custom Tcl script or in the Tcl console.

the Timing Analy System tab of the	zer section of the Compilat Messages window.	iay parts. Delay information must be represent ion Report window. Results are displayed in th
Paths to report:	1	
Nodes:		
From:	src_reg	
To:	dst_reg	
Clock filter	inclk	
Output to file: -		
File name:		Open
Report window	/ sections:	
🔲 tsu	Minimum too	🥅 Clock setup (I/O paths)
🕅 th	Minimum tpd	🔲 Clock hold (1/0 paths)
🔲 tco	🔽 Clock setup	
🔲 tpd	Clock hold	
Tcl command:	list_path -npaths 1 -from	n src_reg -to dst_reg -clock_filter inclk -clock_:

Figure 8–31. Advanced List Paths Dialog Box

You can perform a list path command directly from the Timing Analysis report. To do this, right click a path and click **List Path** (Figure 8–32). To launch the **Advanced List Paths** dialog box, right-click a path and in the menu that appears, and select **Advanced List Paths**.

The Advanced List Paths dialog box displays only paths that are visible in the Timing Analysis report. To increase the amount of paths reported by the Quartus II Classic Timing Analyzer, on the Assignments menu, click Timing Analysis Settings. In the Category list, expand Timing Analysis Settings and select Timing Analyzer Reporting. In the Timing Analyzer Reporting page, specify the range of information to be reported by the Quartus II Classic Timing Analyzer.

Both the **Advanced List Paths** and the **List Path** commands display the path information in the **System** message window.

Figure 8–32. List Path in the Message Window

🕂 🤣 Info: Fmax is restricted to 275.03 MHz due to tol and toh limits
🔄 🚯 Info: + Largest register to register requirement is 8.891 ns
⊕ ⊕ Info: + Setup relationship between source and destination is 10.000 ns
⊕ 🤄 Info: + Largest clock skew is -0.848 ns
Info: - Micro setup delay of destnation is 0.037 ns
□ ③ 〔 Info: - Longest register to register delay is 0.827 ns
Info: 1: + IC(0.000 ns) + CELL(0.000 ns) = 0.000 ns; Loc. = LC_X33_Y20_N6; Fanout = 1; REG Node = 'reg1'
Info: 2: + IC(0.518 ns) + CELL(0.309 ns) = 0.827 ns; Loc. = LC_X33_Y20_N2; Fanout = 2; REG Node = 'reg2'
4 Info: Total cell delay = 0.309 ns (37.36 %)
📖 💭 Info: Total interconnect delay = 0.518 ns (62.64 %)

If the **Combined Fast/Slow Timing** option is enabled, the List Path Tcl command displays only path delays reported in the Slow Model section.

Early Timing Estimate

To start an Early Timing Estimate, on the Processing menu, point to Start and click **Start Early Timing Estimate**. To specify the **Early Timing Estimate** mode, on the Assignments menu, click **Settings**. In the **Category** list, select **Compilation Processes Settings**, select **Early Timing Estimate** and click the desired timing estimate mode. For more information about the Early Timing Estimate feature, refer to "Early Timing Estimation" on page 8–40.

Assignment Groups

To define, modify, and delete assignment groups, also known as time groups, from a single dialog box, on the Assignments menu, click **Assignment (Time) Groups**. The **Assignment Groups** dialog box displays (Figure 8–33).

Figure 8–33. Assignment Groups Dialog Box

Assignment Groups				X
Assignment group name:	src_reg	▼ <u>C</u> reate	Delete <u>R</u> ename	Delete All
<u>M</u> embers:				
				Add
log_sync				Delete
				Edit
Exceptions:				
reg_sync_dst				Add
				Delete
				Edit
			OK.	Cancel

Scripting Support

You can run procedures and make settings described in this chapter in a Tcl script. You can also run some procedures at a command prompt. For detailed information about scripting command options, refer to the Quartus II Command-Line and Tcl API Help browser. To run the Help browser, type the following command at the command prompt:

quartus_sh --qhelp

Refer to the *Scripting Reference Manual* to view this information in PDF form.

For more information about Tcl scripting, refer to the *Tcl Scripting* chapter in volume 2 of the *Quartus II Handbook*. Refer to the *Quartus II Settings File Reference Manual* for information about all settings and constraints in the Quartus II software. For more information about command-line scripting, refer to the *Command-Line Scripting* chapter in volume 2 of the *Quartus II Handbook*.

Creating Clocks

There are two Tcl commands that allow you to define clocks in a design, create_base clock and create_relative_clock.

Base Clocks

Use the create_base_clock Tcl command to define a base clock:

```
create_base_clock [-h | -help] [-long_help] -fmax <fmax> [-duty_cycle <integer>] \
[-virtual] [-target <name>] [-no_target] [-entity <entity>] [-disable] \
[-comment <comment>] <clock name>
```

To define a base clock setting named sys_clk with a 100 MHz requirement applied to node clk src, enter the following Tcl command:

create_base_clock -fmax 100MHz -target clk_src sys_clk

Derived Clocks

Use the create_relative_clock Tcl command to define a relative clock:

```
create_relative_clock [-h | -help] [-long_help] -base_clock <Base clock > \
[-duty_cycle <integer>] [-multiply <integer>] [-divide <integer>] [-offset <offset>] \
[-phase_shift <integer>] [-invert] [-virtual] [-target <name>] [-no_target] \
[-entity <entity>] [-disable] [-comment <comment>] <clock_name>
```

To define a relative clock named aux_clk based upon base clock setting sys_clk with a multiplication factor of 2 applied to node rel_clk, enter the following Tcl command:

create_relative_clock -base_clock sys_clk -multiply 2 -target rel_clk aux_clk

Clock Latency

You can use the set_clock_latency Tcl command to create either an early or late clock latency assignment:

set clock latency [-h | -help] [-long help] [-early] [-late] -to <to> [<value>]

To apply an early clock latency of 1 ns and a late clock latency of 2 ns to clock node clk, enter the following Tcl commands:

set_clock_latency -early -to clk 2ns

Clock Uncertainty

You can use the set_clock_uncertainty Tcl command to create clock uncertainty assignments as shown in the following example:

set_clock_uncertainty [-h] [-help] [-long_help [-from <source clock name>] -to
<destination clock name> [-setup] [-hold] [-remove] [-disable] [-comment <comment>] <value>

To apply a clock setup uncertainty of 50 ps between source clock node clk_src and destination clock node clk_dst, enter the following Tcl command:

set_clock_uncertainty -from clk_src -to clk_dst -setup 50ps

To apply a clock hold uncertainty of 25 ps between to clock node clk_sys, enter the following Tcl command:

set_clock_uncertainty -to clk_sys -setup 25ps

Cut Timing Paths

You can use the set_timing_cut_assignment Tcl command to create cut timing assignments:

set_timing_cut_assignment [-h | -help] [-long_help] [-from <from_node_list>]
[-to <to node list>] [-remove] [-disable] [-comment <comment>]

To cut the timing path from source register reg1 to destination register reg2, enter the following Tcl command:

set_timing_cut_assignment -from reg1 -to reg2

Input Delay Assignment

You can use the Tcl command set_input_delay to create input delay assignments:

set_input_delay [-h | -help] [-long_help] [-clk_ref <clock>] -to <input_pin> [-min] [-max]
[-clock_fall] [-remove] [-disable] [-comment <comment>] [<value>]

To apply an input maximum delay of 2 ns to an input pin named data_in that feeds a register clocked by clock source clk, enter the following Tcl command:

set_input_delay -clk_ref clk -to data_in -max 2ns

Maximum and Minimum Delay

The following Tcl commands create the **Maximum Delay** and **Minimum Relationship** assignments, respectively:

set_instance_assignment -name MAX_delay <value> -from <node> -to <node>
set instance assignment -name MIN delay <value> -from <node> -to <node>

To apply a **Maximum Delay** of 8 ns and a minimum of 5 ns between source register reg1 and destination register reg2, enter the following Tcl command:

```
set_instance_assignment -name MAX_DELAY 8ns -from reg1 -to reg2
set_instance_assignment -name MIN_DELAY 5ns -from reg1 -to reg2
```

To apply a **Maximum Delay** of 10 ns for all paths from source clock clk_src to destination clock clk_dst, enter the following Tcl command:

set instance assignment -name MAX DELAY 10ns -from clk src -to clk dst

Maximum Clock Arrival Skew

The following Tcl command defines the **Maximum Clock Arrival Skew** assignment:

set_instance_assignment -name max_clock_arrival_skew <value> -from <clock> -to <node>

To apply a **Maximum Clock Arrival Skew** of 1 ns for clock source clk to a predefined timegroup called reg_group, enter the following Tcl command:

set_instance_assignment -name max_clock_arrival_skew 1ns -from clk -to reg_group

Maximum Data Arrival Skew

To create **Maximum Data Arrival Skew** assignments, use the Tcl command set_instance_assignment -name max data arrival:

set_instance_assignment -name max_data_arrival_skew <value> -from <clock> -to <node>

To apply a **Maximum Data Arrival Skew** of 1 ns for clock source clk to a predefined timegroup of pins called pin_group, enter the following Tcl command:

set_instance_assignment -name max_data_arrival_skew lns -from clk -to pin_group

Multicycle

Use the set_multicycle_assignment Tcl command to create **Multicycle** assignments:

```
set_multicycle_assignment [-h | -help] [-long_help] [-setup] [-hold] [-start] [-end]
[-from <from_list>] [-to <to_list>] [-remove] [-disable] [-comment <comment>]
comment:
```

To apply a **Multicycle Setup** of 2 and a **Hold Multicycle** of 1 between source register reg1 and destination register reg2, enter the following Tcl commands:

```
set_multicycle_assignment -setup -end -from reg1 -to reg2 2
set_multicycle_assignment -hold -end -from reg1 -to reg2 1
```

To apply a **Source Multicycle Setup** of 2 between source register reg1 and destination register reg2, enter the following Tcl command:

set_multicycle_assignment -setup -start -from reg1 -to reg2 1

To apply a **multicycle setup** of 2 for all paths from source clock clk_src to destination clock clk_dst, enter the following Tcl command:

```
set_multicycle_assignment -setup -end -from clk_src -to clk_dst 2
```

Output Delay Assignment

Use the Tcl command set_output_delay to create **Output Delay** assignments:

```
set_output_delay [-h | -help] [-long_help] [-clk_ref <clock>] -to <output_pin> [-min]
[-max] [-clock_fall] [-remove] [-disable] [-comment <comment>] [<value>]
```

To apply an **Output Maximum Delay** of 3 ns to an output pin named data_out that is fed to a register clocked by clock source clk, enter the following Tcl command:

set output delay -clk ref clk -to data out -max 3ns

Report Timing

Use the report_timing Tcl command to generate timing reports:

report_timing [-h | -help] [-long_help] [-npaths <number>] [-tsu] [-th] [-tco] [-tpd] \
[-min_tco] [-min_tpd] [-clock_setup] [-clock_hold] [-clock_setup_io] [-clock_hold_io] \
[-clock_setup_core] [-clock_hold_core] [-recovery] [-removal] [-dgs_read_capture] \
[-stdout] [-file <name>] [-append] [-table <name>] [-from <names>] [-to <names>] \
[-clock_filter <names>] [-src_clock_filter <names>] [-longest_paths] [-shortest_paths] \
[-all_failures]
The following example generates a list of all clock cotum paths for clock

The following example generates a list of all clock setup paths for clock source clk from registers src_reg* to registers dst_reg*:

report_timing -clock_setup -clock_filter clk -from src_reg* -to dst_reg*

Setup and Hold Relationships

The following Tcl commands create **Setup Relationship** and **Hold Relationship** assignments, respectively:

set_instance_assignment -name SETUP_RELATIONSHIP <value> -from <node> -to <node>
set instance assignment -name HOLD RELATIONSHIP <value> -from <node> -to <node>

To apply a **Setup Relationship** of 12 ns and a **Hold Relationship** of 2 ns between source register reg1 and destination registers reg2, enter the following Tcl command:

set_instance_assignment -name SETUP_RELATIONSHIP 12ns -from reg1 -to reg2
set_instance_assignment -name HOLD_RELATIONSHIP 2ns -from reg1 -to reg2

To apply a setup relationship of 10 ns for all paths from source clock clk_src to destination clock clk_dst, enter the following Tcl command:

set_instance_assignment -name SETUP_RELATIONSHIP 10ns -from clk_src -to clk_dst

Assignment Group

Use the timegroup Tcl command to create assignment groups:

timegroup [-h | -help] [-long_help] [-add_member <name>] [-add_exception <name>] \
[-remove_member <name>] [-remove_exception <name>] [-get_members] [-get_exceptions] \
[-overwrite] [-remove] [-disable] [-comment <comment>] <group name>

The following example creates an assignment group called reg_bank with members dst reg*, and excludes register dst reg5.

```
timegroup reg_bank -add_member dst_reg* -add_exception dst_reg5
```

Virtual Clock

Use the create_relative_clock with the -virtual switch to create Virtual Clock assignments:

```
create_relative_clock [-h | -help] [-long_help] -base_clock <Base clock > \
[-duty_cycle <integer>] [-multiply <integer>] [-divide <integer>] [-offset <offset>] \
[-phase_shift <integer>] [-invert] [-virtual] [-target <name>] [-no_target] \
[-entity <entity>] [-disable] [-comment <comment>] <clock_name>
```

To define a virtual clock derived from the base clock setting clk_aux named brd_sys, enter the following Tcl command:

create_relative_clock -base_clock clk_aux -virtual brd_sys

MAX+PLUS II Timing Analysis Methodology

This section describes the basic static timing analysis and assignments available in the Quartus II software that originated in the MAX+PLUS[®] II design software.

f_{MAX} Relationships

Maximum clock frequency is the fastest speed at which the design clock can run without violating internal setup and hold time requirements. The Quartus II software performs static timing analysis on both single- and multiple-clock designs.

Apply clock settings to all clock nodes in a design to ensure that you meet all performance requirements. Refer to "Clock Settings" on page 8–8 for more information.

Slack

Slack is the margin by which a timing requirement such as f_{MAX} is met or not met. Positive slack indicates the margin by which a requirement is met. Negative slack indicates the margin by which a requirement is not met. The Quartus II software determines slack using Equations 35 through 38.

- (35) Clock Setup Slack = Longest Register-to-Register Requirement Longest Register-to-Register Delay
- (36) Register-to-Register Requirement = Setup Relationship + Largest Clock Skew micro t_{CO} of Source Register ⁻ micro t_{SU} of Destination Register
- (37) Clock Hold Slack = Shortest Register-to-Register Delay Smallest Register-to-Register Requirement

Figure 8–34. Slack Calculation Diagram

I/O Timing

This section describes the basic measurements made for I/O timing in the Quartus II software.

t_{SU} Timing

 t_{SU} specifies the length of time data needs to arrive and be stable at an external input pin prior to a clock transition on an associated clock I/O pin. A t_{SU} requirement describes this relationship for an input register relative to the I/O pins of the FPGA. Figure 8–35 shows a diagram of clock setup time.

Figure 8–35. Clock Setup Time (t_{SU})

Micro t_{SU} is the internal setup time of the register. It is a characteristic of the register and is unaffected by the signals feeding the register. Equation 39 calculates the t_{SU} of data with respect to clk for the circuit shown in Figure 8–35.

(39) t_{SII} = Longest Data Delay – Shortest Clock Delay + micro t_{SII} of Input Register

t_H Timing

 $t_{\rm H}$ specifies the length of time data needs to be held stable on an external input pin after a clock transition on an associated clock I/O pin. A $t_{\rm H}$ requirement describes this relationship for an input register relative to the I/O pins of the FPGA. Figure 8–36 shows a diagram of clock hold time.

Micro t_H is the internal hold time of the register. Equation 40 calculates the t_H of data with respect to clk for the circuit shown in Figure 8–36.

(40) t_{H} = Longest Clock Delay – Shortest Data Delay + micro t_{H} of Input Register

t_{co} Timing

Clock-to-output delay is the maximum time required to obtain a valid output at an output pin fed by a register, after a clock transition on the input pin that clocks the register. Micro t_{CO} is the internal clock-to-output delay of the register. Figure 8–37 shows a diagram of clock-to-output delay.

Equation 41 calculates the t_{CO} for output pin data_out with respect to clock node clk for the circuit shown in Figure 8–37.

(41) t_{CO} = Longest Clock Delay + micro t_{CO} of Output Register

Minimum t_{CO} (min t_{CO})

Minimum clock-to-output delay is the minimum time required to obtain a valid output at an output pin fed by a register, after a clock transition on the input pin that clocks the register. Micro t_{CO} is the internal clock-to-output delay of registers in Altera FPGAs. Unlike the t_{CO} assignment, the min t_{CO} assignment looks at the shortest delay paths (Equation 42).

(42) min t_{co} = Shortest Clock Delay + Shortest Data Delay + micro t_{co} of Output Register

t_{PD} Timing

Pin-to-pin delay (t_{PD}) is the time required for a signal from an input pin to propagate through combinational logic and appear at an external output pin (Equation 43).

- (43) t_{PD} = Longest Pin-to-Pin Delay
 - In the Quartus II software, you can make t_{PD} assignments between an input pin and an output pin.

Minimum t_{PD} (min t_{PD})

The minimum pin-to-pin delay (t_{PD}) is the time required for a signal from an input pin to propagate through combinational logic and appear at an external output pin. Unlike the t_{PD} assignment, the min t_{PD} assignment applies to the shortest pin-to-pin delay (Equation 44).

(44) min t_{PD} = Shortest Pin-to-Pin Delay

The Timing Analyzer Tool

To facilitate the classic static timing analysis flow and constraint, the Quartus II software provides a MAX+PLUS II-style Timing Analyzer Tool available on the Tools menu. The Timing Analyzer Tool provides a simple interface, similar to the Timing Analyzer tool in MAX+PLUS II, that reports register-to-register performance, I/O timing, and custom delay values (Figure 8–38).

Figure 8–38. Timing Analyzer Tool

Registered Pe Clock: clkin	nformance tpd tsu tco th Custom Delays	
	Value	
From	regb[2]	
To	regc[10]	
Clock period	2.097 ns	
Frequency	476.87 MHz	
	50 225 25 0 MHz 250	
	100 %	
	00:00:07	

Conclusion

Evolving design and aggressive process technologies require larger and higher-performance FPGA designs. Increasing design complexity demands enhanced static timing analysis tools that aid designers in verifying design timing requirements. Without advanced static timing analysis tools, you risk circuit failure in complex designs. The Quartus II Classic Timing Analyzer incorporates a set of powerful static timing analysis features critical in enabling system-on-a-programmable-chip (SOPC) designs.

Referenced Documents

- This chapter references the following documents:
- *altpll Megafunction User Guide*
- AN 411: Understanding PLL Timing for Stratix II Devices
- Assignment Editor chapter in volume 2 of the Quartus II Handbook
- Quartus II TimeQuest Timing Analyzer chapter of the Quartus II Handbook
- Scripting Reference Manual

Document Revision History

Table 8–2 shows the revision history for this chapter.

Table 8–2. Doc	ument Revision History	
Date and Version	Changes Made	Summary of Changes
October 2007 v7.2.0	Reorganized "Referenced Documents" on page 8-63.	—
May 2007 v7.1.0	 Updated Quartus II software 7.1 revision and date Added information about Arria GX Added Referenced Document No new screenshots were taken 	Very minor update pertaining to Arria GX.
March 2007 v7.0.0	Updated Quartus II software 7.0 revision and date only. No other changes made to chapter.	_
November 2006 v6.1.0	 Added paragraphs about multicycle assignments on page 8–17 and page 8–18 Updated Figure 8–24 on page 8–42 (screenshot update) Updated Figure 8–25 on page 8–43 (screenshot update) 	Minor clarification of text referring to input and output delay assignments.
May 2006 v6.0.0	Chapter title changed to <i>classic timing analyzer</i> . Updated for the Quartus II software version 6.0.0: • Updated GUI information.	_
October 2005 v5.1.0	Updated for the Quartus II software version 5.1.	—
August 2005 V5.0.1	Document revision 1.0.	—
May 2005 V5.0.0	New functionality for Quartus II software 5.0	_
Jan. 2005 v2.2	Updated information pertaining to realistic, optimistic, and pessimistic settings	—
Dec. 2004 v2.1	 Chapter 5 was formerly Chapter 4. Updates to tables and figures. New functionality for Quartus II software 4.2. 	_
June 2004 v2.0	Updates to tables and figures.New functionality for Quartus II software 4.1.	—
Feb. 2004 v1.0	Initial release.	—
May 2006 v6.0.0	Chapter title changed to <i>Classic Timing Analyzer</i> . Updated for the Quartus II software version 6.0.0: • Updated GUI information.	_
October 2005 v5.1.0	Updated for the Quartus II software version 5.1.	_

9. Synopsys PrimeTime Support

QII53005-7.2.0

Introduction

PrimeTime is an industry standard sign-off tool that performs static timing analysis on ASIC designs. The Quartus[®] II software makes it easy for designers to analyze their Quartus II projects using the PrimeTime software. The Quartus II software exports a netlist, design constraints (in the PrimeTime format), and libraries to the PrimeTime software environment. Figure 9–1 shows the PrimeTime flow diagram.

This chapter contains the following sections:

- "Quartus II Settings for Generating the PrimeTime Software Files" on page 9–2
- "Files Generated for the PrimeTime Software Environment" on page 9–3
- "Running the PrimeTime Software" on page 9–10
- "PrimeTime Timing Reports" on page 9–12
- "Static Timing Analyzer Differences" on page 9–23

Quartus II Settings for Generating the PrimeTime Software Files

To set the Quartus II software to generate files for the PrimeTime software, perform the following steps:

- 1. In the Quartus II software, on the Assignments menu, click **EDA Tool Settings**.
- 2. In the **Category** list, under **EDA Tool Settings**, select **Timing Analysis**.
- 3. In the **Tool name** drop-down list, select **PrimeTime**, and in the **Format for output netlist** drop-down list, select either **Verilog** or **VHDL**, depending on the HDL language you chose for use with the PrimeTime software (Figure 9–2).

Figure 9–2. Setting the Quartus II Software to Generate the PrimeTime Software Files

ategory:		
General Files User Libraries (Current Project) Device Operating Conditions Voltage Temperature Compilation Process Settings Early Timing Estimate	Timing Analysis Specify options for generating output files for use with other EDA tools. Tool name: PrimeTime Run this tool automatically after compilation Example of output patient	.
Early Timing Estimate Incremental Compilation EDA Tool Settings Design Entry/Synthesis Simulation Timing Analysis Formal Verification Physical Synthesis Settings Board-Level Analysis & Synthesis Settings Physical Synthesis Optimizations Timing Analysis Settings Physical Synthesis Optimizations Timing Analysis Timing Analyzer Classic Timing Analyzer Repoi Assembler Design Assistant SignalT ap II Logic Analyzer Logic Analyzer Interface Simulator Settings	Output directory: timing/primetime Time scale: 1 ps Map illegal HDL characters Truncate long hierarchy paths Flatten buses into individual nodes More Settings	
Towernay Power Analyzer Settings	ОК	Reset Cancel

When you compile your project after making these settings, the Quartus II software runs the EDA Netlist Writer to create three files for the PrimeTime software. These files are saved in the <*revision_name>*/timing/primetime directory by default, where <*revision_name>* is the name of your Quartus II software revision. If it is not, you have used the wrong variable name.

Files Generated for the PrimeTime Software Environment

The Quartus II software generates a flattened netlist, a Standard Delay Output File (.sdo), and a Tcl script that prepares the PrimeTime software for timing analysis of the Quartus II project. These files are saved in the *<project directory>/timing/primetime* directory.

The Quartus II software uses the EDA Netlist Writer to generate PrimeTime files based on either the Quartus II Classic Timing Analyzer or the Quartus II TimeQuest Timing Analyzer static timing analysis results. When you run the EDA Netlist Writer, the PrimeTime SDO files are based on delays generated by the currently selected timing analysis tool in the Quartus II software.

To specify the timing analyzer, on the Assignments menu, click **Settings**. The **Settings** dialog box appears. Under **Category**, click **Timing Analysis Settings**. Select the timing analyzer of your choice.

For more information about specifying the Quartus II timing analyzers, refer to either the *Quartus II Classic Timing Analyzer* or the *Quartus II TimeQuest Timing Analyzer* chapters in volume 3 of the *Quartus II Handbook*. Also, refer to the *Switching to the* Quartus II *TimeQuest Timing Analyzer* chapter in volume 3 of the *Quartus II TimeQuest Timing Analyzer* chapter in volume 3 of the *Quartus II Handbook* to help you decide which timing analyzer is most appropriate for your design.

The Netlist

Depending on whether **Verilog** or **VHDL** is selected as the **Format for output netlist** option, in the **Tool name** list on the **Timing Analysis** page of the **Settings** dialog box, the netlist is written and saved as either *<project name>.vo* or *<project name>.vho*, respectively. This file contains the flattened netlist representing the entire design.

When the Quartus II TimeQuest Timing Analyzer is selected, only a Verilog PrimeTime netlist is generated.

The SDO File

The Quartus II software saves the Standard Delay Format Output (.sdo) File as either <*revision_name>_v.sdo* or <*revision_name>_vhd.sdo*, depending on whether you selected **Verilog** or **VHDL** in the **Tool name** list on the **Timing Analysis** page of the **Settings** dialog box.

This file contains the timing information for each timing path between any two nodes in the design.

When the Quartus II Classic Timing Analyzer is enabled, the slow-corner (worst case) timing models are used by default when generating the SDO file. To generate the SDO file using the fast-corner (best case) timing models, perform the following steps:

- 1. In the Quartus II software, on the Processing menu, point to Start and click **Start Classic Timing Analyzer (Fast Timing Model)**.
- After the fast-corner timing analysis is complete, on the Processing menu, point to Start and click Start EDA Netlist Writer to create a <revision_name>_v_fast.sdo or <revision_name>_vhd_fast.sdo file, which contains the best-case delay values for each timing path.
- If you are running a best-case timing analysis, the Quartus II software generates a Tcl script similar to the following: <*revision_name>_pt_v_fast.tcl*.

When TimeQuest is run with the fast-corner netlist or when the **Optimize fast-corner timing** check box is selected in the **Fitter Settings** dialog box, the fast-corner SDC file is generated.

After the EDA Netlist Writer has finished, two SDO files are created: <*revision_name>_***v.sdo** (slow-corner) or <*revision_name>_***v_fast.sdo** (fast-corner).

Generating Multiple Operating Conditions with TimeQuest

Different operating conditions can be specified to the EDA Netlist Writer for PrimeTime analysis. The different operating conditions are reflected in the .**sdo** file generated by the EDA Netlist Writer.

Table 9–1 shows the available operating conditions that can be set for a few of Altera's device families.

Table 9–1. Available Operating Condition Combinations		
Device Family	Available Conditions (Model, Voltage, Temperature)	
Stratix III	(slow, 1100 mV, 85° C), (slow, 1100 mV, 0° C), (fast, 1100 mV, 0° C)	
Cyclone III	(slow, 1200 mV, 85° C), (slow, 1200 mV, 0° C), (fast, 1200 mV, 0° C)	
Stratix II	(slow, N/A, N/A), (fast, N/A, N/A)	
Cyclone II	(slow, N/A, N/A), (fast, N/A, N/A)	

From the TimeQuest Console pane, use the command get_available_operating_conditions to obtain a list of available operating conditions for the target device.

The following steps shows how to generate the .**sdo** files for the three different operating conditions for a Stratix III design. Each command must be entered at the command prompt.

- The -tq2pt option for quartus_sta is required only if the project doesn't specify that PrimeTime tool will be used as the timing analysis tool.
- 1. Generate the first slow corner model at the operating conditions: slow, 1100 mV, and 85° C.

quartus_sta --model=slow --voltage=1100 -temperature=85 <project name>

2. Generate the fast corner model at the operating conditions: fast, 1100 mV, and 0° C.

```
quartus_sta --model=fast --voltage=1100 --
temperature=0 --tq2pt <project name>
```

1

3. Generate the PrimeTime output files for the corners specified above. The output files will be generated in the primetime_two_corner_files directory.

```
quartus_eda --timing_analysis --tool=primetime
--format=verilog --
output_directory=primetime_two_corner_files --
write settings files=off <project name>
```

4. Generate the second slow corner model at the operating conditions: slow, 1100 mV, and 0° C.

```
quartus_sta --model=slow --voltage=1100 --
temperature=0 --tq2ptproject name>
```

 Generate the PrimeTime output files for the second slow corner. The output files will be generated in the primetime_one_slow_corner_files directory.

```
quartus_eda --timing_analysis --tool=primetime --
format=verilog --
output_directory=primetime_one_slow_corner_files -
-write_settings_files=off $revision
```

To summarize, the previous steps generate the following files for the three operating conditions:

- First slow corner (slow, 1100 mV, 85° C) : VO File—primetime_two_corner_files/<project name>.vo SDO File—primetime_two_corner_files/<project name>_v.sdo
- Fast corner (fast, 1100 mV, 0° C) : VO File—primetime_two_corner_files/<project name>.vo SDO File—primetime_two_corner_files/<project name>_v_fast.sdo</pro>
- Second slow corner (slow, 1100 mV, 0° C) : VO File—primetime_one_slow_corner_files/<project name>.vo SDO File—primetime_one_slow_corner_files/<project name>_v.sdo
- The directory primetime_one_slow_corner_files may also have files for fast corner. These files can be ignored since they were already generated in the primetime_two_corner_files directory.

The Tcl Script

The Tcl script generated by the Quartus II software contains information required by the PrimeTime software to analyze the timing and set up your post-fit design. This script specifies the search path and the names of the PrimeTime database library files provided with the Quartus II software. The search_path and link_path variables are defined at the beginning of the Tcl file. The link_path variable is a space-delimited list that contains the names of all database files used by the PrimeTime software.

Depending on whether you selected **Verilog** or **VHDL** in the **Format for output netlist** list on the **Timing Analysis** page of the **Settings** dialog box, when the Quartus II Classic Timing Analyzer is enabled, the EDA Netlist Writer generates and saves the script as either <*revision_name>_pt_v.tcl* or <*revision_name>_pt_vhd.tcl*.

To access the **EDA Settings** dialog box, on the Assignments menu, click **EDA Tool Settings**, then expand **EDA Tool Settings** under the Category list. In the dialog box, you can specify VHDL or Verilog for the format for the output netlist.

The script also directs the PrimeTime software to use the <*device family>_all_pt.v* or <*device family>_all_pt.vhd* file, which contains the Verilog or VHDL description of library cells for the targeted device family.

Example 9–1 shows the search_path and link_path variables defined in the Tcl script:

Example 9–1. Sample PrimeTime Setup Script

```
set quartus_root "altera/quartus/"
set search_path [list . [format "%s%s" $quartus_root "eda/synopsys/primetime/lib"] ]
set link_path [list * stratixii_lcell_comb_lib.db stratixii_lcell_ff_lib.db
stratixii_asynch_io_lib.db stratixii_io_register_lib.db stratixii_termination_lib.db
bb2_lib.db stratixii_ram_internal_lib.db stratixii_memory_register_lib.db
stratixii_memory_addr_register_lib.db stratixii_mac_out_internal_lib.db
stratixii_lods_receiver_lib.db stratixii_lvds_transmitter_lib.db
stratixii_asmiblock_lib.db stratixii_crcblock_lib.db stratixii_jtag_lib.db
```

read_vhdl -vhdl_compiler stratixii_all_pt.vhd

The EDA Netlist Writer converts any Quartus II Classic Timing Analyzer timing assignments to the PrimeTime software constraints and exceptions when it generates the PrimeTime files. The converted constraints are saved to the Tcl script. The Tcl script also includes a PrimeTime software command that reads the Standard Delay Format Output (**.sdo**) file generated by the Quartus II software. You can place additional commands in the Tcl script to analyze or report on timing paths.

Table 9–2 shows some examples of timing assignments converted by the Quartus II software for the PrimeTime software. For example, the set_input_delay -max command sets the input delay on an input pin.

Table 9–2. Equivalent Quartus II and PrimeTime Software Constraints		
Quartus II Equivalent	PrimeTime Constraint	
Clock defined on input pin, clock of 10 ns period and 50% duty cycle	<pre>create_clock -period 10.000 -waveform {0 5.000} \ [get_ports clk] -name clk</pre>	
Input maximum delay of 1 ns on input pin, din	<pre>set_input_delay -max -add_delay 1.000 -clock \ [get_clocks clk] [get_ports din]</pre>	
Input minimum delay of 1 ns on input pin, din	set_input_delay -min -add_delay 1.000 -clock \ [get_clocks clk] [get_ports din]	
Output maximum delay of 3 ns on output pin, out	<pre>set_output_delay -max -add_delay 3.000 -clock \ [get_clocks clk] [get_ports out]</pre>	

When the Quartus II TimeQuest Timing Analyzer is turned on, the EDA Netlist Writer generates and saves the script as *<revision_name>.pt.tcl*.

The EDA Netlist Writer converts all Quartus II TimeQuest Timing Analyzer SDC constraints and exceptions into compatible PrimeTime software constraints and exceptions when it generates the PrimeTime files. The constraints and exceptions are saved to the *<revision_name>.constraints.sdc* file.

Generated File Summary

The files that are generated by the EDA Netlist Writer for the PrimeTime software depend on the Quartus II timing analysis tool you selected.

Table 9–3 shows the files that are generated for the PrimeTime software when the Quartus II Classic Timing Analyzer is selected.

Table 9–3. Quartus II Classic Timing Analyzer-Generated PrimeTime Files				
File	Description			
<revision_name>.vho <revision_name>.vo</revision_name></revision_name>	The PrimeTime software output netlist. Either a VHDL Output File or a Verilog Output file is generated, depending on the output netlist language set.			
<revision_name>_vhd.sdo <revision_name>_v.sdo</revision_name></revision_name>	The PrimeTime software standard delay file. Either a VHDL Standard Delay Output file or a Verilog Standard Delay Output file is generated, depending on the output netlist language set.			
<revision_name>_pt_vhd.tcl <revision_name>_pt_v.tcl</revision_name></revision_name>	PrimeTime setup and constraint script. Either a VHDL Tcl script or a Verilog Tcl script is generated, depending on the output netlist language set.			

Table 9–4 shows the files that are generated for the PrimeTime software when the Quartus II TimeQuest Timing Analyzer is selected. The EDA Netlist Writer supports the output netlist format only when the TimeQuest Timing Analyzer is enabled.

Table 9–4. Quartus II TimeQuest Timing Analyzer-Generated PrimeTime Files		
File	Description	
<revision_name>.vo</revision_name>	The PrimeTime software output netlist. When the Quartus II TimeQuest Timing Analyzer is enabled, only PrimeTime (Verilog) is supported.	
<revision_name>_v.sdo <revision_name>_v_fast.sdo</revision_name></revision_name>	The PrimeTime software standard delay file. When the Quartus II TimeQuest Timing Analyzer is enabled, only PrimeTime (Verilog) is supported.	
<revision_name>.pt.tcl</revision_name>	PrimeTime setup and constraint script. When the Quartus II TimeQuest Timing Analyzer is enabled, only PrimeTime (Verilog) is supported.	
<revision_name>.collections.sdc</revision_name>	Contains the mapping from the Quartus II TimeQuest Timing Analyzer netlist to the PrimeTime netlist.	
<revision_name>.constraints.sdc</revision_name>	Contains the converted Quartus II TimeQuest Timing Analyzer constraints for the PrimeTime software.	

Running the PrimeTime Software

The PrimeTime software runs only on UNIX operating systems. If the Quartus II output files for the PrimeTime software were generated by running the Quartus II software on a PC/Windows-based system, follow these steps to run the PrimeTime software using Quartus II output files:

1. Install the PrimeTime libraries on a UNIX system by installing Quartus II software on UNIX.

The PrimeTime libraries are located in the *<Quartus II installation directory>/eda/synopsys/primetime/lib* directory.

- 2. Copy the Quartus II output files to the appropriate UNIX directory. You may need to run a PC to UNIX program, such as dos2unix, to remove any control characters.
- 3. Modify the Quartus II path in Tcl scripts to point to the PrimeTime libraries, as described in Step 1. In Example 9–1, the first line is:

set quartus_root "altera/quartus/" set search_path [list . [format "%s%s" \$quartus_root "eda/synopsys/primetime/lib"]]

This is the Tcl script that should be modified.

Analyzing Quartus II Projects

The PrimeTime software is controlled with Tcl scripts and can be run through pt_shell. You can run the <*revision_name*>_**pt_v.tcl** script file. For example, type the following at a UNIX system command prompt:

pt_shell -f <revision_name>_pt_v.tcl ←

When the Quartus II TimeQuest Timing Analyzer is selected, type the following at a UNIX system command prompt:

pt_shell -f <revision_name>.pt.tcl ←

After all Tcl commands in the script are interpreted, the PrimeTime software returns control to the pt_shell prompt, which allows you to use other commands.

Other pt_shell Commands

You can run additional pt_shell commands at the pt_shell prompt, including the man program. For example, to read documentation about the report_timing command, type the following at the pt_shell prompt:

```
man report timing 🕶
```

You can list all commands available in pt_shell by typing the following at the pt_shell prompt:

help 🕶

Type quit ← at the pt_shell prompt to close pt_shell.

You can also run pt_shell without a script file by typing pt_shell at the UNIX command line prompt.

PrimeTime Timing Reports

Sample of the PrimeTime Software Timing Report

After running the script, the PrimeTime software generates a timing report. If the timing constraints are not met, Violated is displayed at the end of the timing report. The timing report also gives the negative slack.

The PrimeTime software report is similar to the sample shown in Example 9–2. The starting point in this report is a register clocked by clock signal, clock, the endpoint is another register, inst3-I.lereg.

Example 9–2. Hold Path Report in PrimeTime

```
Startpoint: inst2~I.lereq
 (rising edge-triggered flip-flop clocked by clock)
Endpoint: inst3~I.lereq
 (rising edge-triggered flip-flop clocked by clock)
Path Group: clock
Path Type: min
Point IncrPath
                                  clock clock (rise edge) 0.0000.000
clock network delay (propagated) 3.1663.166
inst2~I.lereq.clk (stratix lcell register)0.000 3.166r
inst2~I.lereq.regout (stratix lcell register) <-0.176*3.342r
inst2~I.regout (stratix_lcell)0.000*3.342r
inst3~I.datac (stratix lcell)0.000*3.342r
inst3~I.lereq.datac (stratix lcell register)3.413*6.755r
data arrival time6.755
clock clock (rise edge) 0.0000.000
clock network delay (propagated) 3.0023.002
inst3~I.lereg.clk (stratix_lcell_register)3.002r
library hold time0.100*3.102
data required time 3.102
_____
data required time3.102
data arrival time-6.755
_____
slack (MET) 3.653
```

Comparing Timing Reports from the Quartus II Classic Timing Analyzer and the PrimeTime Software

Both the Quartus II Classic Timing Analyzer and the Quartus II TimeQuest Timing Analyzer generate a static timing analysis report for every successful design compilation. The timing report lists all of the analyzed timing paths in your design that were analyzed, and indicates whether these paths have met or violated their timing requirements. Violations are reported only if timing constraints were specified.

The Quartus II TimeQuest Timing Analyzer uses an equivalent set of equations as PrimeTime when reporting the static timing analysis result for a design. However, the Quartus II Classic Timing Analyzer uses slightly different reporting equations when reporting the static timing analysis results for a design. This section describes these differences between the Quartus II Classic Timing Analyzer and the PrimeTime software.

The timing report generated by the Quartus II Classic Timing Analyzer differs from the report generated by the PrimeTime software. Both tools provide the same data but present in different formats. The following sections show how the PrimeTime software reports the following slack values differently from the Quartus II Classic Timing Analyzer report:

- "Clock Setup Relationship and Slack" on page 9–13
- "Clock Hold Relationship and Slack" on page 9–17
- "Input Delay and Output Delay Relationships and Slack" on page 9–21

Clock Setup Relationship and Slack

The Quartus II Classic Timing Analyzer performs a setup check that ensures that the data launched by source registers is latched correctly at the destination registers. The Quartus II Classic Timing Analyzer does this by determining the data arrival time and clock arrival time at the destination registers, and compares this data with the setup time delay of the destination register. Equation 1 expresses the inequality that is used for a setup check. The data arrival time includes the longest path from the clock to the source register, the clock-to-out micro delay of the source register, and the longest path from the source register to the destination register. The clock arrival time is the shortest delay from the clock to the destination register.

(1) Clock Arrival – Data Arrival $\geq t_{su}$

Slack is the margin by which a timing requirement is met or not met. Positive slack indicates the margin by which a requirement is met. Negative slack indicates the margin by which a requirement was not met. The Quartus II Classic Timing Analyzer determines the clock setup slack, with Equation 2:

- (2) Clock Setup Slack = Largest Register-to-Register Requirement Longest Register-to-Register Delay
 - The longest register-to-register delay in the previous equation is equal to the register-to-register data delay.

Setup Relationship between Source and Destination = Latch Edge – Launch Edge

Clock Skew = Shortest Clock Path to Destination – Longest Clock Path to Source

For a simple three-register design, refer to Figure 9–3.

Figure 9–3. Simple Three-Register Design

The Quartus II Classic Timing Analyzer generates a report for the design, as shown in Figure 9–4.

Compilation Report - Clock Setup: 'clock' 🚔 🔄 Compilation Report Clock Setup: 'clock' 🚭 🖹 Legal Notice Actual fmax Τo Required Setup Required Longest Actual Longest From Slack From To 🚔 🎞 Flow Summary (period) Clock Clock Relationship P2P Time P2P Time 🗃 🎹 Flow Settings 4.237 ns 265.75 MHz (period = 3.763 ns) inst2 inst3 clock clock 8.000 ns 1 7.650 ns 3.413 ns 🚑 🎹 Flow Elapsed Time 2 4.741 ns 306.84 MHz (period = 3.259 ns) inst inst2 clock clock 8.000 ns 7.980 ns 3.239 ns 🞒 🖹 Flow Log 👍 📄 Analysis & Synthesis 🗃 🧰 Fitter 🚑 🚞 Assembler 冶 🗃 Timing Analyzer 🞒 🔣 Summary 🚑 🌐 Settings 🚑 🎹 Clock Settings Summ 🚑 🔣 Clock Setup: 'clock' 🞒 🔣 Clock Setup (I/O pat 🗃 🐻 Clock Hold: 'clock' 🗃 🔣 Clock Hold (I/O path 🞒 拱 tsu 🚑 🔜 tco >

Figure 9–4. Timing Analyzer Report from Figure 9–3

Equation 1, 2, and 3 are similar to those found in other static timing analysis tools, such as the PrimeTime software. Equation 4, 5, 6, and 7, used by the PrimeTime software, are essentially the same as those used by the Quartus II Classic Timing Analyzer, but they are rearranged.

- (4) Slack = Data Required Data Arrival
- (5) Clock Arrival = Latch Edge + Shortest Clock Path to Destination
- (6) Data Required = Clock Arrival Micro t_{su}
- (7) Data Arrival = Launch Edge + Longest Clock Path to Source + Micro t_{co} + Longest Data Delay
 - The longest data delay in the previous equation is equal to register-to-register data delay.

Figure 9–5 shows a clock setup check in the Quartus II software.

Figure 9–5. Clock Setup Check Reporting with the Quartus II Classic Timing Analyzer

Info: Slack time is 4.237 ns for clock "clock" between source register "inst2" and destination register "inst3"
 Info: Fmax is 265.75 MHz (period= 3.763 ns)
 Info: + Largest register to register requirement is 7.650 ns
 Info: + Setup relationship between source and destination is 8.000 ns
 Info: + Latch edge is 8.000 ns
 Info: - Launch edge is 0.000 ns
 Info: - Clock setup uncertainty between source and destination is 0.000 ns
 Info: + Largest clock skew is -0.164 ns
 Info: + Shortest clock path from clock "clock" to destination register is 3.002 ns
 Info: - Longest clock path from clock "clock" to source register is 3.166 ns
 Info: - Micro clock to output delay of source is 0.176 ns
 Info: - Longest register to register delay is 3.413 ns

The following results are obtained by extracting the numbers from the Quartus II Classic Timing Analyzer report and applying them to the clock setup slack equations from the Quartus II Classic Timing Analyzer:

(8) Setup Relationship between Source and Destination = Latch Edge – Launch Edge – Clock Setup Uncertainty

8.0 - 0.0 - 0.0 = 8.0 ns

Clock Skew = Shortest Clock Path to Destination – Longest Clock Path to Source 3.002 - 3.166 = -0.164 ns

Largest Register-to-Register Requirement = Setup Relationship between Source & Destination + Largest Clock Skew –Micro t_{c0} of Source Register – Micro t_{su} of Destination Register 8 + (-0.164) - 0.176 - 0.010 = 7.650 ns

For the same register-to-register path, the PrimeTime software generates a clock setup report as shown in Example 9–3:

Example 9–3. Setup Path Report in PrimeTime

```
Startpoint: inst2~I.lereq
 (rising edge-triggered flip-flop clocked by clock)
Endpoint: inst3~I.lereq
 (rising edge-triggered flip-flop clocked by clock)
Path Group: clock
Path Type: max PointIncrPath
                               _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
clock clock (rise edge) 0.0000.000
clock network delay (propagated) 3.1663.166
inst2~I.lereg.clk (stratix lcell register)0.0003.166r
inst2~I.lereq.regout (stratix lcell register) <-0.176*3.342r
inst2~I.regout (stratix lcell) <- 0.000*3.342r
inst3~I.datac (stratix lcell) <-0.000*3.342r
inst3~I.lereg.datac (stratix lcell register)3.413*6.755r
data arrival time6.755
clock clock (rise edge)8.0008.000
clock network delay (propagated) 3.00211.002
inst3~I.lereg.clk (stratix lcell register)11.002r
library setup time-0.010*10.992
data required time10.992
_____
data required time10.992
data arrival time-6.755
_____
slack (MET)4.237
```

Clock Hold Relationship and Slack

The Quartus II Classic Timing Analyzer performs a hold time check along every register-to-register path in the design to ensure that no hold time violations have occurred. The hold time check verifies that data from the source register does not reach the destination until after the hold time of the destination register. The condition used for a hold check is shown in Equation 9:

(9) Data Arrival – Clock Arrival $\ge t_H$

The Quartus II Classic Timing Analyzer determines the clock hold slack with Equation 10, 11, 12, and 13:

(10) Clock Hold Slack = Shortest Register-to-Register Delay – Smallest Register-to-Register Requirement

- (11) Smallest Register-to-Register Requirement = Hold Relationship between Source & Destination + Smallest Clock Skew – Micro t_{su} of Source + Micro t_H of Destination
- (12) Hold Relationship between Source & Destination = Latch Edge Launch Edge
- (13) Smallest Clock Skew = Longest Clock Path from Clock to Destination Register Shortest Clock Path from Clock to Source Register

Figure 9–6 shows a simple three-register design.

Figure 9–6. A Simple Three-Register Design

The Quartus II Classic Timing Analyzer generates a report as shown in Figure 9–7.

Figure 9–7. Timing Analyzer Report Generated from the Three Register Design

The previous equations are similar to those found in the Quartus II software. The following equations are the same equations that are used by the PrimeTime software, but they are rearranged.

- (14) Slack = Data Required Data Arrival
- (15) Clock Arrival = Latch Edge + Longest Clock Path to Destination
- (16) Data Required = Clock Arrival Micro t_{H}
- (17) Data Arrival = Launch Edge + Longest Clock Path to Source + Micro t_{co} + Shortest Data Delay
 - The shortest register-to-register delay in the previous equation is equal to register-to-register data delay.

Figure 9–8 shows a clock setup check with the Quartus II Classic Timing Analyzer.

Figure 9–8. Clock Hold Check Reporting with the Quartus II Classic Timing Analyzer

Info: Minimum slack time is 3.653 ns for clock "clock" between source register "inst2" and destination register "inst3"
 Info: + Shortest register to register delay is 3.413 ns
 Info: - Smallest register to register requirement is -0.240 ns
 Info: + Hold relationship between source and destination is 0.000 ns
 Info: + Latch edge is 0.000 ns
 Info: - Clock hold uncertainty between source and destination is 0.000 ns
 Info: - Clock hold uncertainty between source and destination is 0.000 ns
 Info: - Smallest clock skew is -0.164 ns
 Info: + Longest clock path from clock "clock" to destination register is 3.002 ns
 Info: - Shortest clock path from clock "clock" to source register is 3.166 ns
 Info: - Micro clock to output delay of source is 0.176 ns
 Info: + Micro hold delay of destination is 0.100 ns

The following results are obtained by extracting the numbers from the Timing Analysis report and applying the clock setup slack equations from the Quartus II Classic Timing Analyzer.

 $(18) \qquad {\sf Clock \ Hold \ Slack \ = \ Shortest \ Register \ to - Register \ Delay \ - \ Smallest \ Register \ to - Register \ Requirement } \\ 3.413 \ - \ (-0.240) \ = \ 3.653 \ ns$

 $\begin{array}{l} \text{Smallest Register-to-Register Requirement} &= \text{Hold Relationship between Source \& Destination} \\ \text{Smallest Clock Skew} - \text{Micro } t_{co} \text{ of Source} + \text{Micro } t_{H} \text{ of Destination} \\ \end{array}$

$$0 + (-0.164) - 0.176 + 0.100 = -0.240 \, \text{ns}$$

Hold Relationship between Source & Destination = Latch – Launch 0.0 - 0.0 ns

Smallest Clock Skew = Longest Clock Path from Clock to Destination Register – Shortest Clock Path from Clock to Source Register

 $3.002 - 3.166 = -0.164 \, \text{ns}$

For the same register-to-register path, the PrimeTime software generates the report shown in Example 9–4:

Example 9–4. Hold Path Report in PrimeTime

```
Startpoint: inst2~I.lereq
 (rising edge-triggered flip-flop clocked by clock)
Endpoint: inst3~I.lereq
 (rising edge-triggered flip-flop clocked by clock)
Path Group: clock
Path Type: min
Point IncrPath
                                    clock clock (rise edge)0.0000.000
 clock network delay (propagated) 3.1663.166
 inst2~I.lereg.clk (stratix lcell register)0.0003.166r
 inst2~I.lereq.regout (stratix lcell register) <-0.176*3.342r
 inst2~I.regout (stratix_lcell)0.000*3.342r
 inst3~I.datac (stratix lcell)0.000*3.342r
 inst3~I.lereg.datac (stratix lcell register)3.413*6.755r
 data arrival time6.755
 clock clock (rise edge)0.0000.000
 clock network delay (propagated) 3.0023.002
 inst3~I.lereq.clk (stratix lcell register)3.002r
 library hold time0.100*3.102
 data required time
                                              3.102
   data required time3.102
 data arrival time-6.755
   -----
 slack (MET) 3.653
```

Both sets of hold slack equations can be used to determine the hold slack value of any path.

Input Delay and Output Delay Relationships and Slack

Input delay and output delay reports generated by the Quartus II Classic Timing Analyzer are similar to the clock setup and clock hold relationship reports. Figure 9–9 shows the input delay and output delay report for the design shown in Figure 9–6 on page 9–18.

Figure 9–9. Input and Output Delay Reporting with the Quartus II Classic Timing Analyzer

🗣 Compilation Report - Clock Setup (I/O paths): 'clock'											
- 🚑 🖹 Legal Notice 🛛	^ (lock Setu	ck Setup (I/O paths): 'clock'								
- 🚑 📰 Flow Summary		Slack	Actual fmax		From	To	From	To	Required Setup	Required Longest	Actual Longest
- 🗃 🖽 Flow Settings		JIGUN	(period)		rion	10	Clock	Clock	Relationship	P2P Time	P2P Time
- 🗃 🎹 Flow Elapsed Time	1	0.175 ns	127.80 MHz (period = 7.825 ns)	inst3	data_out	clock	clock	8.000 ns	3.572 ns	3.397 ns
- 🗃 🖹 Flow Log	2	2 5.380 ns	381.68 MHz (period = 2.620 ns)	data in	inst	clock	clock	8.000 ns	8.490 ns	3.110 ns
🗄 🚭 🧰 Analysis & Synthesis											
🕀 🚭 🧰 Fitter											
🗄 🚭 🧰 Assembler	=										
🖻 🚭 🔁 Timing Analyzer											
🚽 🎒 🔜 Summary											
Settings											
- 🗃 🎹 Clock Settings Summary											
- 🚑 🐯 Clock Setup: 'clock'	-1										
Clock Setup (I/O paths): 'clock'											
- 🚑 🔣 Clock Hold: 'clock'											
- 🚑 🐯 Clock Hold (I/O paths): 'clock'											
- 🚑 🖽 tsu	~										

Figure 9–10 shows the fully expanded view for the output delay path.

Figure 9–10. Output Delay Path Reporting with the Quartus II Classic Timing Analyzer

For the same output delay path, the PrimeTime software generates a report similar to Example 9–5:

Example 9–5. Setup Path Report in PrimeTime

```
Startpoint: inst3~I.lereq
  (rising edge-triggered flip-flop clocked by clock)
Endpoint: data out
  (output port clocked by clock)
Path Group: clock
Path Type: max PointIncrPath
                              _____
              _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
clock clock (rise edge) 0.0000.000
clock network delay (propagated) 3.0023.002
inst3~I.lereg.clk (stratix lcell register)0.0003.002r
inst3~I.lereq.regout (stratix lcell register) <- 0.176*3.178r
inst3~I.regout (stratix lcell) <- 0.0003.178r
data out~I.datain (stratix io)<- 0.000 3.178r
data out~I.out mux3.A (mux21) <-0.0003.178r
data out~I.out mux3.MO (mux21)<- 0.000 3.178r
data out~I.and2 22.IN1 (AND2)<- 0.0003.178r
data out~I.and2 22.Y (AND2)<- 0.0003.178r
data out~I.out mux1.A (mux21)<-0.0003.178r
data out~I.out mux1.MO (mux21)<- 0.0003.178r
data out~I.inst1.datain (stratix asynch io)<-0.902*4.080r
data out~I.inst1.padio (stratix asynch io)<- 2.495*6.575r
data out~I.padio (stratix io)<- 0.000 6.575r
data out (out)0.0006.575r
data arrival time6.575
clock clock (rise edge)8.0008.000
clock network delay (propagated) 0.0008.000
output external delay1.2506.750
data required time6.750
_____
data required time6.750
data arrival time6.575
-----
                   slack (MET) 0.175
```

To generate a list of the 100 worst paths and place this data into a file called **file.timing**, type the following command at the pt_shell prompt:

report_timing -nworst 100 > file.timing +

Timing paths in the PrimeTime software are listed in the order of most-negative-slack to most-positive-slack. The PrimeTime software does not categorize failing paths by default. Timing setup (t_{su}) and timing hold (t_{H}) times are not listed separately. In the PrimeTime software, each path is shown with a start and end point; for example, if it is a

register-to-register or input-to-register type of path. If you only use the
<pre>report_timing part of the command without adding a -delay option,</pre>
only the setup-time-related timing paths are reported.

The following command is used to create a minimum timing report or a list of hold-time-related violations:

report_timing -delay_type min +

Ensure that the correct SDO file, either minimum or maximum delays, is loaded before running this command.

Static Timing Analyzer Differences

Under certain design conditions, several static timing analysis differences can exist between the Classic Timing Analyzer and the TimeQuest Timing Analyzer, and the PrimeTime software. The following sections explain the differences between the two static timing analysis engines and the PrimeTime software.

The Quartus II Classic Timing Analyzer and the PrimeTime Software

The following section describes the differences between the Quartus II Classic Timing Analyzer and the PrimeTime software.

Rise/Fall Support

The Quartus II Classic Timing Analyzer does not support rise/fall analysis. However, rise/fall support is available in PrimeTime.

Minimum and Maximum Delays

TimeQuest calculates minimum and maximum delays for all device components with the exception of clock routing. PrimeTime does not model these delays. This can result in different slacks for a given path on average by 2 - 3%.

Recovery/Removal Analysis

TimeQuest performs a more pessimistic recovery/removal analysis for asynchronous path than PrimeTime. This can result in different delays reported between the two tools.

Encrypted Intellectual Property Blocks

The Quartus II software has the capability to decrypt all intellectual property (IP) blocks designed for Altera[®] devices that have been encrypted by their vendors. The decryption process allows the Quartus II software to perform a full compilation of the design that contains an encrypted IP block. This also allows the Quartus II Classic Timing Analyzer to perform a complete static timing analysis on the design. However, when the PrimeTime software is designated as the static timing analysis tool, the Quartus II EDA Netlist Writer does not generate either a VHDL Output File (**.vho**) or Verilog Output File (**.vo**) netlist file for designs that contain encrypted IP blocks for which the license does not permit generation of output netlists for third-party tools.

Registered Clock Signals

Registered clock signals are clock signals that pass through a register before reaching the clock port of a sequential element. Figure 9–11 shows an example of a registered clock signal.

If no clock setting is applied to the register on the clock path (shown as register reg_1 in Figure 9–11), the Quartus II Classic Timing Analyzer treats the register in the clock path as a buffer. The delay of the buffer is equal to the CELL delay of the register plus the t_{CO} of the register. The PrimeTime software does not treat the register as a buffer.

For more information about creating clock settings, refer to the *Quartus II Classic Timing Analyzer* chapter in volume 3 of the *Quartus II Handbook*.

Multiple Source and Destination Register Pairs

In any design, multiple paths may exist from a source register to a destination register. Each path from the source register to the destination register may have a different delay value due to the different routes taken. For example, Figure 9–12 shows a sample design that contains multiple path pairs between the source register and destination register.

Figure 9–12. Multiple Source and Destination Pairs

The Quartus II Classic Timing Analyzer analyzes all source and destination pairs, but reports only the source and destination register pair with the worst slack. For example, if the Path 2 pair delay is greater than the Path 1 pair delay in Figure 9–12, the Quartus II Classic Timing Analyzer reports the slack value of the Path 2 pair and not the Path 1 pair. The PrimeTime software reports all possible source and destination register pairs.

Latches

By default, the Quartus II software implements all latches as combinational loops. The Quartus II Classic Timing Analyzer can analyze such latches by treating them as registers with inverted clocks or analyze latches as a combinational loop modeled as a combinational delay.

For more information about latch analysis, refer to the *Quartus II TimeQuest Timing Analyzer* chapter in volume 3 of the *Quartus II Handbook*.

The PrimeTime software always analyzes these latches as combinational loops, as defined in the netlist file.

LVDS I/O

When it analyzes the dedicated LVDS transceivers in your design, the Quartus II Classic Timing Analyzer generates the Receiver Skew Margin (RSKM) report and a Channel-to-Channel Skew (TCCS) report. The PrimeTime software does not generate these reports.

Clock Latency

When a single clock signal feeds both the source and destination registers of a register-to-register path, and either an Early Clock Latency or a Late Clock Latency assignment has been applied to the clock signal, the Quartus II Classic Timing Analyzer does not factor in the clock latency values when it calculates the clock skew between the two registers. The Quartus II Classic Timing Analyzer factors in the clock latency values when the clock signal to the source and destination registers of a registerto-register path are different. The PrimeTime software applies the clock latency values when a single clock signal or different clock signals feeds the source and destination registers of a register-to-register path.

Input and Output Delay Assignments

When a purely combinational (non-registered) path exists between an input pin and output pin of the Altera FPGA and both pins have been constrained with an input delay and an output delay assignment applied, respectively, the Quartus II Classic Timing Analyzer does not perform a clock setup or clock hold analysis. The PrimeTime software analyzes these paths.

Generated Clocks Derived from Generated Clocks

The Quartus II Classic Timing Analyzer does not support a generated clock derived from a generated clock. This situation might occur if a generated clock feeds the input clock pin of a PLL. The output clock of the PLL is a generated clock.

The Quartus II TimeQuest Timing Analyzer and the PrimeTime Software

The following sections describe the static timing analysis differences between the Quartus II TimeQuest Timing Analyzer and the PrimeTime software.

Encrypted Intellectual Property Blocks

The Quartus II software has the capability to decrypt all IP blocks, designed for Altera devices that have been encrypted by their vendors. The decryption process allows the Quartus II software to perform a full compilation on the design containing an encrypted IP block. This also allows the Quartus II TimeQuest Timing Analyzer to perform a complete static timing analysis on the design. However, when the PrimeTime software is designated as the static timing analysis tool, the Quartus II EDA Netlist Writer does not generate **.vho** or **.vo** netlist files for designs that contain encrypted IP blocks whose license does not permit generation of output netlists for other tools.

Latches

By default, the Quartus II software implements all latches as combinational loops. The Quartus II TimeQuest Timing Analyzer can analyze such latches by treating them as registers with inverted clocks. The Quartus II TimeQuest Timing Analyzer analyzes latches as a combinational loop modeled as a combinational delay.

For more information about latch analysis, refer to the *Quartus II Classic Timing Analyzer* chapter in volume 3 of the *Quartus II Handbook*.

The PrimeTime software always analyzes these latches as combinational loops, as defined in the netlist file.

LVDS I/O

When it analyzes the dedicated LVDS transceivers in your design, the Quartus II TimeQuest Timing Analyzer generates a Receiver Skew Margin (RSKM) report and a Channel-to-Channel Skew (TCCS) report. The PrimeTime software does not generate these reports.

The Quartus II TimeQuest Timing Analyzer SDC File and PrimeTime Compatibility

Because of differences between node naming conventions with the netlist generated by the EDA Netlist Writer and the internal netlist used by the Quartus II software, SDC files generated for the Quartus II software or the Quartus II TimeQuest Timing Analyzer are not compatible with the PrimeTime software.

Run the EDA Netlist Writer to generate a compatible SDC file from the TimeQuest SDC file for the PrimeTime software. After the files have been generated, *<revision_name>.collections.sdc* and *<revision_name>.constraints.sdc*, both files can be read in by the PrimeTime software for compatibility of constraints between the Quartus II TimeQuest Timing Analyzer and the PrimeTime software.

Clock and Data Paths

If a timing path acts both as a clock path (a path that connects to a clock pin with a clock associated to it), and a data path (a path that feeds into the data in port of a register), the Quartus II TimeQuest Timing Analyzer will report the data paths, whereas PrimeTime will not.

Inverting and Non-Inverting Propagation

TimeQuest always propagates non-inverting sense for clocks through non-unate paths in the clock network.

PrimeTime's default behavior is to propagate both inverting and non-inverting senses through a non-unate path in the clock network.

Multiple Rise/Fall Numbers For a Timing Arc

For a given timing path with a corresponding set of pins/ports that make up the path (including source and destination pair), if the individual components of that path have different rise/fall delays, there can potentially be many timing paths with different delays using the same set of pins. If this occurs, TimeQuest reports only one timing path for the set of pins that make up the path.

Virtual Generated Clocks

PrimeTime does not support generated clocks that are virtual. To maintain compatibility between TimeQuest and PrimeTime, all generated clocks should have an explicit target specified.

Generated Clocks Derived from Generated Clocks

The Quartus II Classic Timing Analyzer does not support the creation of a generated clock derived from a generated clock. This situation might occur if a generated clock feeds the input clock pin of another generated clock. The output clock of the PLL is a generated clock.

Conclusion

The Quartus II software can export a netlist, constraints, and timing information for use with the PrimeTime software. The PrimeTime software can use data from either best-case or worst-case Quartus II timing models to measure timing. The PrimeTime software is controlled using a Tcl script generated by the Quartus II software that you can customize to direct the PrimeTime software to produce violation and slack reports.

Referenced Documents

This chapter references the following document:

- *Quartus II Handbook*
- Quartus II Classic Timing Analyzer chapter in volume 3 of the Quartus II Handbook
- Quartus II TimeQuest Timing Analyzer in volume 3 of the Quartus II Handbook
- Switching to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook

Document Revision History

Table 9–5 shows the revision history for this chapter.

Table 9–5. Document Revision History					
Date and Version	Changes Made	Summary of Changes			
October 2007 v7.2.0	Reorganized "Referenced Documents" on page 9-29.	_			
May 2007 v7.1.0	 Added Generating Multiple Operating Conditions with TimeQuest Added Rise/Fall Support Added Minimum and Maximum Delays Added Recovery/Removal Aanalyis Added Generated Clocks Derived from Generated Clocks Added Multiple Rise/Fall Numbers for a Timing Analyzer SDC Virtual Generated Clocks Added Referenced Documents 	Updates added to the Static Timing Analyzer Differences section of this chapter.			
March 2007 v7.0.0	Updated Quartus II software 7.0 revision and date only. No other changes made to chapter.	_			
November 2006 v6.1.0	 Noted the differences between the different timing analyzers Explained how to select between the timing analyzers Introduced the TimeQuest flow with PrimeTime 	Introduction of the TimeQuest Timing Analyzer updated in this chapter.			
May 2006 v6.0.0	Chapter title changed to <i>Synopsys PrimeTime Support.</i> Minor updates for the Quartus II software version 6.0.0.	_			
October 2005 v5.1.0	Updated for the Quartus II software version 5.1.	_			
August 2005 v5.0.1	Minor text updates.	_			
May 2005 v5.0.0	New functionality for Quartus II software 5.0.0	_			
December 2004 v2.0	 Chapter 6 Synopsys PrimeTime moved to section III Volume 1. New functionality for Quartus II software 4.2. 	_			

Section III. Power Estimation and Analysis

As FPGA designs grow larger and processes continue to shrink, power becomes an ever-increasing concern. When designing a printed circuit board, the power consumed by a device needs to be accurately estimated to develop an appropriate power budget, and to design the power supplies, voltage regulators, heat sink, and cooling system.

The Quartus[®] II software allows you to estimate the power consumed by your current design during timing simulation. The power consumption of your design can be calculated using the Microsoft Excel-based power calculator, or the Simulation-Based Power Estimation features in the Quartus II software. This section explains how to use both.

This section includes the following chapter:

- Chapter 10, PowerPlay Power Analysis
- For information about the revision history for chapters in this section, refer to each individual chapter for that chapter's revision history.

10. PowerPlay Power Analysis

QII53013-7.2.0

Introduction

As designs grow larger and process technology continues to shrink, power becomes an increasingly important design consideration. When designing a printed circuit board (PCB), the power consumed by a device needs to be accurately estimated to develop an appropriate power budget and to design the power supplies, voltage regulators, heat sink, and cooling system. The PowerPlay power analysis tools, made available by Altera[®], provide improved power consumption accuracy and the ability to estimate power consumption from early design concept through design implementation, as shown in Figure 10–1.

Figure 10–1. PowerPlay Power Analysis

Depending where you are in your design cycle and the accuracy of the estimation required, you can either use the PowerPlay Early Power Estimator spreadsheet or the PowerPlay Power Analyzer Tool in the Quartus[®] II software. You can use the PowerPlay Early Power Estimator spreadsheet during the board design and layout phase to obtain a power estimate and then design for proper power management. The PowerPlay Power Analyzer Tool is used to obtain an accurate estimation of power after the design is complete, ensuring that thermal and supply budgets are not violated.

You can estimate power consumption for Arria[™] GX, Stratix[®] series devices, Cyclone[®] series devices, HardCopy[®] II, and MAX[®] II devices with the Microsoft Excel-based PowerPlay Early Power Estimator spreadsheet or the PowerPlay Power Analyzer Tool.

 For more information about acquiring the PowerPlay Power Estimator spreadsheet for Arria GX, Stratix series devices, Cyclone series, HardCopy II, and MAX II devices and its use, refer to www.altera.com/support/devices/estimator/pow-powerplay.html.

This chapter discusses the following topics:

- "Quartus II Early Power Estimator File"
- "Types of Power Analyses" on page 10–6
- "Factors Affecting Power Consumption" on page 10–6
- "Using the PowerPlay Power Analyzer" on page 10–23

Quartus II Early Power Estimator File

When entering data into the Early Power Estimator spreadsheet, you must enter the device resources, operating frequency, toggle rates, and other parameters. This requires familiarity with the design. If you do not have an existing design, you must estimate the number of device resources used in your design and enter it manually.

If you already have an existing design or a partially completed design, the power estimator file that is generated by the Quartus II software can aid in completing the PowerPlay Early Power Estimator spreadsheet.

To generate the power estimation file, you must first compile your design in the Quartus II software. After compilation is complete, on the Project menu, click **Generate PowerPlay Early Power Estimator File** (Figure 10–2). This command instructs the Quartus II software to write out a power estimator Comma-Separated Value (.csv) file (or a text [.txt] file for older device families).

Add Current File to Project Add/Remove Elles in Project Cgpy Project Archive Project Restore Archived Project Import Database Export Database Import Design Partition Export Design Partition Export Design Partition Generate Bottom-Up Design Partition Scripts Generate Bottom-Up Design Partition Scripts Generate Tol File for Project Generate PowerPlay Early Power Estimator File HardCopy Utilities HardCopy Utilities HardCopy II Utilities	Add Current File to Project Add/Remove Ejles in Project		
Add/Remove Elles in Project	Add/Remove Eiles in Project Revisions Cgpy Project Archive Project Restore Archived Project Import Database Export Database Import Database Export Database Generate Bottom-Up Design Partition Scripts Generate PowerPlay Early Power Estimator File HardCopy Utilities HardCopy Utilities Locate		Add Current File to Project
Revisions Cgpy Project Archive <u>Project</u> Archive <u>Project</u> Restore Archived Project Import Database Export Database Import Design Partition Generate <u>Bottom-Up</u> Design Partition Scripts Generate <u>Bottom-Up</u> Design Partition Scripts Generate Tot File for Project Generate PowerPlay Early Power Estimator File Norganize Quartus II Settings File HardCopy Utilities HardCopy II Utilities	Revisions Cgpy Project Cgpy Project Archive Project Restore Archived Project Import Database Export Database Export Database Import Design Partition Export Design Partition Generate Bottom-Up Design Partition Scripts Generate Tol File for Project Generate PowerPlay Early Power Estimator File HardCopy Utilities HardCopy Utilities Locate		Add/Remove <u>Fi</u> les in Project
Copy Project Archive Project Restore Archived Project Import Database Export Database Export Design Partition Export Design Partition Generate Bottom-Up Design Partition Scripts Generate Tcl File for Project Generate PowerPlay Early Power Estimator File Organize Quartus II Settings File HardCopy Utilities HardCopy II Utilities Locate	Cgoy Project Archive Project Restore Archived Project Import Database Export Database Export Database Import Design Partition Export Design Partition Generate Bottom-Up Design Partition Scripts Generate Tol File for Project Generate PowerPlay Early Power Estimator File Organize Quartus II Settings File HardCopy Utilities HardCopy Utilities Locate	Ð	<u>R</u> evisions
Archive <u>Project</u> Restore Archived Project <u>Import Database</u> Export Database Import Design Partition Export <u>Design Partition</u> Generate <u>Bottom-Up Design Partition Scripts</u> <u>Generate Tot File for Project</u> <u>Generate PowerPlay Early Power Estimator File</u> Organize Quartus II Settings File Hard <u>Copy Utilities</u> HardCopy II <u>Utilities</u> Locate	Archive Project Restore Archived Project Import Database Export Database Export Design Partition Export Design Partition Generate Bottom-Up Design Partition Scripts Generate Tcl File for Project Generate PowerPlay Early Power Estimator File Organize Quartus II Settings File HardCopy Utilities HardCopy II Utilities Locate		Copy Project
Restore Archived Project Import Database Export Database Import Design Partition Export Design Partition Generate Bottom-Up Design Partition Scripts Generate Tcl File for Project Generate PowerPlay Early Power Estimator File Organize Quartus II Settings File HardCopy Utilities HardCopy Utilities Locate	Restore Archived Project Import Database Export Database Export Database Import Design Partition Export Design Partition Generate Bottom-Up Design Partition Scripts Generate Tol File for Project Generate PowerPlay Early Power Estimator File Organize Quartus II Settings File HardCopy Utilities HardCopy Utilities Locate		Archive Project
Import Database Export Database Import Design Partition Export Design Partition Generate Bottom-Up Design Partition Scripts Generate Tcl File for Project Generate Tcl File for Project Generate PowerPlay Early Power Estimator File Organize Quartus II Settings File HardCopy Utilities HardCopy Utilities HardCopy II Utilities	Import Database, Export Database, Import Design Partition, Export Design Partition, Generate Bottom-Up Design Partition Scripts Generate Tod File for Project, Generate PowerPlay Early Power Estimator File Organize Quartus II Settings File HardCopy Utilities HardCopy Utilities Locate		Restore Archived Project
Export Database Import Design Partition Export Design Partition Generate Bottom-Up Design Partition Scripts Generate Tcl File for Project Generate PowerPlay Early Power Estimator File Organize Quartus II Settings File HardCopy Utilities HardCopy II Utilities Locate	Export Database Import Design Partition Export Design Partition Generate Bottom-Up Design Partition Scripts Generate Tcl File for Project Generate PowerPlay Early Power Estimator File Organize Quartus II Settings File HardCopy Utilities HardCopy Utilities Locate		Import Database
Import Design Partition Export Design Partition Generate Bottom-Up Design Partition Scripts Generate Td File for Project Generate PowerPlay Early Power Estimator File Organize Quartus II Settings File HardCopy Utilities HardCopy Utilities	Import Design Partition Export Design Partition Generate Bottom-Up Design Partition Scripts Generate Tcl File for Project Generate PowerPlay Early Power Estimator File Organize Quartus II Settings File HardCopy Utilities HardCopy Utilities Locate		Export Database
Export Design Partition Generate Bottom-Up Design Partition Scripts Generate Tcl File for Project Generate PowerPlay Early Power Estimator File Organize Quartus II Settings File HardCopy Utilities HardCopy II Utilities Locate	Export Design Partition Generate Bottom-Up Design Partition Scripts Generate Td File for Project Generate PowerPlay Early Power Estimator File Organize Quartus II Settings File HardCopy Utilities HardCopy II Utilities Locate		Import Design Partition
Generate Bottom-Up Design Partition Scripts Generate Tcl File for Project Generate PowerPlay Early Power Estimator File Organize Quartus II Settings File HardCopy Utilities HardCopy II Utilities Locate	Generate Bottom-Up Design Partition Scripts Generate Td File for Project Generate PowerPlay Early Power Estimator File Organize Quartus II Settings File HardCopy Utilities HardCopy II Utilities Locate		Export Design Partition
Generate Tcl File for Project Generate PowerPlay Early Power Estimator Fil Organize Quartus II Settings File HardCopy Utilities HardCopy II Utilities	Generate Tcl File for Project Generate PowerPlay Early Power Estimator File Organize Quartus II Settings File HardCopy Utilities HardCopy II Utilities Locate		Generate Bottom-Up Design Partition Scripts
Generate PowerPlay Early Power Estimator Fil Organize Quartus II Settings File HardCopy Utilities HardCopy II Utilities	Generate PowerPlay Early Power Estimator File Organize Quartus II Settings File HardCopy Utilities HardCopy II Utilities Locate		Generate Tcl File for Project
Organize Quartus II Settings File HardCopy Utilities HardCopy II Utilities	Organize Quartus II Settings File		Generate PowerPlay Early Power Estimator File
Hard <u>C</u> opy Utilities HardCopy II <u>U</u> tilities	HardCopy Utilities HardCopy II Utilities Locate		Organize Quartus II Settings File
HardCopy II Utilities	HardCopy II <u>U</u> tilities		Hard <u>C</u> opy Utilities
Locate	Locate		HardCopy II <u>U</u> tilities
Focare	2		Locate

Figure 10–2. Generate PowerPlay Early Power Estimator File Option

After the Quartus II software successfully generates the power estimator file, a message appears (Figure 10–3).

Figure 10–3. Generate PowerPlay Early Power Estimator File Message

The power estimator file is named

<*name of Quartus II project>* **_early_pwr.csv**. Figure 10–4 is an example of the contents of a power estimation file generated by the Quartus II software version 7.2 using a Stratix II device.

EARLY_POWER_ESTIMATOR_FILE_FORMAT_VERSION	6								
QUARTUS II VERSION	7.2 Internal Build 10	5 07/05/200	7 SJ Full V	/ersion					
PROJECT	Multaccum								
REVISION	Multaccum								
PROJECT FILE	C:/Pipeline/Multiplie	r Accum/M	ultaccum.q	pf					
TIME	Mon Jul 09 14:28:12	2007							
TIME_SECONDS	1184016492								
FAMILY	Stratix II								
DEVICE	EP2S30								
PACKAGE	FBGA								
PART	EP2S30F672C3								
POWER_USE_DEVICE_CHARACTERISTICS	TYPICAL								
POWER_AUTO_COMPUTE_TJ	ON								
POWER_TJ_VALUE	25								
POWER_USE_CUSTOM_COOLING_SOLUTION	OFF								
POWER_PRESET_COOLING_SOLUTION	23 mm heat sink wi	th 200 LFp№	1 airflow						
POWER_BOARD_THERMAL_MODEL	None (Conservative)								
POWER_USE_TA_VALUE	25								
POWER_BOARD_TEMPERATURE	-1								
POWER_OJC_VALUE	0.21								
POWER_OCS_VALUE	0.1								
POWER_OSA_VALUE	2.8								
POWER_OJB_VALUE	-1								
VCCIO	1	3.3	2	3.3	3	3.3	4	3.3	
RAIL_VOLTAGES	VCCINT	1.2	VCCPD	3.3					
BLOCK	1/0	count	34	avg_toggle	21588235	avg_toggle	0.423299	avg_fanout	
BLOCK	1/0	count	5	avg_toggle	99600000	avg_toggle	1.952941	avg_fanout	
BLOCK	1/0	count	1	avg_toggle	21000000	avg_toggle	0.411765	avg_fanout	
BLOCK	1/0	count	51	avg_toggle	23117647	avg_toggle	0.453287	avg_fanout	
BLOCK	1/0	count	21	avg_toggle	98000000	avg_toggle	1.921569	avg_fanout	
BLOCK	DSP block output	count	16	avg_toggle	23893557	avg_toggle	0.468501	avg_fanout	
BLOCK	Combinational cell	count	6892	avg_toggle	66444042	avg_toggle	1.302824	avg_fanout	1.0293
BLOCK	Register cell	count	2018	avg_toggle	24156448	avg_toggle	0.473656	avg_fanout	6.6204
BLOCK	Clock control block	count	1	avg_toggle	1.02E+08	avg_toggle	2	avg_fanout	20

Figure 10–4. Example of Power Estimation File

The power estimator file is named <*name of Quartus II project>*_**early_pwr.txt** for older device families.

The PowerPlay Early Power Estimator spreadsheet includes the Import Data macro that parses the information in the power estimation file and transfers it into the spreadsheet. If you do not want to use the macro, you can transfer the data into the Early Power Estimator spreadsheet manually.

If the existing Quartus II project represents only a portion of your full design, you should enter the additional resources used in the final design manually. Therefore, you can edit the spreadsheet and add additional device resources after importing the power estimation file information.

PowerPlay Early Power Estimator File Generator Compilation Report

After successfully generating the power estimation file, a PowerPlay Early Power Estimator File Generator report is created under the Compilation Report section. This report is divided into the different sections, such as Summary, Settings, Generated Files, Confidence Metric Details, and Signal Activities.

For more information about the PowerPlay Early Power Estimator File Generator report, refer to "PowerPlay Power Analyzer Compilation Report" on page 10–39.

Table 10–1 lists the main differences between the PowerPlay Early Power Estimator and the PowerPlay Power Analyzer.

Characteristic	PowerPlay Early Power Estimator	PowerPlay Power Analyzer				
Phase in the design cycle	Any time	After fitting				
Tool requirements	Spreadsheet program/Quartus II software	Quartus II software				
Accuracy	Medium	Medium to very high				
Data inputs	 Resource usage estimates Clock requirements Environmental conditions Toggle Rate 	 Design after fitting Clock requirements Register transfer level (RTL) simulation results (optional) Post-fitting simulation results (optional) Signal activities per node or entity (optional) Signal activity defaults Environmental conditions 				
Data outputs (1)	 Total thermal power dissipation Thermal static power Thermal dynamic power Off-chip power dissipation Voltage supply currents (2) 	 Total thermal power Thermal static power Thermal dynamic power Thermal I/O power Thermal power by design hierarchy Thermal power by block type Thermal power dissipation by clock domain Off-chip (non-thermal) power dissipation Voltage supply currents (2) 				

Table 10–1. Comparison of PowerPlay Early Power Estimator and PowerPlay Power Analyzer

Notes to Table 10–1:

(1) Early Power Estimator output varies by device family as some features may not be available.

⁽²⁾ Available only for Arria GX, Stratix III, Stratix II, Stratix II GX, Cyclone III, Cyclone II, HardCopy II, and MAX II device families.

	The results of the Power Analyzer are only an estimation of power, not a specification. The purpose of the estimation is to help establish a guide for the design's power budget. Altera recommends that the actual power be measured on the board. You must measure the device's total dynamic current during device operation, because the estimate is very design dependent and depends on many variable factors, including input vector quantity, quality, and exact loading conditions of a PCB design. Static power consumption must not be based on empirical observation. The values reported by the Power Analyzer or datasheet must be used because the devices tested may not exhibit worst-case behavior.
Types of Power Analyses	Understanding the uses of power analysis and the factors affecting power consumption help you use the Power Analyzer effectively. Power analysis meets two significant planning requirements:
	 Thermal planning: The designer must ensure that the cooling solution is sufficient to dissipate the heat generated by the device. In particular, the computed junction temperature must fall within normal device specifications. Power supply planning: Power supplies must provide adequate current to support device operation.
	The two types of analyses are closely related because much of the power supplied to the device is dissipated as heat from the device. However, in some situations, the two types of analyses are not identical. For example, when you use terminated I/O standards, some of the power drawn from the FPGA device power supply is dissipated in termination resistors, rather than in the FPGA.
	Power analysis also addresses the activity of the design over time as a factor that impacts the power consumption of the device. Static power is defined as the power consumed regardless of design activity. Dynamic power is the additional power consumed due to signal activity or toggling.
Factors Affecting Power Consumntion	This section describes the factors affecting power consumption. Understanding these factors lets you use the Power Analyzer and interpret its results effectively.
Concumption	Device Selection
	Different device families have different power characteristics. Many parameters affect the device family power consumption, including choice of process technology, supply voltage, electrical design, and device

architecture. For example, the Cyclone II device family architecture was designed to consume less static power than the high-performance, full-featured, Stratix II device family.

Power consumption also varies within a single device family. A larger device typically consumes more static power than a smaller device in the same family, due to its larger transistor count. Dynamic power can also increase with device size in devices that employ global routing architectures, such as the MAX device family. Stratix, Cyclone, and MAX II devices do not exhibit significantly increased dynamic power as device size increases.

The choice of device package also affects the device's ability to dissipate heat. This can impact your cooling solution choice required to meet junction temperature constraints.

Finally, process variation can affect power consumption. Process variation primarily impacts static power, since sub-threshold leakage current varies exponentially with changes in transistor threshold voltage. As a result, it is critical to consult device specifications for static power and not rely on empirical observation. Process variation weakly affects dynamic power.

Environmental Conditions

Operating temperature primarily affects device static power consumption. Higher junction temperatures result in higher static power consumption. The device thermal power and cooling solution that you use must result in the device junction temperature remaining within the maximum operating range for that device.

The main environmental parameters affecting junction temperature are the cooling solution and ambient temperature.

Air Flow

Air flow is a measure of how quickly heated air is removed from the vicinity of the device and replaced by air at ambient temperature. This can either be specified as "still air" when no fan is used, or as the linear feet per minute rating of the fan used in the system. Higher air flow decreases thermal resistance.

Heat Sink and Thermal Compound

A heat sink allows more efficient heat transfer from the device to the surrounding area because of its large surface area exposed to the air. The thermal compound that interfaces the heat sink to the device also influences the rate of heat dissipation. The case-to-ambient thermal resistance (θ_{CA}) parameter describes the cooling capacity of the heat sink and thermal compound employed at a given airflow. Larger heat sinks and more effective thermal compounds reduce θ_{CA} .

Ambient Temperature

The junction temperature of a device is equal to:

 $T_{Junction} = T_{Ambient} + P_{Thermal} \cdot \theta_{JA}$

where θ_{JA} is the total thermal resistance from the device transistors to the environment, having units of degrees Celsius per Watt. The value θ_{JA} is equal to the sum of the junction-to-case (package) thermal resistance (θ_{JC}) and the case-to-ambient thermal resistance (θ_{CA}) of your cooling solution.

Board Thermal Model

The thermal resistance of the path through the board is referred to as the junction-to-board thermal resistance (θ_{JB}) (the units are in degrees Celsius per Watt). This is used in conjunction with the board temperature, as well as the top-of-chip θ_{JA} and ambient temperatures, to compute junction temperature.

Design Resources

The design resource used greatly affects power consumption.

Number, Type, and Loading of I/O Pins

Output pins drive off-chip components, resulting in high-load capacitance that leads to a high-dynamic power per transition. Terminated I/O standards require external resistors that generally draw constant (static) power from the output pin.

Number and Type of Logic Elements, Multiplier Elements, and RAM Blocks

A design with more logic elements (LEs), multiplier elements, and memory blocks tends to consume more power than a design with fewer such circuit elements. Also, the operating mode of each circuit element affects its power consumption. For example, a digital signal processing (DSP) block performing 18×18 multiplications and a DSP block performing multiply-accumulate operations consume different amounts of dynamic power due to different amounts of internal capacitance being charged on each transition. Static power is also affected, to a small degree, by the operating mode of a circuit element.

Number and Type of Global Signals

Global signal networks span large portions of the device and have high capacitance, resulting in significant dynamic power consumption. The type of global signal is important as well. For example, Stratix II devices support several kinds of global clock networks that span either the entire device or a specific portion of the device (a regional clock network covers a quarter of the device). Clock networks that span smaller regions have lower capacitance and therefore, tend to consume less power. In addition, the location of the logic array blocks (LABs) that are driven by the clock network can have an impact, because the Quartus II software automatically disables unused branches of a clock.

Signal Activities

The final important factor in estimating power consumption is the behavior of each signal in the design. The two vital statistics are the toggle rate and the static probability.

The toggle rate of a signal is the average number of times that the signal changes value per unit time. The units for toggle rate are transitions per second, and a transition is a change from 1 to 0 or 0 to 1.

The static probability of a signal is the fraction of time that the signal is logic 1 during the period of device operation that is being analyzed. Static probability ranges from 0 (always at ground) to 1 (always at logic high).

Dynamic power increases linearly with the toggle rate as the capacitive load is charged more frequently for logic and routing. The Quartus II models assume full rail-to-rail switching. For high toggle rates, especially on circuit output I/O pins, the circuit can transition before fully charging downstream capacitance. The result is a slightly conservative prediction of power by the Quartus II PowerPlay Power Analyzer.

The static power consumed by both routing and logic can sometimes be affected by the static probabilities of their input signals. This effect is due to state-dependent leakage, and has a larger affect on smaller process geometries. The Quartus II software models this effect on devices at 90 nm (or smaller) if it is deemed important to the power estimate. The static power also varies with the static probability of a logic 1 or 0 on the I/O pin when output I/O standards drive termination resistors.

P

To get accurate results from power analysis, the signal activities that are used for analysis must be representative of the actual operating behavior of the design. Inaccurate signal toggle rate data is the largest source of power estimation error.

PowerPlay Power Analyzer Flow

The PowerPlay Power Analyzer supports accurate and representative power estimation by letting you specify all the important design factors affecting power consumption. Figure 10–5 shows the high-level Power Analyzer flow.

Note to Figure 10-5:

 Operating condition specifications are available only for the Arria GX devices, Stratix III, Stratix II, Stratix II GX, Cyclone III, Cyclone II, HardCopy II, and MAX II device families.

The PowerPlay Power Analyzer requires that your design is synthesized and fit to the target device. Therefore, the Power Analyzer knows both the target device and how the design is placed and routed on the device. The electrical standard used by each I/O cell and the capacitive load on each I/O standard must be specified in the design to obtain accurate I/O power estimates.

Operating Conditions

For the Arria GX, Stratix III, Stratix II, Stratix II GX, Cyclone III, Cyclone II, HardCopy II, and MAX II device families, you can specify the operating conditions for power analysis in the Quartus II software.

The following settings are available in the Settings dialog box:

- Device power characteristics—Should the Power Analyzer assume typical silicon or maximum power silicon? The typical setting is useful for comparing to empirical data measured on an average unit. Worst-case data provides a boundary to the worst-case device that you could receive.
- Selectable Core Voltage—You can select a suitable core supply voltage for your design based on performance and power requirements using the Core Supply Voltage option, available for the latest devices with variable voltage support. The power consumption of a device is heavily dependent on the voltage, so it is very important to choose the right core supply voltage for your design. The core supply voltage provides power to device logic resources such as logic array blocks (LABs), MLABs, DSP functions, memory, and interconnects.
- Environmental conditions and junction temperature—By default, the Power Analyzer automatically computes the junction temperature based on the specified ambient temperature and the cooling solution that you selected from a list. For a more accurate analysis, enter the thermal resistance of your cooling solution. For some cooling solutions, such as a heat sink with no forced airflow, the thermal resistance varies with the amount of thermal power that is dissipated. Air convection increases as the difference between the device temperature and the ambient temperature increases, reducing thermal resistance. When entering a thermal resistance in such cases, it is important to use the thermal resistance that occurs when the heat flow (Q) is equal to the thermal power generated by the device. You can also specify a junction temperature in the PowerPlay Power Analyzer. However, Altera does not recommend this because the PowerPlay Power Analyzer provides more accurate results by computing the junction temperature.
- Board Thermal Modeling—If you want the Power Analyzer thermal model to take the θ_{JB} into consideration, set the board thermal model to either Typical or Custom. This feature produces more accurate thermal power estimation.

A **Typical** board thermal model automatically sets θ_{JB} to a value based on the package and device selected. You only need to specify a board temperature. If you choose a **Custom** board thermal model,

you must specify a value for θ_{JB} and a board temperature. If you do not want the PowerPlay Power Analyzer thermal model to take the θ_{JB} resistance into consideration, set the **Board thermal model** option to **None** (conservative). In this case, the path through the board and power dissipation is not considered, and a more conservative thermal power estimate is obtained.

The **Board thermal model** option is only available if you select the **Auto compute junction temperature** option with the pre-set cooling solution set to some heat sink solution option or custom solution. This option is disabled when a cooling solution with no heat sink is selected, as thermal conduction through the board is included in the θ_{IA} value used to compute a junction temperature in that case.

Signal Activities Data Sources

The Power Analyzer provides a flexible framework for specifying signal activities. This reflects the importance of using representative signal activity data during power analysis. You can use the following sources to provide information about signal activity:

- Simulation results
- User-entered node, entity, and clock assignments
- User-entered default toggle rate assignment
- Vectorless estimation

The PowerPlay Power Analyzer lets you mix and match the signal activity data sources on a signal-by-signal basis. Figure 10–6 shows the priority scheme. The data sources are described in the following sections.

Figure 10–6. Signal Activity Data Source Priority Scheme

Note to Figure 10–6:

(1) Vectorless estimation is available only for the Arria GX, Stratix III, Stratix II, Stratix II GX, Cyclone II, HardCopy II, and MAX II device families.

Simulation Results

The Power Analyzer directly reads the waveforms generated by a design simulation. The static probability and toggle rate for each signal is calculated from the simulation waveform. Power analysis is most accurate when simulations are generated using representative input stimuli.

The Power Analyzer reads the results generated by the following simulators:

- Quartus II Simulator
- ModelSim[®] VHDL, Active HDL, ModelSim Verilog HDL, ModelSim-Altera VHDL, ModelSim-Altera Verilog
- NC-Verilog, NC-VHDL
- VCS

Signal activity and static probability information are stored in a Signal Activity File (**.saf**) or may be derived from a Value Change Dump File (**.vcd**), described in "Signal Activities" on page 10–9. The Quartus II simulator generates a Signal Activity File (SAF) or a Value Change Dump (VCD) file which is then read by the Power Analyzer.

For third-party simulators, use the Quartus II EDA Tool Settings for Simulation to specify a **Generate Value Change Dump** file script. These scripts instruct the third-party simulators to generate a VCD file that encodes the simulated waveforms. The Quartus II Power Analyzer reads this file directly to derive toggle rate and static probability data for each signal.

Third-party EDA simulators, other than those listed above, can generate a VCD file that can then be used with the Power Analyzer. For those simulators, it is necessary to manually create a simulation script to generate the appropriate Value Change Dump File.

For more information about power optimization, refer to the *Power Optimization* chapter in volume 2 of the *Quartus II Handbook*.

Using Simulation Files in Modular Design Flows

A common design practice is to create modular or hierarchical designs in which you develop each design entity separately and then instantiate it in a higher-level entity, forming a complete design. Simulation is performed on a complete design or on each modular design for verification. The Quartus II PowerPlay Power Analyzer Tool supports modular design flows when reading the signal activities generated from these simulation files, as shown in Figure 10–7.

When specifying a simulation file, an associated design entity name may be given, such that the signal activities derived from the simulation file (VCD file or SAF) can be imported into the Power Analyzer for that particular design entity. The PowerPlay Power Analyzer Tool also supports the specification of multiple SAFs for power analysis with each having an associated design entity name to allow the integration of partial design simulations into a complete design power analysis. When specifying multiple SAFs for your design, it is possible that more than one simulation file will contain signal activity information for the same signal. In the case where multiple SAFs are applied to the same design entity, the signal activity used in the power analysis is the equal-weight arithmetic average of each SAF. Also in the case where multiple simulation files are applied to design entities at different levels in the design hierarchy, the signal activity used in the power analysis is derived from the simulation file that is applied to the most specific design entity.

Figure 10–8 shows an example of a hierarchical design. The design Top consists of three 8b/10b Decoders, followed by a multiplexer whose output is then encoded again before being output from the design. There is also an error-handling module that handles any 8b/10b decoding errors. The top-level module, called Top, automatically contains the design's top-level entity and any logic not defined as part of another module. The design file for the top-level module may be just a wrapper

for the hierarchical entities below it, or it may contain its own logic. The following usage scenarios show common ways that you may simulate your design and import SAFs into the PowerPlay Power Analyzer Tool.

Figure 10–8. Example Hierarchical Design

Complete Design Simulation

You can simulate the entire design Top, generating a VCD file if you use a third-party simulator, or generating a SAF or VCD if you use the Quartus II Simulator. The VCD file or SAF can then be imported (specifying Entity Top) into the power analyzer. The resulting power analysis uses all the signal activities information from the generated VCD file or SAF, including those that apply to submodules, such as decode [1-3], err1, mux1, and encode1.

Modular Design Simulation

You can simulate submodules of the design Top independently, and then import all of the resulting SAFs into the Power Analyzer. For example, you may simulate the <code>8b10b_dec</code> independent of the entire design, as well as multiplexer, <code>8b10b_rxerr</code>, and <code>8b10b_enc</code>. You can then import the VCD file or SAF generated from each simulation by specifying the appropriate instance name. For example, if the files produced by the simulations are **8b10b_dec.vcd**, **8b10b_enc.vcd**, **8b10b_rxerr.vcd**, and **mux.saf**, the import specifications in Table 10–2 are used.

Table 10–2. Import Specifications				
File Name	Entity			
8b10b_dec.vcd	Top 8b10b_dec:decode1			
8b10b_dec.vcd	Top 8b10b_dec:decode2			
8b10b_dec.vcd	Top 8b10b_dec:decode3			
8b10b_rxerr.vcd	Top 8b10b_rxerr:err1			
8b10b_enc.vcd	Top 8b10b_enc:encode1			
mux.saf	Top mux:mux1			

The resulting power analysis applies the simulation vectors found in each file to the assigned entity. Simulation provides signal activities for the pins and for the outputs of functional blocks. If the inputs to an entity instance are input pins for the entire design, the simulation file associated with that instance does not provide signal activities for the inputs of that instance. For example, an input to an entity such as mux1 has its signal activity specified at the output of one of the decode entities.

Multiple Simulations on the Same Entity

You can perform multiple simulations of an entire design or specific modules of a design. For example, in the process of verifying the Top design, you may have three different simulation testbenches: one for normal operation, and two for corner cases. Each of these simulations produces a separate VCD file or SAF. In this case, apply the different VCD file or SAF names to the same top-level entity, shown in Table 10–3.

Table 10–3. Multiple Simulation File Names and Entities				
File Name Entity				
normal.saf	Тор			
corner1.vcd	Тор			
corner2.vcd	Тор			

The resulting power analysis uses an arithmetic average of the signal activities calculated from each simulation file to obtain the final signal activities used. Thus, if a signal err_out has a toggle rate of 0 toggles per

second in **normal.saf**, 50 toggles per second in **corner1.vcd**, and 70 toggles per second in **corner2.vcd**, the final toggle rate that is used in the power analysis is 40 toggles per second.

Overlapping Simulations

You can perform a simulation on the entire design Top and more exhaustive simulations on a submodule, such as 8b10b_rxerr. Table 10–4 shows the import specification for overlapping simulations.

Table 10–4. Overlapping Simulation Import Specifications				
File Name Entity				
full_design.vcd	Тор			
error_cases.vcd	Top 8b10b_rxerr:err1			

In this case, signal activities from **error_cases.vcd** are used for all of the nodes in the generated SAF, and signal activities from **full_design.vcd** are used for only those nodes that do not overlap with nodes in **error_cases.vcd**. In general, the more specific hierarchy (the most bottom-level module) is used to derive signal activities for overlapping nodes.

Partial Simulations

You can perform a simulation where the entire simulation time is not applicable to signal activity calculation. For example, suppose you run a simulation for 10,000 clock cycles and you reset the chip for the first 2,000 clock cycles. If the signal activity calculation is performed over all 10,000 cycles, the toggle rates are typically only 80% of their steady state value (since the chip is in reset for the first 20% of the simulation). In this case, you should specify the useful parts of the VCD file for power analysis. The Limit VCD Period option enables you to specify a start and end time to be used when performing signal activity calculations.

Node Name Matching Considerations

Node name mismatches happen when you have SAFs or VCD files applied to entities other than the top-level entity. In a modular design flow, the gate-level simulation files created in different Quartus II software projects may not match their node names properly with the current Quartus II project.
For example, if you have a file named **8b10b_enc.vcd**, which was generated in a separate project called **8b10b_enc** and is simulating the 8b10b encoder, and you import that VCD file into another project called **Top**, you may encounter name mismatches when applying the VCD file to the 8b10b_enc module in the **Top** project. This is because all of the combinational nodes in the **8b10b_enc.vcd** file may be named differently in the **Top** project.

You can avoid name mismatching by using only register transfer level (RTL) simulation data, where register names usually do not change, or by using an incremental compile flow that preserves node names in conjunction with a gate-level simulation. To ensure the best accuracy, Altera recommends using an incremental compile flow to preserve your design's node names.

For more information about the incremental compile flow, refer to the *Quartus II Incremental Compilation for Hierarchical and Team-Based Design* chapter in volume 1 of the *Quartus II Handbook*.

Glitch Filtering

The Power Analyzer defines a glitch as two signal transitions that are so closely spaced in time that the pulse, or glitch, occurs faster than the logic and routing circuitry can respond. The output of a transport delay model simulator (the default mode of the Quartus II simulator) generally contains glitches for some signals. The device's logic and routing structures form a low-pass filter that filters out glitches that are tens to hundreds of picoseconds long, depending on the device family.

Some third-party simulators use different simulator models than the transport delay model as default. Different models cause differences in signal activity estimation and power estimation. The inertial delay model, which is the ModelSim default model, filters out many more glitches than the transport delay model; therefore, it usually yields a lower power estimate. Altera recommends using the transport simulation model when using the Quartus II glitch filtering support with third-party simulators. If the inertial simulation model is used, simulation glitch filtering has little effect.

For more information about how to set the simulation model type for your specific simulator, refer to the Quartus II Help.

Glitch filtering in a simulator can also filter a glitch on one LE (or other circuit element) output from propagating to downstream circuit elements so that the glitch will not affect simulated results. This prevents a glitch on one signal from producing non-physical glitches on all downstream logic, which would result in a signal toggle rate that is too high and a

power estimate that is too high. Circuit elements in which every input transition produces an output transition, including multipliers and logic cells configured to implement XOR functions, are especially prone to glitches. Therefore, circuits with many such functions can have power estimates that are too high when glitch filtering is not used.

Altera recommends that the glitch filtering feature be used to obtain the most accurate power estimates. For VCD files, the Power Analyzer flows support two types of glitch filtering, both of which are recommended for power estimation. In the first, glitches are filtered during simulation. To enable this level of glitch filtering in the Quartus II software for supported third-party simulators, perform the following steps:

- 1. On the Assignments menu, click **EDA Tool Settings**. The **Settings** dialog box appears.
- 2. In the **Category** list, select **Simulation**. The **Simulation** page appears.
- 3. Select the **Tool Name** to use for the simulation.
- 4. Turn on the **Enable glitch filtering** option.

To enable this level of glitch filtering in the Quartus II software using the Quartus II Simulator, refer to "Generating a SAF or VCD File Using the Quartus II Simulator" on page 10–24.

The second level of glitch filtering occurs while the Power Analyzer is reading the VCD file generated by the third-party simulator or Quartus II Simulator. Enable this level of glitch filtering by performing the following steps:

- 1. On the Assignments menu, click **Settings**. The **Settings** dialog box appears.
- 2. In the **Category** list, select **PowerPlay Power Analyzer Settings**. The **PowerPlay Power Analyzer Settings** page appears.
- 3. Under Input File(s), turn on the Perform glitch filtering on VCD files option.

Altera recommends that you use both forms of glitch filtering.

The VCD file reader performs complementary filtering to the filtering performed during simulation and is often not as effective. While the VCD file reader can remove glitches on logic blocks, it has no way of determining how downstream logic and routing are affected by a given

glitch, and may not eliminate the impact of the glitch completely. Filtering the glitches during simulation avoids switching downstream routing and logic automatically.

When running simulation for design verification (rather than to produce input to the Quartus PowerPlay Power Analyzer), Altera recommends leaving glitch filtering turned off. This produces the most rigorous and conservative simulation from a functionality viewpoint. When performing simulation to produce input for the Quartus II PowerPlay Power Analyzer, Altera recommends turning on glitch filtering to produce the most accurate power estimates.

Node and Entity Assignments

You can assign specific toggle rates and static probabilities to individual nodes and entities in the design. These assignments have the highest priority, overriding data from all other signal activity sources.

Use the Assignment Editor or tool command language (Tcl) commands to make the **Power Toggle Rate** and **Power Static Probability** assignments. You can specify the power toggle rate as an absolute toggle rate in transitions using the **Power Toggle Rate** assignment or you can use the **Power Toggle Rate Percentage** assignment to specify a toggle rate relative to the clock domain of the assigned node for more specific assignment made in terms of hierarchy level.

If the **Power Toggle Rate Percentage** assignment is used, and the given node does not have a clock domain, a warning is issued and the assignment is ignored.

For more information about how to use the Assignment Editor in the Quartus II software, refer to the *Assignment Editor* chapter in volume 2 of the *Quartus II Handbook*.

This method is appropriate for special-case signals where you have specific knowledge of the signal or entity being analyzed. For example, if you know that a 100-MHz data bus or memory output produces data that is essentially random (uncorrelated in time), you can directly enter a 0.5 static probability and a toggle rate of 50 million transitions per second.

Bidirectional I/O pins are treated specially. The combinational input port and the output pad for a given pin share the same name. However, those ports might not share the same signal activities. For the purpose of reading signal activity assignments, the Power Analyzer creates a distinct name <node_name~output> when the bidirectional signal is configured as an output and <node_name~result> when the signal is configured as an input. For example, if a design has a bidirectional pin named MYPIN, assignments for the combinational input use the name MYPIN~result, and the assignments for the output pad use the name MYPIN~output.

When making the logic assignment in the Assignment Editor, you will not find the MYPIN~result and MYPIN~output node names in the Node Finder. Therefore, to make the logic assignment, you must manually enter the two differentiating node names to make the specific assignment for the input and output port of the bidirectional pin.

Timing Assignments to Clock Nodes

For clock nodes, the Power Analyzer uses the timing requirements to derive the toggle rate when neither simulation data nor user entered signal activity data is available.

 f_{MAX} requirements specify full cycles per second, but each cycle represents a rising transition and a falling transition. For example, a clock f_{MAX} requirement of 100 MHz corresponds to 200 million transitions per second.

Default Toggle Rate Assignment

You can specify a default toggle rate for primary inputs and all other nodes in the design. The default toggle rate is used when no other method has specified the signal activity data.

The toggle rate can be specified in absolute terms (transitions per second) or as a fraction of the clock rate in effect for each particular node. The toggle rate for a given clock is derived from the timing settings for the clock. For example, if a clock is specified with an f_{MAX} constraint of 100 MHz and a default relative toggle rate of 20%, nodes in this clock domain transition in 20% of the clock periods, or 20 million transitions occur per second. In some cases, the Power Analyzer cannot determine the clock domain for a given node because there is either no clock domain for the node or it is ambiguous. In these cases, the Power Analyzer substitutes and reports a toggle rate of zero.

Vectorless Estimation

For some device families, the Power Analyzer automatically derives estimates for signal activity on nodes with no simulation or user-entered signal-activity data. Vectorless estimation is available and enabled by default for Arria GX, Stratix III, Stratix II, Stratix II GX, Cyclone III, Cyclone II, HardCopy II, and MAX II device families. Vectorless estimation statistically estimates the signal activity of a node based on the signal activities of all nodes feeding that node, and on the actual logic function that is implemented by the node. The PowerPlay Power Analyzer **Settings** dialog box lets you disable vectorless estimation. When enabled, vectorless estimation takes priority over default toggle rates. Vectorless estimation does not override clock assignments.

Vectorless estimation cannot derive signal activities for primary inputs. Vectorless estimation is generally accurate for combinational nodes, but not for registered nodes. Therefore, simulation data for at least the registered nodes and I/O nodes is needed for accuracy.

Using the PowerPlay Power Analyzer

For all flows that use the PowerPlay Power Analyzer, synthesize your design first and then fit it to the target device. You must either provide timing assignments for all clocks in the design or use a simulation-based flow to generate activity data. The I/O standard used on each device input or output and the capacitive load on each output must be specified in the design.

Common Analysis Flows

You can use the analysis flows in this section with the PowerPlay Power Analyzer. However, vectorless activity estimation is only available for some device families.

Signal Activities from Full Post-Fit Netlist (Timing) Simulation

This flow provides the highest accuracy because all node activities reflect actual design behavior, provided that supplied input vectors are representative of typical design operation. Results are better if the simulation filtered glitches. The disadvantage with this method is that simulation times can be long. *Signal Activities from RTL (Functional) Simulation, Supplemented by Vectorless Estimation*

In this flow, simulation provides toggle rates and static probabilities for all pins and registers in the design. Vectorless estimation fills in the values for all the combinational nodes between pins and registers. This method yields good results, since vectorless estimation is accurate, given that the proper pin and register data is provided. This flow usually provides a compilation time benefit to the user in the third-party RTL Simulator.

RTL simulation may not provide signal activities for all registers in the post-fitting netlist because some register names may be lost during synthesis. For example, synthesis may automatically transform state machines and counters, thus changing the names of registers in those structures.

Signal Activities from Vectorless Estimation, User-Supplied Input Pin Activities

This option provides a low level of accuracy, because vectorless estimation for registers is not entirely accurate.

Signal Activities from User Defaults Only

This option provides the lowest degree of accuracy.

Generating a SAF or VCD File Using the Quartus II Simulator

While performing a timing or functional simulation using the Quartus II Simulator, you can generate a SAF or VCD file. These files store the toggle rate and static probability for each connected output signal based on the simulation vectors that are entered in the Vector Waveform File (**.vwf**) or the Vector File (**.vec**). You can use the SAF(s) or VCD file(s) as input to the PowerPlay Power Analyzer to estimate power for your design.

For more accurate results, Altera recommends that you use the SAF created from the Quartus II simulator as the input to the PowerPlay Power Analyzer.

To create a SAF or VCD file for your design, perform the following steps:

- 1. On the Assignments menu, click **Settings**. The **Settings** dialog box appears.
- 2. In the **Category** list, select **Simulator Settings**. The **Simulator Settings** page appears (Figure 10–9).

Figure 10–9. Simulator Settings Page

Category:	
General	Simulator Settings
 Files Libraries Device Operating Settings and Conditions Compilation Process Settings EDA Tool Settings Analysis & Synthesis Settings Fitter Settings Timing Analysis Settings Assembler Design Assistant SignalT ap II Logic Analyzer Logic Analyzer Interface Simulation Verification Simulation Verification Simulation Verification Simulation Dutput Files PowerPlay Power Analyzer Settings 	Select simulation options. Simulation mode: Timing Simulation input: Multaccum vwf Simulation period Run simulation until all vector stimuli are used End simulation at INS Glitch filtering options: Always More Settings Description: Specifies whether or not glitch filtering should be performed during Timing Simulation.

- 3. In the **Simulation mode** list, select either **Timing** or **Functional**. Refer to "Common Analysis Flows" on page 10–23 for a description of the difference in accuracy between the two types of simulation modes.
- 4. (Optional) Click **More Settings**. The **More Simulator Settings** dialog box appears.
- 5. (Optional) Turn on glitch filtering. To turn on glitch filtering, in the **Glitch filtering options** list, select **Always**.
- 6. In the **Category** list, click the
 [■] icon to expand **Simulator Settings** and select **Simulation Output Files** (Figure 10–10).

Figure 10–10. Simulator Output Files Page of the Settings Dialog Box

7. Turn on **Generate Signal Activity File** and enter the file name for the SAF file.

•••

For more information about the Quartus II Simulator and how to create a SAF file, refer to the *Quartus II Simulator* chapter in volume 3 of the *Quartus II Handbook*.

- When generating a VCD file from the Quartus Simulator, you must make sure that you add **all nodes** to the input vector wave file. Only the nodes that have been added to your vector file will be output to the Quartus-generated VCD file. This is not the case when generating a SAF. The Quartus II Simulator will create a SAF including all the internal nodes of your design even if the stimuli file contains only the input vectors for your simulation.
- 8. (Optional) Click **Signal Activity File Options**. The **Signal Activity File Options** dialog box appears (Figure 10–11).

Figure 10–11. Signal Activity File Options Dialog Box

Signal Activity Fi	le options	
Select options for the Signal Activity File.		
Limit signal ac	tivity period	
Start time:		ns 🔻
End time:		ns 💌
	04	Canaal
	OK	Cancel

9. (Optional) Turn on the **Limit signal activity period** option to specify the simulation period to use when calculating the signal activities.

Power estimation can be performed for the entire simulation time or for a portion of the simulation time. This allows you to look at the power consumption at different points in your overall simulation without having to rework your testbenches. This feature is also useful when multiple clock cycles are necessary to initialize the state of the design, but you want to measure the signal activity only during the normal operation of the design, not during its initialization phase. You can specify the start time and end time in the **Signal Activity File Options** dialog box by turning on the **Limit signal activity period** option. Simulation information is used during this time interval only to calculate toggle rates and static probabilities. If no time interval is specified, the whole simulation is used to compute signal activity data.

10. After the simulation is complete, a SAF is generated with the specified filename and stored in the main project directory.

For more information about how to perform simulations in the Quartus II software, see the Quartus II Help.

Generating a VCD File Using a Third-Party Simulator

You can use other EDA simulation tools, such as the Model Technology[™] ModelSim[®] software, to perform a simulation and create a VCD file. You can use this file as input to the PowerPlay Power Analyzer to estimate power for your design. To do this, you must tell the Quartus II software to generate a script file that is used as input to the third-party simulator. This script tells the third-party simulator to generate a VCD file that contains all the output signals. For more information about the supported third-party simulators, refer to "Simulation Results" on page 10–13.

To create a VCD file for your design, perform the following steps:

- 1. On the Assignments menu, click **EDA Tool Settings**. The **Settings** dialog box appears.
- 2. In the **Category** list, select **Simulation**. The **Simulation** page appears, as shown in Figure 10–12.

Figure 10–12. Simulation Page of the Settings Dialog Box

Category: General Files Libraries Device Operating Settings and Conditions Temperature Compliation Process Settings Debta Tool Settings Power Settings Debta Tool Settings Power Settings Debta Tool Settings Power Settings Promat Verification Physical Synthesis Board Level Board Level Priming Analysis Settings Priter Settings Board Level Board Level Board Level Board Level Board Level Board Settings Privical Synthesis Settings Board Level Board Level Board Settings Power Play Power Analyzer Settings PowerefPlay Power Analyzer

3. In the **Tool name** list, select the appropriate EDA simulation tool.

- 4. In the **Format for output netlist** list, select **VHDL** or **Verilog**.
- 5. Turn on Generate Value Change Dump (VCD) file script.

This turns on the **Map illegal HDL character** and **Enable glitch filtering** options.

- 6. (Optional) **Map illegal HDL characters** ensures that all signals have legal names and that signal toggle rates are available later in the PowerPlay Power Analyzer.
- 7. (Optional) By turning on **Enable glitch filtering**, glitch filtering logic is the output when you generate an EDA netlist for simulation. This option is always available, regardless of whether or not you want to generate the VCD file scripts. For more information about glitch filtering, refer to "Glitch Filtering" on page 10–19.
- When performing simulation using ModelSim, the **+nospecify** option given to the vsim command disables **specify** path delays and timing checks in ModelSim. By enabling glitch filtering on the **Simulation** page, the simulation models include **specify** path delays. Thus, ModelSim can fail to simulate a design if glitch filtering is enabled and the **+nospecify** option is specified. Altera recommends the removal of the **+nospecify** option from the ModelSim vsim command to ensure accurate simulation for power estimation.
- 8. Click **Script Settings**. The **Script Settings** dialog box appears, shown in Figure 10–13.

Figure 10–13. Script Settings Dialog Box

s	cript Settings 🛛 🔀
	Specify options for the script file.
	 Signals to be included in the VCD file
	0K Cancel

Select which signals should be output to the VCD file. With **All signals** selected, the generated script instructs the third-party simulator to write all connected output signals to the VCD file. With **All signals except combinational lcell outputs** selected, the

••

generated script tells the third-party simulator to write all connected output signals to the VCD file, except logic cell combinational outputs. You may not want to write all output signals to the file because the file can become extremely large (since its size depends on the number of output signals being monitored and the number of transitions that occur).

- 9. Click OK.
- 10. Type a name for your testbench in the **Design instance name** box.
- 11. Compile your design with the Quartus II software and generate the necessary EDA netlist and script that tells the third-party simulator to generate a VCD file.

For more information about NativeLink use, refer to Section I. Simulation in volume 3 of the Quartus II Handbook.

12. Perform a simulation with the third-party EDA simulation tool. Call the generated script in the simulation tool before running the simulation. The simulation tool generates the VCD file and places it in the project directory.

The following example provides step-by-step instructions to successfully produce a VCD file with the ModelSim software:

- 1. In the Quartus II software, on the Assignments menu, click Settings.
- 2. In the **Settings** dialog box, on the **Simulator Settings** page, choose the appropriate ModelSim selection in the **Tool Name** list, and turn on the **Generate Value Change Dump File Script** option.
- 3. To generate the VCD file, perform a full compilation.
- 4. In the ModelSim software, compile the files necessary for simulation.
- 5. Load your design by clicking **Start Simulation** on the Tools menu, or use the **vsim** command.
- Source the Quartus II VCD script created in step 3 using the following command: source <design>_dump_all_vcd_nodes.tcl
- 7. Run the simulation (for example, run 2000ns or run -all).
- 8. Quit the simulation using the **quit** -sim command, if needed.

9. Exit the ModelSim software. If you do not exit the software, the ModelSim software may end the writing process of the VCD files improperly, resulting in a corrupted VCD file.

For more information about how to call the VCD file generation script in the respective third-party EDA simulation tools, refer to the Quartus II Help. For more information about how to perform simulations in other EDA simulation tools, see the relevant documentation for that tool.

Running the PowerPlay Power Analyzer Using the Quartus II GUI

To run the PowerPlay Power Analyzer using the Quartus II GUI, perform the following steps:

- 1. On the Assignments menu, click **Settings**. The **Settings** dialog box appears.
- 2. In the **Category** list, select **PowerPlay Power Analyzer Settings**, shown in Figure 10–14.

Figure 10–14. PowerPlay Power Analyzer Settings

Settings - filtref		
Category:		
General	PowerPlay Power Analyzer Settings	
Files		
Libraries	Select the power analyzer options.	
Device		
- Voltane	Use input file(s) to initialize toggle rates and static probabilities during power analysis	
Temperature	Input File(s)	
Compilation Process Settings	File name Type Entity Ad	d
- Early Timing Estimate	multaccum.saf Signal Activity File Multaccum	
Incremental Compilation	multaccum_test.vcd Value Change Dump File Multaccum	it
EDA Tool Settings	Ben	nove
+ Analysis & Synthesis Settings		
Finite Settings Finite Analysis Settings		
Assembler		
- Design Assistant	Perform glitch filtering on VLD files	
- SignalTap II Logic Analyzer		
- Logic Analyzer Interface	Write out signal activities used during power analysis	
	Output file name:	
PowerPlay Power Analyzer Settings	✓ Write signal activities to report file	
	Vrite power dissipation by block to report file	
	Default toggle rates for unspecified signals	
	Default toggle rate used for input I/O signals: 50 %	
	Default toggle rate used for remaining signals	
	C III I I I I I I I I I I I I I I I I I	
	• Use derault value: 1/2.3	
	Use vectorless estimation	
	OK	Cancel
,		

 (Optional) If you want to use either SAF(s) or VCD file(s) or both as an input to the PowerPlay Power Analyzer, turn on Use input file(s) to initialize toggle rates and static probabilities during power analysis.

(Optional) The **Edit** button allows you to change the settings for a selected file from the list. The **Remove** button allows you to remove a selected file from the list.

 Click Add. The Add Power Input File dialog box appears, as shown in Figure 10–15.

Figure 10–15. Add Power Input File Dialog Box

File name: Multaccum.vcd Entity: Multaccum/multaccum2:inst5 Input File Type Signal Activity File © Signal Activity File VCD file Image: Limit VCD period Start time: End time:	Add new po	wer input file and set properties.
Entity: Multaccum/multaccum2:inst5	File name:	Multaccum.vcd
Input File Type Signal Activity File VCD file Limit VCD period Start time: End time: ns	Entity:	Multaccum/multaccum2:inst5
	C Signa VCD L S E	I Activity File file imit VCD period tart time: ns nd time: ns

- 5. Add your SAF(s) or VCD file(s) by clicking the browse button for the **File name** box.
- 6. The **Entity** box enables you to specify the design entity (hierarchy) to which the entered power input file applies. To enter the entity, you can type in the box or browse through the list of your design entities. To browse your design entities, click the browse button. The **Select Hierarchy** dialog box appears, shown in Figure 10–16. You can specify multiple entities in the entity text box by using comma delimiters.

Figure 10–16. Select Hierarchy Dialog Box

Hierarchy:	
Multaccum Dflip_outinst Dflip_inst1 Dflip_inxinst2 ⊕ multinst3 ⊕ multaccum2:inst5	OK Cancel

- 7. You can specify whether the input file is a VCD file or SAF under **Input File Type**.
- (Optional) Limit VCD period is enabled only when the VCD file is selected. This enables you to specify the simulation period to use when calculating the signal activities. For more information, refer to step 9 of "Generating a SAF or VCD File Using the Quartus II Simulator" on page 10–24.
- 9. Click OK.
- 10. Click OK in the Add Power Input File dialog box.
- 11. (Optional) Turn on **Perform glitch filtering on VCD files**. This option is recommended. For more information, refer to "Glitch Filtering" on page 10–19.
- 12. (Optional) Turn on **Write out signal activities used during power analysis**. In the **Output file name** list, select the output file name. This file contains all the signal activities information used during the power estimation of your design. This is recommended if you

used a VCD file as input into the PowerPlay Power Analyzer, because it reduces the run time of any subsequent power estimation. You can use the generated SAF as input instead of the original VCD file.

- 13. (Optional) Turn on Write signal activities to report file.
- 14. (Optional) Turn on **Write power dissipation by block to report file** to enable the output of detailed thermal power dissipation by block to be included in the PowerPlay Power Analyzer report.
- 15. (Optional) You can also use the Assignment Editor to enter the Power Toggle Rate or Power Toggle Rate Percentage, and the Power Static Probability for a node or entity in your design, shown in Figure 10–17.

Figure 10–17. Assignment Editor Notes (1), (2)

🥩 A	ssignment Editor*			
Ø	All		💌 🙀 All 🖻 Pin 🗴 Tim	ing 🔹 Logic Options
₽•	Node Filter: Click the Node Filter button to view	/ more options		
	This cell specifies the destination na	ame for point-to-point assignments. For si	ingle-point assignments, this cell speci	fies the destination of the
¢	Edit: X V ~DATA0~			
<u>₽</u> ;¶	To Ar	ssignment Name	Value	Enabled
	1 🕑 ~DATA0~ Po	ower Toggle Rate	0	Yes
12	2 Prdaddress1[2] Po	ower Static Probability		Yes
s e	3 < <new>> <</new>	<new>></new>		
Box				
0.				
7				
٩				
2				
L'ANNE		III		>

Notes to Figure 10–17:

- (1) The assignments made with the Assignment Editor override the values already existing in the SAF or VCD file.
- (2) You can also use Tcl script commands to make these assignments.

For more information about how to use the Assignment Editor in the Quartus II software, see the *Assignment Editor* chapter in volume 2 of the *Quartus II Handbook*. For information about scripting, see the *Tcl Scripting* chapter in volume 2 of the *Quartus II Handbook*.

- 16. Specify the toggle rate in the **Default toggle rate used for input I/O signals** field. This toggle rate is used for all unspecified input I/O signal toggle rates regardless of whether or not the device family supports vectorless estimation. By default, its value is set to 12.5%. The default static probability for unspecified input I/O signals is 0.5 and cannot be changed.
- 17. Select either **Use default value** or **Use vectorless estimation** for Arria GX, Stratix III, Stratix II, Stratix II GX, Cyclone III, Cyclone II, HardCopy II, or MAX II device families. For all other device families, only **Use default value** is available. This setting controls how the remainder of the unspecified signal activities are calculated. For more information, refer to "Vectorless Estimation" on page 10–23 and "Default Toggle Rate Assignment" on page 10–22.
- In the Category list, select Operating Settings and Conditions. This option is available only for the Arria GX, Stratix III, Stratix II, Stratix II GX, Cyclone III, Cyclone II, HardCopy II, and MAX II device families (Figure 10–18).

Figure 10–18. Operating Conditions

Settings - filtref	
Category:	Operating Settings and Conditions Select the device power characteristics. Device power characteristics: Typical
	OK Cancel

- 19. In the **Device power characteristics** list, select **Typical** or **Maximum**. The default is **Typical**.
- 20. In the **Category** list, click the
 [■] icon to expand **Operating Settings and Conditions** and click **Voltage**. The **Voltage** page appears.
- 21. For the devices with selectable core voltage support, in the **Core supply voltage** list, select the core supply voltage for your device. This option is available for the latest devices with variable voltage selection.
- 22. In the **Category** list, under **Operating Settings and Conditions**, select **Temperature**. The **Temperature** page appears (Figure 10–19).

Figure 10–19. Temperature Settings Page

General	Temperature
General Files Libraries Device Operating Settings and Conditions Voltage Temperature Compilation Process Settings Design Entry/Synthesis Simulation Timing Analysis Formal Verification Physical Synthesis Board-Level Analysis Synthesis Settings Fitter Settings Timing Analysis Settings Timing Analysis Settings Timing Analysis Settings Timing Assistant	Temperature Select the operating temperature conditions. Junction temperature range Low temperature: Image: Control temperatere:
– SignalTap II Logic Analyzer – Logic Analyzer Interface 9-Simulator Settings – PowerPlay Power Analyzer Settings	Board thermal modeling Board thermal model: None (Conservative) Junction-to-board: *C/W Board temperature: 25 °C Description:

- 23. Under **Junction temperature range**, specify a junction temperature in degrees Celsius and specify the junction temperature range. Select the **Low temperature** and **High temperature** range for your selected device.
- 24. Specify the junction temperature and cooling solution settings. You can select **Specify junction temperature** or **Auto compute junction temperature using cooling solution**.
- 25. (Optional) Under **Board thermal modeling**, select the **Board thermal model** and type the **Board temperature**. This feature can only be turned on when you have selected **Auto compute junction temperature using cooling solution**.

For more information about how to use the operating condition settings, refer to "Operating Conditions" on page 10–11.

- 26. Click **OK** to close the **Settings** dialog box.
- 27. On the Processing menu, click **PowerPlay Power Analyzer Tool**. The **PowerPlay Power Analyzer Tool** dialog box appears (Figure 10–20).

Figure 10–20. PowerPlay Power Analyzer Tool Dialog Box

Powe	Play Power Analyzer Tool	
Input file	input file(s) to initialize toggle rates and static probabiliti Add Power Input File(s)	ies during power analysis
Output f	le	
Out	put file name:	
Defau C U C U	ilt toggle rate used for remaining signals se default value: 125 se vectorless estimation	×
	100 %	
	100 % 00:00:29	

- 28. Click **Start** to run the PowerPlay Power Analyzer. Be sure that all the settings are correct.
 - You can also make changes to some of your settings in this dialog box. For example, you can click the **Add Power Input File(s)** button to make changes to your input file(s).
- 29. After the PowerPlay Power Analyzer runs successfully, a message appears (Figure 10–21).

Figure 10–21. PowerPlay Power Analyzer Message

Quartus II	
(į)	PowerPlay Power Analyzer was successful (1 warning)
	ОК

30. Click OK.

31. In the **PowerPlay Power Analyzer Tool** dialog box, click **Report** to open the PowerPlay Power Analyzer Summary window. You can also view the summary in the **PowerPlay Power Analyzer Summary** page of the **Compilation Report** (Figure 10–22).

Figure 10–22. PowerPlay Power Analyzer Summary

PowerPlay Power Analyzer Compilation Report

The PowerPlay Power Analyzer section of the Compilation Report is divided into the following sections.

Summary

This section of the report shows your design's estimated total thermal power consumption. This includes dynamic, static, and I/O thermal power consumption. The report also includes a confidence metric that reflects the overall quality of the data sources for the signal activities.

Settings

This section of the report shows your design's PowerPlay Power Analyzer settings information. This includes default input toggle rates, operating conditions, and other relevant setting information.

Simulation Files Read

This section of the report lists simulation output files (VCD file or SAF) used for power estimation.

Operating Conditions Used

This section of the report shows device characteristics, voltages, temperature, and cooling solution, if any, that were used during the power estimation. It also shows the entered junction temperature or auto-computed junction temperature that was used during the power analysis. This page is created only for Arria GX, Stratix II, Stratix II GX, Cyclone III, Cyclone II, HardCopy II, and MAX II device families.

Thermal Power Dissipated by Block

This section of the report shows estimated thermal dynamic power and thermal static power consumption categorized by atoms. This information provides designers with an estimated power consumption for each atom in their design.

Thermal Power Dissipation by Block Type (Device Resource Type)

This section of the report shows the estimated thermal dynamic power and thermal static power consumption categorized by block types. This information is further categorized by estimated dynamic and static power that was used, as well as providing an average toggle rate by block type. Thermal power is the power dissipated as heat from the FPGA device.

Thermal Power Dissipation by Hierarchy

This section of the report shows an estimated thermal dynamic power and thermal static power consumption categorized by design hierarchy. This is further categorized by the dynamic and static power that was used by the blocks and routing within that hierarchy. This information is very useful in locating problem modules in your design.

Core Dynamic Thermal Power Dissipation by Clock Domain

This section of the report shows the estimated total core dynamic power dissipation by each clock domain. This provides designs with estimated power consumption for each clock domain in their design. If the clock frequency for a domain is unspecified by a constraint, the clock frequency is listed as "unspecified." For all the combinational logic, the clock domain is listed as no clock with 0 MHz.

Current Drawn from Voltage Supplies

This section of the report lists the current that was drawn from each voltage supply. The V_{CCIO} voltage supply is further categorized by I/O bank and by voltage. The minimum safe power supply size (current supply ability) is also listed for each supply voltage. This page is created only for Arria GX, Stratix III, Stratix II, Stratix II GX, Cyclone III, Cyclone II, HardCopy II, and MAX II device families.

Confidence Metric Details

The confidence metric indicates the quality of the signal toggle rate data used to compute a power estimate. The confidence metric is low if the signal toggle rate data comes from sources that are considered poor predictors of real signal toggle rates in the device during an operation. Toggle rate data that comes from simulation, or user-entered assignments on specific signals, or entities are considered reliable. Toggle rate data from default toggle rates (for example, 12.5% of the clock period) or vectorless estimation are considered relatively inaccurate. This section gives an overall confidence rating in the toggle rate data, from low to high. It also summarizes how many pins, registers, and combinational nodes obtained their toggle rates from each of simulation, user entry, vectorless estimation, or default toggle rate estimations. This detailed information can help you understand how to increase the confidence metric, letting you decide on your own confidence in the toggle rate data.

Signal Activities

This section lists toggle rate and static probabilities assumed by power analysis for all signals with fan-out and pins. The signal type is provided (Pin, Registered, or Combinational), as well as the data source for the toggle rate and static probability. By default, all signal activities are reported. This may be turned off on the **PowerPlay Power Analyzer Settings** page by turning off the **Write signal activities to report file** option. Turning this option off may be advisable for a large design because of the large number of signals present. You can use the Assignment Editor to specify that activities for individual nodes or entities are reported by assigning an on value to those nodes for the Power Report Signal Activities assignment.

Messages

This section lists any messages generated by the Quartus II software during the analysis.

Specific Rules for Reporting

In the Stratix GX device, the XGM II State Machine block is always used together with GXB transceivers, so its power is lumped into the power for the transceivers. Therefore, the power for the XGM II State Machine block is reported as 0 Watts.

Scripting Support

You can run procedures and make settings described in this chapter in a Tcl script. You can also run some procedures at a command prompt. For detailed information about scripting command options, refer to the Quartus II Command-Line and Tcl API Help browser. To run the Help browser, type the following command at the command prompt:

quartus_sh --qhelp

The *Scripting Reference Manual* includes the same information in PDF format.

For more information about Tcl scripting, refer to the *Tcl Scripting* chapter in volume 2 of the *Quartus II Handbook*. Refer to the *Quartus II Settings File Reference Manual* for information about all settings and constraints in the Quartus II software. For more information about command-line scripting, refer to the *Command-Line Scripting* chapter in volume 2 of the *Quartus II Handbook*.

Running the PowerPlay Power Analyzer from the Command Line

The separate executable that can be used to run the PowerPlay Power Analyzer is quartus_pow. For a complete listing of all command line options supported by quartus_pow, type the following at a system command prompt:

```
quartus_pow --help or quartus_sh --qhelp +
```

The following is an example of using the quartus_pow executable with project **sample.qpf**:

To instruct the PowerPlay Power Analyzer to generate a PowerPlay Early Power Estimator file, type the following at a system command prompt:

quartus_pow sample --output_epe=sample.csv +

To instruct the PowerPlay Power Analyzer to generate a PowerPlay Early Power Estimator file without doing the power estimate, type the following command at a system command prompt:

quartus pow sample --output epe=sample.csv --estimate power=off +

To instruct the PowerPlay Power Analyzer to use a SAF as input (**sample.saf**), type the following at a system command prompt:

quartus pow sample --input saf=sample.saf ←

To instruct the PowerPlay Power Analyzer to use two VCD files as input (sample1.vcd and sample2.vcd), perform glitch filtering on the VCD file, and use a default input I/O toggle rate of 10,000 transitions/second, type the following at a system command prompt:

```
quartus_pow sample --input_vcd=sample1.vcd
--input_vcd=sample2.vcd --vcd_filter_glitches=on
--default input io toggle rate=10000transitions/s 	default
```

To instruct the PowerPlay Power Analyzer to not use any input file, a default input I/O toggle rate of 60%, no vectorless estimation, and a default toggle rate of 20% on all remaining signals, type the following at a system command prompt:

```
quartus_pow sample --no_input_file --default_input_io_toggle_rate=60%
--use_vectorless_estimation=off --default_toggle_rate=20%
```

There are no command line options to specify the information found on the PowerPlay Power Analyzer Settings Operating Conditions page. The easiest way to specify these options is to use the Quartus II GUI.	
A report file, < <i>revision name</i> >. pow.rpt , is created by the quartus_pow executable and saved in the main project directory. The report file contains the same information as described in the "PowerPlay Power Analyzer Compilation Report" on page 10–39.	
PowerPlay power analysis tools are designed for accurate estimation of power consumption from early design concept through design implementation. Designers can use the PowerPlay Early Power Estimator to estimate power consumption during the design concept stage. Power estimations can be refined during design implementation using the Quartus II PowerPlay Power Analyzer feature. The Quartus II PowerPlay Power Analyzer produces detailed reports that you can use to optimize designs for lower power consumption and verify that the design is within your power budget.	
 This chapter references the following documents: Assignment Editor chapter in volume 2 of the Quartus II Handbook Command-Line Scripting chapter in volume 2 of the Quartus II Handbook Power Optimization chapter in volume 2 of the Quartus II Handbook Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in volume 1 of the Quartus II Handbook Quartus II Settings File Reference Manual Quartus II Simulator chapter in volume 3 of the Quartus II Handbook Section I. Simulation in volume 2 of the Quartus II Handbook Tcl Scripting chapter in volume 2 of the Quartus II Handbook 	

Document Revision History

Table 10–5 shows the revision history for this chapter.

Table 10–5. Document Revision History			
Date and Version	Changes Made	Summary of Changes	
October 2007 v7.2.0	 Updated Figures 10–4, 10–9, 10–10, 10–11, and 10–22. Updated "Generating a SAF or VCD File Using the Quartus II Simulator" on page 10–24. Updated "Generating a VCD File Using a Third-Party Simulator" on page 10–28. 	Updated for the Quartus II software version 7.2.	
May 2007 v7.1.0	 Updated procedures for "Generating a SAF or VCD File Using the Quartus II Simulator" on page 10–24. Updated figures. Added "Document Revision History" on page 10–45. 	Added support for Arria GX devices.	
March 2007 v7.0.0	Added Cyclone III to list of devices supported (page 10-2)	—	
November 2006 v6.1.0	 Updated "Generating a SAF or VCD File Using the Quartus II Simulator" by changing steps in certain processes to accommodate new functionality. Updated "Operating Conditions" by adding Selectable Core Voltage option. Updated Figure 10-2, 10-9, 10-10, 10-12, 10-14, 10-18, and 10-19. 	Figure changes were made to accommodate the changes to the GUI. Also, added information for Stratix III devices.	
May 2006 v6.0.0	 Chapter title changed to <i>PowerPlay Power Analysis</i>. Updated for the Quartus II software version 6.0.0: Added information about the EPE tools. Added information about the power analyzer. 	_	
October 2005 v5.1.0	Updated for the Quartus II software version 5.1.	_	
May 2005 v5.0.0	 Updated information. Updated figures. New functionality for Quartus II software 5.0. 	_	
December 2004 v1.0	Initial release.		

As FPGA usage expands into more high-speed applications, signal integrity becomes an increasingly important factor to consider for an FPGA design.

Signal integrity issues must be taken into account as part of FPGA I/O planning and assignments, as well as in the design and layout of the printed circuit board (PCB) that must support the FPGA. Early design simulation is essential for preventing issues that may require a board redesign. The Quartus II software provides a number of features that will help you make smart board design decisions to ensure good signal integrity on all your high-speed interfaces.

This section includes the following chapter:

- Chapter 11, Signal Integrity Analysis with Third-Party Tools
- For information about the revision history for chapters in this section, refer to each individual chapter for that chapter's revision history.

11. Signal Integrity Analysis with Third-Party Tools

QII53020-7.2.0

Introduction

As FPGA devices are used in more high-speed applications, signal integrity and timing margin between the FPGA and other devices on the printed circuit board (PCB) become increasingly important considerations to ensure proper system operation. To avoid time consuming redesigns and expensive board respins, the topology and routing of critical signals must be simulated. The high-speed interfaces available on current FPGA devices must be modeled accurately and integrated into timing models and board-level signal integrity simulations. To do this, the tools used in the design of an FPGA and its integration into a PCB must be "board-aware," able to take into account properties of the board routing as well as the connected devices on the board.

The Quartus[®] II software provides a number of methodologies, resources, and tools to assist in ensuring good signal integrity and timing margin between an Altera[®] FPGA device and other components on the board. Three types of analysis are possible with the Quartus II software:

- I/O timing with a default or user-specified capacitive load and no signal integrity analysis (default)
- The Quartus II Advanced I/O Timing option utilizing a user-defined board trace model to produce enhanced timing reports from accurate "board-aware" simulation models
- Full board routing simulation in third-party tools using Altera provided or generated IBIS or HSPICE I/O models

I/O timing using a specified capacitive test load requires no special configuration other than setting the size of the load. I/O timing reports from Quartus II TimeQuest or the Quartus II Classic Timing Analyzer are generated based only on point-to-point delays within the I/O buffer and assume the presence of the capacitive test load with no other details about the board specified. The default size of the load is based on the I/O standard selected for the pin. Timing is measured to the FPGA pin with no signal integrity analysis details.

The Advanced I/O Timing option expands the details in I/O timing reports by taking board topology and termination components into account. A complete point-to-point board trace model is defined and accounted for in the timing analysis. This ability to define a board trace model is an example of how the Quartus II software is "board-aware."

In this case, timing and signal integrity metrics between the I/O buffer and the defined far end load are analyzed and reported in enhanced reports generated by the Quartus II TimeQuest Timing Analyzer.

For more information about defining capacitive test loads or how to use the Advanced I/O Timing option to configure a board trace model, refer to the *I/O Management* chapter in volume 2 of the *Quartus II Handbook*.

This chapter focuses on the third type of analysis. The Quartus II software can export accurate HSPICE models with the built-in HSPICE Writer. You can run signal integrity simulations with these complete HSPICE models in Synopsys HSPICE. Input/Output Buffer Information Specification (IBIS) models of the FPGA I/O buffers are also created easily with the Quartus II IBIS Writer. You can integrate IBIS models into any third-party simulation tool that supports them, such as Mentor Graphics Hyperlynx software. With the ability to create industry-standard model definition files quickly, you can build accurate simulations that can provide data to help improve board-level signal integrity.

This chapter describes some of the basics of board-level signal integrity and why it should be taken into consideration as part of the general FPGA design flow. You will see that it is easy to produce accurate I/O models in the Quartus II software that take into account the unique properties of timing and signal integrity found in FPGA devices. You will learn how to add these models to your board routing simulations in the most widely used third-party simulation tools. Finally, you will find out where to go for more information about board-level signal integrity and how the Quartus II software and Altera FPGA devices fit into an overall highspeed system design.

This chapter is intended for FPGA and board designers. FPGA designers will learn about the concepts and steps involved in getting their designs simulated and how to adjust their designs to improve board-level timing and signal integrity. Board designers will learn how to get accurate models from the Quartus II software and how to use those models in their simulation software. To get the most out of this chapter, you should be familiar with the use of the Quartus II software. It is also helpful if you are familiar with some of the basic concepts involved in signal integrity and the design techniques and components required to have good signal integrity on a PCB. Finally, you should know how to set up simulations and use your selected third-party simulation tool. This chapter gives a basic overview of how to use the output from the IBIS Writer and HSPICE Writer in these tools, but it does not provide detailed instructions on their use.

For information about basic signal integrity concepts and signal integrity details pertaining to Altera FPGA devices, refer to the Altera Signal Integrity Center.

The Need for FPGA to Board Signal Integrity Analysis

When creating an FPGA design, the designer usually focuses on the FPGA logic design and functionality. A main focus for the design of the PCB to support the FPGA is to make sure FPGA I/O assignments match the correct pads and routing to ensure the FPGA signals are correctly connected to the rest of the circuit. In the past, this was all that was necessary to ensure proper operation. However, FPGA devices can now be configured with a wide assortment of high-speed interfaces that communicate with many other devices on the board.

With the introduction of high-speed interfaces to traditional FPGA design, it becomes necessary to make sure that timing and signal integrity margins between the FPGA and other devices on the board are within specification and tolerance before a single PCB is built. If the board trace is designed poorly or the route is too heavily loaded, noise in the signal can cause data corruption, while overshoot and undershoot can potentially damage input buffers over time if allowed to continue.

The use of the I/O model creation and analysis tools available in the Quartus II software early in the design process can help prevent problems before a costly board respin is needed. In general, creating and running accurate simulations is difficult and time consuming. The tools in the Quartus II software help by automating the I/O model setup and creation process by configuring the models specifically for your design. You will be able to set up and run accurate simulations quickly and acquire data that helps guide your FPGA and board design, using either the Advanced I/O Timing feature for analysis in the Quartus II software environment or the output from the IBIS and HSPICE Writers in third-party simulation tools.

The discussion of signal integrity in this chapter refers to board-level signal integrity based on I/O buffer configuration and board parameters, not simultaneous switching noise (SSN), also known as ground bounce or V_{CC} sag. SSN is a product of multiple output drivers switching at the same time, causing an overall drop in the voltage of the chip's power supply. This can cause temporary glitches in the specified level of ground or V_{CC} for the device. For a more thorough discussion of SSN and ways to prevent it, refer to application note AN 315: Guidelines for Designing High-Speed FPGA PCBs.

The Double Counting Problem for FPGA Output Timing

Simulating I/Os using accurate models is extremely helpful for finding and fixing FPGA I/O timing and board signal integrity issues before any boards are built. However, the usefulness of such simulations is directly related to the accuracy of the models used and whether the simulations are set up and performed correctly. To ensure accuracy in models and simulations created for FPGA output signals, the timing hand-off between t_{CO} timing in the Quartus II software and simulation-based board delay must be taken into account. If this hand-off is not handled correctly, the calculated delay could either count some of the delay twice or even miss counting some of the delay entirely.

Defining the Double Counting Problem

The double counting problem is inherent to the way output timing is analyzed versus the method used for HSPICE models. The timing analyzer tools in the Quartus II software measure delay timing for an output signal from the core logic of the FPGA design through the output buffer ending at the FPGA pin with a default capacitive load or a specified value for the selected I/O standard. This measurement is the t_{CO} timing variable as shown in Figure 11–1.

HSPICE models for board simulation measure t_{PD} (propagation delay) from an arbitrary reference point in the output buffer, through the device pin, out along the board routing, and ending at the signal destination (the red bar in Figure 11–1).

It is immediately apparent that if these two delays were simply added together, the delay between the output buffer and the device pin would be counted twice in the calculation (the black bar in Figure 11-1). A model or simulation that does not account for this double count would create overly pessimistic simulation results, since the double counted delay can artificially limit I/O performance. To fix the problem, it may seem like simply subtracting the overlap between t_{CO} and t_{PD} would account for the double count. However, this adjustment would not be accurate because each measurement is based on a different load.

17

Input signals do not exhibit this problem because the HSPICE models for inputs stop at the FPGA pin instead of at the input buffer. In this case, simply adding the delays together produces an accurate measurement of delay timing.

The Solution to Double Counting

To adjust the measurements to account for the double counting, the delay between the arbitrary point in the output buffer selected by the HSPICE model and the FPGA pin must be subtracted from either $t_{CO}\,\text{or}\,t_{PD}$ before adding the results together. The subtracted delay must also be based on a common load between the two measurements. This is done by repeating the HSPICE model measurement but with the same load used by the Quartus II software for the t_{CO} measurement. This second measurement, called t_{TESTLOAD} is illustrated with the top circuit in Figure 11–2.

Figure 11–2. Common Test Loads Used for Output Timing

With $t_{TESTLOAD}$ known, the total delay for the output signal from the FPGA logic to the signal destination on the board, accounting for the double count, is calculated as shown in Equation 1.

(1)
$$t_{delay} = t_{CO} + (t_{PD} - t_{TESTLOAD})$$

The preconfigured simulation files generated by the HSPICE Writer in the Quartus II software are designed to automatically account for the double counting problem based on this calculation. This makes it easy to perform accurate timing simulations without the need to manually make adjustments for double counting.

I/O Model Selection: IBIS or HSPICE

The Quartus II software can export two different types of I/O models that are useful for different simulation situations. IBIS models define the behavior of input or output buffers through the use of voltage-current (V-I) and voltage-time (V-t) data tables. HSPICE models, often referred to as HSPICE decks, include complete physical descriptions of the transistors and parasitic capacitances that make up an I/O buffer along with all the parameter settings needed to run a simulation. The HSPICE decks generated by the Quartus II software are preconfigured with the I/O standard, voltage, and pin loading settings for each pin in your design.

The choice of I/O model type is based on a number of factors. Table 11–1 provides a more detailed comparison of the two I/O model types as well as information and examples of situations about where and when they might be used.

Table 11–1. IBIS and HSPICE Model Comparison				
Feature	IBIS Model	HSPICE Model		
I/O Buffer Description	Behavioral —I/O buffers are described by voltage-current and voltage-time tables in typical, minimum, and maximum supply voltage cases.	Physical —I/O buffers and all components in a circuit are described by their physical properties, such as transistor characteristics and parasitic capacitances, as well as their connections to one another.		
Model Customization	Simple and limited —The model completely describes the I/O buffer and does not usually need to be customized.	Fully customizable—Unless connected to an arbitrary board description, the description of the board trace model must be customized in the model file. All parameters of the simulation are also adjustable.		
Simulation Set Up and Run Time	Fast—Simulations run quickly once set up correctly.	Slow —Simulations take time to set up and take longer to run and complete.		
Simulation Accuracy	Good —For most simulations, accuracy is sufficient to make useful adjustments to the FPGA and/or board design to improve signal integrity.	Excellent —Simulations are highly accurate, making HSPICE simulation almost a requirement for any high-speed design where signal integrity and timing margins are tight.		
Third-Party Tool Support	Excellent —Almost all third-party board simulation tools support IBIS.	Good —Most third-party tools that support SPICE support HSPICE. However, Synopsys HSPICE is required for simulations of Altera's encrypted HSPICE models.		

••••

For more information about IBIS files created by the Quartus II IBIS Writer and IBIS files in general, as well as links to websites with detailed information, refer to *AN 283: Simulating Altera Devices with IBIS Models.* For more information about HSPICE model files created by the Quartus II HSPICE Writer, refer to *AN 424: I/O Simulations Using HSPICE.*

FPGA to Board Signal Integrity Analysis Flow

Board signal integrity analysis can take place at any point in the FPGA design process and is often performed both before and after board layout. If it is performed early in the process as part of a pre-PCB layout analysis, the models used for simulations can be more generic and can be changed as much as needed to see how adjustments improve timing or signal integrity and help with the design and routing of the PCB. Simulations and the resulting changes made at this stage allow you to analyze "what if" scenarios to better plan and implement your design. To assist with early board signal integrity analysis, you can download generic IBIS model files for each device family from the Altera website. If board signal integrity analysis is performed late in the design, it is typically used for a post-layout verification. The inputs and outputs of the FPGA are defined, and required board routing topologies and constraints are known. Simulations can help you find problems that may still exist in the FPGA or board design before fabrication and assembly. In either case, a simple process flow illustrates how to create accurate IBIS and HSPICE models from a design in the Quartus II software and transfer them to third-party simulation tools. Figure 11–3 shows this flow.

This chapter is organized around the type of model, IBIS or HSPICE, that you use for your simulations. Once you understand the steps in the analysis flow, refer to the section of this chapter that corresponds to the model type you are using.

Figure 11–3. Third-Party Board Signal Integrity Analysis Flow

Create I/O and Board Trace Model Assignments

If your design uses a Stratix II device, you can configure a board trace model for output signals or for bidirectional signals in output mode and automatically transfer its description to HSPICE decks generated by the HSPICE Writer. This helps improve simulation accuracy. To do this, turn on the **Enable Advanced I/O Timing** option in the **TimeQuest Timing Analyzer** page in the **Settings** dialog box and configure the board trace model assignment settings for each I/O standard used in your design. You can add series or parallel termination, specify the transmission line length, and set the value of the far-end capacitive load. You can configure these parameters in either the Board Trace Model view in the Pin Planner or by clicking **Device and Pin Options** in the **Device** page of the **Settings** dialog box.

For information about how to use Advanced I/O Timing and configure board trace models for the I/O standards used in your design, refer to the *I/O Management* chapter in volume 2 of the *Quartus II Handbook*.

The Quartus II software can generate IBIS models and HSPICE decks without the need to configure a board trace model with the Advanced I/O Timing option. In fact, IBIS models ignore any board trace model settings other than the far-end capacitive load. If any load value is set other than the default, the delay given by IBIS models generated by the IBIS Writer cannot be used to account correctly for the double counting problem. The load value mismatch between the IBIS delay and the t_{CO} measurement of the Quartus II software prevents the delays from being safely added together. Warning messages displayed when the EDA Netlist Writer runs indicate when this mismatch occurs.

Enable Output File Generation

IBIS and HSPICE model files are not generated by the Quartus II software by default. To generate or update the files automatically during each project compilation, select the type of file to generate and a location where to save the file in the project settings. These settings can also be specified with commands in a Tcl script.

Generate the Output Files

The IBIS and HSPICE Writers in the Quartus II software are run as part of the EDA Netlist Writer during normal project compilation. If either writer is turned on in the project settings, IBIS or HSPICE files are created and stored in the specified location. For IBIS, a single file is generated containing information about all assigned pins, while HSPICE file generation creates separate files for each assigned pin. You can run the EDA Netlist Writer separately from a full compilation in the Quartus II

software or at the command line. However, you must fully compile the project or perform I/O Assignment Analysis at least once for the IBIS and HSPICE Writers to have information about the I/O assignments and settings in the design.

Customize the Output Files

The files generated by either the IBIS or HSPICE Writer are text files that you can edit and customize easily for design or experimentation purposes. IBIS files downloaded from the Altera website must be customized with the correct RLC values for the specific device package you have selected for your design. IBIS files generated by the IBIS Writer do not require this customization since they are automatically configured with the RLC values for your selected device. HSPICE decks require modification to include a detailed description of your board. With Enable Advanced I/O Timing turned on and a board trace model defined in the Quartus II software, generated HSPICE decks automatically include that model's parameters. However, it is recommended that you replace that model with a more detailed model that more accurately describes your board design. A default simulation included in the generated HSPICE decks measures delay between the FPGA and the far-end device. You can make additions or adjustments to the default simulation in the generated files to change the parameters of the default simulation or to perform additional measurements.

Set Up and Run Simulations in Third-Party Tools

Once you have generated the files, you can use them to perform simulations in your selected simulation tool. With IBIS models, you can apply them to input, output, or bidirectional buffer entities and quickly set up and run simulations. For HSPICE decks, the simulation parameters are included in the files. Open the files in Synopsys HSPICE and run simulations for each pin as needed. With HSPICE decks generated from the HSPICE Writer, the double counting problem is accounted for, ensuring that your simulations are accurate. Simulations that involve IBIS models created with anything other than the default loading settings in the Quartus II software must take the change in the size of the load between the IBIS delay and the Quartus II t_{CO} measurement into account. Warning messages during compilation alert you to this change.

Interpret Simulation Results

After running your simulations, you may find timing or signal integrity issues with your high-speed signals. Based on your simulation results, you can make adjustments to I/O assignment settings in the Quartus II software, such as drive strength or I/O standard, or make changes to your board routing or topology. After regenerating models in the Quartus II software based on the changes you have made, rerun the simulations to see if your changes corrected the problem.

Simulation with IBIS Models

IBIS models provide a way to run accurate signal integrity simulations quickly. IBIS models describe the behavior of I/O buffers with voltagecurrent and voltage-time data curves. Because of their behavioral nature, IBIS models do not have to include any information about the internal circuit design of the I/O buffer. Most component manufacturers, including Altera, provide IBIS models for free download and use in signal integrity analysis simulation tools. You can download generic device family IBIS models from the Altera website for early design simulation or use the IBIS Writer to create custom IBIS models for your existing design.

Elements of an IBIS Model

An IBIS model file (**.ibs**) is a text file that describes the behavior of an I/O buffer across minimum, typical, and maximum temperature and voltage ranges with a specified test load. The tables and values specified in the IBIS file describe five basic elements of the I/O buffer. Figure 11–4 highlights each of these elements in the I/O buffer model.

The following elements correspond to each numbered block in Figure 11–4.

- 1. **Pulldown**—A voltage-current table describes the current when the buffer is driven low based on a pull-down voltage range of $-V_{CC}$ to $2V_{CC}$.
- 2. **Pullup**—A voltage-current table describes the current when the buffer is driven high based on a pull-up voltage range of $-V_{CC}$ to V_{CC} .
- 3. **Ground and Power Clamps**—Voltage-current tables describe the current when clamping diodes for electrostatic discharge (ESD) are present. The ground clamp voltage range is $-V_{CC}$ to V_{CC} , and the power clamp voltage range is $-V_{CC}$ to ground.
- 4. **Ramp and Rising/Falling Waveform**—A voltage-time (dv/dt) ratio describes the rise and fall time of the buffer during a logic transition. Optional rising and falling waveform tables can be added to more accurately describe the characteristics of the rising and falling transitions.
- 5. **Total Output Capacitance and Package RLC**—The total output capacitance includes the parasitic capacitances of the output pad, clamp diodes (if present), and input transistors. The package RLC is device package-specific and defines the resistance, inductance, and capacitance of the bond wire and pin of the I/O.

For more information about IBIS models and Altera-specific features, including links to the official IBIS specification, refer to *AN 283: Simulating Altera Devices with IBIS Models*.

Creating Accurate IBIS Models

There are two ways to obtain Altera device IBIS files for your board-level signal integrity simulations. You can download generic IBIS models from the Altera website or you can use the IBIS writer in the Quartus II software to create design-specific models.

Download IBIS Models

Altera provides IBIS models for almost all FPGA and FPGA configuration devices. Check the Download Center at **www.altera.com** to see if models for your selected device are available. You can use the IBIS models from the website to perform early simulations of the I/O buffers you expect to use in your design as part of a pre-layout analysis.

Downloaded IBIS models have the RLC package values set to one particular device in each device family. To accurately simulate your design with the model, you must adjust the RLC values in the IBIS model file to match the values for your particular device package by performing the following steps:

- 1. Download and expand the ZIP file (.zip) of the IBIS model for the device family you are using for your design. The .zip file contains the IBIS model file along with an IBIS model user guide and a model data correlation report.
- 2. Download the Package RLC Values spreadsheet for the same device family.
- 3. Open the spreadsheet and locate the row that describes the device package used in your design.
- 4. Copy the minimum, maximum, and typical values of resistance, inductance, and capacitance for your device package from the package's **I/O** row.
- 5. Open the IBIS model file in a text editor and locate the [Package] section of the file.
- 6. Overwrite the listed values copied with the values from the spreadsheet and save the file.

The IBIS model file is now customized for your device package and can be used for any simulation. IBIS models downloaded and used for simulations in this manner are generic. They describe only a certain set of models listed for each device on the IBIS model Download Center page on the Altera website. To create customized models for your design, use the IBIS Writer as described in the next section.

Generate Custom IBIS Models with the IBIS Writer

If you have started your FPGA design and have created custom I/O assignments, such as drive strength settings or the enabling of clamping diodes for ESD protection, you can use the Quartus II IBIS Writer to create custom IBIS models to more accurately reflect your assignments. IBIS models created with the IBIS Writer take I/O assignment settings into account.

If the **Enable Advanced I/O Timing** option is turned off, the generated IBIS model files are based on the load value setting for each I/O standard on the **Capacitive Loading** tab of the **Device and Pin Options** dialog box in the **Device** page of the **Settings** dialog box. With the **Enable Advanced**

I/O Timing option turned on, IBIS models use an effective capacitive load based on settings found in the board trace model on the **Board Trace Model** tab in the **Device and Pin Options** dialog box or the Board Trace Model view in the Pin Planner. The effective capacitive load is based on the sum of the **Near capacitance**, **Transmission line distributed capacitance**, and the **Far capacitance** settings in the board trace model. Resistances and transmission line inductance values are ignored.

If any changes are made from the default load settings, the delay in the generated IBIS model cannot safely be added to the Quartus II t_{CO} measurement to account for the double counting problem. This is because the load values between the two delay measurements do not match. When this happens, the Quartus II software displays warning messages when the EDA Netlist Writer runs to remind you about the load value mismatch.

When the IBIS Writer is enabled, it generates a custom IBIS model file whenever the EDA Netlist Writer is run in the Quartus II software. To turn on the IBIS Writer and create custom IBIS model files, perform the following steps:

- 1. On the Assignments menu, click **Settings**.
- 2. In the **Category** list, click the imes icon to expand **EDA Tool Settings** and select **Board-Level**.
- 3. Under **Board-Level Signal Integrity Analysis Format**, in the **Format** list, select **IBIS** (Figure 11–5).

ategory:	
General Glass	Board-Level
Hear Librarias (Current Project)	Specify options for generating output files for use with other EDA tools
Device	Specify options for generating output lifes for use with other EDA tools.
- Operating Conditions	
- Voltage	Board-Level Symbol
Temperature	Format: <none></none>
Compilation Process Settings	Reduct Functions
- Early Timing Estimate	output allectory.
Incremental Compilation	
EDA Tool Settings	Board-Level Signal Integrity Analysis
- Design Entry/Synthesis	Format: IBIS
- Simulation	
Timing Analysis	Output directory: board/ibis
- Formal Verification	
- Physical Synthesis	Decid Level Timine Analysis
Board-Level	Board-Level I Iming Analysis
Analysis & Synthesis Settings	Format: <none></none>
- Fitter Settings	
- Timing Analysis Settings	Dutput directory:
Integrest Timing Analyzer Classic Timing Analyzer	
Classic Timing Analyzer Beno	
- Assembler	
- Design Assistant	
- SignalTap II Logic Analyzer	
Logic Analyzer Interface	
Simulator Settings	
PowerPlay Power Analyzer Settings	
	Reset

- 4. IBIS models are stored in the *<project directory>/board/ibis* directory by default. To change the directory, click the browse button next to the **Output directory** box, and browse to the desired location.
- 5. Click **OK** to close the **Settings** dialog box.
- 6. If the project has not been compiled, run a full compilation to create a netlist and establish I/O assignments. On the Processing menu, click **Start Compilation**. The IBIS model file, named <project name>.ibs, is saved in the specified location.
- 7. If the project has been compiled before, you only need to run the EDA Netlist Writer to create or update the IBIS model file. On the Processing menu, point to Start and click Start EDA Netlist Writer. The IBIS model file is created or updated in the specified location.

You can save compilation time when creating the IBIS model file the first time for early design simulation by performing only required steps of the compilation process instead of a full compilation of your project. Run Analysis and Synthesis and I/O Assignment Analysis before creating the IBIS model file with the EDA Netlist Writer.

For more information about IBIS model generation, refer to the *AN 283: Simulating Altera Devices with IBIS Models* application note or the Quartus II Help.

Design Simulation Using the Mentor Graphics HyperLynx Software

You must integrate IBIS models downloaded from the Altera website or created with the Quartus II IBIS Writer into board design simulations to accurately model timing and signal integrity. The HyperLynx software from Mentor Graphics is one of the most popular tools for design simulation. HyperLynx software makes it easy to integrate IBIS models into simulations.

The HyperLynx software is a PCB analysis and simulation tool for highspeed designs, consisting of two products, LineSim and BoardSim. LineSim is an early simulation tool. Before any board routing takes place, LineSim is used to simulate "what if" scenarios to assist in creating routing rules and defining board parameters. BoardSim is a post-layout tool used to analyze existing board routing. Specific nets are selected from a board layout file and simulated in a manner similar to LineSim. With board and routing parameters, and surrounding signal routing known, highly accurate simulations of the final fabricated PCB are possible. This section focuses on LineSim. Since the process of creating and running simulations is very similar for both LineSim and BoardSim, the details of IBIS model use in LineSim applies to simulations in BoardSim.

Simulations in LineSim are configured using a schematic GUI to create connections and topologies between I/O buffers, route trace segments, and termination components. LineSim provides two methods, cell-based and free-form, for creating routing schematics. Cell-based schematics are based on fixed cells consisting of typical placements of buffers, trace impedances, and components. Parts of the grid-based cells are filled with the desired objects to create the topology. A topology in a cell-based schematic is limited by the available connections within and between the cells.

A more robust and expandable way to create a circuit schematic for simulation is to use the free-form schematic format in LineSim as shown in Figure 11–6. The free-form schematic format makes it easy to place parts into any configuration and edit them as needed. This section describes the use of IBIS models with free-form schematics, but the process is nearly identical for cell-based schematics.

Figure 11–6. HyperLynx LineSim Free-Form Schematic Editor

When you use HyperLynx software to perform simulations, you typically perform the following steps:

- 1. Create a new LineSim free-form schematic document and set up the board stackup for your PCB using the Stackup Editor. In this editor, you specify board layer properties including layer thickness, dielectric constant, and trace width.
- 2. Create a circuit schematic for the net you want to simulate. The schematic represents all the parts of the routed net including source and destination I/O buffers, termination components, transmission line segments, and representations of impedance discontinuities such as vias or connectors.
- 3. Assign IBIS models to the source and destination I/O buffers to represent their behavior during operation.
- 4. Attach probes from the digital oscilloscope that is built in to LineSim to points in the circuit that you want to monitor during simulation. Typically, at least one probe is attached to the pin of a destination I/O buffer. For differential signals, you can attach a differential probe to both the positive and negative pins at the destination.
- 5. Configure and run the simulation. You can simulate a rising or falling edge and test the circuit under different drive strength conditions.
- 6. Interpret the results and make adjustments. Based on the waveforms captured in the digital oscilloscope, you can adjust anything in the circuit schematic to correct any signal integrity issues, such as overshoot or ringing. If necessary, you can make I/O assignment changes in the Quartus II software, regenerate the IBIS file with the IBIS Writer, and apply the updated IBIS model to the buffers in your HyperLynx software schematic.
- 7. Repeat the simulations and circuit adjustments until you are satisfied with the results. Once the operation of the net meets your design requirements, implement changes to your I/O assignments in the Quartus II software and/or adjust your board routing constraints, component values, and placement to match the simulation.

For more information about HyperLynx software, including schematic creation, simulation setup, model usage, product support, licensing, and training, refer to HyperLynx Help or the Mentor Graphics website at www.mentor.com.

Configuring LineSim to Use Altera IBIS Models

You must configure LineSim to find and use the downloaded or generated IBIS models for your design. To do this, you add the location of your IBIS model file(s) to the LineSim Model Library search path. Then you apply a selected model to a buffer in your schematic.

To add the Quartus II software's default IBIS model location, *<project directory*>/board/ibis, to the HyperLynx LineSim model library search path, perform the following steps in LineSim:

1. From the Options menu, click **Directories**. The **Set Directories** dialog box appears (Figure 11–7). The Model-library file path(s) list displays the order in which LineSim searches file directories for model files.

Figure 11–7. LineSim Set Directories Dialog Box

_	
Use directory of last-opened file	Default
Model-library file path(s)	
C:\altera\61\qdesigns\fir_filter\compile\board\ibis\ C:\MentorGraphics\2005IND\SDD_H0ME\HyperLynx75\LIBS\	E dit
	Default
]	
3oardSim qualified-parts-list file(s) (QPL)	
	Add File
✓ Use QPL file(s) to assign models	Default
Most recently used files	
Limit list 8 files	

2. Click **Edit**. A dialog box appears where you can add directories and adjust the order in which LineSim searches them (Figure 11–8).

Critations) E11 adoptions) fir	filter) compile) beard/ibis)	
C:\MentorGraphics\2005	IND\SDD_HOME\HyperLynx75\LIBS\	Add
		Delete
		Up
		Down
		Generate
		ModelInde
		OK
<		Cancel

Figure 11–8. LineSim Select Directories Dialog Box

- 3. Click Add and browse to the default IBIS model location, *<project directory*>/board/ibis. Click OK.
- 4. Click **Up** to move the IBIS model directory to the top of the list, and click **Generate Model Index** to update LineSim's model database with the models found in the added directory.
- 5. Click **OK**. The IBIS model directory for your project is added to the top of the Model-library file path(s) list. Click **OK** to close the Set Directories dialog box.

Integrating Altera IBIS Models into LineSim Simulations

Once the location for IBIS files is set, you can assign the downloaded or generated IBIS models to the buffers in your schematic. To do this, perform the following steps:

1. Double-click a buffer symbol in your schematic to open the **Assign Models** dialog box (Figure 11–9). You can also click **Assign Models** from the buffer symbol's right-click menu.

Assign Models				
IC				
Pins:	Buffer settings vo our Vmeas=1.57 V Cref=0.0 pF	C Input C Dutput C Dutput Inve	C Stuck erted C Stuck	High Low
r- U1.1 ▲	Part #: Library: filtref.il Device: EP2S Signal: yn_ou Pin: W13	os 15F484C3_filtref t(0]		Select Remove Help
	Vcc pin: 🗿 🕠 Vss pin: 🗿 🗤	use model's internal val use model's internal val	Use Edit/Po ↓ ▼ Change sup	ower Supplies to ply voltages.
	- Model to paster	Edit Mod	el File	
Reference U1 designator: Pin name: 1				Copy Paste Paste All
		ОК	Cancel	Apply

Figure 11–9. LineSim Assign Model Dialog Box

- 2. The pin of the buffer symbol you selected should be highlighted in the **Pins** list. If you want to assign a model to a different symbol or pin, select it from the list.
- 3. Click **Select**. The **Select IC Model** dialog box appears (Figure 11–10).

Information on selected device				-1/O ty	ype
Library: filtref.ibs					ਰ ਕਿ
Device: EP2S15F484C3_filtref				Vinh	= 1 70 V
Signal: yn_out[0]				VinL	= 800.0 mV
Pin: W13				Cref	= 0.0 pF
Notes: [Source] Altera, Quartus II 6.1			•	Vmeas	= 1.57 V
Select a library, device, and signal/pin-					Select by
		Devices:	Signal:		A
Ds34c87m.ibs	~	EP2S15F484C3_filtrel A	PORSEL	~	Same
Ds34c87n.ibs			reset	_	
MOD C Ds36c200.ibs			VUUSEL		C Pin
SPICE C Dx4pga.ibs			yn_out[1]		💿 Signal
S-Parameter C			yn_out[2]		
(Touchstone) G612mea ibs			yn_out[3]		
All C G612mtd.ibs		~	yn out[5]	~	
EASY MOD 98b32t.ibs					
Gp612mea.ibs		Hints			
GENERIC.MOD H39s160a.ibs		.IBS → IBIS model	kaga madal		OK
H39s162a.ibs	~		k model		
		Try 'Eind Model' to search fr	or a component		Cancel
Find Model		Try EASY.MOD if you can't	find an exact model.		I I - I-

Figure 11–10. LineSim Select IC Model Dialog Box

- To filter the list of available libraries to display only IBIS models, select .IBS. Scroll through the Libraries list, and click the name of the library for your design. By default, this is <project name>.ibs.
- 5. The device for your design should be selected as the only item in the **Devices** list. If not, select your device from the list.
- 6. From the **Signal** list, select the name of the signal you want to simulate. You can also choose to select by device pin number.
- 7. Click **OK**. The **Assign Models** dialog box displays the selected IBIS model file and signal.
- 8. If applicable to the signal you chose, adjust the buffer settings as needed for the simulation.
- 9. Select and configure other buffer pins from the **Pins** list in the same manner. Click **OK** when all I/O models are assigned.

Running and Interpreting LineSim Simulations

You can now run any desired simulations and make adjustments to the I/O assignments or simulation parameters as needed. For example, if after running a simulation you see too much overshoot in the simulated signal at the destination buffer as seen in Figure 11–11, you could adjust the drive strength I/O assignment setting to a lower value. Regenerate the IBIS model file, and run the simulation again to verify if the change fixed the problem.

Figure 11–11. Example of Overshoot in HyperLynx with IBIS Models

If you see a discontinuity or other anomalies at the destination, such as slow rise and fall times as shown in Figure 11–12, adjust the termination scheme or termination component values. After making these changes, rerun the simulation to check whether your adjustments solved the problem. In this case, it is not necessary to regenerate the IBIS model file.

Figure 11–12. Example of Signal Integrity Anomaly in HyperLynx with IBIS Models

••••

For more information about board-level signal integrity and to learn about ways to improve it with simple changes to your design, visit the Altera Signal Integrity Center at **www.altera.com**.

Simulation with HSPICE Models

HSPICE decks are used to perform highly accurate simulations by precisely describing the physical properties of all aspects of a circuit. HSPICE decks describe I/O buffers, board components, and all the connections between them, as well as defining the parameters of the simulation to be run. By their nature, HSPICE decks are highly customizable and require a detailed description of the circuit under simulation to be effective. For Stratix II devices, when Enable Advanced I/O Timing is turned on, the HSPICE decks generated by the Quartus II HSPICE Writer automatically include board components and topology defined in the Board Trace Model that you configure in the Pin Planner or in the Board Trace Model tab of the Device and Pin Options dialog box. All HSPICE decks generated by the Quartus II software include compensation for the double count problem (for more information about the double count problem, refer to "The Double Counting Problem for FPGA Output Timing" on page 11–4). You can simulate with the default simulation parameters built in to the generated HSPICE decks or make adjustments to customize your simulation.

For more detailed information about the HSPICE model files created by the Quartus II HSPICE Writer, refer to *AN* 424: *I/O Simulations Using HSPICE*.

Supported Devices and Signaling

The HSPICE Writer in the Quartus II software version 6.1 supports the devices and signaling defined in Table 11–2. Only Stratix II devices support the creation of a board trace model in the Quartus II software for automatic inclusion in an HSPICE deck. Other devices require the board description to be manually added to the HSPICE file.

Table 11–2. HSPICE Writer	Device and Sig	naling Support			
Device	Input	Output	Single-Ended	Differential	Automatic Board Trace Model Description
Stratix [®] II	\checkmark	\checkmark	~	\checkmark	\checkmark
Stratix II GX (non-HSSI signals)	~	~	\checkmark	\checkmark	—
HardCopy [®] II	\checkmark	\checkmark	~	\checkmark	—

If you are using a Stratix II device for your design, you can turn on **Enable Advanced I/O Timing** and configure the board trace model for each I/O standard used in your design. The HSPICE files will include the board trace description you create in the Board Trace Model view in the Pin Planner or the **Board Trace Model** tab in **Device and Pin Options** dialog box.

•••

For more information about Advanced I/O Timing and configuring board trace models for the I/O standards in your design, refer to the I/O *Management* chapter in volume 2 of the *Quartus II Handbook*.

Creating Accurate HSPICE Models

The HSPICE Writer must be turned on before HSPICE model files are created. HSPICE models are not generated by default in the Quartus II software. When enabled, the HSPICE Writer operates as part of the EDA Netlist Writer in the compilation process. When a project is fully compiled or the EDA Netlist Writer is run, the HSPICE Writer generates or updates the HSPICE model files.

Creating HSPICE Model Files Using the Quartus II GUI

To turn on the HSPICE Writer and create HSPICE deck files for each pin in your design, perform the following steps:

- 1. On the Assignments menu, click **Settings**.
- 2. In the **Category** list, click the *■* icon to expand **EDA Tool Settings** and select **Board-Level**.
- 3. Under **Board-Level Signal Integrity Analysis Format**, in the **Format** list, select **HSPICE** (Figure 11–13).

Figure 11–13. Enabling HSPICE Deck and Model Generation in the Settings Dialog Box

	Roard-Level
Files	
 User Libraries (Current Project) 	Specify options for generating output files for use with other EDA tools.
Device	· · · · · · · · · · · · · · · · · · ·
Operating Conditions	Board-Level Symbol
	Format: (None)
Compilation Process Settings	
Early Timing Estimate	Output directory:
Incremental Compilation	
EDA Tool Settings	Board-Level Signal Integrity Analysis
- Design Entry/Synthesis	
Simulation	
 Timing Analysis 	Output directory: board/hspice
- Formal Verification	
Physical Synthesis	- Reard Loual Timing Analysia
Analusia & Sunthesia Sattinga	
E Fitter Settings	Format: <none></none>
Timing Analysis Settings	Output directory:
TimeQuest Timing Analyzer	
Classic Timing Analyzer Settings	
Classic Timing Analyzer Repor	
Assembler	
Design Assistant	
Signai i ap II Logic Analyzer	
E- Simulator Settings	
PowerPlay Power Analyzer Settings	
· · · · · · · · · · · · · · · · · · ·	
	<u>R</u> eset

- HSPICE decks are stored in the *<project directory>/board/hspice* directory by default. To change the directory, click the browse button next to the **Output directory** box, and browse to the desired location.
- 5. Click **OK** to close the **Settings** dialog box.
- 6. If the project has not been compiled, run a full compilation to create a netlist and establish I/O assignments. On the Processing menu, click **Start Compilation**. HSPICE decks for each assigned pin, along with required model library subdirectories, are saved in the specified location.
- If the project has been compiled, you only need to run the EDA Netlist Writer to create or update the HSPICE deck and model files. On the Processing menu, point to Start and click Start EDA Netlist Writer. The HSPICE decks and models are created or updated in the specified location.
- You can save compilation time when creating HSPICE decks the first time for early design simulation by performing only required steps of the compilation process instead of a full compilation of your project. Run Analysis and Synthesis and I/O Assignment Analysis before creating the HSPICE deck files with the EDA Netlist Writer.

Preconfigured HSPICE simulation files generated by the HSPICE Writer are named <*device pin #>_<signal name>_<in* | *out>.sp*. Both an "in" and an "out" file are generated for bidirectional pins. HSPICE files are text files and can be edited with any ASCII text editor.

Two folders, named lib and cir, are also generated. These folders contain the encrypted I/O buffer descriptions and other information needed for running simulations. If you want to move the HSPICE model files to a different location, be sure to move these folders as well. The HSPICE model files include direct references to files in the lib and cir folders. If they are not in the same location, your HSPICE simulations will not run.

Creating HSPICE Model Files Using Tcl Scripting and the Command Line

If you use a script-based flow to compile your project, you can turn on the creation of HSPICE model files by including the following commands in your Tcl script (**.tcl** file):

```
set_global_assignment -name EDA_BOARD_DESIGN_SIGNAL_INTEGRITY_TOOL "HSPICE
(Signal Integrity)"
set_global_assignment -name EDA_OUTPUT_DATA_FORMAT HSPICE -section_id
eda_board_design_signal_integrity
```

set_global_assignment -name EDA_NETLIST_WRITER_OUTPUT_DIR <output_directory> section_id eda_board_design_signal_integrity

The *<output directory>* option specifies the location where HSPICE model files are saved. By default, the following directory is used:

<project directory>/board/hspice

You can run the HSPICE Writer at a command prompt by running the EDA Netlist Writer with the following command:

quartus_eda.exe <project name> --board_signal_integrity=on --format=HSPICE -output_directory=<output directory>

The *<project name>* should match the name of the Quartus II Settings File (.qsf) for your project.

Customizing HSPICE Model Files

HSPICE models generated by the HSPICE Writer can be used for simulation as generated. A default board description is included, and a default simulation is set up to measure rise and fall delays for both input and output simulations which compensates for the double counting problem. However, Altera recommends that you customize the board description to more accurately represent your routing and termination scheme. To do this, open the generated HSPICE model files for all pins you want to simulate, and locate the following commented section:

- * I/O Board Trace and Termination Description

Replace the board description in this section with a description of your board or the board topology you would like to simulate in each HSPICE file.

For input simulations, you must include a description of the device that provides the stimulus for the signal. Locate the following comments that indicate where to place the stimulus device description in the file:

```
* - Replace this with your I/O driver model
```


For more information about configuring and customizing HSPICE model files for simulation, refer to the HSPICE manual.

Design Simulation Using Synopsys HSPICE

Synopsys HSPICE is an industry standard SPICE simulation tool; it is required for running SPICE simulation with Altera's encrypted HSPICE models. While you can use HSPICE model files in other tools, such as Mentor Graphics HyperLynx software, Synopsys HSPICE is still required to decrypt the models. You can use Synopsys HSPICE along with the included Avanwaves viewer to run simulations and view the results as waveforms.

•••

For more information about Synopsys HSPICE, including licensing, installation, usage, support, and training, refer to the HSPICE manual or the Synopsys website at **www.synopsys.com**.

Running HSPICE Simulations

Since simulation parameters are configured directly in the HSPICE model files, running a simulation requires only that you open an HSPICE file in the HSPICE User Interface (hspui) and start the simulation. The hspui window is shown in Figure 11–14.

Click **Open** and browse to the location of the HSPICE model files generated by the Quartus II HSPICE Writer. The default location for HSPICE model files is *<project directory>/board/hspice*. Select the *.sp* file, generated by the HSPICE Writer, for the signal you want to simulate and click **OK**.

Click **Simulate** to run the simulation. The status of the simulation is displayed in the window and saved in a **.lis** file with the same name as the **.sp** file when the simulation is complete. Check the **.lis** file if an error occurs during the simulation requiring a change in the **.sp** file to fix.

Viewing and Interpreting Tabular Simulation Results

The .lis file stores the collected simulation data in tabular form. The default simulation configured by the HSPICE Writer produces delay measurements for rising and falling transitions on both input and output simulations. These measurements are found in the .lis file and named tpd_rise and tpd_fall. For output simulations, these values are already adjusted for the double count. Add either of these measurements to the Quartus II t_{CO} delay to determine the complete delay from the FPGA logic to the load pin. For input simulations, add either of these measurements to the Quartus II t_{SU} and t_H delay values to calculate the complete delay from the far end stimulus to the FPGA logic. Other values found in the .lis file, such as tpd_uncomp_rise, tpd_uncomp_fall, t_dblcnt_rise, and t_dblcnt_fall, are parts of the double count compensation calculation. These values are not needed for further analysis.

Viewing Graphical Simulation Results

You can quickly view the results of the simulation as a graphical waveform display using the Avanwaves viewer included with HSPICE. With the default simulation configured by the HSPICE Writer, you can view the simulated waveforms at both the source and destination in input and output simulations.

To see the waveforms for the simulation, in the HSPICE hspui window, click **Avanwaves**. The Avanwaves viewer opens and displays the Results Browser as shown in Figure 11–15.

Results Browser	,			
Design: D0: C:\altera\6	31\qdesigns\fir_filter\cor	mpile\board\hs	pice\H12_YN_OUT_3OUT	
tr0 Transient: ********	********	****************	***************	<u> </u>
				-
· •				•
Hierarchy:	Types:	Curves:		
	Time A	v(pin)'	v(load)' v(din)'	v(pin_tl)'
				v
Current X-Axis				
TIME			Apply	Default
Filter				
×			Apply	Default
	Close		Help	

Figure 11–15. HSPICE Avanwaves Results Browser

The Results Browser lets you quickly select which waveform to view in the main viewing window. If multiple simulations are run on the same signal, the list at the top of the Results Browser displays the results of each simulation. Click the simulation description to select which simulation to view. By default, the descriptions are derived from the first line of the HSPICE file, so the description may appear as a line of asterisks.

Select the type of waveform to view. With the default simulation, select **Voltages** from the **Types** list to see the source and destination waveforms. On the **Curves** list, double-click the waveform you want to view. The waveform appears in the main viewing window. You can zoom in and out and adjust the view as desired (Figure 11–16).

Figure 11–16. Avanwaves Waveform Viewer

Making Design Adjustments Based on HSPICE Simulations

Based on the results of your simulations, you can make adjustments to the I/O assignments or simulation parameters if required. For example, after you run a simulation and see overshoot or ringing in the simulated signal at the destination buffer as shown in the example in Figure 11–17, you can adjust the drive strength I/O assignment setting to a lower value. Regenerate the HSPICE deck, and run the simulation again to verify that the change fixed the problem.

Figure 11–17. Example of Overshoot in the Avanwaves Waveform Viewer

If there is a discontinuity or any other anomalies at the destination as shown in the example in Figure 11–18, adjust the board description in the Quartus II Board Trace Model (for Stratix II devices) or in the generated HSPICE model files to change the termination scheme or adjust termination component values. After making these changes, regenerate the HSPICE files, if necessary, and rerun the simulation to verify whether your adjustments solved the problem.

Figure 11–18. Example of Signal Integrity Anomaly in the Avanwaves Waveform Viewer

For more information about board-level signal integrity and to learn about ways to improve it with simple changes to your FPGA design, refer to the Altera Signal Integrity Center.

Conclusion

As FPGA devices are used in more high-speed applications, it becomes increasingly necessary to perform board-level signal integrity analysis simulations. You must run such simulations to ensure good signal integrity between the FPGA and any connected devices. The Quartus II software helps to simplify this process with the ability to automatically generate I/O buffer description models easily with the IBIS and HSPICE Writers. IBIS models can be integrated into a third party signal integrity analysis workflow using a tool such as Mentor Graphics HyperLynx software, generating quick and accurate simulation results. HSPICE decks include preconfigured simulations and only require descriptions of board routing and stimulus models to create highly accurate simulation results using Synopsys HSPICE. Either type of simulation helps prevent unnecessary board spins, increasing your productivity and decreasing your costs.

Referenced Documents

This chapter references the following documents:

- AN 283: Simulating Altera Devices with IBIS Models
- AN 424: I/O Simulations Using HSPICE
- *I/O Management* chapter in volume 2 of the *Quartus II Handbook*

Document Revision History

Table 11–3 shows the revision history for this chapter.

Table 11–3. Document Revision History		
Date and Document Version	Changes Made	Summary of Changes
October 2007 v7.2.0	Reorganized "Referenced Documents" on page 11–36.	—
May 2007 v7.1.0	Added Referenced Documents.	—
March 2007 v7.0.0	Updated Quartus II software 7.0 revision and date only. No other changes made to chapter.	—
November 2006 v6.1.0	Initial Release	_

Section V. In-System Design Debugging

Debugging today's FPGA designs can be a daunting task. As your product requirements continue to increase in complexity, the time you spend on design verification continues to rise. To get your product to market as quickly as possible, you must minimize design verification time. To help alleviate the time-to-market pressure, you need a set of verification tools that are powerful, yet easy to use.

The Quartus[®] II software SignalTap[®] II Logic Analyzer and the SignalProbe[™] features analyze internal device nodes and I/O pins while operating in-system and at system speeds. The SignalTap II Logic Analyzer uses an embedded logic analyzer to route the signal data through the JTAG port to either the SignalTap II Logic Analyzer or an external logic analyzer or oscilloscope. The SignalProbe feature uses incremental routing on unused device routing resources to route selected signals to an external logic analyzer or oscilloscope. A third Quartus II software feature, the Chip Editor, can be used in conjunction with the SignalTap II and SignalProbe debugging tools to speed up design verification and incrementally fix bugs uncovered during design verification. This section explains how to use each of these features.

This section includes the following chapters:

- Chapter 12, Quick Design Debugging Using SignalProbe
- Chapter 13, Design Debugging Using the SignalTap II Embedded Logic Analyzer
- Chapter 14, In-System Debugging Using External Logic Analyzers
- Chapter 15, In-System Updating of Memory and Constants
- Chapter 16, Design Debugging Using In-System Sources and Probes
- For information about the revision history for chapters in this section, refer to each individual chapter for that chapter's revision history.

12. Quick Design Debugging Using SignalProbe

QII53008-7.2.0

Introduction

Hardware verification can be a lengthy and expensive process. The SignalProbe incremental routing feature helps reduce the hardware verification process and time-to-market for system-on-a-programmable-chip (SOPC) designs.

Easy access to internal device signals is important in design or debugging. The SignalProbe feature makes design verification more efficient by quickly routing internal signals to I/O pins without affecting the design. Starting with a fully routed design, you can select and route signals for debugging to either previously reserved or currently unused I/O pins.

You can use the SignalProbe feature with the Stratix[®] series, Cyclone[®] series, MAX[®] II, and APEXTM series device families.

This chapter is divided into two sections. If you are using the SignalProbe feature to debug your Stratix series, Cyclone series, and MAX II device, then refer to "Debugging Using the SignalProbe Feature" on page 12–4. If you are using the SignalProbe feature to debug your APEX series device, refer to "Using SignalProbe with the APEX Device Family" on page 12–19.

On-Chip Debugging Tool Comparison

The Quartus[®] II software provides a number of different ways to help debug your FPGA design after programming the device. The SignalTap[®] II Logic Analyzer, SignalProbe, and the Logic Analyzer Interface (LAI) share some similar features, but each has advantages. In some debugging situations, it can be difficult to decide which tool is best to use or whether multiple tools are required. Table 12–1 compares common debugging features between these tools and provides suggestions for which is the best tool to use for a given feature.

Note that " \checkmark " indicates the suggested best tool for the feature, "—" indicates that while the tool is available for that feature, that tool may not give the best results, and "N/A" indicates that the feature is not applicable for the selected tool.

Table 12–1. Sugges	ested On-Chip Debugging Tools for Common Debugging Features Note (1) (Part 1 of 2				
Feature	SignalProbe	Logic Analyzer Interface (LAI)	SignalTap II Embedded Analyzer	Description	
Large Sample Depth	N/A	~	_	An external logic analyzer used with the LAI has a bigger buffer to store more captured data than the SignalTap II Logic Analyzer. No data is captured or stored with SignalProbe.	
Ease in Debugging Timing Issue	N/A	~	_	An external logic analyzer used with the LAI provides you with access to timing mode, enabling you to debug combined streams of data.	
Minimal Effect on Logic Design	~	✓(2)	✓ (2)	SignalProbe incrementally routes nodes to pins, not affecting the design at all. The LAI adds minimal logic to a design, requiring fewer device resources. The SignalTap II Logic Analyzer has little effect on the design when it is set as a separate design partition using incremental compilation.	
Short Compile and Recompile Time	~	✓ (2)	 ✓ (2) 	SignalProbe attaches incrementally routed signals to previously reserved pins, requiring very little recompilation time to make changes to source signal selections. The SignalTap II Logic Analyzer and the LAI can take advantage of incremental compilation to refit their own design partitions to decrease recompilation time.	

Table 12–1. Sugge	1. Suggested On-Chip Debugging Tools for Common Debugging Features Note (1) (Par				
Feature	SignalProbe	Logic Analyzer Interface (LAI)	SignalTap II Embedded Analyzer	Description	
Triggering Capability	N/A	~	_	Although advanced triggering is available in the SignalTap II Logic Analyzer, many additional triggering options are only available on an external logic analyzer when used with the LAI.	
I/O Usage	_	_	~	No additional output pins are required with the SignalTap II Logic Analyzer. Both the LAI and SignalProbe require I/O pin assignments.	
Acquisition Speed	N/A	_	~	The SignalTap II Logic Analyzer can acquire data at speeds of over 200 MHz. The same acquisition speeds are obtainable with an external logic analyzer used with the LAI, but signal integrity issues may limit this.	
No JTAG Connection Required	~	_	_	An FPGA design with the SignalTap II Logic Analyzer or the LAI requires an active JTAG connection to a host running the Quartus II software. SignalProbe does not require a host for debugging purposes.	
External Equipment	_	_	~	The SignalTap II Logic Analyzer logic is completely internal to the programmed FPGA device. No extra equipment is required other than a JTAG connection from a host running the Quartus II software or the stand-alone SignalTap II software. SignalProbe and the LAI require the use of external debugging equipment, such as multimeters, oscilloscopes, or logic analyzers.	

Notes to Table 12–1:

(1) \checkmark indicates the suggested best tool for the feature.

— indicates that while the tool is available for that feature, that tool may not give the best results. N/A indicates that the feature is not applicable for the selected tool.

(2) When used with incremental compilation.

Debugging Using the SignalProbe Feature

The SignalProbe feature enables you to reserve available pins and route internal signals to those reserved pins, while preserving the behavior of your design. SignalProbe is an effective debugging tool providing visibility into your FPGA.

This section describes the SignalProbe process for the Stratix series, Cyclone series, and MAX II device families. Using SignalProbe with APEX devices is described in "Using SignalProbe with the APEX Device Family" on page 12–19. APEX devices do not support post-fit netlist changes made as engineering change orders (ECOs).

You can reserve pins for SignalProbe and assign I/O standards before or after a full compilation. Each SignalProbe source to SignalProbe pin connection is implemented as an ECO change that is applied to your netlist after a full compilation.

To route the internal signals to the device's reserved pins for SignalProbe, perform the following tasks:

- 1. Reserve the SignalProbe Pins, described on page 12–4.
- 2. Perform a Full Compilation, described on page 12–6.
- 3. Assign a SignalProbe Source, described on page 12–6.
- 4. Add Registers to the Pipeline Path to SignalProbe Pin, described on page 12–7.
- 5. Perform a SignalProbe Compilation, described on page 12–9.
- 6. Analyze the Results of the SignalProbe Compilation, described on page 12–10.
- 7. Generate the Programming File, described on page 12–11.

Reserve the SignalProbe Pins

You can reserve SignalProbe pins before or after compiling your design. Reserving SignalProbe pins before a compilation is optional. You can also reserve any unused I/Os of the device for SignalProbe pins after compilation. You can assign sources easily after reserving your SignalProbe pins. The sources for SignalProbe pins are the internal nodes and registers in the post-compilation netlist that you want to probe. Although you can reserve SignalProbe pins using many features within the Quartus II software, including the Pin Planner and the Tcl interface, you should use the **SignalProbe Pins** dialog box to create and edit your SignalProbe pins.

To reserve an available package pin as a SignalProbe pin using the **SignalProbe Pins** dialog box, perform the following steps:

1. On the Tools menu, click **SignalProbe Pins**. The **SignalProbe Pins** dialog box appears (Figure 12–1). The SignalProbe pin name and I/O standard appear as the only fields that are editable if a place and route, or fit, has not been performed.

Figure 12–1. Reserving a SignalProbe Pin in the SignalProbe Pins Dialog Box

	Name	Source	Enabled	Status	Clock	Registers	1/O Standard 🔥
22			Off				-
21	SignalProbe_example		Off				LVTTL
20			Off				
21			Off				~
<i>n</i>			ПĦ				>
Signa	Probe enable						Enable All
							Disable All
IOCK:							
юск: egisters							
CK:							

- 2. In the **Current and potential SignalProbe pins** list, click on a pin from the **Number** column and type your SignalProbe pin name into the **Pin name** box.
- 3. Select an I/O standard from the I/O standard drop-down list.

- 4. Click **Add** to add the new SignalProbe pin or **Change** if you are editing a previously reserved pin for SignalProbe. (Figure 12–1 shows the dialog box editing a previously reserved pin; if you were adding a new SignalProbe pin, the **Add** button appears instead of the **Change** button.)
- 5. Click OK.

Perform a Full Compilation

You must complete a full compilation to generate an internal netlist containing a list of internal nodes to probe to a SignalProbe outpin.

To perform a full compilation, on the processing menu, click **Start Compilation**.

Assign a SignalProbe Source

A SignalProbe source can be any combinational node, register, or pin in your post-compilation netlist. To find a SignalProbe source, use the SignalProbe filter in the Node Finder to filter out all sources that cannot be probed. You may not be able to find a particular internal node because the node may be optimized away during synthesis, or the node cannot be routed to the SignalProbe pin, as it is untappable. For example, internal nodes and registers within the Gigabit transceivers can not be probed because there are no physical routes to the pins available.

To probe virtual I/O pins generated in low-level partitions in an incremental compilation flow, select the source of the logic that feeds the Virtual Pin as your SignalProbe source pin.

To assign a SignalProbe source to your SignalProbe reserved pin, perform the following steps:

- 1. On the Tools menu, click **SignalProbe Pins**. The **SignalProbe Pins** dialog box appears (Figure 12–1 on page 12–5).
- If a SignalProbe reserved pin is shown, click on the pin in the Current and potential SignalProbe pins list. Alternately, you can click on an available pin number in the Current and potential SignalProbe pins list and type a new SignalProbe pin name into the Pin name box.
- 3. In the **Source** box, specify the source name. Click the browse button. The **Node Finder** dialog box appears.
- 4. When you open the Node Finder dialog box from the SignalProbe Pins dialog box, SignalProbe is selected by default in the Filter list. Click List to show a set of nodes that can be probed in the Nodes Found list.
- 5. Select your source node in the **Nodes Found** list and click the ">" button. The selected node appears in the **Selected Nodes** list.
- 6. Click OK.
- 7. After a source is selected, the **SignalProbe enable** option is turned on. Click **Change** or **Add** to accept the changes.
- Because SignalProbe pins are implemented and routed as ECOs, turning the **SignalProbe enable** option on or off is the same as selecting **Apply Selected Change** or **Restore Selected Change** in the Change Manager window. (If the Change Manager window is not visible at the bottom of your screen, from the View menu, point to **Utility Windows** and click **Change Manager**.)
- For more information about the Change Manager for the Chip Planner and Resource Property Editor, refer to the *Engineering Change Management with the Chip Planner* chapter in volume 2 of the *Quartus II Handbook*.

Add Registers to the Pipeline Path to SignalProbe Pin

You can specify the number of registers placed between a SignalProbe source and a SignalProbe pin to synchronize the data with a clock and to control the latency of the SignalProbe outputs. The SignalProbe feature automatically inserts the number of registers specified into the SignalProbe path.

Figure 12–2 shows a single register between the SignalProbe source Reg_b_1 and SignalProbe SignalProbe_Output_2 output pin added to synchronize the data between the two SignalProbe output pins.

When you add a register to a SignalProbe pin, the SignalProbe compilation attempts to place the register to best fit timing requirements. You can place SignalProbe registers near the SignalProbe source to meet f_{MAX} requirements, or you can place the register near the I/O to meet t_{CO} requirements.

Figure 12–2. Synchronizing SignalProbe Outputs with a SignalProbe Register

To pipeline an existing SignalProbe, perform the following steps:

- 1. On the Tools menu, click **SignalProbe Pins**. The **SignalProbe Pins** dialog box appears.
- 2. Select a SignalProbe pin and in the **Clock** box, type the clock name used to drive your registers, or click the browse button to use the Node Finder to select your clock source.
- 3. In the **Registers** box, specify the number of registers you want to add in between the SignalProbe source and the SignalProbe output.
- 4. Click Change.
- 5. Click OK.
- In addition to the clock input for the pipeline registers, you can also specify a reset signal pin for the pipeline registers. To specify a reset pin for the pipeline registers, use the Tcl command make_sp as described in "Scripting Support" on page 12–17.

Perform a SignalProbe Compilation

Perform a SignalProbe compilation to route your SignalProbe pins. On the Processing menu, point to Start and click **Start SignalProbe Compilation** (Figure 12–3). A SignalProbe compilation saves and checks all netlist changes without recompiling the other parts of the design, and completes compilation in a fraction of the time of a full compilation. The design's current placement and routing are preserved.

Figure 12–3. Performing the SignalProbe Compilation

Analyze the Results of the SignalProbe Compilation

After a SignalProbe compilation, you can view the results in the compilation report file. Each SignalProbe pin is displayed in the SignalProbe Fitting Result page in the Fitter section of the Compilation Report (Figure 12–4). To view the status of each SignalProbe pin in the **SignalProbe Pins** dialog box, click **SignalProbe Pins** on the Tools menu.

Figure 12–4. SignalProbe Fitting Results Page in the Compilation Report Window

Compilation Report - Fitter SignalPro								
🞒 🔄 Compilation Report	Fit	tter SignalProb	e Fitting	Results				-
🗃 🖹 Legal Notice		Target	Source	Location	Pipeline	Clock	10	
Flow Summary	H	- argot	000000	Looddon	Registers	Name	Standard	
Flow Settings	1	Signal_probe_5	d[0]	PIN_D4	0		3.3-V LVTTL	
Flow Non-Default Global Settings								
Flow Elapsed Time								
🕀 🚔 🦲 Analysis & Synthesis								
🕀 🚔 🧰 Partition Merge								
E State								
Summary								
Pin-Out File								
🗄 🚭 🧰 Resource Section								
🕀 🚭 🧰 Advanced Fitter Data								
- 🗃 🤃 Suppressed Messages								
SignalProbe Fitting Results								
🗄 🗁 🦾 Assembler								
J								

You can also view the status of each SignalProbe pin the Change Manager window (Figure 12–5). (If the Change Manager window is not visible at the bottom of your GUI, from the View menu, point to **Utility Windows** and click **Change Manager**.)

Figure 12–5. Change Manager Window with SignalProbe Pins

C	hange Mana	iger						×
	Index	Node Name 🛆	Change Type	Old Value	Target Value	Current Value	Disk Value	٦
	± 1	signalprobe 1	SignalProbe	Disconnected	filtref state_m:inst1 filter.idle	filtref state_m:inst1 filter.idle	filtref state_m:inst1 filter.idle	-
	± 2	signalprobe_2	SignalProbe	Disconnected	filtref state_m:inst1 filter.tap1	filtref state_m:inst1 filter.tap1	filtref state_m:inst1 filter.tap1	
	⊞ 3	signalprobe_3	SignalProbe	Disconnected	filtref state_m:inst1 filter.tap2	filtref state_m:inst1 filter.tap2	filtref state_m:inst1 filter.tap2	
	+ 4	signalprobe_4	SignalProbe	Disconnected	filtref state_m:inst1 filter.tap3	filtref state_m:inst1 filter.tap3	[filtref]state_m:inst1[filter.tap3	
	± 5	signalprobe_5	SignalProbe	Disconnected	filtref state_m:inst1 filter.tap4	filtref state_m:inst1 filter.tap4	filtref state_m:inst1 filter.tap4	
	<)		3	>
	野 🐒 Showing All Changes							
	4							

For more information about how to use the Change Manager, refer to the *Engineering Change Management with the Chip Planner* chapter in volume 2 of the *Quartus II Handbook*.

To view the timing results of each successfully routed SignalProbe pin, on the Processing menu, point to Start and click **Start Timing Analysis**.

Generate the Programming File

After a SignalProbe compilation, generate the new programming file containing your successfully routed SignalProbe pins. To generate a programming file, on the Processing menu, point to Start and click **Start Assembler**.

SignalProbe ECO flows

Beginning with the Quartus II software version 6.0, SignalProbe pins are implemented using the same flow as other post-compilation changes made as ECOs. The following section describes SignalProbe ECO flows with and without the Quartus II incremental compilation feature.

SignalProbe ECO Flow with Quartus II Incremental Compilation

Beginning with the Quartus II software version 6.1, the incremental compilation feature is turned on by default. The top-level design is automatically set to a design partition when the incremental compilation feature is on. A design partition during incremental compilation can have different netlist types. (Netlist types can be set to source HDL, post synthesis, or post-fit.) The netlist type indicates whether that partition should be resynthesized or refit during Quartus II incremental compilation. Incremental compilation saves you time and preserves the placement of unchanged partitions in your design if small changes must be made to some partitions late in the design cycle.

For more information about the Quartus II incremental compilation feature, refer to the *Quartus Incremental Compilation Feature for Hiearchical and Team-Based Design* chapter in volume 1 of the *Quartus II Handbook*.

The behavior of SignalProbe pins during an incremental compilation depends on the Netlist Type setting. If the top-level partition netlist type is set to post-fit, SignalProbe ECOs are retained when you recompile the design.

If some SignalProbe sources from lower-level partitions are set to a netlist type other than post-fit, then during re-compilation the Quartus II fitter uses the post-fit netlist type for those partitions as well, and a warning message appears in the message window.

All of the partitions containing SignalProbe ECOs are linked together and must use the post-fit netlist type. The same rule applies when your top-level partition is set to post-synthesis and one of the lower-level partitions' netlist type is set to post-fit. When you recompile your design, the Quartus II fitter uses the post-fit netlist for the top-level partition and SignalProbe ECOs are retained.

The behavior is different in the case that your top-level partition netlist type is set to post-synthesis and you have no other lower-level partitions defined, or the lower-level partition netlist types are also set to post-synthesis. If you create SignalProbe ECOs and re-compile the design, your SignalProbe ECOs are not retained and a warning message appears in the messages window. The warning indicates that ECO modifications are discarded; however, all of the ECO information is retained in the Change Manager. In this case, you can apply SignalProbe ECOs from the Change Manager and perform the **Check and Save All Netlist Changes** step as described in "SignalProbe ECO Flow without Quartus Incremental Compilation" on page 12–12.

SignalProbe ECO Flow without Quartus Incremental Compilation

If you do not use the Quartus II incremental compilation feature and you implement SignalProbe pins after the initial compilation of your design, then SignalProbe ECOs are not retained during recompilation. However, all of the SignalProbe ECOs remain in the Change Manager.

To apply a SignalProbe ECO, right-click the Change Manager and select **Apply Selected Change** (Figure 12–6). (If the Change Manager window is not visible at the bottom of your screen, from the View menu, point to **Utility Windows** and click **Change Manager**.)

Index 🛆	Node Name		Change Type
₽ 1	lmy signalprobe	Apply Selected Change Restore Selected Change Delete Selected Change	SignalProbe
		Revert To Last Saved Netlist Check & Save All Netlist Change	35
		Export Show Locate	> > >
		 Enable Docking Close 	
•			

Figure 12–6. Applying SignalProbe ECOs

Alternately, you can use the **SignalProbe Pins** dialog box to enable the ECOs (Figure 12–7). This has the same effect as applying the SignalProbe ECOs within the Change Manager.

Figure 12–7. Enabling ECOs in the SignalProbe Pins Dialog Box

	Reserve pins as SignalPicke pins and enable SignaPicke routing. SignaPicke pin information can be viewed in the Change Manager.						
	Current and	potential SignaPhobe pi	ne :				
	Number	Natur	Source	Ena	Status	Click	Register
	0015540	signite_1		08	0		
	SignaPhot	be pin settings				-	Change
	Parinane	Serie (Series)				-	Delete
SignalProbe Enable	Signal	Pole make				-	Enable A
Signali Tobe Litable	Dock:					-1	Disible A
Checkbox	Registers	0				-	
	UD stand	ad 33VLVTTL					
	F					OK.	Cancel

After applying the selected SignalProbe ECO, you can either click **Check and Save All Netlist Changes** from the menu within the Change Manager (Figure 12–8) or from Processing menu, point to Start and click **Start Check and Save All Netlist Changes** to perform the ECO compilation.

Figure 12–8. Check and Save All Netlist Changes

Common Questions About the SignalProbe Feature

The following are answers to common questions about the SignalProbe feature.

Why Did I Get the Following Error Message, "Error: There are No Enabled SignalProbes to Process"?

This error message is generated when a SignalProbe compilation was attempted with either no SignalProbe pins to route, or with all SignalProbe pins disabled.

This may occur if you perform a SignalProbe compilation after a full compilation. For example, when a full compilation is performed, all SignalProbe pins are disabled. You can create or re-enable your SignalProbe pins in the **SignalProbe Pins** dialog box.

How Can I Retain My SignalProbe ECOs during Re-compilation of My Design?

To retain your existing ECOs during recompilation of your design, you must use Quartus II incremental compilation. To learn more about the flow, refer to "SignalProbe ECO Flow with Quartus II Incremental Compilation" on page 12–11.

Why Did My SignalProbe Source Disappear in the Change Manager?

The SignalProbe source information for each SignalProbe is stored in the project database (**db** directory). SignalProbe pins are post-compilation changes to your netlist and are interpreted as ECOs. These changes are stored in the project **db** and if the project database is removed, the SignalProbe source information is lost and will not appear in the

SignalProbe Pins dialog box. To restore your SignalProbe pins after the design compilation step, source the **signalprobe_qsf.tcl** script located in your project directory.

You can restore your SignalProbe source information by typing the following command from a command prompt:

quartus_cdb -t signalprobe_qsf.tcl

After the compilation with Quartus II software, you must close your design project before typing the above command. Once the command finishes, you can open your design project again and the change manager shows the sources for SignalProbe pins.

What is an ECO and Where Can I Find More Information on ECO?

ECOs are late design cycle changes made to your design that do not alter functionality and timing. For more information about ECO and using the Change Manager, refer to the *Engineering Change Management with the Chip Planner* chapter in volume 2 of the *Quartus II Handbook*.

How Do I Migrate My Previous SignalProbe Assignments in the Quartus II Software Versions 5.1 and below to Versions 6.0 and Higher?

In earlier versions of the Quartus II software, SignalProbe pins were stored in the Quartus II Settings File (**.qsf**). These assignments are automatically converted into ECO changes when you open the **SignalProbe** dialog box or when you start a SignalProbe compilation in the Quartus II software versions 6.0 and higher.

For example, the SignalProbe source assignment from a Quartus II Settings File is removed and added to the Change Manager as an ECO after the **SignalProbe** dialog box is opened, or when you perform a SignalProbe compilation.

Example 12–1. SignalProbe Assignments in the Quartus II Settings File

```
set_location_assignment PIN_C22 -to my_signalprobe_pin
set_instance_assignment -name RESERVE_PIN "AS SIGNALPROBE OUTPUT" -to my_signalprobe_pin
set_instance_assignment -name IO_STANDARD LVTTL -to my_signalprobe_pin
set_instance_assignment -name SIGNALPROBE_ENABLE ON -to my_signalprobe_pin
set_instance_assignment -name SIGNALPROBE_SOURCE inst5[0] -to my_signalprobe_pi
```

Example 12–2. SignalProbe Assignments in the Quartus II Settings File after Opening the SignalProbe Pins Dialog Box

set_location_assignment PIN_C22 -to my_signalprobe_pin
set_instance_assignment -name RESERVE_PIN "AS SIGNALPROBE OUTPUT" -to my_signalprobe_pin
set_instance_assignment -name IO_STANDARD LVTTL -to my_signalprobe_pin
set_instance_assignment -name SIGNALPROBE_ENABLE ON -to my_signalprobe_pin

What are all the Changes for the SignalProbe Feature between the Quartus II Software Version 5.1 and Earlier, and Version 6.0 and Later?

The following list of changes affect users of the SignalProbe feature in the Quartus II software versions 5.1 and below with Stratix series, Cyclone series, and MAX II device families.

- In Quartus II software versions 5.1 and earlier, the SignalProbe Pins dialog box was accessed on the Assignments menu. To access it with the Quartus II software version 6.0 and later, on the Tools menu, click SignalProbe Pins.
- A full compilation is required before making SignalProbe connections. However, you can still reserve pins before compilation for later use by SignalProbe. You can reserve pins by creating a SignalProbe in the SignalProbe dialog box without specifying a source. This is the same behavior as in the Quartus II software version 5.1.
- To route the SignalProbe pins, you must perform a SignalProbe compilation after a full compilation. The Automatically route SignalProbe signals during compilations and Modify latest fitting results during SignalProbe compilation options are no longer supported.
- After subsequent compiles, full or incremental, existing SignalProbe pins are disabled and are not present in the post-compilation netlist. To add them back, enable the SignalProbe pins and perform a SignalProbe compilation.
- SignalProbe pins are not controlled via assignments in the Quartus II Settings File because they are now ECOs. Existing Quartus II Settings Files automatically convert to ECOs when a SignalProbe compilation is performed or when the SignalProbe dialog box is opened.
- The Tcl interface for creating SignalProbe pins has improved and is a part of the Chip Planner package ::quartus::chip_editor. Refer to "Scripting Support" on page 12–17.
- Previously, the quartus_fit --signalprobe command was used to perform a SignalProbe compilation. This is not supported in the Quartus II software version 6.0 and later, and is replaced by the improved Tcl interface and the check_netlist_and_save Tcl command.

- The SignalProbe timing report generated after a successful SignalProbe compilation is not available in the Quartus II software version 6.0 and later. You can view the timing results of your SignalProbe pins in the SignalProbe Fitting Results, under the Fitter report, or in the t_{CO} results page of the Timing report.
- You can not make SignalProbe pins in the Assignment Editor. Use the SignalProbe Pins dialog box to make and edit your SignalProbe pins.

Scripting Support

You can run procedures and make settings described in this chapter in a Tcl script. You can also run some procedures at a command prompt. For detailed information about scripting command options, refer to the Quartus II command-line and Tcl API Help browser. To run the Help browser, type the following command at the command prompt:

quartus_sh --qhelp 🕶

The *Scripting Reference Manual* includes the same information in PDF form.

For more information about Tcl scripting, refer to the *Tcl Scripting* chapter in volume 2 of the *Quartus II Handbook*. For more information about all settings and constraints in the Quartus II software, refer to the *Quartus II Settings File Reference Manual*. For more information about command-line scripting, refer to the *Command-Line Scripting* chapter in volume 2 of the *Quartus II Handbook*.

Make a SignalProbe Pin

You can make a SignalProbe pin by typing the following command:

make_sp [-h | -help] [-long_help] [-clk <clk>] [-io_std <io_std>] \
-loc <loc> -pin_name <pin name> [-regs <regs>] [-reset <reset>] \
-src name <source name> +

Delete a SignalProbe Pin

You can delete a SignalProbe pin by typing the following command:

delete_sp [-h | -help] [-long_help] -pin_name <pin name> +

Enable a SignalProbe Pin

You can enable a SignalProbe pin by typing the following command:

enable_sp [-h | -help] [-long_help] -pin_name <pin name> 🕶

Disable a SignalProbe Pin

You can disable a SignalProbe pin by typing the following command:

disable_sp [-h | -help] [-long_help] -pin_name <pin name> +

Perform a SignalProbe Compilation

You can perform a SignalProbe compilation by typing the following command:

check_netlist_and_save ←

Migrating Previous SignalProbe Pins to the Quartus II Software Versions 6.0 and Later

You can migrate previous SignalProbe pins to the Quartus II software versions 6.0 and later by typing the following command:

convert signal probes 🕶

Script Example

Example 12–3 is a script that creates a SignalProbe pin called sp1 and connecting it to source node reg1 in a project that was already compiled.

Example 12–3. Creating a SignalProbe Pin Called sp1

Package require ::quartus::chip_editor Project_open project Read_netlist Make_sp -pin_name sp1 -src_name reg1 Check_netlist_and_save Project_close

Using SignalProbe with the APEX Device Family

APEX devices do not support post-fit netlist changes made as ECOs. You can use SignalProbe compilation to route internal signals to output pins incrementally. The SignalProbe incremental routing feature does not affect design behavior.

To use the SignalProbe feature, follow these steps:

- 1. Reserve SignalProbe pins. For more information, refer to "Reserve the SignalProbe Pins" on page 12–4.
- 2. Assign a SignalProbe source to each SignalProbe pin.
- 3. Perform a SignalProbe compilation.
- 4. Analyze the results of a SignalProbe compilation.

Adding SignalProbe Sources

A SignalProbe source is a signal in the post-compilation design database with a possible route to an output pin. You can assign a SignalProbe source to a SignalProbe pin, or an unused output pin by performing the following steps:

- 1. On the Tools menu, click **SignalProbe Pins**. The **SignalProbe Pins** dialog box appears.
- 2. In the **Current and potential SignalProbe pins** list, select the SignalProbe pin to which you want to add a SignalProbe source.
- 3. Click **Browse** and select a SignalProbe source.
- 4. Click OK.

The **Node Finder** dialog box displays with the SignalProbe filter selected (Figure 12–9). Click **List** to view all of the available SignalProbe sources. If you cannot find a specific node with the

SignalProbe filter, then the node either has either been removed by the Quartus II software during optimization, or placed in the device where there are no possible routes to a pin.

Figure 12–9. Available SignalProbe Sources in the Node Finder

Node Finder				×
Named:	Filter: SignalPro	obe 💌 Customize	List Stop	OK Cancel
Nodes Found: Name Newt reset yn_out[0]	▲ ● ●	Selected Nodes: Name If itrefinewt C	A:	

5. In the **Assign SignalProbe Pins** dialog box, click **Add** if a source has not been assigned to the SignalProbe pin.

or

Click **Change** for a SignalProbe pin that has a source already assigned.

- When the source of the SignalProbe pin is added or changed, the SignalProbe pin is automatically enabled. To disable a SignalProbe pin, turn off **SignalProbe enable**.
- 6. Click OK.

Performing a SignalProbe Compilation

You can start a SignalProbe compilation manually or automatically after a full compilation. A SignalProbe compilation includes the following:

- Validates SignalProbe pins.
- Validates your specified SignalProbe sources.
- If applicable, adds registers into SignalProbe paths.
- Attempts to route from SignalProbe sources through registers to SignalProbe pins.

To run the SignalProbe compilation automatically after a full compilation, on the Tools menu, click **SignalProbe Pins**. In the **SignalProbe Pins** dialog box, turn on **Automatically route SignalProbe signals during compilation**. To run a SignalProbe compilation manually after a full compilation, on the Processing menu, point to Start and click **Start SignalProbe Compilation**.

You must run the Fitter before a SignalProbe compilation. The Fitter generates a list of all internal nodes that can be used as SignalProbe sources.

You can enable and disable each SignalProbe pin by turning the **SignalProbe enable** option on and off in the **SignalProbe Pins** dialog box.

Running SignalProbe with Smart Compilation

Optimally, you can run a smart compilation, which reduces compilation time by running only necessary modules during compilation. However, a full compilation is required if any design files, Analysis and Synthesis settings, or Fitter settings have changed.

To turn on smart compilation, on the Assignments menu, click **Settings**. In the **Category** list, select **Compilation Process Settings and** turn on **Use Smart compilation**.

If you run a SignalProbe compilation with smart compilation turned on, and there are changes to a design file or settings related to the Analysis and Synthesis or Fitter modules, the following message is displayed:

Error: Can't perform SignalProbe compilation because design requires a full compilation.

You should turn smart compilation on, which allows you to work with the latest settings and design files.

Understanding the Results of a SignalProbe Compilation

After a SignalProbe compilation, the results appear in two sections of the compilation report file. The fitting results and status (Table 12–2) of each SignalProbe pin is displayed in the SignalProbe Fitting Result page in the Fitter section of the compilation report (Figure 12–10).

The timing results of each successfully routed SignalProbe pin is displayed in the **SignalProbe source to output delays** page in the Timing Analysis section of the compilation report (Figure 12–11).

After a SignalProbe compilation, the processing page of the Messages window also provides the results of each SignalProbe pin and displays slack information for each successfully routed SignalProbe pin.

Table 12–2. Status Values					
Status	Description				
Routed	Connected and routed successfully				
Not Routed	Not enabled				
Failed to Route	Failed routing during last SignalProbe compilation				
Need to Compile	Assignment changed since last SignalProbe compilation				

Figure 12–10. SignalProbe Fitting Results Page in the Compilation Report Window

Figure 12–11. SignalProbe Source to Output Delays Page in the Compilation Report Window

Analyzing SignalProbe Routing Failures

The SignalProbe can begin compilation; however, one of the following reasons can prevent complete compilation:

- Route unavailable—the SignalProbe compilation failed to find a route from the SignalProbe source to the SignalProbe pin because of routing congestion
- Invalid or nonexistent SignalProbe source—you entered a SignalProbe source that does not exist or is invalid
- Unusable output pin—the output pin selected is found to be unusable

Routing failures can occur if the SignalProbe pin's I/O standard conflicts with other I/O standards in the same I/O bank.

If routing congestion prevents a successful SignalProbe compilation, you can allow the compiler to modify the routing to the specified SignalProbe source. On the Tools menu, click **SignalProbe Pins** and turn on **Modify latest fitting results during SignalProbe compilation**. This setting allows the Fitter to modify existing routing channels used by your design.

Turning on **Modify latest fitting results during SignalProbe compilation** can change the performance of your design.

SignalProbe Scripting Support for APEX Devices

You can run procedures and make settings described in this chapter in a Tcl script. You can also run some procedures at a command prompt. For detailed information about scripting command options, refer to the Quartus II Command-Line and Tcl API Help browser. To run the Help browser, type the following command at the command prompt:

```
quartus_sh --qhelp 🕶
```

The *Scripting Reference Manual* includes the same information in PDF form.

For more information about Tcl scripting, refer to the *Tcl Scripting* chapter in volume 2 of the *Quartus II Handbook*. Refer to the *Quartus II Settings File Reference Manual* for information about all settings and constraints in the Quartus II software. For more information about command-line scripting, refer to the *Command-Line Scripting* chapter in volume 2 of the *Quartus II Handbook*.

Reserving SignalProbe Pins

Use the following Tcl commands to reserve a SignalProbe pin.

```
set_location_assignment <location> -to <SignalProbe pin name>
set_instance_assignment -name RESERVE_PIN \
"AS SIGNALPROBE OUTPUT" -to <SignalProbe pin name> +
```

Valid locations are pin location names, such as Pin_A3.

For more information about reserving SignalProbe pins, refer to "Reserve the SignalProbe Pins" on page 12–4.

Adding SignalProbe Sources

Use the following Tcl commands to add SignalProbe sources. For more information about adding SignalProbe sources, refer to "Adding SignalProbe Sources" on page 12–19. The following command assigns the node name to a SignalProbe pin:

```
set_instance_assignment -name SIGNALPROBE_SOURCE \
<node name> -to <SignalProbe pin name> +
```

The next command turns on the SignalProbe routing. You can turn off individual SignalProbe pins by specifying OFF instead of ON with the following command:

```
set_instance_assignment -name SIGNALPROBE_ENABLE ON \
-to <SignalProbe pin name> +
```

Assigning I/O Standards

Use the following Tcl command to assign an I/O standard to a pin:

set_instance_assignment -name IO_STANDARD \
<I/O standard> -to <SignalProbe pin name> +

For a list of valid I/O standards, refer to the I/O Standards general description in the Quartus II Help.

Adding Registers for Pipelining

Use the following Tcl commands to add registers for pipelining:

set_instance_assignment -name SIGNALPROBE_CLOCK \
<clock name> -to <SignalProbe pin name>

set_instance_assignment \
-name SIGNALPROBE_NUM_REGISTERS <number of registers> \
-to <SignalProbe pin name> +

Run SignalProbe Automatically

Use the following Tcl command to run SignalProbe automatically after a full compile.

```
set_global_assignment -name \
SIGNALPROBE_DURING_NORMAL_COMPILATION ON
```

For more information about running SignalProbe automatically, refer to "Performing a SignalProbe Compilation" on page 12–20.

Run SignalProbe Manually

You can run SignalProbe manually with a Tcl command or the quartus_fit command at a command prompt.

```
execute flow -signalprobe -
```

The execute_flow command is in the flow package. At a command prompt, type the following command:

quartus_fit <project name> --signalprobe +

For more information about running SignalProbe manually, refer to "Performing a SignalProbe Compilation" on page 12–20.

Enable or Disable All SignalProbe Routing

Use the Tcl command in Example 12–4 to turn on or turn off SignalProbe routing. In the set_instance_assignment command, specify ON to turn on SignalProbe routing or OFF to turn off SignalProbe routing.

```
Example 12–4. Turning SignalProbe On or Off with Tcl
```

```
set spe [get_all_assignments -name SIGNALPROBE_ENABLE] \
foreach_in_collection asgn $spe {
   set signalprobe_pin_name [lindex $asgn 2]
   set_instance_assignment -name SIGNALPROBE_ENABLE -to \
$signalprobe_pin_name <ON|OFF> }
```

For more information about enabling or disabling SignalProbe routing, refer to page 12–20.

	Running SignalProbe with Smart Compilation
	Use the following Tcl command to turn on Smart Compilation :
	set_global_assignment -name SMART_RECOMPILE ON 🕶
	For more information, refer to "Running SignalProbe with Smart Compilation" on page 12–21.
	Allow SignalProbe to Modify Fitting Results
	Use the following Tcl command to turn on Modify latest fitting results .
	set_global_assignment -name \ SIGNALPROBE_ALLOW_OVERUSE ON 🕶
	For more information, refer to "Analyzing SignalProbe Routing Failures" on page 12–23.
Conclusion	Using the SignalProbe feature can significantly reduce the time required compared to a full recompilation. You can use the SignalProbe feature to get quick access to internal design signals to perform system-level debugging.
Referenced Documents	 This chapter references the following documents: <i>Command-Line Scripting</i> chapter in volume 2 of the <i>Quartus II Handbook</i> <i>Engineering Chapse Management with the Chin Planner</i> chapter in
	 Congretering Change Humgenetit with the Chip Funder Chapter Intervolume 2 of the Quartus II Handbook Quartus II Incremental Compilation for Hiearchical and Team-Based Design chapter in volume 1 of the Quartus II Handbook Quartus II Settings File Reference Manual Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document Revision History

Table 12–3 shows the revision history for this chapter.

Table 12–3. Docun	Table 12–3. Document Revision History					
Date and Document Version	Changes Made	Summary of Changes				
October 2007 v7.2.0	Reorganized "Referenced Documents" on page 12–26.	—				
May 2007 v7.1.0	Added Referenced Documents, minor updates to address ADoQS issues.	_				
March 2007 v7.0.0	Updated Quartus II software 7.0 revision and date only. No other changes made to chapter.	—				
November 2006 v6.1.0	 Updated for the Quartus II software version 6.1.0: New section (SignalProbe ECO flows) added to explain how SignalProbe pins' ECOs are affected during Quartus II Incremental Compilation. QandA added to answer: How Can I Retain My SignalProbe ECOs during Re-compilation of My Design. 	Quartus II software version 6.1.0 added more ECO features; the chapter updated to reflect this change.				
May 2006 v6.0.0	Updated for the Quartus II software version 6.0.0: Documented new SignalTap features.	—				
December 2005 v5.1.1	Added SMART_RECOMPILE assignment.	—				
October 2005 v5.1.0	Updated for the Quartus II software version 5.1.	_				
May 2005 v5.0.0	Minor updates for Quartus II software 5.0	_				
December 2004 v2.1	 Chapter 9 was formerly Chapter 8. Updates to tables and figures. New functionality for Quartus II software 4.2. 	_				
June 2004 v2.0	Updates to tables, figures.New functionality for Quartus II software 4.1.	_				
February 2004 v1.0	Initial release.	—				

13. Design Debugging Using the SignalTap II Embedded Logic Analyzer

QII53009-7.2.0

Introduction

The phenomenal growth in design size and complexity continues to make design verification a critical bottleneck for current FPGA systems. Limited access to internal signals, complex FPGA packages, and PCB electrical noise all contribute to making design debugging the most challenging process of the design cycle. More than 50% of the design cycle time can be spent on debugging and verifying the design. To help with the process of design debugging, Altera[®] provides a solution that enables a designer to examine the behavior of internal signals, without using extra I/O pins, while the design is running at full speed on an FPGA device.

The SignalTap[®] II Embedded Logic Analyzer is scalable, easy to use, and is included with the Quartus[®] II software subscription. This logic analyzer helps debug an FPGA design by probing the state of the internal signals in the design without the use of external equipment. Defining custom trigger-condition logic provides greater accuracy and improves the ability to isolate problems. The SignalTap II Embedded Logic Analyzer does not require external probes, or changes to the design files to capture the state of the internal nodes or I/O pins in the design. All captured signal data is conveniently stored in device memory until the designer is ready to read and analyze the data.

The topics in this chapter include:

- "On-Chip Debugging Tool Comparison" on page 13–5
- "Design Flow Using the SignalTap II Logic Analyzer" on page 13–7
- "SignalTap II Logic Analyzer Task Flow" on page 13–8
- "Add the SignalTap II Logic Analyzer to Your Design" on page 13–10
- "Configure the SignalTap II Logic Analyzer" on page 13–18
- "Define Triggers" on page 13–30
- "Program the Target Device or Devices" on page 13–57
- "Run the SignalTap II Logic Analyzer" on page 13–59
- "View, Analyze, and Use Captured Data" on page 13–63
- "Other Features" on page 13–67
- "SignalTap II Scripting Support" on page 13–72
- "Design Example: Using SignalTap II Logic Analyzers in SOPC Builder Systems" on page 13–77
- Custom Triggering Flow Application Examples" on page 13–77

The SignalTap II Embedded Logic Analyzer is a next-generation, system-level debugging tool that captures and displays real-time signal behavior in a system-on-a-programmable-chip (SOPC) or any FPGA design. The SignalTap II Embedded Logic Analyzer supports the highest number of channels, largest sample depth, and fastest clock speeds of any embedded logic analyzer in the programmable logic market. Figure 13–1 shows a block diagram of the components that make up the SignalTap II Embedded Logic Analyzer.

Figure 13–1. SignalTap II Logic Analyzer Block Diagram Note (1)

Note to Figure 13–1:

(1) This diagram assumes that the SignalTap II Logic Analyzer was compiled with the design as a separate design partition using the Quartus II Incremental Compilation feature. This is the default setting for new projects in the Quartus II software. If incremental compilation is disabled or not used, the SignalTap II logic is integrated with the design. For information about the use of incremental compilation with SignalTap II, refer to "Faster Compilations with Quartus II Incremental Compilation" on page 13–51.

This chapter is intended for any designer who wants to debug their FPGA design during normal device operation without the need for external lab equipment. Because the SignalTap II Embedded Logic Analyzer is similar to traditional external logic analyzers, familiarity with external logic analyzer operations is helpful but not necessary. To take advantage of faster compile times when making changes to the SignalTap II Logic Analyzer, knowledge of the Quartus II Incremental Compilation feature is helpful.

 For information about using the Quartus II Incremental Compilation feature, refer to the *Incremental Compilation for Hierarchical and Team-Based Design* chapter in the *Quartus II Handbook*.

Hardware and Software Requirements

The following components are required to perform logic analysis with the SignalTap II Embedded Logic Analyzer:

- Quartus II design software or Quartus II Web Edition (with TalkBack feature enabled) or SignalTap II Logic Analyzer standalone software
- Download/Upload Cable
- Altera development kit or user design board with JTAG connection to device under test

Captured data is stored in the device's memory blocks and transferred to the Quartus II software waveform display with a JTAG communication cable, such as EthernetBlaster or USB-Blaster[™]. Table 13–1 summarizes some of the features and benefits of the SignalTap II Embedded Logic Analyzer.

Table 13–1. SignalTap II Features and L	Table 13–1. SignalTap II Features and Benefits (Part 1 of 2)					
Feature	Benefit					
Multiple logic analyzers in a single device	Captures data from multiple clock domains in a design at the same time					
Multiple logic analyzers in multiple devices in a single JTAG chain	Simultaneously captures data from multiple devices in a JTAG chain					
Plug-In Support	Easily specifies nodes, triggers, and signal mnemonics for IP, such as the Nios $^{\ensuremath{\mathbb{R}}}$ II embedded processor					
Up to 10 basic or advanced trigger conditions for each analyzer instance	Enables more complex data capture commands to be sent to the logic analyzer, providing greater accuracy and problem isolation					
Power-Up Trigger	Captures signal data for triggers that occur after device programming but before manually starting the logic analyzer					
State-Based Triggering Flow	Enables you to organize your triggering conditions to precisely define what your embedded logic analyzer will capture					
Incremental Compilation	Modifies the SignalTap II Logic Analyzer monitored signals and triggers without performing a full compilation, saving time					
Flexible buffer acquisition modes	Allows more accurate data collection by setting each trigger to sample at different ranges relative to the triggering event, in circular or segmented modes					

Table 13–1. SignalTap II Features and Benefits (Part 2 of 2)					
Feature	Benefit				
MATLAB integration with included MEX function	Acquires the SignalTap II Logic Analyzer captured data into a MATLAB integer matrix				
Up to 1,024 channels in each device	Samples many signals and wide bus structures				
Up to 128K samples in each device	Captures a large sample set for each channel				
Fast clock frequencies	Collects sample data at up to 270 MHz				
Resource usage estimator	Provides estimate of logic and memory device resources used by SignalTap II Embedded Logic Analyzer configurations				
No additional cost	The SignalTap II Logic Analyzer is included with a Quartus II subscription and with the Quartus II Web Edition (with TalkBack enabled)				

For a list of supported device families, refer to the Quartus II Help.

On-Chip Debugging Tool Comparison

The Quartus II software provides a number of different ways to help debug your FPGA design after programming the device. The SignalTap II Logic Analyzer, SignalProbe, and the Logic Analyzer Interface (LAI) share some similar features, but each has its own advantages. In some debugging situations, it can be difficult to decide which tool is best to use or whether multiple tools are required. Table 13–2 compares common debugging features between these tools and provides suggestions about which is the best tool to use for a given feature.

Table 13–2. Suggested On-Chip Debugging Tools for Common Debugging Features Note (1) (Part 1 of 2)							
Feature	SignalProbe	Logic Analyzer Interface (LAI)	SignalTap II Embedded Analyzer	Description			
Large Sample Depth	N/A	~	_	An external logic analyzer used with the LAI has a bigger buffer to store more captured data than the SignalTap II Logic Analyzer. No data is captured or stored with SignalProbe.			
Ease in Debugging Timing Issue	N/A	~	_	An external logic analyzer used with the LAI provides you with access to timing mode, enabling you to debug combined streams of data.			
Minimal Effect on Logic Design	~	✓(2)	✓ (2)	The LAI adds minimal logic to a design, requiring fewer device resources. The SignalTap II Logic Analyzer has little effect on the design when it is set as a separate design partition using incremental compilation. SignalProbe incrementally routes nodes to pins, not affecting the design at all.			
Short Compile and Recompile Time	~	 ✓ (2) 	 ✓ (2) 	SignalProbe attaches incrementally routed signals to previously reserved pins, requiring very little recompilation time to make changes to source signal selections. The SignalTap II Logic Analyzer and the LAI can take advantage of incremental compilation to refit their own design partitions to decrease recompilation time.			
Triggering Capability	N/A	~	~	The SignalTap II Logic Analyzer offers triggering capabilities that are comparable to commercial logic analyzers.			
I/O Usage	—	—	~	No additional output pins are required with the SignalTap II Logic Analyzer. Both the LAI and SignalProbe require I/O pin assignments.			

Table 13–2. Suggested On-Chip Debugging Tools for Common Debugging Features Note (1) (Part 2 of 2)							
Feature	SignalProbe	Logic Analyzer Interface (LAI)	SignalTap II Embedded Analyzer	Description			
Acquisition Speed	N/A	_	~	The SignalTap II Logic Analyzer can acquire data at speeds of over 200 MHz. The same acquisition speeds are obtainable with an external logic analyzer used with the LAI, but signal integrity issues may limit this.			
No JTAG Connection Required	~	_	_	An FPGA design with the SignalTap II Logic Analyzer or the LAI requires an active JTAG connection to a host running the Quartus II software. SignalProbe does not require a host for debugging purposes.			
External Equipment	_	_	~	The SignalTap II Logic Analyzer logic is completely internal to the programmed FPGA device. No extra equipment is required other than a JTAG connection from a host running the Quartus II software or the stand-alone SignalTap II software. SignalProbe and the LAI require the use of external debugging equipment, such as multimeters, oscilloscopes, or logic analyzers.			

Notes to Table 13–2:

(1) 🗸 indicates the suggested best tool for the feature. — indicates that while the tool is available for that feature, that tool may not give the best results. N/A indicates that the feature is not applicable for the selected tool.

(2)When used with incremental compilation.

> If you have signals that you want to monitor with external equipment without adding the logic resources required by the SignalTap II Logic Analyzer, consider the use of these other tools available in the Quartus II software. Signals can be quickly routed out to reserved I/O pins as part of an ECO change using SignalProbe, while multiplexed banks of many signals can be made visible on only a few pins with the use of the LAI.

For information about the use of these tools, refer to the Quick Design Debugging Using SignalProbe and In-System Debugging Using External Logic Analyzers chapters in volume 3 of the Quartus II Handbook.

Design Flow Using the SignalTap II Logic Analyzer

Figure 13–2 shows a typical overall FPGA design flow for using the SignalTap II Logic Analyzer in your design. A SignalTap II file (.stp) is added to and enabled in your project, or a SignalTap II HDL function, created with the MegaWizard[®] Plug-In Manager, is instantiated in your design. The diagram shows the flow of operations from initially adding the SignalTap II Logic Analyzer to your design to the final device configuration, testing, and debugging.

Figure 13–2. SignalTap II FPGA Design and Debugging Flow

SignalTap II Logic Analyzer Task Flow

To use the SignalTap II Logic Analyzer to debug your design, you perform a number of tasks to add, configure, and run the logic analyzer. Figure 13–3 shows a typical flow of the tasks you complete to debug your design. Refer to the appropriate section of this chapter for more information about each of these tasks.

Figure 13–3. SignalTap II Logic Analyzer Task Flow

Add the SignalTap II Logic Analyzer to Your Design

Create a SignalTap II file or create a parameterized HDL instance representation of the logic analyzer using the MegaWizard Plug-In Manager. If you want to monitor multiple clock domains simultaneously, you can add additional instances of the logic analyzer to your design, limited only by the available resources in your device.

Configure the SignalTap II Logic Analyzer

Once the SignalTap II Logic Analyzer is added to your design, you configure it to monitor the signals you want. You can manually add signals or use a plug-in, such as the Nios II plug-in, to quickly add entire sets of associated signals for a particular IP. You can also specify settings for the data capture buffer, such as its size, the method in which data is captured and stored, and the device memory type to use for the buffer in devices that support memory type selection.

Define Triggers

The SignalTap II Logic Analyzer continuously captures data while it is running. To capture and store specific signal data, you set up triggers that tell the logic analyzer under what conditions to stop capturing data. The SignalTap II Logic Analyzer lets you define Runtime Triggers that range from very simple, such as the rising edge of a single signal, to very complex, involving groups of signals, extra logic, and multiple conditions. Power-Up Triggers give you the ability to capture data from trigger events occurring immediately after the device enters user-mode after configuration.

Compile the Design

With the SignalTap II file configured and triggers defined, you compile your project as usual to include the logic analyzer in your design. Since you may need to frequently change monitored signal nodes or adjust trigger settings during debugging, it is recommended that you use the incremental compilation feature built into the SignalTap II Logic Analyzer, along with Quartus II incremental compilation, to reduce recompile times.

Program the Target Device or Devices

When you are debugging a design with the SignalTap II Logic Analyzer, you can program a target device directly from the SignalTap II file without using the Quartus II Programmer. You can also program multiple devices with different designs and simultaneously debug them.

Run the SignalTap II Logic Analyzer

In normal device operation, you control the logic analyzer through the JTAG connection, specifying when to start looking for your trigger conditions to begin capturing data. With Runtime or Power-Up Triggers, you read and transfer the captured data from the on-chip buffer to the SignalTap II file for analysis.

View, Analyze, and Use Captured Data

Once you have captured data and read it into the SignalTap II file, it is available for analysis and use in the debugging process. Either manually or with a plug-in, you can set up mnemonic tables to make it easier to read and interpret the captured signal data. To speed up debugging, use the Locate feature in the SignalTap II node list to find the locations of problem nodes in other tools in the Quartus II software. Save the captured data for later analysis, or convert it to other formats for sharing and further study.

Add the SignalTap II Logic Analyzer to Your Design

Because the SignalTap II Logic Analyzer is implemented in logic on your target device, it must be added to your FPGA design as another part of the design itself. There are two ways to generate the SignalTap II Logic Analyzer and add it to your design for debugging:

- Create a SignalTap II file (.stp) and use the SignalTap II Editor to configure the details of the logic analyzer
- Create and configure the SignalTap II file with the MegaWizard Plug-In Manager and instantiate it in your design

Creating and Enabling a SignalTap II File

To create an embedded logic analyzer, you can use an existing SignalTap II file or create a new file. Once a file is created or selected, it must be enabled in the project where it is used.

Creating a SignalTap II File

The SignalTap II file contains the SignalTap II Logic Analyzer settings and the captured data for viewing and analysis. To create a new SignalTap II file, perform the following steps:

- 1. On the File menu, click New.
- 2. In the **New** dialog box, click the **Other Files** tab, and select **SignalTap II Logic Analyzer File**.

3. Click OK.

To open an existing SignalTap II file already associated with your project, on the Tools menu, click **SignalTap II Logic Analyzer**. You can also use this method to create a new SignalTap II file if no SignalTap II file exists for the current project.

To open an existing file, on the File menu, click **Open** and select a SignalTap II file (Figure 13–4).

🖬 stp1.stp							
🖼 🍬 Þ 🔳 🕅 Invalid JTAG configuration 🔄 🛛 🖾 🕺 💺 🚓 📩 🔲							
Instance Manager: 🍬 💫 🔳 🔛 Invalid JTAG configuration 🛛 😰				JTAG Chain Configuration: No device is selected 🛛 🔇			
Instance Stat	itus	LEs: 0	Memory: 0				
🚴 auto_signaltap_0 🛛 Not	t running	0 cells	0 bits	Hardware: Disabled			
				Device: None Detected Scan Chain			
<			>	>>> SDF Manager: 🚋 🕕			
auto_signaltap_0							
Node	Data Enable	Trigger Enable	Trigger Con	ditio Clock:			
Type Alias Na	ame 0	0	1 🔽 Basic				
Double-click to add nodes							
Data 🖾 Satur	Sample depth: 128 V RAM type: M4K/M9K V						
hen nava 1894 zeunb							
Hierarchy Display:			×	Data Log: 🛃 🛛 🗙			
				[3] auto_signaltap_0			
auto_signaltap_0							

Figure 13–4. SignalTap II Editor

Enabling and Disabling a SignalTap II File for the Current Project

Whenever you save a new SignalTap II file, the Quartus II software asks you if you want to enable the file for the current project. However, you can add this file manually, change the selected SignalTap II file, or completely disable the logic analyzer by performing the following steps:

- 1. On the Assignments menu, click **Settings**. The **Settings** dialog box appears.
- 2. In the **Category** list, select **SignalTap II Logic Analyzer**. The **SignalTap II Logic Analyzer** page appears.

- 3. Turn on **Enable SignalTap II Logic Analyzer.** Turn off this option to disable the logic analyzer, completely removing it from your design.
- 4. In the **SignalTap II File name** box, type the name of the SignalTap II file you want to include with your design, or browse to and select a file name.
- 5. Click OK.

Using the MegaWizard Plug-In Manager to Create Your Embedded Logic Analyzer

Alternatively, you can create a SignalTap II Logic Analyzer instance by using the MegaWizard Plug-In Manager. The MegaWizard Plug-In Manager generates an HDL file that you instantiate in your design. You can also use a hybrid approach in which you instantiate the MegaWizard Plug-In Manager file in your HDL, and then use the method described in "Creating and Enabling a SignalTap II File" on page 13–10.

Creating an HDL Representation Using the MegaWizard Plug-In Manager

The Quartus II software allows you to easily create your SignalTap II Logic Analyzer using the MegaWizard Plug-In Manager. To implement the SignalTap II megafunction, perform the following steps:

- 1. On the Tools menu, click **MegaWizard Plug-In Manager**. Page 1 of the **MegaWizard Plug-In Manager** dialog box appears.
- 2. Select Create a new custom megafunction variation.
- 3. Click Next.
- 4. In the **Installed Plug-Ins** list, expand the **JTAG-accessible Extensions** folder, and select **SignalTap II Logic Analyzer**. Select an output file type and enter the desired name of the SignalTap II megafunction. You can choose AHDL (.tdf), VHDL (.vhd), or Verilog HDL (.v) as the output file type (Figure 13–5).

MegaWizard Plug-In Manager [page 2a]	
Which megafunction would you like to customize? Select a megafunction from the list below Altera SDPC Builder Communications Communicatio	Which device family will you be using? Stratix II Which type of output file do you want to create? AHDL AHDL VHDL Verilog HDL Verilog HDL What name do you want for the output file? Browse stath< <file_name> Return to this page for another create operation Note: To compile a project successfully in the Quartus II software, your design files must be in the project directory. In the global user libraries specified in the User Libraries page of the Settings dialog box (Assignments menu). Your current user library directories are:</file_name>
	Cancel < Back Next> Finish

- 5. Click Next.
- Configure the analyzer by specifying the Sample depth, RAM Type, Data input port width, Trigger levels, Trigger input port width, and whether to enable an external Trigger in or Trigger out (Figure 13–6).

For information about these settings, refer to "Configure the SignalTap II Logic Analyzer" on page 13–18 and "Define Triggers" on page 13–30.

MegaWizard Plug-In Manager [page 3 of 6] SignalTap II Logic Analyzer						
沟 SignalTap II	Logic Analyzer					
Parameter Z EDA Summary Settings Signal Configuration Trigger Configuration	>					
53009 acq_clk acq_data_in(70) acq_trigger_in(70)	Currently selected device family: Stratix II Currently selected device family: Stratix II Data options: Sample depth: Data input port width: 128 8 RAM type: M4K/M3K RAM type: Trigger options: Trigger loger input port width 2 Ram Same Same Same Same Same Same Same Sa					
	Cancel < <u>B</u> ack <u>N</u> ext > Einish					

- 7. Click Next.
- 8. Set the **Trigger level** options by selecting **Basic** or **Advanced** (Figure 13–7). If you select **Advanced** for any trigger level, the next page of the MegaWizard Plug-In Manager displays the Advanced Trigger Condition Editor. You can configure an advanced trigger expression using the number of signals you specified for the trigger input port width.
 - You cannot define a Power-Up Trigger using the MegaWizard Plug-In Manager. Refer to "Define Triggers" on page 13–30 to learn how to do this using the SignalTap II file.
| MegaWizard Plug-In Manager [page 4 of 6] - | - SignalTap II Logic Analyzer |
|--|--|
| 沟 SignalTap II Log | ic Analyzer |
| Parameter Settings ZEDA Signal Configuration Trigger Configuration | |
| 53009 | Select Advanced from the Trigger level options list for each
trigger that you want to use as an Advanced trigger. |
| → acq_data_in[70] | Trigger level opcions: |
| → acq_trigger_in(70) | Trigger level 3: Basic M
Basic Advanced |
| | Trigger level 5: Basic V
Trigger level 5: Basic V |
| | Trigger level 7: Basic |
| | Trigger level 8: Basic v
Trigger level 9: Basic v |
| | Trigger level 10: Basic V |
| | Cancel < <u>B</u> ack <u>N</u> ext > <u>F</u> inish |

Figure 13–7. MegaWizard Basic and Advanced Trigger Options

9. On the final page of the MegaWizard Plug-In Manager, select any additional files you want to create and click **Finish** to create an HDL representation of the SignalTap II Logic Analyzer.

For information about the configuration settings options in the MegaWizard Plug-In Manager, refer to "Configure the SignalTap II Logic Analyzer" on page 13–18. For information about defining triggers, refer to "Define Triggers" on page 13–30.

SignalTap II Megafunction Ports

Table 13–3 provides information about the SignalTap II megafunction ports.

For the most current information about the ports and parameters for this megafunction, refer to the latest version of the Quartus II Help.

Table 13–3. SignalTap II Megafunction Ports				
Port Name	Туре	Required	Description	
acq_data_in	Input	No	This set of signals represents the set of signals that are monitored in the SignalTap II Logic Analyzer.	
acq_trigger_in	Input	No	This set of signals represents the set of signals that are used to trigger the analyzer.	
acq_clk	Input	Yes	This port represents the sampling clock that the SignalTap II Logic Analyzer uses to capture data.	
trigger_in	Input	No	This signal is used to trigger the SignalTap II Logic Analyzer.	
trigger_out	Output	No	This signal is enabled when the trigger event occurs.	

Instantiating the SignalTap II Logic Analyzer in Your HDL

Instantiating the logic analyzer in your HDL is similar to instantiating any other Verilog HDL or VHDL megafunction in your design. Add the code from the files that are generated by the MegaWizard Plug-In Manager to your design, mapping the signals in your design to the appropriate SignalTap II megafunction ports. You can instantiate up to 127 analyzers in your design, or as many as physically fit in the FPGA. Once you have instantiated the SignalTap II file in your HDL file, compile your Quartus II project to fit the logic analyzer in the target FPGA.

To capture and view the data, you must create a SignalTap II file from your SignalTap II HDL output file. To do this, on the File menu, point to Create/Update, and click **Create SignalTap II File from Design Instance(s)**.

If you make any changes to your design or the SignalTap II instance, recreate or update the SignalTap II file with this command. This ensures that the SignalTap II file is always compatible with the SignalTap II instance in your design. If the SignalTap II file is not compatible with the SignalTap II instance in your design, you may not be able to control the SignalTap II Logic Analyzer after it is programmed into your device. For information about SignalTap II file compatibility with programmed SignalTap II instances, refer to "Program the Target Device or Devices" on page 13–57.

Embedding Multiple Analyzers in One FPGA

The SignalTap II Logic Analyzer includes support for multiple logic analyzers in an FPGA device. This feature allows you to create a unique logic analyzer for each clock domain in the design. As multiple instances of the analyzer are added to the SignalTap II file, the resource usage increases proportionally.

In addition to debugging multiple clock domains, this feature allows you to apply the same SignalTap II settings to a group of signals in the same clock domain. For example, if you have a set of signals that must use a sample depth of 64K and another set of signals in the same clock domain requires a sample depth of 1K, you can create two instances to meet these needs.

To create multiple analyzers, on the Edit menu, click **Create Instance**, or right-click in the Instance Manager window and click **Create Instance**.

Each instance of the SignalTap II Logic Analyzer can be configured independently. The icon in the Instance Manager for the currently active instance that is available for configuration is highlighted in color and surrounded by a blue box. To configure a different instance, double-click the icon or name of another instance in the Instance Manager.

Monitoring FPGA Resources Used by the SignalTap II Logic Analyzer

The SignalTap II Logic Analyzer has a built-in resource estimator that calculates the logic resources and amount of memory that each SignalTap II Logic Analyzer uses. You can see the resource usage of each logic analyzer instance and the total resources used in the columns of the Instance Manager section of the SignalTap II Editor. This feature is useful when device resources are limited and you must know what device resources the SignalTap II Logic Analyzer uses. The value reported in the resource usage estimator may vary by as much as 5% from the actual resource usage.

Table 13–4 shows the SignalTap II Logic Analyzer M4K memory block resource usage for the listed devices per signal width and sample depth.

 Table 13–4. SignalTap II Logic Analyzer M4K Block Utilization for Stratix II, Stratix, Stratix GX, and Cyclone Devices Note (1)

Signala (Width)	Samples (Depth)				
Signais (Wiutii)	256	512	2,048	8,192	
8	< 1	1	4	16	
16	1	2	8	32	
32	2	4	16	64	
64	4	8	32	128	
256	16	32	128	512	

Note to Table 13-4:

(1) When you configure a SignalTap II Logic Analyzer, the Instance Manager reports an estimate of the memory bits and logic elements required to implement the given configuration.

Configure the SignalTap II Logic Analyzer

The SignalTap II file provides many options for configuring instances of the logic analyzer. Some of the settings are similar to those found on traditional external logic analyzers. Other settings are unique to the SignalTap II Logic Analyzer because of the requirements for configuring an embedded logic analyzer. All settings give you the ability to configure the logic analyzer the way you want to help debug your design.

Some settings can only be adjusted when you are viewing Run-Time Trigger conditions instead of Power-Up Trigger conditions. To learn about Power-Up Triggers and viewing different trigger conditions, refer to "Creating a Power-Up Trigger" on page 13–45.

Assigning an Acquisition Clock

You must assign a clock signal to control the acquisition of data by the SignalTap II Logic Analyzer. The logic analyzer samples data on every rising edge of the acquisition clock. You can use any signal in your design as the acquisition clock. However, for best results, Altera recommends that you use a global, non-gated clock for data acquisition. Using a gated clock as your acquisition clock can result in unexpected data that does not accurately reflect the behavior of your design. The Quartus II Classic Timing Analyzer shows the maximum acquisition clock frequency at which you can run your design. To assign an acquisition clock, perform the following steps:

- 1. In the SignalTap II Logic Analyzer window, click the **Setup** tab.
- 2. Click **Browse** next to the **Clock** field in the Signal Configuration pane. The **Node Finder** dialog box appears.
- From the Filter list, select SignalTap II: post-fitting or SignalTap II: pre-synthesis.
- 4. In the **Named** field, type the exact name of a node that you want to use as your sample clock, or search for a node using a partial name and wildcard characters.
- 5. To start the node search, click **List**.
- 6. In the **Nodes Found** list, select the node that represents the design's global clock signal.
- Add the selected node name to the Selected Nodes list by clicking ">" or by double-clicking the node name.
- 8. Click **OK**. The node is now specified as the acquisition clock in the SignalTap II Editor.

If you do not assign an acquisition clock in the SignalTap II Editor, the Quartus II software automatically creates a clock pin called auto_stp_external_clk.

You must make a pin assignment to this pin independently from the design. You must ensure that a clock signal in your design drives the acquisition clock.

For information about assigning signals to pins, refer to the *I/O Management* chapter in volume 2 of the *Quartus II Handbook*.

Adding Signals to the SignalTap II File

While configuring the logic analyzer, you add signals to the node list in the SignalTap II file to select which signals in your design you want to monitor. Selected signals are also used to define triggers. You can assign the following two types of signals to your SignalTap II file:

 Pre-synthesis—This signal exists after design elaboration, but before any synthesis optimizations are done. This set of signals should reflect your Register Transfer Level (RTL) signals.

- Post-fitting—This signal exists after physical synthesis optimizations and place-and-route.
- If you are not using incremental compilation, add only pre-synthesis signals to your SignalTap II file. Using pre-synthesis is particularly useful if you want to add a new node after you have made design changes. To do this, on the Processing menu, point to Start and click **Start Analysis & Elaboration**.

Signals shown in blue text are post-fit node names. Signals shown in black text are pre-synthesis node names.

After successful Analysis and Elaboration, the signals shown in red text are invalid signals. Unless you are certain that these signals are valid, you must remove them from the SignalTap II file for correct operation. The SignalTap II Health Monitor also indicates if an invalid node name exists in the SignalTap II file.

As a general guideline, signals can be tapped if a routing resource (row or column interconnects) exists to route the connection to the SignalTap II instance. For example, signals that exist in the I/O element (IOE) cannot be directly tapped because there are no direct routing resources from the signal in an IOE to a core logic element. For input pins, you can tap the signal that is driving a Logic Array Block (LAB) from an IOE, or, for output pins, you can tap the signal from the LAB that is driving an IOE.

When adding pre-synthesis signals, all connections made to the SignalTap II Logic Analyzer are made prior to synthesis. Logic and routing resources are allocated during recompilation to make the connection as if a change in your design files had been made. As such, pre-synthesis signal names for signals driving to and from IOEs will coincide with the signal names assigned to the pin.

In the case of post-fit signals, connections that you make to the SignalTap II Logic Analyzer are the signal names from the actual atoms in your post-fit netlist. A connection can only be made if the signals are part of the existing post-fit netlist and existing routing resources are available from the signal of interest to the SignalTap II Logic Analyzer. In the case of post-fit output signals, tap the COMBOUT or REGOUT signal that drives the IOE block. For post-fit input signals, signals driving into the core logic will coincide with the signal name assigned to the pin. If you are tapping the signal from the atom that is driving an IOE, be aware that the signal may be inverted due to NOT-gate push back. You can check this by locating the signal in either the Resource Property Editor or the Technology Map Viewer. The Technology Map viewer and the Resource Property Editor are also helpful in finding post-fit node names.

For information about cross-probing to source design file and other Quartus II windows, refer to the *Analyzing Designs with Quartus II Netlist Viewers* chapter in volume 1 of the *Quartus II Handbook*.

For more information about the use of incremental compilation with the SignalTap II Logic Analyzer, refer to "Faster Compilations with Quartus II Incremental Compilation" on page 13–51.

Signal Preservation

Many of your RTL signals are optimized during the process of synthesis and place-and-route. The RTL signal names frequently may not appear in the post-fit netlist after optimizations. This can cause a problem when you use the incremental compilation flow with the SignalTap II Logic Analyzer. Since only post-fitting signals can be added to the SignalTap II Logic Analyzer in partitions of type **post-fit**, RTL signals that you want to monitor may not be available, preventing their usage. To avoid this issue, you can use synthesis attributes to preserve signals during synthesis and place-and-route. When the Quartus II software encounters these synthesis attributes, it does not perform any optimization on the specified signals, forcing them to continue to exist in the post-fit netlist. However, if you do this, you could see an increase in resource utilization or a decrease in timing performance. The two attributes you can use are:

- keep—Ensures that combinational signals are not removed
- preserve—Ensures that registers are not removed

For more information about using these attributes, refer to the *Quartus II Integrated Synthesis* chapter in volume 1 of the *Quartus II Handbook*.

If you are debugging an IP core, such as the Nios II CPU, or other encrypted IP, you may need to preserve nodes from the core to make them available for debugging with the SignalTap II Logic Analyzer. This is often necessary when a plug-in is used to add a group of signals for a particular IP. To do this, on the Assignments menu, click **Settings**. In the **Category** list, select **Analysis & Synthesis Settings**. Turn on **Create debugging nodes for IP cores** to make these nodes available to the SignalTap II Logic Analyzer.

Assigning Data Signals

To assign data signals, perform the following steps:

- 1. Perform Analysis and Elaboration, Analysis and Synthesis, or compile your design.
- 2. In the SignalTap II Logic Analyzer window, click the Setup tab.
- 3. Double-click anywhere in the node list of the SignalTap II Editor to open the **Node Finder** dialog box.
- 4. In the **Fitter** list, select **SignalTap II: pre-synthesis** or **SignalTap II: post-fitting**. Only signals listed under one of these filters can be added to the SignalTap II node list. Signals cannot be selected from any other filters.
 - If you use Incremental Compilation flow with SignalTap II, pre-synthesis nodes will not be connected to the SignalTap II Logic Analyzer if the affected partition is of the post-fit type. Any pre-synthesis nodes added to a partition of type post-fit may not be connected to the SignalTap II Logic Analyzer. A critical warning is issued for all presynthesis node names that are not found in the post-fit netlist. Altera recommends that you do not add a mix of pre-synthesis and post-fitting signals within the same partition. For more details, refer to "Using Incremental Compilation with the SignalTap II Logic Analyzer" on page 13–52.
- 5. In the **Named** field, type a node name, or search for a particular node by entering a partial node name along with wildcard characters. To start the node name search, click **List**.
- 6. In the **Nodes Found** list, select the node or bus you want to add to the SignalTap II file.
- Add the selected node name(s) to the Selected Nodes list by clicking ">" or by double-clicking the node name(s).
- 8. To insert the selected nodes in the SignalTap II file, click **OK**. With the default colors set for the SignalTap II Logic Analyzer, a pre-synthesis signal in the list is shown in black, and a post-fitting signal is shown in blue.
 - You can also drag and drop signals from the **Node Finder** dialog box into a SignalTap II file.

Node List Signal Use Options

Once a signal is added to the node list, you can select options that specify how the signal is used with the logic analyzer. You can turn off the ability of a signal to trigger the analyzer by disabling the **Trigger Enable** for that signal in the node list in the SignalTap II file. This option is useful when you want to see only the captured data for a signal, and you are not using that signal as part of a trigger.

You can turn off the ability to view data for a signal by disabling the **Data Enable** column. This option is useful when you want to trigger on a signal, but have no interest in viewing data for that signal.

For information about using signals in the node list to create SignalTap II trigger conditions, refer to "Define Triggers" on page 13–30.

Untappable Signals

Not all of the post-fitting signals in your design are available in the **SignalTap II: post-fitting** filter in the **Node Finder** dialog box. The following signal types cannot be tapped:

- Post-fit output pins—You cannot tap a post-fit output pin directly. To make an output signal visible, tap the register or buffer that drives the output pin.
- Signals that are part of a carry chain—You cannot tap the carry out (cout0 or cout1) signal of a logic element. Due to architectural restrictions, the carry out signal can only feed the carry in of another logic element (LE).
- JTAG Signals—You cannot tap the JTAG control (TCK, TDI, TDO, and TMS) signals.
- altgxb megafunction—You cannot directly tap any ports of an altgxb instantiation.
- LVDS—You cannot tap the data output from a serializer/deserializer (SERDES) block.

Adding Signals with a Plug-In

Instead of adding individual or grouped signals through the **Node Finder**, you can add groups of relevant signals of a particular type of IP through the use of a plug-in. The SignalTap II Logic Analyzer comes with one plug-in already installed for the Nios II processor. Besides easy signal addition, plug-ins also provide a number of other features, such as pre-designed mnemonic tables, useful for trigger creation and data viewing, as well as the ability to disassemble code in captured data. The Nios II plug-in, for example, creates one mnemonic table in the **Setup** tab, and two tables in the **Data** tab:

- Nios II Instruction (Setup tab) Capture all the required signals for triggering on a selected instruction address.
- Nios II Instance Address (Data tab)—Display address of executed instructions in hexadecimal format or as a programming symbol name if defined in an optional Executable and Linking Format (.elf) file.
- Nios II Disassembly (Data tab)—Displays disassembled code from the corresponding address.

For information about the other features plug-ins provided, refer to "Define Triggers" on page 13–30 and "View, Analyze, and Use Captured Data" on page 13–63.

To add signals to the SignalTap II file using a plug-in, perform the following steps after running Analysis and Elaboration on your design:

- 1. Right-click in the node list. On the **Add Nodes with Plug-In** submenu, click the name of the plug-in you want to use, such as the included plug-in named **Nios II**.
 - If the intellectual property (IP) for the selected plug-in does not exist in your design, a message appears informing you that you cannot use the selected plug-in.
- 2. The **Select Hierarchy Level** dialog box appears showing the IP hierarchy of your design (Figure 13–8). Select the **IP** that contains the signals you want to monitor with the plug-in, and click **OK**.

Figure 13–8. IP Hierarchy Selection

Select Hierarch	y Level			×
std_1c20;inst[cpu1;th	e_cpu1			
std_rezo.instepaz.tri	e_opuz			
1			_	
		OK		Cancel

- 3. If all the signals in the plug-in are available, a dialog box may appear, depending on the plug-in selected, where you can set any available options for the plug-in. With the Nios II plug-in, you can optionally select an Executable and Linking Format (.elf) file containing program symbols from your Nios II Integrated Development Environment (IDE) software design. Set options for the selected plug-in as desired, and click OK.
- To make sure all the required signals are available, turn on the **Create debugging nodes for IP cores** option in the Quartus II Analysis & Synthesis settings.

All the signals included in the plug-in are added to the node list.

Specifying the Sample Depth

The sample depth specifies the number of samples that are captured and stored for each signal in the captured data buffer. To set the sample depth, select the desired number of samples to store in the **Sample Depth** list. The sample depth ranges from 0 to 128K.

If device memory resources are limited, you may not be able to successfully compile your design with the sample buffer size you have selected. Try reducing the sample depth to reduce resource usage.

Capturing Data to a Specific RAM Type

When you use the SignalTap II Logic Analyzer with some devices, you have the option to select the RAM type where acquisition data is stored. RAM selection allows you to preserve a specific memory block for your design and allocate another portion of memory for SignalTap II data acquisition. For example, if your design implements a large buffering application such as a system cache, it is ideal to place this application into M-RAM blocks so that the remaining M512 or M4K blocks are used for SignalTap II data acquisition.

To select the RAM type to use for the SignalTap II buffer, select it from the **RAM type** list. Use this feature when the acquired data (as reported by the SignalTap II resource estimator) is not larger than the available memory of the memory type that you have selected in the FPGA.

Choosing the Buffer Acquisition Mode

The buffer acquisition type selection feature in the SignalTap II Logic Analyzer lets you choose how the captured data buffer is organized and can potentially reduce the amount of memory that is required for SignalTap II data acquisition. You can choose to use either a circular buffer, which allocates the entire sample depth to a single buffer, or a segmented buffer, which splits the buffer space into a number of separate even sized segments. Figure 13-9 illustrates the differences between the two buffer types.

Note to Figure 13–9:

Both circular and segmented buffers can use a predefined trigger position or define a custom trigger position using (1)the State-Based Triggering tab. Refer to "Specifying the Trigger Position" on page 13–44 for more details.

Circular Buffer

The circular buffer (Figure 13–9 (a)) is the default buffer type used by the SignalTap II Logic Analyzer. While the logic analyzer is running, data is stored in the buffer until it fills up, at which point new data replaces the oldest data. This continues until a specified trigger event occurs. When this happens, the logic analyzer continues to capture data after the trigger event until the buffer is full, based on the circular buffer trigger position setting in the Signal Configuration pane in the SignalTap II file. Select a setting from the list to choose whether to capture the majority of the data before (**Post trigger position**) or after (**Pre trigger position**) the trigger occurs or to center the trigger position in the data (**Center trigger position**). Another option is to use the custom state-based triggering flow to define your desired triggering position precisely. You can also choose to continuously capture data until the logic analyzer is stopped.

For more information, refer to "Specifying the Trigger Position" on page 13–44.

Segmented Buffer

The segmented buffer (Figure 13–9 (b)) organizes the buffer into a number of separate, evenly sized segments. This type of buffer organization makes it easier to debug systems that contain relatively infrequent recurring events. Figure 13–10 shows an example of this type of buffer system.

The SignalTap II Logic Analyzer verifies the functionality of the design shown in Figure 13–10 to ensure that the correct data is written to the SRAM controller. The buffer acquisition in the SignalTap II Logic

Analyzer allows you to monitor the RDATA port when H'0F0F0F0F is sent into the RADDR port. You can monitor multiple read transactions from the SRAM device without running the SignalTap II Logic Analyzer again. The buffer acquisition feature allows you to segment the memory so that you can capture the same event multiple times without wasting the allocated memory. The number of cycles that are captured depends on the number of segments that you have specified under the **Data** settings.

To enable and configure buffer acquisition, select **Segmented** in the SignalTap II Editor, and select the number of segments to use. In the example, selecting sixty-four, 64-sample segments allows you to capture 64 read cycles when the RADDR signal is H'0F0F0F0F.

For more information about the buffer acquisition mode, refer to *Setting the Buffer Acquisition Mode* in the Quartus II Help.

Managing Multiple SignalTap II Files and Configurations

In some cases you may have more than one SignalTap II file in one design. Each file potentially has a different group of monitored signals. These signal groups make it possible to debug different blocks in your design. In turn, each group of signals may also be used to define different sets of trigger conditions. Along with each SignalTap II file, there is also an associated programming file (SRAM Object File (SOF)). The settings in a selected SignalTap II file must match the SignalTap II logic design in the associated SOF file for the logic analyzer to run properly when the device is programmed. Managing all of the SignalTap II files and their associated settings and programming files is a challenging task. To help you manage everything, you can use the **Data Log** feature and the **SOF Manager**.

The **Data Log** allows you to store multiple SignalTap II configurations within a single SignalTap II file. Figure 13–11 shows two signal set configurations with multiple trigger conditions in one SignalTap II file. To toggle between the active configurations, double-click on an entry in the **Data Log**. As you toggle between the different configurations, the signal list and trigger conditions change in the **Setup** tab of the SignalTap II file. The active configuration displayed in the SignalTap II file is indicated by the blue square around the signal set in the **Data log**. To store a configuration in the data log, on the Edit menu, click **Save to Data Log**, or click the **Save to Data Log** button at the top of the Data Log.

The SOF Manager allows you to embed multiple SOFs into one SignalTap II file. Embedding an SOF in a SignalTap II file lets you move the SignalTap II file to a different location, either on the same computer or across a network, without the need to include the associated SOF as a separate file. To embed a new SOF in the SignalTap II file, right-click in the SOF Manager, and click **Attach SOF File** (Figure 13–12).

Figure 13–12. SOF Manager

As you switch between configurations in the Data Log, you can extract the SOF that is compatible with that particular configuration and use the programmer in the SignalTap II Logic Analyzer to download the new SOF to the FPGA. In this way, you ensure that the configuration of your SignalTap II file always matches the design programmed into the target device.

Define Triggers

To capture the data you want at the right time, you need to specify conditions under which the signals you are monitoring display that data. In the SignalTap II Logic Analyzer, these conditions are referred to as triggers, just as they are in conventional external logic analyzers and oscilloscopes. You have many options for creating different types of triggers to help in your debugging.

Creating Basic Trigger Conditions

The simplest kind of trigger condition you can use is a basic trigger. You select this from the list at the top of the **Trigger Conditions** column in the node list in the SignalTap II Editor. With the trigger type set to **Basic**, you must set the trigger pattern for each signal you have added in the SignalTap II file. To set the trigger pattern, right-click in the **Trigger Conditions** column and click the desired pattern. You can set the trigger pattern to any of the following conditions:

- Don't Care
- Low
- High
- Falling Edge
- Rising Edge
- Either Edge

For buses, you can type a pattern in binary, or right-click and select **Insert Value** to enter the pattern in other number formats. For signals added to the SignalTap II file that have an associated mnemonic table, you can right-click and select an entry from the table to set pre-defined conditions for the trigger.

For more information about the creation and use of mnemonic tables, refer to "View, Analyze, and Use Captured Data" on page 13–63 and in the Quartus II Help.

For signals added with certain plug-ins, you can easily create basic triggers using pre-defined mnemonic table entries. For example, with the Nios II plug-in, if you have specified an executable software (.elf) file from your Nios II IDE design, you can type the name of a function from your Nios II code. The logic analyzer triggers when the Nios II instruction address matches the address of the specified code function name.

Data capture stops and the data is stored in the buffer when the logical AND of all the signals for a given trigger condition evaluates to TRUE.

Creating Advanced Trigger Conditions

Along with the SignalTap II Logic Analyzer's basic triggering capabilities, you can build more complex triggers utilizing extra logic that enable you to capture data when a particular combination of conditions exist. If you set the trigger type to **Advanced** at the top of the **Trigger Conditions** column in the node list of the SignalTap II Editor, a new tab named **Advanced Trigger** appears where you can build a complex trigger expression using a simple GUI. You can drag and drop operators into the Advanced Trigger Configuration Editor window to build the complex trigger condition in an expression tree. Double-click operators that you have placed or right-click them and select Properties to configure the operator's settings. Table 13–5 lists the operators you can use.

Table 13–5. Advanced Triggering Operators Note (1)				
Name of Operator	Туре			
Less Than	Comparison			
Less Than or Equal To	Comparison			
Equality	Comparison			
Inequality	Comparison			
Greater Than	Comparison			
Greater Than or Equal To	Comparison			
Logical NOT	Logical			
Logical AND	Logical			
Logical OR	Logical			
Logical XOR	Logical			
Reduction AND	Reduction			
Reduction OR	Reduction			
Reduction XOR	Reduction			
Left Shift	Shift			
Right Shift	Shift			
Bitwise Complement	Bitwise			
Bitwise AND	Bitwise			
Bitwise OR	Bitwise			
Bitwise XOR	Bitwise			
Edge and Level Detector	Signal Detection			

Note to Table 13-5:

(1) For more information about each of these operators, refer to the Quartus II Help.

You can configure some of the settings for certain operators at run-time. This enables you to change one operator type to another operator type or adjust other settings for an operator without recompiling your design. Operator settings that have a white background on the operator symbol can be changed without recompiling the design.

Adding many objects to the Advanced Trigger Condition Editor can make the workspace cluttered and difficult to read. To keep objects organized while you build your advanced trigger condition, use the right-click menu and select **Arrange All Objects**. You can also use the **Zoom-Out** command to fit more objects into the Advanced Trigger Condition editor window.

Examples of Advanced Triggering Expressions

The following examples show how to use Advanced Triggering:

 Trigger when bus out a is greater than or equal to out b (Figure 13–13).

Trigger when bus outa is greater than or equal to bus outb, and when the enable signal has a rising edge (Figure 13–14).

Trigger when bus out a is greater than or equal to bus outb, or when the enable signal has a rising edge. Or, when a bitwise AND operation has been performed between bus outc and bus outd, and all bits of the result of that operation are equal to 1 (Figure 13–15).

Figure 13–15. Bitwise AND Operation

Trigger Condition Flow Control

SignalTap II offers multiple triggering conditions to give you more precise control of the method in which data is captured into the acquisition buffers. Trigger Condition Flow control allows you to define the relationship between a set of triggering conditions. SignalTap II gives you two flow control mechanisms for organizing trigger conditions:

- Sequential Triggering—The default triggering flow. This flow allows you to define up to ten triggering levels that must be satisfied before the acquisition buffer finishes capturing.
- Custom State-Based Triggering—This flow allows you the greatest control over your acquisition buffer. This method allows you to organize trigger conditions into states based on a conditional flow that you define.

Both methods can be used with either a circular buffer or a segmented buffer.

Sequential Triggering

The sequential triggering flow allows you to cascade up to ten levels of triggering conditions. The SignalTap II Logic Analyzer sequentially evaluates each of the triggering conditions. When the last triggering condition evaluates to TRUE, the SignalTap II Logic Analyzer triggers the acquisition buffer. For segmented buffers, every acquisition segment after the first segment triggers on the last triggering condition that you have specified. You can use the simple sequential triggering feature with basic triggers, advanced triggers, or a mix of both. Figure 13–16 illustrates the simple sequential triggering flow for circular and segmented buffers.

P

Note that the external trigger in is considered as trigger level 0. The external trigger must be evaluated before the main trigger levels are evaluated.

Note to Figure 13–16:

- (1) The Acquisition buffer stops capture when all *n* triggering levels are satisfied, where $n \le 10$.
- (2) An external trigger input, if defined, will be evaluated before all other defined trigger conditions are evaluated. For more information about external triggers refer to "Using External Triggers" on page 13–47.

To configure the SignalTap II Logic Analyzer for Sequential triggering, on the Trigger flow control list in the SignalTap II editor, select **Sequential**. You can select the desired number of trigger conditions by using the **Trigger Conditions** pull-down list. After you select the desired number of trigger conditions, you can configure each trigger condition in the node list. To disable any trigger condition, click the check box next to the trigger condition at the top of the column in the node list. Figure 13–17 shows the setup tab for Sequential Triggering.

Figure 13–17. Setup Tab

Quartus II - C:/WLUIS_Sandbox/Pattern_generator/Pattern_gen - Pattern_gen - [STP_files/A_occurs_tt_N_bt_BC.stp*]							
File Edit View Project Processing Tools Window							
Instance Manager: 🔊 🏷 🔳 🕅 Program the device	Instance Manager to Do E M Program the device to continue 2 0 2 X						
Instance Status	LEs: 767 Mer	nory: 512 M51	2/LUTRAM: 0	Hardware [10.9.21]			
🛃 auto_signaltap_U Not running	/6/ cells	512 bits	U blocks				
			>	>> SUF Manager: 🚠 🔘 /Pattern_gen.sof			
trigger: 2007/08/17 18:14:46 #0	Allow all chan	ges	-				
Node Data	Enable Trigger Enable	- Trigger (Conditions				
Type Alias Name	8 18	1 🔽 Basic 💽	2 🔽 Basic	Sample denth: 54 V BAM type: Auto			
rt_sig_pulse[2]							
ADDR Address		XXXXXb	XXXXXb	Segmented: 2 32 sample segments			
te red(0.2)		XXXh	XXXh				
		88	88	Trigger			
				Ingger now control: State-based			
				Trigger position: 🗚 Center trigger position 💌			
				Trigger conditions: 4			
	Trigger Co	onditions Pull-	Down List -				
				Seurce: 3			
				4 5			
				Pattern: Don't 6			
S Data C Course State Based Ligner Flow							
Ready							
Nouv							
Setup Tab							

Custom State-Based Triggering

The custom state-based triggering method gives you the most control of triggering condition arrangement. This flow gives you the ability to describe the relationship between triggering conditions precisely, using an intuitive GUI and the SignalTap II Trigger Flow Description Language, a simple description language based upon conditional expressions. Tooltips within the custom triggering flow GUI allow you to describe your desired flow quickly. The custom state-based triggering flow allows for more efficient use of the space available in the acquisition buffer because only specific samples of interest are captured.

Figure 13–18 illustrates the custom state-based triggering flow. Events that trigger the acquisition buffer are organized by a user-defined state diagram. All actions performed by the acquisition buffer are captured by the states and all the transition conditions between the states are defined by the conditional expressions that you specify within each state.

Figure 13–18. Custom State-Based Triggering Flow Note (1), (2)

Note to Figure 13-18:

- (1) You are allowed up to twenty different states.
- (2) An external trigger input, if defined, will be evaluated before any conditions in the custom state-based triggering flow are evaluated. For more information, refer to "Using External Triggers" on page 13–47.

Each state allows you to define a set of conditional expressions. Each conditional expression is a Boolean expression dependent upon a combination of triggering conditions (configured within the **Setup** tab), counters, and status flags. Counters and status flags are resources provided by the Signal Tap II custom-based triggering flow.

Within each conditional expression you define a set of "actions". Actions include triggering the acquisition buffer to stop capture, a modification to either a counter or status flag, or a state transition.

Trigger actions can apply to either a single segment of a segmented acquisition buffer or to the entire circular acquisition buffer. Each trigger action provides you with an optional count that specifies the number of samples to be captured before stopping acquisition of the current segment. The count argument allows you to control the amount of data captured precisely before and after triggering event.

Resource manipulation actions allow you to increment and decrement counters or set and clear status flags. The counter and status flag resources are used as optional inputs in the conditional expressions. Counters and status flags are useful for counting the number of occurrences of particular events and for aiding in the triggering flow control. This Signal Tap II custom state-based triggering flow allows you to capture a sequence of events that may not necessarily be contiguous in time; for example, capturing a communication transaction between two devices that includes a handshaking protocol containing a sequence of acknowledgements.

The **State-Based Trigger Flow** tab is the control interface for the custom state-based triggering flow. To enable this tab, on the Trigger Flow Control pull-down list, select **State-based**. (Note that when the **Trigger Flow control** option is set to **Sequential**, the **State-Based Trigger Flow** tab is hidden.)

Figure 13–19 shows the **Custom Trigger Flow** tab.

ke Diagram.	State Machine, No enors	Resources.
mber of states 3 •	Display mode: One window per state State 1: ST1 Score:	Flag: 0 -
STI: 4	SHIP 2: 572	Counters: 0 💌 Name Wuddh Initial Value
	Suin 3 STà	Contiguable of natione Contiguable of natione Consultation values Comparison operators Logic operators

Figure 13–19. State-Based Trigger Flow Tab

State-Based Trigger Flow Tab

The State-Based Trigger Flow tab is partitioned into the following three panes.

- State Diagram Pane
- Resources Pane
- State Machine Pane

State Diagram Pane

The State Diagram pane provides a graphical overview of the triggering flow that you define. It shows the number of states available and the state transitions between all of the states. You can adjust the number of available states by using the pull-down menu above the graphical overview.

State Machine Pane

The State Machine pane contains the text entry boxes where you can define the triggering flow and the actions associated with each state. You can define the triggering flow using the Signal Tap II Trigger Flow Description Language, a simple language based upon if-else conditional statements. Tooltips appear when you move the mouse over the cursor, to guide command entry into the state boxes. The GUI provides a syntax check on your flow description in real-time and highlights any errors in the text flow.

Refer to "SignalTap II Trigger Flow Description Language" on page 13–40 for a full description of the SignalTap II Trigger Flow Description Language. You can also refer to the Quartus II Help.

The State Machine description text boxes default to show one text box per state. You can optionally have the entire flow description be shown in a single text field. This option can be useful when copying and pasting a flow description from a template or an external text editor. To toggle between one window per state, or all states in one window, select the appropriate option under **State Display mode**.

Resources Pane

IP

The Resources pane allows you to declare Status Flags and Counters for use in the conditional expressions in the Custom Triggering Flow. Actions to decrement and increment counters or to set and clear status flags are performed within the triggering flow that you define.

You can set up to 20 counters and 20 status flags for use. Counter and status flags values may be initialized by right-clicking the status flag or counter name after selecting a number of them from the respective drop-down list, and selecting **Set Initial Value**. Counter width can be set by right-clicking the counter name and selecting **Set Width**.

Runtime Reconfigurability—The **configurable at runtime** options in the Resources pane allows you to configure the custom-flow control options that can be changed at runtime without requiring a recompilation. Table 13–6 contains a description of options that can be reconfigured at runtime.

Table 13–6. Runtime Configurable Settings				
Setting	Description			
Destination of goto action	Allows you to modify the destination of the state transition at runtime.			
Comparison values	Allows comparison values in Boolean expressions to be modifiable at runtime. In addition, it allows the segment_trigger and trigger action post-fill count argument to be modifiable at runtime.			
Comparison operators	Allows comparison operators in Boolean expressions to be modifiable at runtime.			
Logical operators	Allows the logical operators in Boolean expressions to be modifiable at runtime.			

You can restrict changes to your SignalTap configuration to include only the options that do not require a recompilation by using the pull-down menu above the trigger list in the **Setup** tab. The option **Allow trigger condition changes only** restricts changes to only the configuration settings that the runtime configurable option set. You can then modify Trigger Flow conditions in the **Custom Trigger Flow** tab by clicking the desired parameter in the text box, and selecting a new parameter from the menu that appears.

The runtime configurable settings for the **Custom Trigger Flow** tab are on by default. You may get some performance advantages by disabling some of the runtime configurable options. Refer to "Performance and Resource Considerations" on page 13–55 for details about the effects of turning off the runtime modifiable options.

SignalTap II Trigger Flow Description Language

The Trigger Flow Description Language is based on a list of conditional expressions per state to define a set of actions. Each line in Example 13–1 shows a language format. Keywords are shown in bold. Non-terminals are delimited by "<>" and are further explained in the following sections. Optional arguments are delimited by "[] ".

Examples of Triggering Flow descriptions for common scenarios using the Signal Tap II Custom Triggering Flow are provided in the section, "Custom Triggering Flow Application Examples" on page 13–77.

```
Example 13-1. Trigger Flow Description Language Format Note (1)
state <State_label>:
<action_list>
```

or

Notes to Example 13–1:

(1) Multiple else if conditions are allowed.

The priority for evaluation of conditional statements is assigned from top to bottom. The *<boolean_expression >* in an if statement can contain a single event, or it can contain multiple event conditions. The action_list embedded within an if or an else if clause must be delimited by the begin and end tokens when the action list contains multiple statements. When the boolean expression is evaluated true, the logic analyzer analyzes all of the commands in the action list concurrently. The possible actions include:

- Triggering the acquisition buffer
- Manipulating a counter or status flag resource
- Defining a state transition

State Labels

State Labels are identifiers that can be used in the action goto.

state <state_label>: begins the description of the actions evaluated
when this state is reached.

The description of a state ends with the beginning of another state or the end of the whole trigger flow description.

Boolean_expression

Boolean_expression is a collection of logical operators, relational operators, and their operands that evaluate into a Boolean result. Depending on the operator, the operand can be a reference to a trigger condition, a counter and a register, or a numeric value. Within an expression, parentheses can be used to group a set of operands.

Logical operators accept any boolean expression as an operand. The supported Logical operators are shown in Table 13–7.

Table 13–7. Logical Operators				
Operator	Description	Syntax		
!	NOT operator	! expr1		
&&	AND operator	expr1 && expr2		
	OR operator	expr1 expr2		

Relational operators are performed on counters or status flags. The comparison value—the right operator—must be a numerical value. The supported Relational operators are shown in Table 13–8.

Table 13–8. Relational Operators				
Operator	Description	Syntax Notes (1) (2)		
>	Greater than	<identifier> > <numerical_value></numerical_value></identifier>		
>=	Greater than or Equal to	<identifier> >= <numerical_value></numerical_value></identifier>		
==	Equals	<identifier> == <numerical_value></numerical_value></identifier>		
! =	Does not equal	<identifier> != <numerical_value></numerical_value></identifier>		
<=	Less than or equal to	<identifier> <= <numerical_value></numerical_value></identifier>		
<	Less than	<identifier> < <numerical_value></numerical_value></identifier>		

Notes to Table 13–8:

(1) <*identifier*> indicates a counter or status flag

(2) <*numerical_value* > indicates an integer

Action_list

Action_list is a list of actions that can be performed when a state is reached and a condition is also satisfied. If more than one action is specified, they must be enclosed by begin and end. The actions can be categorized as resource manipulation actions, buffer control actions and state transition actions. Actions must be embedded within a condition statement if condition statements are used in a state. Each action is terminated by a semicolon.

Resource Manipulation Action

The resources used in the trigger flow description can be either counters or status flags. Table 13–9 shows the description and syntax of each action.

Table 13–9. Resource Manipulation Action					
Action	Description	Syntax			
Increment	Increments a counter resource by 1	<pre>increment <counter_identifier>;</counter_identifier></pre>			
Decrement	Decrements a counter resource by 1	<pre>decrement <counter_identifier>;</counter_identifier></pre>			
Reset	Resets counter resource to initial value	<pre>reset <counter_identifier>;</counter_identifier></pre>			
Set	Sets a status Flag to 1	<pre>set <register_flag_identifier>;</register_flag_identifier></pre>			
Clear	Sets a status Flag to 0	<pre>clear <register_flag_identifier>;</register_flag_identifier></pre>			

Buffer Control Action

Buffer control actions specify an action to control the acquisition buffer. Table 13–10 shows the description and syntax of each action,

Table 13–10. Buffer Control Action					
Action	Description	Syntax			
trigger	Stops the acquisition for the current buffer and ends analysis. This command is required in every flow definition.	<pre>trigger <post-fill_count>;</post-fill_count></pre>			
segment_trigger	Ends the acquisition of the current segment. The Signal Tap II Logic Analyzer starts acquiring from the next segment upon evaluating this command. If all segments are filled, the oldest segment is overwritten with the latest sample. The acquisition stops when a trigger action is evaluated. This action cannot be used in non-segmented acquisition mode.	<pre>segment_trigger <post-fill_count>;</post-fill_count></pre>			

Both trigger and segment_trigger actions accept an optional post-fill count argument. If provided, the current acquisition acquires the number of samples provided by post-fill count and then stops acquisition. If no post-count value is specified, the trigger position for the affected buffer defaults to the trigger position specified in the setup tab.

Note that in the case of segment_trigger, acquisition of the current buffer stops immediately if a subsequent triggering action is issued in the next state, regardless of whether or not the post-fill count has been satisfied for the current buffer. The remaining unfilled post-count acquisitions in the current buffer are discarded and displayed as grayed-out samples in the data window.

State Transition Action

State transition action specifies the next state in the custom state control flow. It is specified by the goto command. The syntax is as follows:

goto <state_label>;

Specifying the Trigger Position

The SignalTap II Logic Analyzer allows you to specify the amount of data that is acquired before and after a trigger event. You can set the trigger position independently between a Runtime and Power-Up Trigger. Select the desired ratio of pre-trigger data to post-trigger data by choosing one of the following ratios:

- Pre—This selection saves signal activity that occurred after the trigger (12% pre-trigger, 88% post-trigger).
- **Center**—This selection saves 50% pre-trigger and 50% post-trigger data.
- Post—This selection saves signal activity that occurred before the trigger (88% pre-trigger, 12% post-trigger).

These pre-defined ratios apply to both circular buffers and segmented buffers.

If you use the custom-state based triggering flow, you can specify a custom trigger position. The segment_trigger and trigger actions accept a post-fill count argument. The post-fill count specifies the number of samples to capture before stopping data acquisition for the circular buffer or a data segment when using the trigger and segment_trigger commands, respectively. When the captured data is displayed in the SignalTap II data window, the trigger position appears as the number of post-count samples from the end of the acquisition segment or buffer. Refer to Equation 1:

(1) Sample Number of Trigger Position = (N - Post-Fill Count)

In this case, *N* is the sample depth of either the acquisition segment or circular buffer.

For segmented buffers, the acquisition segments that have a post-count argument defined use the post-count setting. Segments that do not have a post-count setting default to the trigger position ratios defined in the **Setup** tab.

For more details about the Custom-State based triggering flow, refer to "Custom State-Based Triggering" on page 13–36.

Creating a Power-Up Trigger

Typically, the SignalTap II Logic Analyzer is used to trigger on events that occur during normal device operation. You start an analysis manually once the target device is fully powered on and the device's JTAG connection is available. However, there may be cases when you would like to capture trigger events that occur during device initialization immediately after the FPGA is powered on or reset. With the SignalTap II Power-Up Trigger feature, you can capture data from triggers that occur after device programming but before the logic analyzer is started manually.

Enabling a Power-Up Trigger

A different Power-Up Trigger can be added to each logic analyzer instance in the SignalTap II Instance Manager. To enable the Power-Up Trigger for a logic analyzer instance, right-click the instance, and click **Enable Power-Up Trigger**, or select the instance, and on the Edit menu, click **Enable Power-Up Trigger**. To disable a Power-Up Trigger, click **Disable Power-Up Trigger** in the same locations. **Power-Up Trigger** is shown as a child instance below the name of the selected instance with the default trigger conditions set in the node list. Figure 13–20 shows the SignalTap II Editor when a Power-Up Trigger is enabled.

🖸 Quartus II											
File Edit View Project Processing 10015 Window											
😝 🍬 轮 🗉 🛍 Compile the project to continue 🔄 🕄 👗 🕺 👯 🚓 🕁 💷											
Instan	Instance Manager. 💘 💫 🗏 🔛 Completine project to scontinue 😨 × JTAG Chain Configuration: JTAG ready 😨 ×										
Instan	Instance Status LEs: 767 Memory 1024 M512/LUTRAM: 0										1
🛃 au	to_signaltap_0 Not	t running	76	Hardwar	re: USB-Blaster [USB-0]	-	Setup]			
i PG	wer-Up Trigger			Device:	@1: EP3C25 (0x020F30D	D) 🔻	Scan Chain	1			
				Do SI	DE Manager 🙏 🔟 📿 Pa	ttern gen sof					
<						>		an managan 📖 🔘 Jinna			1
				O Allers all also							
trig	ger: 2007/08/17 18:14:-	46 #0		Allow all char	iges	•	CI	lock: clk			-
	Node	Homo	Data Enable	I rigger Enable	Trigger C	Conditions		Data			
	Allas	name rt sig pulse[2]				ZIV Dasic		Sample depth: 64 💌 R/	AM type: Auto	~	
	ADDR	+ Address		<u>ज</u>	XXXXXb	XXXXXXb		Segmented: 64.1 s	ample serments	-	
	2		ম	ম	xx	xx		j orginoritod.	sumple segments		
6	2	te_reg[02]		N	XXXb	XXXb		Trigger			
-0	ž.	rt_sig_pulse[1]		V				Trigger flow control: State-b	based	-	
								I rigger position:	e trigger position	_	
								Trigger conditions: 4		-	
					Trigger in						
					Source:						
Pattern Don't Care											
	An Lord [2] Setup 3- Jorde-Dase Injuget 100										
8 -	🖹 auto_signaltap_0										
Ready	Ready NUM A										

Figure 13–20. SignalTap II Editor with Power-Up Trigger Enabled

Managing and Configuring Power-Up and Runtime Trigger Conditions

When the Power-Up Trigger is enabled for a logic analyzer instance, you create basic and advanced trigger conditions for it in the same way you do with the regular trigger, also called the Runtime Trigger. Power-Up Trigger conditions that you can adjust are color coded light blue, while Run-Time Trigger conditions remain white. Since each instance now has two sets of trigger conditions, the Power-Up Trigger and the Run-Time Trigger, you can differentiate between the two with the color coding. To switch between the trigger conditions of the Power-Up Trigger and the Runtime Trigger, double-click the instance name or the Power-Up Trigger name in the Instance Manager.

You cannot make changes to the Power-Up Trigger conditions that would normally require a full recompile with Runtime Trigger conditions, such as adding signals, deleting signals, or changing between basic and advanced triggers. For these changes to be applied to the Power-up Trigger conditions, you must first make the changes using the Runtime Trigger conditions. Any change made to the Power-Up Trigger conditions requires that the SignalTap II Logic Analyzer be recompiled, even if a similar change to the Runtime Trigger conditions does not require a recompilation.

While creating or making changes to the trigger conditions for the Run-Time Trigger or the Power-Up Trigger, you may want to copy these conditions to the other trigger. This makes it easy to look for the same trigger during both power-up and runtime. To do this, right-click the instance name or the Power-Up Trigger name in the Instance Manager, and click **Duplicate Trigger**, or select the instance name or the Power-Up Trigger name and, on the Edit menu, click **Duplicate Trigger**.

For information about running the SignalTap II Logic Analyzer instance with a Power-Up Trigger enabled, refer to "Running with a Power-Up Trigger" on page 13–60.

Using External Triggers

You can create a trigger input that allows you to trigger the SignalTap II Logic Analyzer from an external source. The external trigger input behaves like trigger condition 1. It is evaluated and must be true before any other configured trigger conditions are evaluated. The analyzer can also supply a signal to trigger external devices or other SignalTap II instances. These features allow you to synchronize external logic analysis equipment with the internal logic analyzer. Power-Up Triggers can use the external triggers feature, but they must use the same source or target signal as their associated Run-Time Trigger.

Trigger In

To use Trigger In, perform the following steps:

- 1. In the SignalTap II Editor, click the **Setup** tab.
- 2. If a Power-Up Trigger is enabled, make sure you are viewing the Runtime Trigger conditions.
- 3. In the Signal Configuration pane, turn on Trigger In.
- 4. In the **Pattern** list, select the condition you want to act as your trigger event. You can set this separately for a Runtime or a Power-Up Trigger.
- Click Browse next to the Source field in the Trigger In pane (Figure 13–22 on page 13–50). The Node Finder dialog box appears.

6. In the **Node Finder** dialog box, select the signal (either an input pin or an internal signal) that you want to drive the Trigger In source, and click **OK**.

If you type a new signal name in the **Source** field, you create a new node that you can assign to an input pin in the Pin Planner or Assignment editor. If you leave the **Source** field blank, a default name is entered in the form auto_stp_trigger_in_<*SignalTap instance number>*.

Trigger Out

To use Trigger Out, perform the following steps:

- 1. In the SignalTap II Editor, click the **Setup** tab.
- 2. If a Power-Up trigger is enabled, make sure you are viewing the Runtime Trigger conditions.
- 3. In the **Signal Configuration** pane, turn on **Trigger Out** (refer to Figure 13–21 on page 13–49)
- 4. In the **Level** list, select the condition you want to signify that the trigger event is occurring. You can set this separately for a Run-Time or a Power-Up Trigger.
- 5. Type a new signal name in the **Target** field. A new node name is created that you must assign to an output pin in the Pin Planner or Assignment editor.

If you leave the **Target** field blank, a default name is entered in the form auto_stp_trigger_out_<*SignalTap instance number>*. When the logic analyzer triggers, a signal at the level you indicated will be output on the pin you assigned to the new node.

Using the Trigger Out of One Analyzer as the Trigger In of Another Analyzer

An advanced feature of the SignalTap II Logic Analyzer is the ability to use the Trigger Out of one analyzer as the Trigger In to another analyzer. This feature allows you to synchronize and debug events that occur across multiple clock domains. To perform this operation, first enable the **Trigger Out** of the source logic analyzer instance. On the Trigger out **Target** list, select the targeted logic analyzer instance. For example, if the instance named auto_signaltap_0 should trigger auto_signaltap_1, select auto_signaltap_1 | trigger_in from the list (Figure 13–21).

Instance Manager: 🍡 🎝 🗉 🔛 Completine project to continue						6 Chain Configuration: JTAG ready 😨					
Initance Status L Sauto_signatap_0 Notnunning 7 & auto_signatap_1 Notnunning				Ex. 730 Memory, 512 MS12/LUTRAM, 0 30 cells 512 bits Oblocks 0 cells Oblts NA			0	Hard	ware: USD-Blaster (USD ice: @1: EP3C25 (0w	1-0] ·	Setup Scan Chain
								>>	SOF Manager 📥 🕼	./Pattern_gen.sof	-
trigger	2007/00/17 18:1	4:46 #0		Allow all char	iges				Clock: ck		-
) 194	Node	E.g.	Data Enable	Trigger Enable	Terror Te	igger Conditions	Same		Data		1.0
Type	Alias	Name		18	1 Batic	- 217 Batic	- 317	Batix	Samela danth Et	BAM bener	
3	Concerne of	n_sig_pulse[2]	E	P		89	_	8	souther others from	TT concernent lines	_
0	ADDR	E Adress	<u> </u>	9	300008	000000	-	X000	☐ Segmented	2-32 kanple regiser/s	-
4		- Output	9	N N	XX	XX	-	30			
2		(£1e_reg(0_2)	-	P	XXXB	XXXb	-	200	Trigger		
		Tan	aet Set	to Triaa	er in of				Trigger position: Trigger conditions: Trigger in Source: India day Patern: Don't Patern: Don't	A Hope Center trigger position	
auto_signaltap_1									Level Activ	e High	-

This automatically enables the Trigger In of the targeted logic analyzer instance and fills in the Trigger In Source field with the Trigger Out signal from the source logic analyzer instance. In this example, auto_signaltap_0 is targeting auto_signaltap_1. The Trigger In Source field of auto_signaltap_1 is automatically filled in with auto_signaltap_0 | trigger_out (Figure 13–22).

🖻 Quartus II - C:/WLUIS_Sandbox/Pattern_generator/Pattern_gen - Pattern_gen - [STP_files/A_occurs_lt_N_bt_BC.stp*]										
File Edit View Project Processing Tools Window										
🕼 🍬 🏞 🗉 🛍 Compile the project to continue 🗾 🕄 👗 🔂 🗼 😓 👘										
Instance Manager. 🍬 🗣 🛯 🔂 Compile the project to continue										
Instance Status LE	Hardware UCD Distanti UCD 01									
A auto_signaltap_0 Not running 73										
🛃 auto_signaltap_1 Not running 238 cells 512 bits U blocks Device: @1: EP3C25 (0x020F30DD) 🗸 Scan Ch										
		>> SDF Manager 🗼 🏨 //Pattern gen sof								
Lauta almathan d	Allow all observes									
Auto_signal.ap_1	Trigger Enable Trigger Conditio									
Time Alias Name 4		Data								
count[3]		Sample depth: 128 💌 RAM type: Auto								
Image: Image	₩ XXXb	Segmented: 128 1 sample segments								
Trigger										
	Trigger flow control: Sequential									
	Trigger position:									
	Ingger conditions: 1									
	Trigger in									
	Source: auto_signaltap_Oltrigger_out									
	Pattern: C Bising Edge									
	Trigger out									
	Target:									
	Levet Active High									
Latency delay.										
Da Data 🖂 Setup										
Redy NIM										
ioov										

Compile the Design

When you add a SignalTap II file to your project, the SignalTap II Logic Analyzer becomes part of your design. You must compile your project to incorporate the SignalTap II logic and enable the JTAG connection that is used to control the logic analyzer. When you are debugging with a traditional external logic analyzer, it is often necessary to make changes to the signals monitored as well as the trigger conditions. Since these adjustments often translate into recompilation time when using the SignalTap II Logic Analyzer, you can use the SignalTap II Logic Analyzer feature along with incremental compilation in the Quartus II software to reduce time spent recompiling.
Faster Compilations with Quartus II Incremental Compilation

To use Incremental compilation with the SignalTap II Logic Analyzer, you must perform the following steps:

- Enable Full Incremental Compilation for your design
- Assign design partitions
- Set partitions to the proper preservation levels
- Enable SignalTap for your design
- Add signals to SignalTap using the appropriate netlist filter in the node finder (either SignalTap II: pre-synthesis or SignalTap II: post-fitting).

When you compile your design with a SignalTap II file, the sld_signaltap and sld_hub entities are automatically added to the compilation hierarchy. These two entities are the main components of the SignalTap II Logic Analyzer, providing the trigger logic and JTAG interface required for operation.

Incremental compilation enables you to preserve the synthesis and fitting results of your original design and add the SignalTap II Logic Analyzer to your design without recompiling your original source code. This feature is also useful when you want to modify the configuration of the SignalTap II file. For example, you can modify the buffer sample depth or memory type without performing a full compilation after the change is made. Only the SignalTap II Logic Analyzer, configured as its own design partition, must be recompiled to reflect the changes.

To use incremental compilation, you must first enable **Full Incremental Compilation** for your design if it is not already enabled, assign design partitions if necessary, and set the design partitions to the correct preservation levels. Incremental compilation is the default setting for new projects in the Quartus II software, so you can establish design partitions immediately in a new project. However, it is not necessary to create any design partitions to use the SignalTap II Incremental Compilation feature. Once your design is set up to use full incremental compilation, the SignalTap II Logic Analyzer acts as its own separate design partition. You can begin taking advantage of incremental compilation by using the **SignalTap II: post-fitting filter** in the **Node Finder** to add signals for logic analysis.

Enabling Incremental Compilation for your Design

To enable Incremental Compilation if it is not already enabled, perform the following steps:

1. On the Assignments menu, click **Design Partitions window**.

- 2. In the **Incremental Compilation** list, select **Full Incremental Compilation**.
- 3. Create user-defined partitions if desired and set the **Netlist Type** to **Post-fit** for all partitions.
- The netlist type for the top-level partition defaults to source. To take advantage of incremental compilation, you must set the Netlist types for the partitions you wish to tap as post-fit.
- 4. On the Processing menu, click **Start Compilation**, or click **Start Compilation** on the toolbar.

Your project is fully compiled the first time, establishing the design partitions you have created. When enabled for your design, the SignalTap II Logic Analyzer will always be a separate partition. After the first compilation, you can use the SignalTap II Logic Analyzer to analyze signals from the post-fit netlist. If your partitions are set correctly, subsequent compilations due to SignalTap II settings are able to take advantage of the shorter compilation times.

For more information about configuring and performing Incremental Compilation, refer to the *Quartus II Incremental Compilation for Hierarchical and Team-Based Design* chapter in volume 1 of the *Quartus II Handbook*.

Using Incremental Compilation with the SignalTap II Logic Analyzer

The SignalTap II Logic Analyzer is automatically configured to work with the incremental compilation flow. For all signals that you want to connect to the SignalTap II Logic Analyzer from the post-fit netlist, set the netlist type of the partition containing the desired signals to Post-Fit or Post-Fit (Strict) with a Fitter Preservation Level of Placement and Routing using the Design Partitions window. Use the **SignalTap II: post-fitting filter** in the **Node Finder** to add the signals of interest to your SignalTap II configuration file. If you want to add signals from the presynthesis netlist, set the netlist type to Source File and use the **SignalTap II: pre-synthesis filter** in the **Node Finder**. Do not use the netlist type **Post-Synthesis** with the SignalTap II Logic Analyzer.

Be sure to conform to the following guidelines when using post-fit/pre-synthesis nodes:

- Read all incremental compilation guidelines to ensure the proper partition of a project.
- To speed compile time, use only post-fit nodes for partitions set to preservation level post-fit.

• Do not mix pre-synthesis and post-fit nodes in any partition. If you must tap presynthesis nodes for a particular partition, make all tapped nodes in that partition presynthesis nodes and change the netlist type to **source** in the design partitions window.

Node names may be different between a pre-synthesis netlist and a postfit netlist. In general, registers and user input signals share common names between the two netlists. During compilation, certain optimizations will change the names of combinational signals in your RTL. If the type of node name chosen does not match the netlist type, the compiler may not be able to find the signal to connect to your SignalTap II Logic Analyzer instance for analysis. The compiler will issue a critical warning to warn you of this scenario. The signal that is not connected is tied to ground in the SignalTap II data tab.

If you do use incremental compile flow with the SignalTap II Logic Analyzer and source file changes are necessary, be aware that you may have to remove compiler-generated post-fit net names. Source code changes force the affected partition to go through a resynthesis. During synthesis, the compiler cannot find compiler-generated net names from a previous compilation. Altera recommends you use only registered and user input signals as debugging taps in your STP file whenever possible. Both registered and user-supplied input signals share common node names in the pre-synthesis and post-fit netlist. As a result, using only registered and user-supplied input signals in your STP file limits the changes you need to make to your SignalTap configuration.

To verify that your original design was not modified, examine the messages in the **Partition Merge** section of the Compilation Report. Figure 13–23 shows an example of the messages displayed.

Figure 13–23. Compilation Report Messages

🐇 Quartus II - C:/altera/72/qdesigns/fir_filter/fir_filter - filtref						
File Edit View Project Assignments Processing Tools Window Help						
D 🖆 🖬 🗿 🖧 🖄 🖻 🖻 🗠 ♀ │ fitter 💽 💥 🖉 🎯 🕸 🕨 ► 🗞 № 10 📐 🚳 💆 💆 🥥						
× Type Message	<u>^</u>					
 Info: Quartus II Analysis & Synthesis was successful. 0 errors, 14 warnings Info: ************************************						
🗄 🚺 Info: Rumning Quartus II Partition Merge						
🤹 Info: Command: quartus_cdbread_settings_files=offwrite_settings_files=off fir_filter -c filtrefmerge=on						
Info: Using previously generated Fitter netlist for partition "Top"						
Info: Using synthesis netlist for partition "sld_signaltap:auto_signaltap1"						
Info: Using synthesis netlist for partition "sld_signaltap:auto_signaltap0"						
Info: Using synthesis netlist for partition "sld_hub:sld_hub_inst"						
Info: Netlist merging resolved 4 partition(s) out of the 4 partition(s) found	-					
H V Info: Found 18 I/O atom(s) with illegal connectivity or that do not connect to top-level pins.	×					
	>					
main System (16) A Processing (178) A Extra Into A Into (155) A Warning (19) A Critical Warning (4) A Error A Suppressed (6) A Flag /						
Message: 203 of 412 tocation:	Locate					
× Partition Name Compilation Hierarchy Path Netlist Type Fitter Preservation Level Color Post-Synthesis Netlist Status Post	st-Fit Netlist Stati					
E La Design Partitions						
<pre></pre>						
🖕 🔄 Top filtref Post-Fit Placement and Routing 14:08:37 Aug 08, 2007 10:32	:57 Aug 09, 1					
	>					
For Help, press F1 Idle Idle	NUM //					

Unless you make changes to your design partitions that require recompilation, only the SignalTap II design partition is recompiled. If you make subsequent changes to only the SignalTap II file, only the SignalTap II design partition must be recompiled, reducing your recompilation time.

Preventing Changes Requiring Recompilation

You can configure the SignalTap II file to prevent changes that normally require a recompilation. You do this by selecting a lock mode from above the node list in the **Setup** tab. Whether or not you are using incremental compilation, you can lock your configuration by choosing to allow only trigger condition changes.

For more information about the use of lock modes, refer to the Quartus II Help.

Timing Preservation with the SignalTap II Logic Analyzer

In addition to verifying functionality, timing closure is one of the most crucial processes in successfully completing a design. When you compile a project with a SignalTap II Logic Analyzer without the use of incremental compilation, you add IP to your existing design. Therefore, you can affect the existing placement, routing, and timing of your design. To minimize the effect that the SignalTap II Logic Analyzer has on your design, Altera recommends that you use incremental compilation for your project. Incremental compilation is the default setting in new designs and can be easily enabled and configured in existing designs. With the SignalTap II Logic Analyzer in its own design partition, it has little to no affect on your design.

In addition to using the incremental compilation flow for your design, you can use the following techniques to help maintain timing:

- Avoid adding critical path signals to your SignalTap II file.
- Minimize the number of combinational signals you add to your SignalTap II file, and add registers whenever possible.
- Specify an f_{MAX} constraint for each clock in your design.

For an example of timing preservation with the SignalTap II Logic Analyzer, refer to the *Area and Timing Optimization* chapter in volume 2 of the *Quartus II Handbook*.

Performance and Resource Considerations

There is an inherent trade-off between runtime flexibility of the SignalTap II Logic Analyzer, timing performance of the Signal Tap II Logic Analyzer, and the resource usage. The SignalTap II Logic Analyzer allows you to select the runtime configurable parameters to balance the need for runtime flexibility, speed, and area. The default values have been chosen to provide maximum flexibility so you can reach debugging closure as quickly as possible; however, you can adjust these settings to determine whether there is a more optimal configuration for your design.

The suggestions in this section provide some tips to provide extra timing slack if you have determined that the SignalTap II logic is in your critical path, or to alleviate the resource requirements that the SignalTap II Logic Analyzer consumes if your design is resource-constrained.

If the SignalTap II logic is part of your critical path, the following suggestions can help to speed up the performance of the SignalTap II Logic Analyzer:

Disable runtime configurable options—Certain resources are allocated to accommodate for run-time flexibility. If you are using either advanced triggers or the state-based triggering flow, you can disable run-time configurable parameters for a boost in f_{MAX} of the SignalTap II logic. If you are using the state-based triggering flow, try disabling the **Goto state destination** option and performing a recompilation before disabling the other runtime configurable options. The **Goto state destination** option has the greatest impact on f_{MAX} as compared to the other runtime configurable options.

- Minimize the number of signals that have Trigger Enable selected—All of the signals that you add to the SignalTap II file have Trigger Enable turned on. Turn off Trigger Enable for signals that you do not plan to use as triggers.
- **Turn on Physical Synthesis for register retiming**—If you have a large number of triggering signals enabled (greater than the number of inputs that would fit in a LAB) that fan-in to logic gate-based triggering condition, such as a basic trigger condition or a logical reduction operator in the advanced trigger tab, turn on the **Perform register retiming**. This can help balance combinational logic across LABs.

If your design is resource constrained, the following suggestions can help to reduce the amount of logic or memory used by the SignalTap II Logic Analyzer:

- Disable runtime configurable options—Disabling runtime configurability for the advanced trigger conditions or the runtime configurable options in the state-based triggering flow will result in less LE usage.
- Minimize the number of segments in the acquisition buffer—You can reduce the number of logic resources used for the SignalTap II Logic Analyzer by limiting the number of segments in your sampling buffer to only that which is required.
- Disable the Data Enable for signals that are used for triggering only—By default, both the data enable and trigger enable options are selected for all signals. Turning off the data enable option for signals used as trigger inputs only will save on memory resources used by the SignalTap II Logic Analyzer.

Because performance results are design-dependent, try these options in different combinations until you achieve the desired balance between functionality, performance, and utilization.

For more information about area and timing optimization, refer the *Area* and *Timing Optimization* chapter in volume 2 of the *Quartus II Handbook*.

Program the Target Device or Devices

Once your project, including the SignalTap II Logic Analyzer, is compiled, you must configure the FPGA target device. When you are using the SignalTap II Logic Analyzer for debugging, you can configure the device from the SignalTap II file instead of the Quartus II Programmer. Because you configure from the SignalTap II file, you can open more than one SignalTap II file and program multiple devices to debug multiple designs simultaneously.

The settings in a SignalTap II file must be compatible with the programming (SOF) file used to program the device. A SignalTap II file is considered compatible with an SOF when the settings for the logic analyzer, such as the size of the capture buffer and the signals selected for monitoring or triggering, match the way the target device will be programmed. If the files are not compatible, you will still be able to program the device, but you will not be able to run or control the logic analyzer from the SignalTap II Editor.

To ensure programming compatibility, make sure to program your device with the latest SOF created from the most recent compilation.

Before starting a debugging session, do not make any changes to the SignalTap II file settings that would require the project to be recompiled. You can check the SignalTap II status display at the top of the Instance Manager to see if a change you made requires the design to be recompiled, producing a new SOF. This gives you the opportunity to undo the change, so that a recompilation is not necessary. To prevent any such changes, enable a lock mode in the SignalTap II file.

Programming a Single Device

To configure a single device for use with the SignalTap II Logic Analyzer, perform the follow steps:

- 1. In the **JTAG Chain Configuration** pane in the SignalTap II Editor, select the connection you use to communicate with the device from the **Hardware** list. If you need to add your communication cable to the list, click **Setup** to configure your connection.
- 2. Click **Browse** in the **JTAG Chain Configuration** pane, and select the SOF file that includes the compatible SignalTap II Logic Analyzer.
- 3. Click **Scan Chain**. The Scan Chain operation enumerates all of the JTAG devices within your JTAG chain.

4. In the **Device** list, select the device to which you want to download the design. The device list shows an ordered list of all devices in the JTAG chain.

All of the devices are numbered sequentially according to their position in the JTAG chain, prefixed with the "@". For example: @1 : EP3C25 (0x020F30DD) lists a Cyclone III device as the first device in the chain, with the JTAG ID code of 0x020F30DD.

5. Click the **Program Device** icon.

Programming Multiple Devices to Debug Multiple Designs

You can simultaneously debug multiple designs using one instance of the Quartus II software by performing the following steps:

- 1. Create, configure, and compile each project that includes a SignalTap II file.
- 2. Open each SignalTap II file.
 - You do not have to open a Quartus II project to open a SignalTap II file.
- 3. Use the **JTAG Chain Configuration** pane controls to select the target device in each SignalTap II file.
- 4. Program each FPGA.
- 5. Run each analyzer independently.

Figure 13-24 shows a JTAG chain and its associated SignalTap II files.

Figure 13–24. JTAG Chain

Run the SignalTap II Logic Analyzer

After the device is configured with your design that includes the SignalTap II Logic Analyzer, you can perform debugging operations in a manner similar to the use of an external logic analyzer. You "arm" the logic analyzer by starting an analysis. When your trigger event occurs, the captured data is stored in the memory buffer on the device and then transferred to the SignalTap II file over the JTAG connection. You can also perform the equivalent of a "force trigger" that lets you view the captured data currently in the buffer without a trigger event occurring. Figure 13–25 illustrates a flow that shows how you operate the SignalTap II Logic Analyzer. The flowchart indicates where Power-Up and Run-Time Trigger events occur and when captured data from these events is available for analysis.

The SignalTap II toolbar in the Instance Manager has four options for running the analyzer:

- Run Analysis—The SignalTap II Logic Analyzer runs until the trigger event occurs. When the trigger event occurs, monitoring and data capture stops once the acquisition buffer is full.
- AutoRun Analysis—The SignalTap II Logic Analyzer continuously captures data until the Stop Analysis button is clicked, ignoring all trigger event conditions.
- Stop Analysis—SignalTap II analysis stops. The acquired data does not appear automatically if the trigger event has not occurred.
- Read Data—Captured data is displayed. This button is useful if you want to view the acquired data even if the trigger has not occurred.

Running with a Power-Up Trigger

If you have enabled and set up a Power-Up Trigger for an instance of the SignalTap II Logic Analyzer, the captured data may already be available for viewing if the trigger event occurred after device configuration. To download the captured data or to check if the Power-Up Trigger is still running, click **Run Analysis** in the Instance Manager. If the Power-Up Trigger occurred, the logic analyzer immediately stops, and the captured data is downloaded from the device. The data can now be viewed on the **Data** tab of the SignalTap II Editor. If the Power-Up Trigger did not occur, no captured data is downloaded, and the logic analyzer continues to run. You can wait for the Power-Up Trigger event to occur, or, to stop the logic analyzer, click **Stop Analysis**.

Running with Runtime Triggers

You can arm and run the SignalTap II Logic Analyzer manually after device configuration to capture data samples based on the Runtime Trigger. You can do this immediately if there is no Power-Up Trigger enabled. If a Power-Up Trigger is enabled, you can do this after the Power-Up Trigger data is downloaded from the device or once the logic analyzer is stopped because the Power-Up Trigger event did not occur. Click **Run Analysis** in the SignalTap II Editor to start monitoring for the trigger event. You can start multiple SignalTap II instances at the same time by selecting all of the required instances before you click **Run Analysis** on the toolbar.

Unless the logic analyzer is stopped manually, data capture begins when the trigger event evaluates to TRUE. When this happens, the captured data is downloaded from the buffer. You can view the data in the **Data** tab of the SignalTap II Editor.

Performing a Force Trigger

Sometimes when you use an external logic analyzer or oscilloscope, you want to see the current state of signals without setting up or waiting for a trigger event to occur. This is referred to as a "force trigger" operation, because you are forcing the test equipment to capture data without regard to any set trigger conditions. With the SignalTap II Logic Analyzer, you can choose to run the analyzer and capture data immediately or run the analyzer and capture data when you want.

For more information, refer to the *Design Debugging Using In-System Sources and Probes* chapter in volume 3 of the *Quartus II Handbook*.

To run the analyzer and immediately capture data, disable the trigger conditions by turning off each **Trigger Condition** column in the node list. This operation does not require a recompilation. Click **Run Analysis** in the Instance Manager. The SignalTap II Logic Analyzer immediately triggers, captures, and downloads the data to the **Data** tab of the SignalTap II Editor. If the data does not download automatically, click **Read Data** in the Instance Manager.

If you want to choose when to capture data manually, it is not required that you disable the trigger conditions. Click **Autorun Analysis** to start the logic analyzer, and click **Stop Analysis** to capture data. If the data does not download to the **Data** tab of the SignalTap II Editor automatically, click **Read Data**.

Finally, you can choose to capture data manually after a trigger event has occurred. This is useful if you still want the trigger event to occur, but you want to capture data about the signals at some point after the trigger without capturing the trigger event itself. To do this, set the **Buffer acquisition mode** to **Circular** and **Continuous**, and click **Run Analysis**. When the trigger event occurs, the status in the SignalTap II Health Monitor is shown as Acquiring post-trigger data, but the logic analyzer does not stop. When you want to capture and download the data, click **Stop Analysis**. If the data does not download automatically, click **Read Data**.

You can also use In-System Sources and Probes in conjunction with the SignalTap II Logic Analyzer to force trigger conditions. The In-System Sources and Probes feature allows you to drive and sample values on to selected nets over the JTAG chain. For more information, refer to the *Design Debugging Using In-System Sources and Probes* chapter in volume 3 of the *Quartus II Handbook*.

SignalTap II Status Messages

Table 13-11 describes the text messages that may appear in the SignalTap II Health Monitor in the Instance Manager before, during, and after a data acquisition. Use these messages to know the state of the logic analyzer or what operation it is performing.

Table 13–11. Text Messages in the SignalTap II Health Monitor					
Message	Message Description				
Not running	The SignalTap II Logic Analyzer is not running. There is no connection to a device or the device is not configured.				
(Power-Up Trigger) Waiting for clock (1)	The SignalTap II Logic Analyzer is performing a Runtime or Power-Up Trigger acquisition and is waiting for the clock signal to transition.				
Acquiring (Power-Up) pre-trigger data(1)	The trigger condition has not been evaluated yet. A full buffer of data is collected if the circular buffer acquisition mode is selected.				
Trigger In conditions met	Trigger In condition has occurred. The SignalTap II Logic Analyzer is waiting for the condition of the first trigger condition to occur. This can appear if Trigger In is specified.				
Waiting for (Power-up) trigger(1)	The SignalTap II Logic Analyzer is now waiting for the trigger event to occur.				
Trigger level < x> met	The condition of trigger condition x has occurred. The SignalTap II Logic Analyzer is waiting for the condition specified in condition $x + 1$ to occur.				
Acquiring (power-up) post-trigger data(1)	The whole trigger event has occurred. The SignalTap II Logic Analyzer is acquiring the post-trigger data. The amount of post-trigger data collected is user-defined between 12%, 50%, and 88% when the circular buffer acquisition mode is selected.				
Offload acquired (Power-Up) data(1)	Data is being transmitted to the Quartus II software through the JTAG chain.				
Ready to acquire	The SignalTap II Logic Analyzer is waiting for the user to arm the analyzer.				

Note to Table 13–11:

(1) This message can appear for both Runtime and Power-Up Trigger events. When referring to a Power-Up Trigger, the text in parentheses is added.

In segmented acquisition mode, pre-trigger and post-trigger do not apply.

٦

View, Analyze, and Use Captured Data

Once a trigger event has occurred or you capture data manually, you can use the SignalTap II interface to examine the data, and use your findings to help debug your design. The SignalTap II Logic Analyzer provides a number of features that makes it easy to do this.

Viewing Captured Data

You can view captured SignalTap II data in the **Data** tab of the SignalTap II file (Figure 13–26). Each row of the **Data** tab displays the captured data for one signal or bus. Buses can be expanded to show the data for each individual signal on the bus. Click on the data waveforms to zoom in on the captured data samples, and right-click to zoom out.

When you are viewing captured data, it is often useful to know the time interval between two events. Time bars enable you to see the number of clock cycles between two samples of captured data in your system. There are two types of time bars:

- Master Time Bar—The master time bar's label displays the absolute time of its location in bold. The master time bar is a thick black line in the Data tab. The captured data has only one master time bar.
- Reference Time Bar—The reference time bar's label displays the time relative to the master time bar. You can create an unlimited number of reference time bars.

To help you find a transition of signals relative to the master time bar location, use either the **Next Transition** or the **Previous Transition** button. This aligns the master time bar with the next or previous transition of a selected signal or group of selected signals. This feature is very useful when the sample depth is very large and the rate at which signals toggle is very low.

Creating Mnemonics for Bit Patterns

The mnemonic table feature allows you to assign a meaningful name to a set of bit patterns, such as a bus. To create a mnemonic table, right-click in the **Setup** or **Data** tab of a SignalTap II file, and click **Mnemonic Table Setup**. You create a mnemonic table by entering sets of bit patterns and specifying a label to represent each pattern. Once you have created a mnemonic table, you assign it to a group of signals. To assign a mnemonic table, right-click on the group, click **Bus Display Format**, and select the desired mnemonic table.

The labels you create in a table are used in different ways on the **Setup** and **Data** tabs. On the **Setup** tab, you can create basic triggers with meaningful names by right-clicking an entry in any Trigger Conditions column and selecting a label from the table you assigned to the signal group. On the **Data** tab, if any captured data matches a bit pattern contained in an assigned mnemonic table, the signal group data is replaced with the appropriate label, making it easy to see when expected data patterns occur.

Automatic Mnemonics with a Plug-In

When you use a plug-in to add signals to a SignalTap II file, mnemonic tables for the added signals are automatically created and assigned to the signals defined in the plug-in. If you ever need to manually enable these mnemonic tables, right-click on the name of the signal or signal group. On the **Bus Display Format** submenu, click the name of the mnemonic table that matches the plug-in.

As an example, the Nios II plug-in makes it easy to monitor your design's signal activity as code is executed. If you have set up the logic analyzer to trigger on a function name in your Nios II code based on data from an ELF file, you can see the function name in the Instance Address signal group at the trigger sample, along with the corresponding disassembled code in the Disassembly signal group, as shown in Figure 13–27 on page 13–65. Captured data samples around the trigger are referenced as offset addresses from the trigger function name.

Figure 13–27. Data Tab when the Nios II Plug-In is Used

log: 2	006/09/	29 16:55:45 #0	\$		⇒								
Туре	Alias	Name	37	Value	38	48		49) 50 I)		51	52
۵	PC	Nios II Inst Address ⊕	C	alt_main+0x8	\square		<empty></empty>	Ľ	alt_main+0xc 🗴	C	<empty></empty>	X	<empty></empty>
۵	DIS	⊕Nios II Disassembly	\subset	mov fp, sp	\square		<empty></empty>		movir2,2 🗴		<empty></empty>	X	<empty></empty>
<		I											>
🔊 Da	ata 🐰	Setup											

Locating a Node in the Design

When you find the source of a bug in your design using the SignalTap II Logic Analyzer, you can use the node locate feature to locate that signal in many of the tools found in the Quartus II software, as well as in your design files. This lets you find the source of the problem quickly so you can modify your design to correct the flaw. To locate a signal from the SignalTap II Logic Analyzer in one of the Quartus II software tools or your design files, right-click on the signal in the SignalTap II file, and click **Locate in** *<tool name>*. You can locate a signal from the node list in any of the following locations:

- Assignment Editor
- Pin Planner
- Timing Closure Floorplan
- Chip Planner
- Resource Property Editor
- Technology Map Viewer
- RTL Viewer
- Design File

For more information about using these tools, refer to the appropriate chapters in the *Quartus II Handbook*.

Saving Captured Data

The data log shows the history of captured data and the triggers used to capture the data. The analyzer acquires data, stores it in a log, and displays it as waveforms. When the logic analyzer is in auto-run mode and a trigger event occurs more than once, captured data for each time the trigger occurred is stored as a separate entry in the data log. This makes it easy to go back and review the captured data for each trigger event. The default name for a log is based on the time when the data was acquired. Altera recommends that you rename the data log with a more meaningful name.

The logs are organized in a hierarchical manner; similar logs of captured data are grouped together in trigger sets. If the Data Log pane is closed, on the View menu, select **Data Log** to reopen it. To enable data logging, turn on **Enable data log** in the **Data Log** (Figure 13–11). To recall a data log for a given trigger set and make it active, double-click the name of the data log in the list.

The Data Log feature is useful for organizing different sets of trigger conditions and different sets of signal configurations. Refer to "Managing Multiple SignalTap II Files and Configurations" on page 13–28.

Converting Captured Data to Other File Formats

You can export captured data in the following file formats, some of which can be used with other EDA simulation tools:

- Comma Separated Values File (.csv)
- Table File (.tbl)
- Value Change Dump File (.vcd)
- Vector Waveform File (.vwf)
- Graphics format files (.jpg, .bmp)

To export the SignalTap II Logic Analyzer's captured data, on the File menu, click **Export** and specify the **File Name**, the **Export Format**, and the **Clock Period**.

Creating a SignalTap II List File

Captured data can also be viewed in a SignalTap II list file. A SignalTap II list file is a text file that lists all the data captured by the logic analyzer for a trigger event. Each row of the list file corresponds to one captured sample in the buffer. Columns correspond to the value of each of the captured signals or signal groups for that sample. If a mnemonic table was created for the captured data, the numerical values in the list are replaced with a matching entry from the table. This is especially useful with the use of a plug-in that includes instruction code disassembly. You can immediately see the order in which the instruction code was executed during the same time period of the trigger event. To create a SignalTap II list file, on the File menu, select **Create/Update**, and click **Create SignalTap II List File**.

Other Features

The SignalTap II Logic Analyzer has a number of other features that do not necessarily belong to a particular task in the task flow.

Using the SignalTap II MATLAB MEX Function to Capture Data

If you use MATLAB for DSP design, you can call the MATLAB MEX function alt_signaltap_run, built into the Quartus II software, to acquire data from the SignalTap II Logic Analyzer directly into a matrix in the MATLAB environment. If you use the MEX function repeatedly in a loop, you can perform as many acquisitions as you can when using SignalTap II in the Quartus II software environment in the same amount of time.

The SignalTap II MATLAB MEX function is available only in the Windows version of the Quartus II software. It is compatible with MATLAB Release 14 Original Release Version 7 and later.

To set up the Quartus II software and the MATLAB environment to perform SignalTap II acquisitions, perform the following steps:

- 1. In the Quartus II software, create a SignalTap II file.
- 2. In the node list in the **Data** tab of the SignalTap II Editor, organize the signals and groups of signals into the order in which you want them to appear in the MATLAB matrix. Each column of the imported matrix represents a single SignalTap II acquisition sample, while each row represents a signal or group of signals in the order they are organized in the **Data** tab.

- Signal groups acquired from the SignalTap II Logic Analyzer and transferred into the MATLAB environment with the MEX function are limited to a width of 32 signals. If you want to use the MEX function with a bus or signal group that contains more than 32 signals, split the group up into smaller groups that do not exceed the 32 signal limit.
- 3. Save the SignalTap II file and compile your design. Program your device and run the SignalTap II Logic Analyzer to make sure your trigger conditions and signal acquisition are working correctly.
- 4. In the MATLAB environment, add the Quartus II binary directory to your path with the following command:

addpath <Quartus install directory>\win +

You can view the help file for the MEX function by entering alt_signaltap_run in MATLAB without any operators.

You use the MEX function in the MATLAB environment to open the JTAG connection to the device and run the SignalTap II Logic Analyzer to acquire data. When you finish acquiring data, you must close the connection.

To open the JTAG connection and begin acquiring captured data directly into a MATLAB matrix called stp, use the following command:

```
stp = alt_signaltap_run('<stp filename>'[,('signed'|'unsigned')[,'<instance names>'[,/
'<signalset name>'[,'<trigger name>']]]);
```

When capturing data, *<stp filename>* is the name of the SignalTap II file you want to use. This is required for using the MEX function. The other MEX function options are defined in Table 13–12.

Table 13–12. SignalTap II MATLAB MEX Function Options (Part 1 of 2)					
Option	Usage	Description			
signed unsigned	'signed' 'unsigned'	The signed option turns signal group data into 32-bit two's complement signed integers. The most significant bit (MSB) of the group as defined in the SignalTap II Data tab is the sign bit. The unsigned option keeps the data as an unsigned integer. The default is signed .			

Table 13–12. SignalTap II MATLAB MEX Function Options (Part 2 of 2)					
Option	Usage	Description			
<instance name=""></instance>	'auto_signaltap_0'	Specify a SignalTap II instance if more than one instance is defined. The default is the first instance in the SignalTap II file, auto_signaltap_0.			
<signal name="" set=""> <trigger name=""></trigger></signal>	'my_signalset' 'my_trigger'	Specify the signal set and trigger from the SignalTap II data log if multiple configurations are present in the SignalTap II file. The default is the active signal set and trigger in the file.			

You can enable or disable verbose mode to see the status of the logic analyzer while it is acquiring data. To enable or disable verbose mode, use the following commands:

```
alt_signaltap_run('VERBOSE_ON'); 
alt_signaltap_run('VERBOSE_OFF');
```

When you finish acquiring data, you must close the JTAG connection. Use the following command to close the connection:

```
alt_signaltap_run('END_CONNECTION'); 🕶
```


For more information about the use of MEX functions in MATLAB, refer to the MATLAB Help.

Using SignalTap II in a Lab Environment

You can install a stand-alone version of the SignalTap II Logic Analyzer. This version is particularly useful in a lab environment where you do not have a workstation that meets the requirements for a complete Quartus II installation, or if you do not have a license for a full installation of the Quartus II software. The stand-alone version of the SignalTap II Logic Analyzer is included with the Quartus II stand-alone Programmer and is available from the Downloads page of the Altera website, **www.altera.com**.

Remote Debugging Using the SignalTap II Logic Analyzer

You can use the SignalTap II Logic Analyzer to debug a design that is running on a device attached to a PC in a remote location.

To perform a remote debugging session, you must have the following setup:

- The Quartus II software installed on the local PC
- Stand-alone SignalTap II Logic Analyzer or the full version of the Quartus II software installed on the remote PC
- Programming hardware connected to the device on the PCB at the remote location
- TCP/IP protocol connection

Equipment Setup

On the PC in the remote location, install the stand-alone version of the SignalTap II Logic Analyzer or the full version of the Quartus II software. This remote computer must have Altera programming hardware connected, such as the EthernetBlaster or USB-Blaster.

On the local PC, install the full version of the Quartus II software. This local PC must be connected to the remote PC across a LAN with the TCP/IP protocol.

Software Setup on the Remote PC

To setup the software on the remote PC, perform the following steps:

- 1. In the Quartus II programmer, click Hardware Setup.
- 2. Click the JTAG Settings tab (Figure 13–28 on page 13–70).

Figure 13–28. Configure JTAG on Remote PC

pecify JTAG se emote clients to	rvers to add and remove from th access the local JTAG server b	e JTAG Servers list. Sj y configuring your loca	pecify the password used I al JTAG server.
JTAG Servers: Server Local	Connection Status	(Add Server Remove Server

- 3. Click Configure local JTAG Server.
- 4. In the **Configure Local JTAG Server** dialog box (Figure 13–29), turn on **Enable remote clients to connect to the local JTAG server**, and type your password in the password box. Type your password again in the **Confirm Password** box and click **OK**.

Figure 13–29. Configure Local JTAG Server on Remote

Configure Local JTAG Server	<
▼ Enable remote clients to connect to the local JTAG server.	
D 1	
Password:	
Confirm password:	
OK Cancel	

Software Setup on the Local PC

To set up your software on your local PC, perform the following steps:

- 1. Launch the Quartus II programmer.
- 2. Click Hardware Setup.
- 3. On the **JTAG settings** tab, click **Add server**.
- 4. In the **Add Server** dialog box (Figure 13–30), type the network name or IP address of the server you want to use and the password for the JTAG server that you created on the remote PC.

Figure 13–30. Add Server Dialog Box

Add Server		×
Server name:	Local	
Server password:	******	
	OK Cancel	

5. Click OK.

SignalTap II Setup on the Local PC

To connect to the hardware on the remote PC, perform the following steps:

1. Click the **Hardware Settings** tab and select the hardware on the remote PC (Figure 13–31).

Figure 13–31. Selecting Hardware on Remote PC

Hardware Setup			×	
Hardware Settings JTAG Settings Select a programming devices. This programming hardware setup to use when programming devices. This programming hardware setup applies only to the current programmer window.				
Currently selected hardware:	SB-Blaster on 13	7.57.241.26 (USB-0)	
Hardware ByteBlaster USB-Blaster USB-Blaster	Server Local Local 137.57.241.26	Port LPT1 USB-0 USB-0	Add Hardware Remove Hardware	
<u></u>			Close	

2. Click Close.

You can now control the logic analyzer on the device attached to the remote PC as if it was connected directly to the local PC.

SignalTap II Scripting Support

You can run procedures and make settings described in this chapter in a Tcl script. You can also run some procedures at a command prompt. For detailed information about scripting command options, refer to the Quartus II Command-Line and Tcl API Help browser. To run the Help browser, type the following command at the command prompt:

quartus_sh --qhelp 🕂

The *Quartus II Scripting Reference Manual* includes the same information in PDF format.

For more information about Tcl scripting, refer to the *Tcl Scripting* chapter in volume 2 of the *Quartus II Handbook*.

For more information about command-line scripting, refer to the *Command-Line Scripting* chapter in volume 2 of the *Quartus II Handbook*.

SignalTap II Command Line Options

To compile your design with the SignalTap II Logic Analyzer using the command prompt, you must use the quartus_stp command. Table 13–13 shows the options that help you better understand how to use the **quartus_stp** executable.

Table 13–13. SignalTap II Command-Line Options (Part 1 of 2)						
Option	Usage	Description				
stp_file	quartus_stp stp_file < <i>stp_filename</i> >	Assigns the specified SignalTap II file to the USE_SIGNALTAP_FILE in the Quartus II Settings File (QSF).				
enable	quartus_stpenable	Creates assignments to the specified SignalTap II file in the QSF, and changes ENABLE_SIGNALTAP to ON. The SignalTap II Logic Analyzer is included in your design the next time the project is compiled. If no SignalTap II file is specified in the QSF, thestp_file option must be used. If theenable option is omitted, the current value of ENABLE_SIGNALTAP in the QSF is used.				

Table 13–13. SignalTap II Command-Line Options (Part 2 of 2)					
Option	Usage	Description			
disable	quartus_stpdisable	Removes the SignalTap II file reference from the QSF and changes ENABLE_SIGNALTAP to OFF. The SignalTap II Logic Analyzer is removed from the design database the next time you compile your design. If the disable option is omitted, the current value of ENABLE_SIGNALTAP in the QSF is used.			
create_signaltap_hdl_file	quartus_stp create_signaltap_hdl_file	Creates a SignalTap II file representing the SignalTap II instance in the design generated by the SignalTap II Logic Analyzer megafunction created with the MegaWizard Plug-in Manager. The file is based on the last compilation. You must use thestp_file option to properly create a SignalTap II file. Analogous to Create SignalTap II File from Design Instance(s) command in the Quartus II software.			

Example 13–2 illustrates how to compile a design with the SignalTap II Logic Analyzer at the command line:

Example 13-2.

```
quartus_stp filtref --stp_file stp1.stp --enable 	
quartus_map filtref --source=filtref.bdf --family=CYCLONE 	
quartus_fit filtref --part=EP1C12Q240C6 --fmax=80MHz --tsu=8ns 	
quartus_tan filtref 	
quartus_asm filtref
```

The quartus_stp --stp_file stp1.stp--enable command creates the QSF variable and instructs the Quartus II software to compile the **stp1.stp** file with your design.

Example 13–3 shows how to create a new SignalTap II file after building the SignalTap II Logic Analyzer instance with the MegaWizard Plug-In Manager:

Example 13-3.
quartus_stp filtref --create_signaltap_hdl_file --stp_file stp1.stp +

For information about the other command line executables and options refer to the *Command-Line Scripting* chapter in volume 2 of the *Quartus II Handbook*.

SignalTap II Tcl Commands

The **quartus_stp** executable supports a Tcl interface that allows you to capture data without running the Quartus II GUI. You cannot execute SignalTap II Tcl commands from within the Tcl console in the GUI. They must be run from the command line with the **quartus_stp** executable. To run a Tcl file that has SignalTap II Tcl commands, use the following command:

quartus_stp -t <*Tcl file*> ←

Table 13–14 shows the Tcl commands that you can use with SignalTap II.

Table 13–14. SignalTap II Tcl Commands (Part 1 of 2)							
Command	Argument	Description					
open_session	-name < <i>stp_filename</i> >	Opens the specified SignalTap II file. All captured data is stored in this file.					
run	<pre>-instance <instance_name> -signal_set <signal_set> (optional) -trigger <trigger_name> (optional) -data_log <data_log_name> (optional) -timeout <seconds> (optional)</seconds></data_log_name></trigger_name></signal_set></instance_name></pre>	Starts the analyzer. This command must be followed by all the required arguments to properly start the analyzer. You can optionally specify the name of the data log you want to create. If the Trigger condition is not met, you can specify a timeout value to stop the analyzer.					

Table 13–14. SignalTap II Tcl Commands (Part 2 of 2)			
Command	Argument	Description	
run_multiple_start	None	Defines the start of a set of run commands. Use this command when multiple instances of data acquisition are started simultaneously. Add this command before the set of run commands that specify data acquisition. You must use this command with the run_multiple_end command. If the run_multiple_end command is not included, the run commands will not execute.	
run_multiple_end	None	Defines the end of a set of run commands. Use this command when multiple instances of data acquisition are started simultaneously. Add this command after the set of run_commands.	
stop	None	Stops data acquisition.	
close_session	None	Closes the currently open SignalTap II file. You cannot run the analyzer after the SignalTap II file is closed.	

For more information about SignalTap II Tcl commands, refer to the Quartus II Help.

Example 13–4 is an excerpt from a script that is used to continuously capture data. Once the trigger condition is met, the data is captured and stored in the data log.

Example 13-4.

#opens signaltap session open_session -name stp1.stp #start acquisition of instance auto_signaltap_0 and #auto_signaltap_1 at the same time #calling run_multiple_end will start all instances #run after run_multiple_start call run_multiple_start run -instance auto_signaltap_0 -signal_set signal_set_1 -trigger / trigger_1 -data_log log_1 -timeout 5 run -instance auto_signaltap_1 -signal_set signal_set_1 -trigger / trigger_1 -data_log log_1 -timeout 5 run_multiple_end #close signaltap session close_session Once the script is completed, you should open the SignalTap II file that you used to capture data to examine the contents of the Data log.

Design Example: Using SignalTap II Logic Analyzers in SOPC Builder Systems

Altera Application Note, *AN 323: Using SignalTap II Embedded Logic Analyzers in SOPC Builder Systems* describes how to use the SignalTap II Logic Analyzer to monitor signals located inside a system module generated by SOPC Builder. The system in this example contains many components, including a Nios processor, a direct memory access (DMA) controller, on-chip memory, and an interface to external SDRAM memory. In this example, the Nios processor executes a simple C program from on-chip memory and waits for a button push. After a button is pushed, the processor initiates a DMA transfer, which you analyze using the SignalTap II Logic Analyzer.

For more information about this example and using the SignalTap II Logic Analyzer with SOPC builder systems refer to *AN 323: Using SignalTap II Embedded Logic Analyzers in SOPC Builder Systems* and *AN 446: Debugging NIOS II Systems with the SignalTap II Logic Analyzer.*

Custom Triggering Flow Application Examples

The custom triggering flow in the SignalTap II Logic Analyzer is most useful for organizing a number of triggering conditions and for precise control over the acquisition buffer. This section provides two application examples for defining a custom triggering flow within the SignalTap II Logic Analyzer. Both examples can be easily copied and pasted directly into the state machine description box by using the state display mode **All states in one window**.

For additional triggering flow design examples, refer to the Quartus II On-Chip Debugging Support Resources page for on-chip debugging.

Design Example 1: Specifying a Custom Trigger Position

Actions to the acquisition buffer can accept an optional post-count argument. This post-count argument enables you to define a custom triggering position for each segment in the acquisition buffer. Example 13–5 shows an example that applies a trigger position to all segments in the acquisition buffer. The example describes a triggering flow for an acquisition buffer split into four segments. If each acquisition segment is 64 samples in depth, the trigger position for each buffer will be at sample #34. The acquisition stops after all four segments are filled once.

Example 13-5.

```
if (c1 == 3 && condition1)
    trigger 30;
else if ( condition1 )
begin
    segment_trigger 30;
    increment c1;
```

end

Each segment acts as a circular buffer, that continuously updates the memory contents with the signal values. The last acquisition before stopping the buffer is the displayed on the data tab as the last sample number in the affected segment. The trigger position in the affected segment is then defined by $N - post \ count \ fill$, where N is the number of samples per segment. Figure 13–32 illustrates the triggering position.

Figure 13–32. Specifying a Custom Trigger Position

Design Example 2: Trigger When triggercond1 Occurs Ten Times between triggercond2 and triggercond3

The custom trigger flow description is often useful to count a sequence of events before triggering the acquisition buffer. Example 13–6 on page 13–79 shows such a sample flow. This example uses three basic triggering conditions configured in the SignalTap II setup tab.

This example triggers the acquisition buffer when condition1 occurs after condition3 and occurs ten times prior to condition3. If condition3 occurs prior to ten repetitions of condition1, the state machine transitions to a permanent wait state.

Example 13-6.

```
state ST1:
if ( condition2 )
begin
    reset c1;
    goto ST2;
end
State ST2 :
if ( condition1 )
    increment c1;
else if (condition3 && c1 < 10)
    goto ST3;
else if ( condition3 && c1 >= 10)
    trigger;
ST3:
goto ST3;
```

Conclusion

As the FPGA industry continues to make technological advancements, outdated methodologies need to be replaced with new technologies that maximize productivity. The SignalTap II Logic Analyzer gives you the same benefits as a traditional logic analyzer, without the many shortcomings of a piece of dedicated test equipment. This version of the SignalTap II Logic Analyzer provides many new and innovative features that allow you to capture and analyze internal signals in your FPGA, allowing you to find the source of a design flaw in the shortest amount of time.

Referenced Documents

This chapter references the following documents:

- AN 323: Using SignalTap II Embedded Logic Analyzers in SOPC Builder System
- Area and Timing Optimization chapter in volume 2 of the Quartus II Handbook
- Command-Line Scripting chapter in volume 2 of the Quartus II Handbook
- I/O Management chapter in volume 2 of the Quartus II Handbook
- In-System Debugging Using External Logic Analyzers chapter in volume 3 of the Quartus II Handbook
- Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in volume 1 of the Quartus II Handbook
- Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II Handbook
- Quartus II Settings File Reference Manual
- Quick Design Debugging Using SignalProbe chapter in volume 3 of the Quartus II Handbook
- **T***cl Scripting* chapter in volume 2 of the *Quartus II Handbook*

Table 13–15 shows the revision history for this chapter.

Document Revision History

Table 13–15. Document Revision History Date and **Changes Made** Summary of Changes Document Version October 2007 Updated for the Quartus II software version 7.2: Updated for the • Added new section: "Trigger Condition Flow Control" on Quartus II software v.7.2.0 page 13-34 version 7.2 • Documented the new feature for State-machine-based triggering Documented changes to "Using Incremental Compilation with the SignalTap II Logic Analyzer" on page 13-52 Added additional information about node tappability Added section "Performance and Resource Considerations" on page 13–55, with information about performance and resource utilization considerations for the SignalTap II Logic Analyzer May 2007 Added "Referenced Documents" on page 13-71, minor updates v7.1.0 to address ADoQS issues. March 2007 Added Cyclone III device support listed on page 13-4. v7.0.0 November 2006 Updated for the Quartus II software version 6.1: Updated for the v6.1.0 • Updated Figure 13-4, 13-11,13-16, 13-17, 13-18. Added new Quartus II software Figure 13-23. version 6.1. Miscellaneous changes throughout. Removed information about incremental routing (feature removed). • Added more detail about the use of incremental compilation. • Added more detail about the use of the Nios II plug-in. Added more information about SignalTap II file/SOF compatibility. • Updated method for triggering one logic analyzer with another using trigger in/out. May 2006 Updated for the Quartus II software version 6.0. v6.0.0 October 2005 Updated for the Quartus II software version 5.1. v5.1.0 May 2005 • Updated information. v5.0.0 Updated figures. New functionality for Quartus II software 5.0. • December 2004 Initial release. v1.0

14. In-System Debugging Using External Logic Analyzers

QII53016-7.2.0

Introduction

The phenomenal growth in design size and complexity continues to make the process of design verification a critical bottleneck for today's FPGA systems. Limited access to internal signals, advanced FPGA packages, and printed circuit board (PCB) electrical noise are all contributing factors in making design debugging and verification the most difficult process of the design cycle. You can easily spend more than 50% of your design cycle time debugging and verifying your design. To help you with the process of design debugging and verification, Altera[®] provides a solution that allows you to examine the behavior of internal signals using an external logic analyzer and using a minimal number of FPGA I/O pins, while your design is running at full speed on your FPGA.

This chapter's use of 'logic analyzer' includes both logic analyzers and oscilloscopes equipped with digital channels, commonly referred to as mixed signal analyzers or MSOs.

The Logic Analyzer Interface is an application within the Quartus II software used to connect a large set of internal device signals to a small number of output pins. You can connect these output pins to an external logic analyzer for debugging purposes. The Logic Analyzer Interface enables you to connect to and transmit internal signals buried within your FPGA to an external logic analyzer for analysis. The Quartus II Logic Analyzer Interface allows you to debug a large set of internal signals using a small number of output pins. In the Quartus II Logic Analyzer Interface, the internal signals are grouped together, distributed to a user-configurable multiplexer, and then output to available I/O pins on your FPGA. Instead of having a one-to-one relationship between internal signals to output pins, the Quartus II Logic Analyzer Interface enables you map many internal signals to a smaller number of output pins. The exact number of internal signals that you can map to an output pin varies based on the multiplexer settings in the Quartus II Logic Analyzer Interface.

Optionally, you can use the Logic Analyzer Interface with the Quartus II Incremental Compilation.

Г

Choosing a Logic Analyzer

During the debugging phase of your project, you have the choice of using:

- SignalTap[®] II, the embedded logic analyzer.
- An external logic analyzer, which connects to internal signals in your FPGA, by using the Quartus II Logic Analyzer Interface.

Table 14–1 describes the advantages to both debugging technologies.

Table 14–1. Comparing the SignalTap II Embedded Logic Analyzer with the Logic Analyzer Interface				
Feature	Logic Analyzer Interface	SignalTap II Embedded Logic Analyzer		
Sample Depth—You will have access to a wider sample depth with an external logic analyzer. In SignalTap II, the maximum sample depth is set to 128 Kb, which is a device constraint. However, with an external logic analyzer, there are no device constraints, providing you a wider sample depth.	~	_		
Debugging Timing Issues —Using an external logic analyzer provides you with access to a "timing" mode, which enables you to debug combined streams of data.	~	_		
Performance —You frequently have limited routing resources available to place-and-route when you use SignalTap II with your design. An external logic analyzer adds minimal logic, which removes resource limits on place-and-route.	~	_		
Triggering Capability —Although advanced triggering is available in SignalTap II, many additional triggering options are available on an external logic analyzer.	~	_		
Use of Output Pins —Using the SignalTap II Logic Analyzer, no additional output pins are required. Using an external logic analyzer requires the use of additional output pins.	_	~		
Acquisition Speed—With the SignalTap II Logic Analyzer, you can acquire data at speeds of over 200 MHz. You can achieve the same acquisition speeds with an external logic analyzer, however you have to consider signal integrity issues.	_	✓		

٦

Required Components

You must have the following components to perform analysis using the Quartus II Logic Analyzer Interface:

- The Quartus II software starting with version 5.1 and later
- The device under test
- An external logic analyzer
- An Altera communications cable
- A cable to connect the FPGA to the external logic analyzer

Figure 14–1 shows the Logic Analyzer Interface and the hardware setup.

Notes to Figure 14–1:

- (1) Configuration and control of the LAI using computer loaded with Quartus II via the JTAG port.
- (2) Configuration and control of the LAI using a third-party vendor logic analyzer via the JTAG port. Support varies by vendor.

FPGA Device Support

You can use the Quartus II Logic Analyzer Interface with the following FPGA device families:

- Arria[™] GX
- Stratix[®] III
- Stratix II
- Stratix II GX
- Stratix
- Stratix GX

- Cyclone[®] III
- Cyclone II
- Cyclone
- MAX[®] II
- APEX[™] 20K
- APEX II

Debugging Your Design Using the Logic Analyzer Interface

Figure 14–2 shows the steps you must follow to debug your design with the Quartus II Logic Analyzer Interface.

Creating a Logic Analyzer Interface File

The Logic Analyzer Interface File (.lai), defines the interface that builds a connection between internal FPGA signals and your external logic analyzer. An example of a Logic Analyzer Interface File is shown in Figure 14–3.
📄 lai1.lai				K
Instance Manager: Ready Instance Status	Incremental Compila	ation LEs: 85	JTAG Chain Configuration: JTAG ready (?)	×
auto_lai_0	found 🔽	85 cells	Hardware: USB-Blaster [USB-0] Setup Device: @1: EP2S60ES (0x020930DD) Scan Chain File: L:\altera\altera_nios_dev_board_stratix_2s60_es_2\syst	
Logical View: ×	Setup View: Core Parame	eters		-
Core Parameters Bank 0 07 07 07 07 07 07 07 07	Pin count: 8 Bank count: 1 Output/Capture mode: R Clock: 7 Power-up state: T	legistered/State ïri-stated		
■: auto_lai_0				1

Figure 14–3. Example of a Logic Analyzer Interface Editor

To define the Quartus II Logic Analyzer Interface, you can create a new Logic Analyzer Interface File or use an existing Logic Analyzer Interface File.

Creating a New Logic Analyzer Interface File

To create a new Logic Analyzer Interface File, perform the following steps:

- 1. In the Quartus II software, on the File menu, click **New**. The **New** dialog box opens.
- 2. Click the **Other Files** tab and select **Logic Analyzer Interface File** (Figure 14–4).

Figure 14–4. Creating a New Logic Analyzer File

 Click OK. The Logic Analyzer Interface editor opens. The file name is assigned by the Quartus II software (refer to Figure 14–3 on page 14–5). When you save the file, you will be prompted for a file name. Refer to "Saving the External Analyzer Interface File" on page 14–7.

Opening an Existing External Analyzer Interface File

To open an existing Logic Analyzer Interface File, on the Tools menu, click **Logic Analyzer Interface Editor**. If no Logic Analyzer Interface File is enabled for the current project, the editor automatically creates a new Logic Analyzer Interface File. If a Logic Analyzer Interface File is currently enabled for the project, that file opens when you select the **Logic Analyzer Interface Editor**.

Another way to open an existing Logic Analyzer Interface File is on the File Menu, click **Open**, and select the Logic Analyzer Interface File you want to open.

Saving the External Analyzer Interface File

To save your Logic Analyzer Interface File, perform the following steps:

- 1. In the Quartus II software, on the File menu, click **Save As**, The **Save As** dialog box opens (Figure 14–5).
- 2. In the **File name** box, enter the desired file name. Click Save (Figure 14–5).

Figure 14–5. Saving the Logic Analyzer Interface File

Save in: 🦳	sustem	▼ +	E C	ا به التقام
isopc_build	er			
File <u>n</u> ame:	lai1.lai			<u>S</u> ave
Save as <u>t</u> ype:	Logic Analyzer Interface File (*.lai)		•	Cancel

Configuring the Logic Analyzer Interface File Core Parameters

After you have created your Logic Analyzer Interface File, you must configure the Logic Analyzer Interface File core parameters.

To configure the Logic Analyzer Interface File core parameters, select Core Parameters from the Setup View list. Refer to Figure 14–6.

Figure 14–6. Logic Analyzer Interface File Core Parameters

Setup View: Core Para	meters	
Pin count:	8	1
Bank count:	1	
Output/Capture mode:	Registered/State	-
Clock:]
		-
Power-up state:	Tri-stated]

Table 14–2 lists the Logic Analyzer Interface File core parameters.

Table 14–2. Logic Analyzer Interface File Core Parameters (Part 1 of 2)							
Parameter	Description						
Pin Count	The Pin Count parameter signifies the number of pins you want dedicated to your Logic Analyzer Interface. The pins need to be connected to a debug header on your board. Within the FPGA, each pin is mapped to a user-configurable number of internal signals.						
	The Pin Count parameter can range from 1 to 256 pins.						
Bank Count	The Bank Count parameter signifies the number of internal signals that you want to map to each pin. For example, a Bank Count of 8 implies that you will connect eight internal signal to each pin.						
	The Bank Count parameter can range from 1 to 256 banks.						
Output/ Capture Mode	The Output/Capture Mode parameter signifies the type of acquisition you perform. There are two options that you can select:						
	Combinational/Timing—This acquisition uses your external logic analyzer's internal clock to determine when to sample data. Because Combinational/Timing acquisition samples data asynchronously to your FPGA, you need to properly determine the sample frequency you should use to debug and verify your system. This mode is effective if you want to measure timing information such as channel-to-channel skew. For more information on the sampling frequency, and what speeds it can run at refer to the data sheet for your external logic analyzer.						
	Registered/State—This acquisition uses a signal from your system under test to determine when to sample. Because Registered/State acquisition samples data synchronously with your FPGA, it provides you with a functional view of your FPGA while it is running. This mode is effective when you want to verify the functionality of your design.						

Table 14–2. Logic Analyzer Interface File Core Parameters (Part 2 of 2)					
Parameter	Description				
Clock	The clock parameter is available only when Output/Capture Mode is set to Registered State. You must specify the sample clock in the Core Parameters view. The sample clock can be any signal in your design. However, for best results, Altera recommends that you use a clock with an operating frequency fast enough to sample the data you would like to acquire.				
Power-Up State	The Power-Up State parameter specifies the power-up state of the pins you have designated for use with the Logic Analyzer Interface. You have the option of selecting tri-stated for all pins, or selecting a particular bank that you have enabled.				

Mapping the Logic Analyzer Interface File Pins to Available I/O Pins

To configure the Logic Analyzer Interface File I/O pins parameters, select Pins from the Setup View list (Figure 14–7).

Figure 14–7. Logic Analyzer Interface File Pins Parameters

<u>S</u> etup V	/iew: Pins			-
		1/0		
Туре	Index	Name	Location	Standard
	0	attera_reserved_lai_0_0		
	1	attera_reserved_lai_0_1		
	2	attera_reserved_lai_0_2		
	3	attera_reserved_lai_0_3		
	4	altera_reserved_lai_0_4		
	5	attera_reserved_lai_0_5		
	6	attera_reserved_lai_0_6		
	7	attera_reserved_lai_0_7		

To assign pin locations for the Logic Analyzer Interface, double-click the **Location** column next to the reserved pins in the **Names** column. This opens the Pin Planner.

For information on how to use the Pin Planner, refer to the *Pin Planner* section in the *I/O Management* chapter in volume 2 of the *Quartus II Handbook*.

Mapping Internal Signals to the Logic Analyzer Interface Banks

After you have specified the number of banks to use in the Core Parameters settings page, you must assign internal signals for each bank in the Logic Analyzer Interface. Click the **Setup View** arrow and select **Bank** *n* or **ALL Banks** (Figure 14–8).

Figure 14–8. Logic Analyzer Interface Bank Parameters

Setup View: Bank 0						
Pin	Node					
Index	Туре	Alias	Name			
0	•	State Clock				
1	•		÷			
2	1		÷			
3	•		÷			
4	•		÷			
5	•		÷			
6	•		÷			
7	•		÷			

To view all of your bank connections, click **Setup View** and select **All Banks** (Figure 14–9).

Figure 14–9. Logic Analyzer Interface All Bank Parameters

Setup View:	All Banks					
Bank	Pin	Node				
Name	Index	Туре	Alias	Name		
	0			d[7]		
	1	٢		d[6]		
	2	•		d[5]		
Deels 0	3	•		d[4]		
Bank U	4	•		d[3]		
	5	•		d[2]		
	6	•		d[1]		
	7	•		d[0]		
	0	•		÷		
	1	•		÷		
	2	•		÷		
Deels 4	3	•		÷		
Bank 1	4	•		÷		
	5	•		÷		
	6	•		÷		
	7	•		÷		

Using the Node Finder

Before making bank assignments, on the View menu, point to Utility Windows, and click **Node Finder**. Find the signals that you want to acquire, then drag and drop the signals from the Node Finder dialog box into the bank **Setup View**. When adding signals, use **SignalTap II: pre-synthesis** for non-incrementally routed instances and **SignalTap II: post-fitting** for incrementally routed instances.

As you continue to make assignments in the bank Setup View, the schematic of your Logic Analyzer Interface in the Logical View of your Logic Analyzer Interface File begins to reflect your assignments (Figure 14–10).

Continue making assignments for each bank in the **Setup View** until you have added all of the internal signals for which you wish to acquire data.

You can right-click to switch between the Logic Analyzer Interface schematic and the Logic Analyzer Interface Setup view.

Enabling the Logic Analyzer Interface Before Compiling Your Quartus II Project

Compile your project after you have completed the following steps:

- Configure your Logic Analyzer Interface parameters
- Map the Logic Analyzer Interface pins to available I/O pins
- Map the internal signals to the Logic Analyzer Interface banks

Compiling Your Quartus II Project

Before compilation, you must enable the Logic Analyzer Interface.

- On the Assignments menu, click Settings. The Settings dialog box opens. Under Category, click Logic Analyzer Interface. The Logic Analyzer Interface displays. Turn on Enable Logic Analyzer Interface.
- 2. Click **Logic Analyzer Interface file name** and specify the full path name to your Logic Analyzer Interface File (Figure 14–11).

Figure 14–11. Settings Dialog Box—Logic Analyzer Interface Settings

General	Logic Analyzer Interface
Files User Libraries (Current Project) Device Timing Requirements & Options EDA Tool Settings Compilation Process Settings Analysis & Synthesis Settings Filter Settings Design Assistant SignalT ap II Logic Analyzer Logic Analyzer Interface SignalProbe Settings Simulator Settings Software Build Settings HardCopy Settings	Specify Logic Analyzer Interface settings. ✓ Enable Logic Analyzer Interface Logic Analyzer Interface file name: C:\altera\nios_dev_board\system\\ai1.lai

After you have specified the name of your Logic Analyzer Interface File, you must compile your project. To compile your project, on the Processing menu, click **Start Compilation**.

To ensure the Logic Analyzer Interface is properly compiled with your project, expand the entity hierarchy in the Project Navigator. (To display the Project Navigator, on the View menu, point to **Utility Windows**, and click **Project Navigator**.) If the Logic Analyzer Interface compiled with your design, the sld_hub and sld_multitap entities are shown in the project navigator.

Figure 14–12. Project Navigator

Entity	Logic Cells	LC Registers	
🛆 Stratix: EP1S10B672C7			
🖻 🛃 test	136 (1)	81	
由 해외 sld_multitap:auto_lai_0	35 (11)	15	
🗄 🔛 sld_hub:sld_hub_inst	100 (25)	65	

Programming Your FPGA Using the Logic Analyzer Interface

After compilation completes, you must configure your FPGA before using the Logic Analyzer Interface. To configure a device for use with the Logic Analyzer Interface, follow these steps:

- 1. Open the Logic Analyzer Interface File Editor (Figure 14–13).
- 2. Under **JTAG Chain Configuration**, click **Hardware** and select your hardware communications device. You may have to click **Settings** to configure your hardware.
- 3. Click **Device** and select the FPGA device to which you want to download the design (it may be automatically detected). You may have to click **Scan Chain** to configure your device.
- 4. Click **File** and select the SRAM Object File (**.sof**) that includes the Logic Analyzer Interface File (it may be automatically detected).
- 5. If desired, turn on Incremental Compilation.
- 6. Save the Logic Analyzer Interface File.
- 7. Click the **Program Device** icon to program the device.

Figure 14–13. The JTAG Section of the Logic Analyzer Interface File

🖹 lai1.lai				
Instance Manager: Rea	dy	x	JTAG Chain Configuration: JTAG read	, 2 ×
auto_lai_0 Instanc	not found	85 cells	Hardware: USB-Blaster [USB-0] Device: @1: EP2S60ES (0x02093)	DDD) V Scan Chain
			File: 📥 C:\altera\altera_nios_dev_	board_stratix_2s60_es_2\syst
Logical View:	× Setup View: Core Pa	arameters		•
Core Parameters Bank 0 Pins	Pin count:	8	÷	
0/7 0/8 auto_lai_0	Bank count:]1	<u> </u>	
	Output/Capture mode	: Registered/State	-	
	Clock:			
	Power-up state:	Tri-stated	•	
In suto lai 0				
auto_iai_0				1.

Using the Logic Analyzer Interface with Multiple Devices

You can use the Logic Analyzer Interface with multiple devices in your JTAG chain. Your JTAG chain can also consist of devices that do not support the Logic Analyzer Interface or non-Altera, JTAG-compliant devices. To use the Logic Analyzer Interface in more than one FPGA, create a Logic Analyzer Interface and configure a Logic Analyzer Interface File for each FPGA that you want to analyze. To perform multi-FPGA analysis, perform the following steps:

- 1. Open the Quartus II software.
- 2. Create, configure, and compile a Logic Analyzer Interface File for each design.
- 3. Open one Logic Analyzer Interface File at a time.
 - You do not have to open a Quartus II project to open a Logic Analyzer Interface File.
- 4. Follow Steps 2 through 6 under "Programming Your FPGA Using the Logic Analyzer Interface" on page 14–13.
- 5. Click the **Program Device** icon to program the device.
- 6. Control each Logic Analyzer Interface File independently.

Configuring Banks in the Logic Analyzer Interface File

When you have programmed your FPGA, you can control which bank is mapped to the reserved Logic Analyzer Interface File output pins. To control which bank is mapped, right-click on the bank in the schematic in the logical view and click **Connect Bank**.

Figure 14–14. Configuring Banks

Logical View:		×	<u>S</u> etup Vie	ew: F	3ank 0	
			Pin	Node		
Bank 0	Parameters		Index	Туре	Alias	Name
6/7	Undo	Ctrl+Z	0	-	State Clock	
Bank :	Redo	Ctrl+Y	1			addr[2]
7/7 auto_lai_0	Rename Bank	F2	2			addr[1]
L			3			addr[0]
	Connect Bank		4			data[2]
	m-stage Pins	_	- 5			data[1]
			6			data[0]
			7	-		÷

Acquiring Data on Your Logic Analyzer

To acquire data on your logic analyzer, you must establish a connection between your device and the external logic analyzer.

For more information on this process, and for guidelines on how to establish connections between debugging headers and logic analyzers, refer to the documentation for your logic analyzer.

Advanced Features

This section describes the following advanced features:

- Using the Logic Analyzer Interface with Incremental Compilation
- Creating Multiple Logic Analyzer Interface Instances in One FPGA

Using the Logic Analyzer Interface with Incremental Compilation

Using the Logic Analyzer Interface with Incremental Compilation enables you to preserve the synthesis and fitting of your original design and add the Logic Analyzer Interface to your design without recompiling your original source code.

To use the Logic Analyzer Interface with Incremental Compilation, perform the following steps:

1. Start the Quartus II software.

- 2. Enable Design Partitions. To enable Partitions, perform the following steps:
 - a. On the Assignments menu, click, **Design Partitions**.
 - b. In the **Incremental Compilation** list, select **Full Incremental Compilation**.
 - c. Create Design Partitions for the entities in your design, and set the Netlist Type to **Post-fit**.
 - d. On the Processing menu, click **Start Compilation**.
- 3. Enable Logic Analyzer Interface Incremental Compilation by performing these steps:
 - a. In your Logic Analyzer Interface File, under **Instance Manager**, click **Incremental Compilation**.
- When you enable Incremental Compilation, all existing presynthesis signals will be converted into post-fitting signals. Only post-fitting signals can be used with the Logic Analyzer Interface with Incremental Compilation.
 - b. Add Post-Fitting nodes to your Logic Analyzer Interface File.
 - c. On the Processing menu, click **Start Compilation**.

Creating Multiple Logic Analyzer Interface Instances in One FPGA

The Logic Analyzer Interface includes support for multiple interfaces in one FPGA. This feature is particularly useful when you want to build Logic Analyzer Interface configurations that contain different settings. For example, you can build one Logic Analyzer Interface instance to perform Registered/State analysis and build another instance that performs Combinational/Timing analysis on the same set of signals.

Another example would be if you want to perform Registered/State analysis on portions of your design that are in different clock domains.

To create multiple Logic Analyzer Interfaces, on the Edit menu, click **Create Instance**. Alternatively, you can right-click in the Instance Manager window, and click **Create Instance**.

Figure 14–15. Creating Multiple Logic Analyzer Interface Instances in One FPGA

Conclusion

As the FPGA industry continues to make technological advancements, outdated debugging methodologies must be replaced with new technologies that maximize productivity. The Logic Analyzer Interface feature enables you to connect many internal signals within your FPGA to an external logic analyzer with the use of a small number of I/O pins. This new technology in the Quartus II software enables you to use feature-rich external logic analyzers to debug your FPGA design, ultimately enabling you to delver your product in the shortest amount of time.

Document Revision History

Table 14–3 shows the revision history for this chapter.

Table 14–3. Docur	Table 14–3. Document Revision History									
Date and Document Version	Changes Made	Summary of Changes								
October 2007 v7.2.0	No changes to content.									
May 2007 v7.1.0	Minor updates to address ADoQS issues.	—								
March 2007 v7.0.0	Added Cyclone III device support listed on page 14–3.									
November 2006 v6.1.0	Added new revision history table format to this document.	_								
May 2006 v6.0.0	Chapter title changed. Minor updates for the Quartus II software version 6.0.0.	—								
October 2005 v5.1.0	Initial release.	_								

15. In-System Updating of Memory and Constants

QII53012-7.2.0

Introduction

FPGA designs are growing larger in density and are becoming more complex. Designers and verification engineers require more access to the design that is programmed in the device to quickly identify, test, and resolve issues. The in-system updating of memory and constants capability of the Quartus[®] II software provides read and write access to in-system FPGA memories and constants through the Joint Test Action Group (JTAG) interface, making it easier to test changes to memory contents in the FPGA while the FPGA is functioning in the end system.

This chapter explains how to use the Quartus II In-System Memory Content Editor as part of your FPGA design and verification flow.

This chapter contains the following sections:

- "Device Megafunction Support" on page 15–2
- "Using In-System Updating of Memory Constants with Your Design" on page 15–3
- "Creating In-System Modifiable Memories Constants" on page 15–3
- "Running the In-System Memory Content Editor" on page 15–4

Overview

The ability to read and update memories and constants in a programmed device provides more insight into and control over your design. The Quartus II In-System Memory Content Editor gives you access to device memories and constants. When used in conjunction with the SignalTap[®] II embedded logic analyzer, this feature provides you the visibility required to debug your design in the hardware lab.

For more information on the SignalTap II embedded logic analyzer, refer to the *Design Debugging Using the SignalTap II Embedded Logic Analyzer* chapter in volume 3 of the *Quartus II Handbook*.

The ability to read data from memories and constants allows you to quickly identify the source of problems. In addition, the write capabilities allow you to bypass functional issues by writing expected data. For example, if a parity bit in your memory is incorrect, you can use the In-System Content Editor to write the correct parity bit values into your RAM, allowing your system to continue functioning. You can also intentionally write incorrect parity bit values into your RAM to check your design's error handling functionality.

Device Megafunction Support

The following tables list the devices and types of memories and constants that are currently supported by the Quartus II software. Table 15–1 lists the types of memory supported by the MegaWizard[®] Plug-In Manager and the In-System Memory Content Editor.

Table 15–1. MegaWizard Plug-In Manager Support									
Installed Plug-Ins Category	Megafunction Name								
Gates	LPM_CONSTANT								
Memory Compiler	RAM: 1-PORT, ROM: 1-PORT								
Storage	ALTSYNCRAM, LPM_RAM_DQ, LPM_ROM								

Table 15–2 lists support for in-system updating of memory and constants for the Stratix[®] series, ArriaTM GX, Cyclone[®] series, APEXTM II, APEX 20K, and MercuryTM device families.

Table 15–2. Supported Megafunctions									
	Arria	GX / Strat	ix Series	Cualona					
MegaFunction	M512 Blocks	M4K Blocks	MegaRAM Blocks	Series	APEX II	20K	Mercury		
LPM_CONSTANT	Read/ Write	Read/ Write	Read/ Write	Read/ Write	Read/ Write	Read/ Write	Read/ Write		
LPM_ROM	Write	Read/ Write	N/A	Read/ Write	Read/ Write	Write	Read/ Write		
LPM_RAM_DQ	N/A	Read/ Write	Read/ Write	Read/ Write	Read/ Write	N/A (1)	Read/ Write		
ALTSYNCRAM (ROM)	Write	Read/ Write	N/A	Read/ Write	N/A	N/A	N/A		
ALTSYNCRAM (Single-Port RAM Mode)	N/A	Read/ Write	Read/ Write	Read/ Write	N/A	N/A	N/A		

Note to Table 15-2:

 Only write-only mode is applicable for this single-port RAM. In read-only mode, use LPM_ROM instead of LPM_RAM_DQ.

Using In-System Updating of Memory Constants with Your Design

Using the In-System Updating of Memory and Constants feature requires the following steps:

- 1. Identify the memories and constants that you want to access.
- 2. Edit the memories and constants to be run-time modifiable.
- 3. Perform a full compilation.
- 4. Program your device.
- 5. Launch the In-System Memory Content Editor.

When you specify that a memory or constant is run-time modifiable, the Quartus II software changes the default implementation. A single-port RAM is converted to dual-port RAM, and a constant is implemented in registers instead of look-up tables (LUTs). These changes enable run-time modification without changing the functionality of your design. For a list of run-time modifiable megafunctions, refer to Table 15–1.

To enable your memory or constant to be modifiable, perform the following steps:

- 1. On the Tools menu, click MegaWizard Plug-In Manager.
- 2. If you are creating a new megafunction, select **Create a new custom megafunction variation**. If you have an existing megafunction, select **Edit an existing custom megafunction variation**.
- 3. Make the necessary changes to the megafunction based on the characteristics required by your design, turn on Allow In-System Memory Content Editor to capture and update content independently of the system clock and type a value in the Instance ID text box. These parameters can be found on the last page of the wizard for megafunctions that support in-system updating.
 - The Instance ID is a four-character string used to distinguish the megafunction from other in-system memories and constants.
- 4. Click Finish.
- 5. On the Processing menu, click **Start Compilation**.

Creating In-System Modifiable Memories Constants

If you instantiate a memory or constant megafunction directly using ports and parameters in VHDL or Verilog HDL, add or modify the lpm_hint parameter as shown below.

The In-System Memory Content Editor is separated into the Instance Manager, JTAG Chain Configuration, and the Hex Editor (Figure 15–1).

In VHDL code, add the following:
lpm_hint => "ENABLE_RUNTIME_MOD = YES,
INSTANCE_NAME = <instantiation name>";

In Verilog HDL code, add the following:

defparam <megafunction instance name>.lpm_hint =
 "ENABLE_RUNTIME_MOD = YES,
 INSTANCE_NAME = <instantiation name>";

Running the In-System Memory Content Editor

Figure 15–1. In-System Memory Content Editor

👄 In-	Syste	em N	/em	ory	Con	tent	Edi	tor																									
Instan	се Ма	anage	r: 🖹	t 🗉	:	≣↓	Rea	ady to	acq	uire						2) >	<	JTAG	i Cha	in Co	nfigu	ratior	n J	TAG	ready				2				×
Index	Inst	ance	ID	9	Status	;	1	Width	1	[Depth	1		Туре	;		Ŀ				ut-DI			DT1				_	1	Cab		1	
6 10	ACA	٩C		N	lot ru	nning	; ;	3		;	32			RAM	I/RO	М	F	Hard	ware	B	усевь	asteri	MA [I	.P11				-	I	seu	ιμ		
ക 1	CNS	ST		M	lot ru	nning	; ;	3		-				Con	stant		F	Devi	ce:	6	۵1· FI	P1C2	າທະ	0208	40D.E	ກ		-	l s	ican I	Chain	1	
6 2	ACA	чC		Ν	lot ru	nning	, 1	3		:	32			RAM	I/RO	М	F									,		_				1	
																		File:	4	, (C:	\alter	a\In	Syste	m_D	esign	_Files	\demo	o_rest	ored/i	new_	.v		
<																	>																
en 0	AC4	NC:																															
0000	00 18	00 00	00 00	AB 00	00 00	00 00	00 00	00 00	00 00	00	00	00	00	00	00	00	00	00 0	00	00	00	00	00	00	00						• • •		•••
പ 1	CNS	GT:																															
0000	00	AB																															
6 2	ACA	AC:																															
	00 18	00 F8	01 F9	02 FA	03 FB	04 FC	05 FD	06 FE	07 FF	08	09	OA	0B	0C	OD	0E	EI	7 FO	F1	F2	F3	F4	F5	F6	F7						• • • •		
																							Inst	ance	0: A	AC	Wor	d: 0×0	00000)0 B	it: OxC	0000	7 //

The Instance Manager displays all available run-time modifiable memories and constants in your FPGA device. The JTAG Chain Configuration section allows you to program your FPGA and select the Altera[®] device in the chain to update. Using the In-System Memory Content Editor does not require that you open a project. The In-System Memory Content Editor retrieves all instances of run-time configurable memories and constants by scanning the JTAG chain and sending a query to the specific device selected in the JTAG Chain Configuration section.

Each In-System Memory Content Editor can access the in-system memories and constants in a single device. If you have more than one device containing in-system configurable memories or constants in a JTAG chain, you can launch multiple In-System Memory Content Editors within the Quartus II software to access the memories and constants in each of the devices.

Instance Manager

Scan the JTAG chain to update the Instance Manager with a list of all run-time modifiable memories and constants in the design. The Instance Manager displays the Index, Instance, Status, Width, Depth, Type, and Mode of each element in the list.

You can read and write to in-system memory using the Instance Manager as shown in Figure 15–2.

		- Read Data from Continuous Stop In	In-System Mem ly Read Data fro n-System Memor rite Data to In-Sj	ory m In-System Me ry Analysis vstem	mory	
Instanc	e Manager: 🖹	1 🗈 🗎 🗎 🖪	leady to acquire	1	2	×
Index	Instance ID	Status	Width	Depth	Туре	1
e de la companya de 	ACAC	Not running	8	32	RAM/ROM	F
ന 1	CNST	Not running	8	1	Constant	F
e 2	ACAC	Not running	8	32	RAM/ROM	F
<						>

Figure 15–2. Instance Manager Controls

The following buttons are provided in the Instance Manager:

- Read data from In-System Memory—reads the data from the device independently of the system clock and displays it in the Hex Editor
- Continuously Read Data from In-System Memory—Continuously reads the data asynchronously from the device and displays it in the Hex Editor
- Stop In-System Memory Analysis—Stops the current read or write operation

- Write Data to In-System Memory—Asynchronously writes data present in the Hex Editor to the device
- In addition to the buttons available in the Instance Manager, you can also read and write data by selecting the command from the Processing menu, or the right button pop-up menu in the Instance Manager or Hex Editor.

The status of each instance is also displayed beside each entry in the Instance Manager. The status indicates if the instance is **Not running**, **Offloading data** or **Updating Data**. The health monitor provides useful information about the status of the editor.

The Quartus II software assigns a different index number to each in-system memory and constant to distinguish between multiple instances of the same memory or constant function. View the **In-System Memory Content Editor Setting** section of the compilation report to match an index with the corresponding instance ID (Figure 15–3).

Figure 15–3. Compilation Report In-System Memory Content Editor Setting Section

Compilation Report - In-System Memory Content E	dito	or Setting	s				
Galaxian Compilation Report	In	-System	Memory C	ontent	Editor S	ettings	
- 🚭 🖹 Legal Notice		Instance	Instance	V. Galle	Death	Mada	Hierarchy
- 😂 📰 Flow Summary	L	Index	ID	width	Depin	Mode	Location
- 🗃 📰 Flow Settings	1	0	ACAC	8	32	Read/Write	my_8x32ram_dq:inst1 altsyncram:altsyncram_component altsy
- 🗃 🗰 Flow Elapsed Time	2	1	CNST	8	1	Read/Write	my_constant:inst lpm_constant:lpm_constant_component lpm_
	3	2	ACAC	8	32	Read/Write	my_8x32ram_dq:inst3 altsyncram:altsyncram_component altsyl
🖻 🎒 Analysis & Synthesis							
Summary							
🗄 🎒 Settings							
Source Files Read							
Resource Usage Summary							
Resource Utilization by Entity							
RAM Summary							
E Optimization Results							
E Gurce Assignments							
H and Parameter Settings by Entity Instance							
E Bound Settings Summary							
Signal I ap II Logic Analyzer Settings							
In-System Memory Content Editor Settings							
→ → → Equations							
Messages							
Energie Inning Analyzer	<						>

Editing Data Displayed in the Hex Editor

You can edit the data read from your in-system memories and constants displayed in the Hex Editor by typing values directly into the editor or by importing memory files.

To modify the data displayed in the Hex Editor, click a location in the editor and type or paste in the new data. The new data appears as blue indicating modified data that has not been written into the FPGA. On the Edit menu, choose Value, and click **Fill with 0's, Fill with 1's, Fill with Random Values**, or **Custom Fills to** update a block of data by selecting a block of data.

Importing Exporting Memory Files

Importing and exporting memory files lets you quickly update in-system memories with new memory images and record data for future use and analysis.

On the Edit menu, click **Import Data from File** to import a memory file, select an in-system memory or constant from the instance manager. You can only import a memory file that is in either a Hexadecimal (Intel-Format) file (**.hex**) or memory initialization file (**.mif**) format.

On the Edit menu, click **Export Data to File** to export data displayed in the Hex Editor to a memory file, to select an in-system memory or constant from the instance manager. You can export data to a .hex, .mif, Verilog Value Change Dump file (.vcd), or RAM Initialization file (.rif) format.

Viewing Memories Constants in the Hex Editor

For each instance of an in-system memory or constant, the Hex Editor displays data in hexadecimal representation and ASCII characters (if the word size is a multiple of 8 bits). The arrangement of the hexadecimal numbers depends on the dimensions of the memory. For example, if the word width is 16 bits, the Hex Editor displays data in columns of words that contain columns of bytes (Figure 15–4).

👄 In-S	iystem i	Memo	ory Cont	ent E	ditor																					
Instanc	e Manag	er: 🗄	10 🔳	EL F	Ready	o acq	uire					(2)			×	JT.	AG CH	nain C	onfigu	ration:	JT/	AG rea	ady		Q×
Index	Instance	D	Status		Wid	:h	D	epth		Ty	pe		Mod	е												
@ 0	ACAC		Not ru	nning	16		3	2		RA	M/R0	DM	Rea	d/Wri	te		Ha	ardwa	re:	ByteBl	asterM	V (LF	11			▼ Setup
	CNST		Not ru	nning	16		1	0		Co	nstanl	i NM	Rea	d∕Wrii at∧ura	te Io		De	evice:	- [@1: El	P1C20	(0x0)	20840	DD)		✓ Scan Chain
***** 2	ACAC		NULTU	ming	10		1	2		112	americ	JM	Tica	U7 19 10	(C		Ei	la:		Nalte	allnS	ustern	Desi	an Eil	es\de	mo 16 restored\ne
																	1	~. •	I		d'arro,	yacom	_0.000	91011	00100	
@ 0	ACAC:																									
00000	00 41	6C	74 65	72	2 61	20	43	6F	72	70	6F	72	61	74	69	6F	6E	00	00	00	00	00	00	00	00	Altera Corporation
00000	JD 00 LA 00	00	00 00	I 00 I 00	00 00	00	00	00	00	00	00 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
an 1	CNST:																									
00000	00 00	EE																								
a 2	ACAC:																									
00000	00 00	00 AD	00 00	00	00	00	E3	00	84 F1	00	00 92	00	A6 D3	00	00	00	A8 85	00	00	00	EA B7	00	8B	00	2C 89	
00003	LA OO	14	00 91	i õõ	FC	00	00	00	DÊ	00	00		20				20									
																									Ir	instance 0: ACAC Word: 0x000009 Bit: 0x00000F //

Unprintable ASCII characters are represented by a period (.). The color of the data changes as you perform reads and writes. Data displayed in black indicates the data in the Hex Editor was the same as the data read from the device. If the data in the Hex Editor changes color to red, the data previously shown in the Hex Editor was different from the data read from the device.

As you analyze the data, you can use the cursor and the status bar to quickly identify the exact location in memory. The status bar is located at the bottom of the In-System Memory Content Editor and displays the selected instance name, word position, and bit offset (Figure 15–5).

Instance 2: ACAC Word: 0x000001 Bit: 0x00000F //	
--	--

The bit offset is the bit position of the cursor within the word. In the following example, a word is set to be 8-bits wide.

With the cursor in the position shown in Figure 15–6, the word location is 0x0000 and the bit position is 0x0007.

$IIJUIG IJ - 0. IIGA LUILUI GUISUI I USILIUIIGU AL DIL 0 \times 0007$

Gan 1	CNST:
00000	IO AB

With the cursor in the position shown in Figure 15–7, the word location remains 0x0000 but the bit position is 0x0003.

Figure 15–7. Hex Editor Cursor Positioned at Bit 0×0003

1	~~	1	CNS	T:
	00	000	0	AВ

Scripting Support

The In-System Memory Content Editor supports reading and writing of memory contents via a Tcl script or Tcl commands entered in a command prompt. For detailed information about scripting command options, refer to the Quartus II command-line and Tcl API Help browser.

To run the Help browser, type the following command at the command prompt:

quartus_sh --qhelp r

The *Quartus II Scripting Reference Manual* includes the same information in PDF form.

For more information about Tcl scripting, refer to the *Tcl Scripting* chapter in volume 2 of the *Quartus II Handbook*. For more information about command-line scripting, refer to the *Command-Line Scripting* chapter in volume 2 of the *Quartus II Handbook*.

The commonly used commands for the In-System Memory Content Editor are as follows:

Reading from memory: read_content_from_memory [-content_in_hex] -instance_index <instance index> -start_address <starting address> -word_count <word_count>

- Writing to memory: write_content_to_memory
- Save memory contents to file: save_content_from_memory_to_file
- Update memory contents from File: update_content_to_memory_from_file

For descriptions about the command options and scripting examples, refer to the Tcl API Help Browser and the *Quartus II Scripting Reference Manual*.

Programming the Device Using the In-System Memory Content Editor

If you make changes to your design, you can program the device from within the In-System Memory Content Editor. To program the device, follow these steps:

- 1. On the Tools menu, click In-System Memory Content Editor.
- 2. In the **JTAG Chain Configuration** panel of the In-System Memory Content Editor, select the SRAM object file (**.sof**) that includes the modifiable memories and constants.
- 3. Click Scan Chain.
- 4. In the **Device** list, select the device you want to program.
- 5. Click Program Device.

Example: Using the In-System Memory Content Editor with the SignalTap II Embedded Logic Analyzer

The following scenario describes how you can use the In-System Updating of Memory and Constants feature with the SignalTap II embedded logic analyzer to efficiently debug your design in-system. Although both the In-System Content Editor and the SignalTap II embedded logic analyzer use the JTAG communication interface, you are able to use them simultaneously.

After completing your FPGA design, you find that the characteristics of your FIR filter design are not as expected.

	1.	To locate the source of the problem, change all your FIR filter coefficients to be in-system modifiable and instantiate the SignalTap II embedded logic analyzer.
	2.	Using the SignalTap II embedded logic analyzer to tap and trigger on internal design nodes, you find the FIR filter to be functioning outside of the expected cut-off frequency.
	3.	Using the In-System Memory Content Editor , you check the correctness of the FIR filter coefficients. Upon reading each coefficient, you discover that one of the coefficients is incorrect.
	4.	Since your coefficients are in-system modifiable, you update the coefficients with the correct data using the In-System Memory Content Editor .
	In t usir eml you des	his scenario, you are able to quickly locate the source of the problem ng both the In-System Memory Content Editor and the SignalTap II bedded logic analyzer. You are also able to verify the functionality of ur device by changing the coefficient values before modifying the ign source files.
	An In-S filte frec	extension to this example would be to modify the coefficients with the System Memory Content Editor to vary the characteristics of the FIR er (for example, filter attenuation, transition bandwidth, cut-off juency, and windowing function).
Conclusion	The acco In-S Sign Alto dev you	In-System Updating of Memory and Constants feature provides ess into a device for efficient debug in a hardware lab. You can use System Memory Updating of Memory and Constants with the halTap II embedded logic analyzer to maximize the visibility into an era FPGA. By increasing visibility and access to internal logic of the ice, you are able to more quickly identify and resolve problems with ar design or its implementation.
Referenced	Thi	s chapter references the following documents:
Documents	;	Command-Line Scripting chapter in volume 2 of the Quartus II Handbook Design Debugging Using the SignalTap II Embedded Logic Analyzer chapter in volume 3 of the Quartus II Handbook Quartus II Scripting Reference Manual Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document Revision History

Table 15–3 shows the revision history of this chapter.

Table 15–3. Document Revision History				
Date and Version	Changes Made	Summary of Changes		
October 2007 v7.2.0	Reorganized "Referenced Documents" on page 15–11.	-		
May 2007 v7.1.0	 Added Scripting Support section on page 15–9. Added Referenced Documents on page 15–11. 	Updates made for Quartus II version 7.1.		
March 2007 v7.0.0	Added Cyclone III device support listed on page 15–2.			
November 2006 v6.1.0	 Added revision history to the document. Updated Table 15–2. 	Added information for Stratix III support.		
May 2006 v6.0.0	Minor updates for the Quartus II software version 6.0.0	_		
October 2005 v5.1.0	 Updated for the Quartus II software version 5.1. Chapter 13 was formerly Chapter 12 in version 5.0. 	_		
May 2005 v5.0.0	Chapter 12 was formerly in Section V of Vol 3 in 4.2.	_		
December 2004 v1.2	 Chapter 12 was formerly Chapter 11. Updated tables. Corrected the Verilog code for the lpm_hint parameter. Re-organized the "Making Changes" segment into the Editing Data Displayed in the Hex Editor and Importing and Exporting Memory Files segments. Added the Edit value menu. Added Example: Using the In-System Memory Content Editor with the SignalTap II Embedded Logic Analyzer. 			
Aug. 2004 v1.1	Minor typographical corrections.	—		
June 2004 v1.0	Initial release.	—		

16. Design Debugging Using In-System Sources and Probes

QII53021-7.2.0

Introduction

Traditional debugging techniques often involve using an external pattern generator to exercise the logic and a logic analyzer to study the output waveforms during run-time. The SignalTap[®] II Logic Analyzer and SignalProbe allow you to read or "tap" internal logic signals during run-time as a way to debug your logic on-chip. While this is useful, the debugging cycle efficiency may be enhanced with the ability to drive any internal signal manually within your design. By doing this you can perform the following activities:

- Force the occurrence of trigger conditions setup in the SignalTap II Logic Analyzer
- Create simple test vectors to exercise your design without using external test equipment
- Dynamically control run-time control signals with the JTAG chain

With the introduction of the In-System Sources and Probes feature in the Quartus[®] II software beginning with version 7.1, Altera extends the portfolio of verification tools. The In-System Sources and Probes feature allows you to easily control any internal signal, providing you with a completely dynamic debugging environment. Coupled with either the SignalTap II Logic Analyzer or SignalProbe, the In-System Sources and Probes feature gives you a powerful debugging environment in which to generate stimuli and solicit responses from your logic design.

This chapter addresses the following topics:

- "Design Flow Using In-System Sources and Probes" on page 16–4
- "Running the In-System Sources and Probes Editor" on page 16–9
- "TCL Support" on page 16–14
- "Design Example: Dynamic PLL Reconfiguration" on page 16–18

Overview

The In-System Sources and Probes feature consists of the altsource_probe megafunction and an interface to control the altsource_probe megafunction instances during run-time. Each altsource_probe megafunction instance provides you with source output ports and probe input ports, where source ports drive selected signals and probe ports sample selected signals. Upon compilation, the altsource_probe megafunction sets up a register chain to either drive or sample the selected nodes in your logic design. During runtime, the In-System Sources and Probes interface uses a JTAG connection to shift data to and from the altsource_probe megafunction instances. Figure 16–1 shows a block diagram of the components that make up the In-System Sources and Probes feature.

The altsource_probe megafunction hides the detailed transactions between the JTAG Hub and the registers instrumented in your design to give you a basic building block for stimulating and probing your design. Moreover, the In-System Sources and Probes feature provides singlecycle samples and single-cycle writes to the selected logic nodes. This provides an easy way to input simple virtual stimuli and an easy way to capture the current value on instrumented nodes. Because In-System Sources and Probes gives you access to logic nodes within your design, this feature can be used during the debugging process to toggle the inputs of low-level components. If used in conjunction with the SignalTap II Logic Analyzer, you can force trigger conditions to help isolate your problem and shorten your debugging process. Additionally, the ease of use of the In-System Sources and Probes feature makes it ideal for implementing control signals as virtual stimuli. This feature can be especially helpful during for prototyping your design. Examples of such applications could include the ability to do the following:

- Create virtual push buttons
- Create a virtual front panel to interface with your design
- Mimic external sensor data
- Monitor and change run-time constants on the fly

In-System Sources and Probes supports Tcl commands to interface with all your altsource_probe instances to increase the level of automation.

The Virtual JTAG Megafunction and the In-System Memory Content Editor also give you the capability to drive virtual inputs into your design. The Virtual JTAG Megafunction gives you a greater level of control (compared to In-system Sources and Probes) in how your design communicates with the JTAG Hub at the cost of greater complexity. With the Virtual JTAG megafunction, you can design your own customized register scan chain to drive and control your logic through the JTAG port. The In-System Memory Content Editor is used specifically for reading and writing memory contents at runtime.

For more details about the Virtual JTAG Megafunction, refer to the *sld_virtual_jtag Megafunction User Guide*. For information about the In-System Memory Content Editor, refer to the *In-System Updating of Memory and Constants* chapter in volume 3 of the *Quartus II Handbook*.

Hardware and Software Requirements

The following components are required to use In-System Sources and Probes:

- Quartus II design software or
- Quartus II Web Edition (with TalkBack feature enabled)
- Download Cable (USB-Blaster[™] download cable or ByteBlaster[™] cable)
- Altera[®] development kit or user design board with JTAG connection to device under test

The In-System Sources and Probes feature supports the following device families:

- Arria[™] GX
- Stratix[®] III
- Stratix II
- Stratix II GX
- Stratix
- Stratix GX
- HardCopy[®] II
- HardCopy Stratix
- Cyclone[®] III
- Cyclone[®] II
- Cyclone
- MAX[®] II
- APEX[™] II
- APEX 20KE
- APEX 20KC
- APEX 20K

Design Flow Using In-System Sources and Probes

In-System Sources and Probes supports an RTL flow in which your design nodes are instrumented in your HDL code via instantiation of the altsource_probe megafunction. After your device is compiled with the design nodes that you want instrumented, you can control your altsource_probe instances via the Sources and Probes Editor GUI or via a Tcl interface. The complete design flow is shown in Figure 16–2.

Figure 16–2. FPGA Design Flow Using In-System Sources and Probes

Configuring the altsource_probes Megafunction

To add in-system sources and probes functionality to your design, you must first instantiate the altsource_probe megafunction variation file. The altsource_probe megafunction can be easily configured using the MegaWizard[®] Plug-In Manager. Each source or probe port can be up to 256 bits wide. You can have up to 128 instances of the altsource_probe megafunction in your design. The following steps will guide you through the steps necessary to configure the altsource_probe megafunction:

- 1. On the Tools menu, click MegaWizard Plug-In Manager.
- 2. Select Create a new custom megafunction variation.
- 3. Click Next.
- 4. On Page 2a, make the following selections:
 - a. In the Installed Plug-Ins list, expand the JTAG-accessible Extensions folder. In the JTAG-accessible Extensions list, select **In-System Sources and Probes**.
 - b. Make sure that the currently selected device family matches the device you are targeting.
 - c. Select an output file type and enter the desired name of the altsource_probe megafunction. You can choose AHDL (.tdf), VHDL (.vhd), or Verilog HDL (.v) as the output file type.
- 5. Click Next.
- 6. On Page 3, make the following selections:
 - a. Make sure that the currently selected device family matches the device that you are targeting.
 - b. Under **Do you want to specify an Instance Index?**, turn on **Yes**.
 - c. Specify the Instance ID of this instance.
 - d. Specify the width of the probe port. The width can be from 1 bit to 256 bits wide.
 - e. Specify the width of the source port. The width can be from 1 bit to 256 bits wide.

- 7. On Page 3, you can click **Advanced Options** and specify other parameters. The following options are included:
 - What is the initial value of the source port, in hexadecimal? This option allows you to specify the initial value driven on the source port at run-time.
 - Write data to the source port synchronously to the source clock. This allows you to synchronize your source port write transactions with the clock domain of your choice.
 - Create an enable signal for the registered source port. When enabled, this creates a clock enable input for the synchronization registers. This option is enabled only when the Write data to the source port synchronously to the source clock option is enabled.

Table 16–1 summarizes the configurable fields for the altsource_probe megafunction.

Table 16–1. MegaWizard Plug-In Manager —altsource_probe (page 3) Options			
Options	Description		
Currently selected device family	Specifies the device family.		
Do you want to specify an Instance Index?	Specifies the numeric index of the megafunction instance during run-time (from 0 to 127).		
The 'Instance ID' of this Instance (optional):	Specifies the four character ID tag of the megafunction in the instance manager window of the Sources and Probes Editor.		
How wide should the probe port be?	Specifies the number of signals to be read by In-System Sources and Probes.		
How wide should the source port be?	Specifies the number of signals to be driven by In-System Sources and Probes.		
What is the initial value of the source port (under Advanced Options)	Specifies the initial value driven on the source port at run time.		
Write data to the source port synchronously to the source clock. Each bit in the source port will utilize two additional registers to achieve metastability (under Advanced Options)	Turning on this option allows you to synchronize your source port write transactions with the clock domain of your choice.		
Create an enable signal for the registered source port (configured under Advanced Options)	Turning on this option creates a clock enable input for the synchronization registers.		

Instantiating the altsource_probe Megafunction

The MegaWizard Plug-in Manager produces the necessary variation file and the instantiation template based on your inputs to the MegaWizard. Use the template to instantiate the altsource_probe megafunction variation file in your design. The port information is shown in Table 16–2.

Table 16-2. altsource_probe Megafunction Port Information					
Port Name	Required ?	Direction	Comments		
Probe[]	No	Input	The outputs from the user's design.		
Source_clk	No	Input	Source Data is written synchronously to this clock. This input is required if the Source Clock option is turned on in the Advanced Options box in the MegaWizard Plug-in Manager.		
Source_ena	No	Input	Clock enable signal for source_clk. This input is required if specified in the Advanced Options box in the MegaWizard Plug-in Manager.		
Source[]	No	Output	Used to drive inputs to user design.		

You can include up to 128 instances of the altsource_probe megafunction in your design, provided that there are available logic resources in your device. Each instance of the altsource_probe megafunction uses a pair of registers per signal for the width of the widest port it contains. Additionally, there will be some fixed overhead logic to accommodate communication between the altsource_probe instances and the JTAG controller. An additional pair of registers per source port is added for synchronization if it is specified.

Compiling the Design

When you compile your design with the In-System Sources and Probes megafunction instantiated, an instance of the altsource_probe instance and sld_hub megafunctions are added to your compilation hierarchy automatically. These two instances allow communication between the JTAG controller and your instrumented logic.

To modify your In-System Sources and Probes connections, you can modify the number of connections to your design by editing the altsource_probe megafunction. You can open the MegaWizard Plug-In Manager for the design instance you want to modify by double-clicking the desired instance in the Project Navigator. You can then modify the connections in the HDL source file. You must recompile your design when you are finished editing it. Because the design cycle is iterative in nature, you can use the Quartus II incremental compilation feature to reduce compilation time. Incremental compilation allows you to organize your design into logical partitions. During recompilation of a design, incremental compilation preserves the compilation results and performance of unchanged partitions and reduces design iteration time by compiling only modified design partitions.

For more information about Incremental Compilation, refer to the *Quartus II Incremental Compilation for Hierarchical & Team-Based Design* chapter in volume 1 of the *Quartus II Handbook*.

Running the In-System Sources and Probes Editor

The In-System Sources and Probes Editor is a GUI that gives you control over all of the altsource_probe megafunction instances within your design. It displays all available run-time controllable instances of the altsource_probe megafunction in your design, provides a push-button interface to drive all of your source nodes, and a logging feature to store your probe and source data.

To run the In-System Sources and Probes Editor, from the **Tools** menu, click **In-System Sources and Probes Editor**.

Figure 16–3 shows the Editor window.

Figure 16–3. In-System Sources and Probes Editor

The In-System Sources and Probes Editor is made up of three panes:

- **JTAG Chain configuration**—Allows you to specify programming hardware, device, and file settings that the In-System Sources and Probes Editor uses to program and acquire data from a device.
- Instance Manager—Displays information about the instances generated when you compile a design, and allows you to control the data the In-System Sources and Probes Editor acquires.
- Sources and Probes Editor—Logs all the data read from the selected instance and allows you to modify source data to be written to your device.

Using the In-System Sources and Probes Editor does not require you to open a Quartus II project. The In-System Sources and Probes Editor retrieves all instances of the altsource_probe megafunction by scanning the JTAG chain and sending a query to the specific device selected in the JTAG Chain Configuration pane. Also, you can use a previously saved configuration to run the In-System Sources and Probes Editor.
Each In-System Sources and Probes Editor window can access the altsource_probe megafunction instances in a single device. If you have more than one device containing megafunction instances in a JTAG chain, you can launch multiple In-System Sources and Probes Editor windows to access the megafunction instances in each of the devices.

Programming Your Device Using the JTAG Chain Configuration Window

After compilation is complete, you must configure your FPGA before using In-System Sources and Probes. To configure a device for use with the In-System Sources and Probes, perform the following steps:

- 1. Open the In-System Sources and Probes Editor.
- 2. Under JTAG Chain Configuration, point to **Hardware** and select the desired hardware communications device. You may be prompted to configure your hardware; in this case, click **Setup**.
- 3. From the **Device** list, select the FPGA device to which you want to download the design (it may be automatically detected). You may have to click **Scan Chain** to detect your target device.
- 4. In the JTAG Configuration window, click **Browse** and select the SRAM Object File (**.sof**) that includes the In-System Sources and Probes instance or instances. (Note that it may be automatically detected).
- 5. Click **Program Device** (next to **File:**) to program the target device.

Instance Manager

The Instance Manager provides a list of all altsource_probe instances in the design and allows you to configure how data is acquired from or written to those instances.

The Instance Manager is shown in Figure 16–4.

Figure 16–4. Instance Manager

Continuously Read Rea Probe Data Stop Data Probe Data Stop Data Probe Data	d Source Data Write Source Data	×
Probe read interval Current interval Current interval C Manual C Manual	Event log: Maximum size: 128 Save data to event log Write source data: Manually	Health Monitor Write
Index Instance ID Status	Source: 21 Probas: 14 Name	Source Data
	Jources. 21 Hobes. 14 Name	_
■ 1 set Netsuming	3 1 [_COURIE]	
■ 2 D)// Netroming	2 I Lend with	
B1 2 DATA Naturning	2 I Liedu_wik	
In S DATA Not running	5 9 Lata_n	
F Chup Not running	1 1 Lecontre	
	4 I Louniei_t	

The following buttons and sub-panes are provided in the Instance Manager:

- Read Probe Data—Samples the probe data in the selected instance and displays it in the Sources and Probes Editor Window
- Continuously Read Probe Data—Continuously samples the probe data of the selected instance and displays it in the Sources and Probes Editor Window; you can modify the sample rate via the Probe read interval setting
- Stop Continuously Reading Probe Data—Cancels continuous sampling of probe of selected instance
- Write Source Data sub-pane —Writes data to all source nodes of the selected instance
- Probe Read Interval sub-pane—Displays the sample interval of all the In-system Sources and Probe instances in your design; you can modify the sample interval by clicking Manual
- Event Log sub-pane—controls the event log in the Sources and Probes Editor Window
- Write Source Data sub-pane—Allows you to manually or continuously write data to the system

The status of each instance is also displayed beside each entry in the Instance Manager. The status indicates if the instance is **Not running Offloading data**, **Updating data**, or if an "Unexpected JTAG communication error" occurs. The health monitor provides useful information about the status of the editor.

Sources and Probes Editor Window

The Sources and Probes Editor window organizes and displays the data from all sources and probes in your design, organized according to the index number of the instance. The editor provides an easy way to manage your signals, allowing you to rename signals or to group them into buses. All data collected from source and probe nodes is recorded in the event log and displayed as a timing diagram.

Reading Probe Data

You can read data by selecting the desired altsource_probe instance in the Instance Manager and clicking **Read Probe Data**. This produces a single sample of the probe data and updates the data column of the selected index in the Sources and Probes Editor window. You can save the data to an event log by turning on the **Save data to event log** option in the Instance Manager.

If you want to sample data from your probe instance continuously, in the Instance Manager, click the instance you want to read, and then click **Continuously read probe data**. While reading, the status of the active instance will show **Unloading**. You can read continuously from multiple instances.

You can access read data by using the right-click menus in the Instance Manager.

To adjust the probe read interval, in the Instance Manager, turn on the **Manual** option in the **Probe read interval** sub-pane, and specify the desired sample rate in the text field next to the **Manual** option. The maximum sample rate depends on your computer setup. The actual sample rate is shown in the **Current interval** box. The event log window buffer size can be adjusted in the **Maximum Size** box.

Writing Data

To modify the source data to be written into the altsource_probe instance, click in the name field of the signal you want to change. For buses of signals, you can double-click on the data field and type in the value to be driven out to the altsource_probe instance. The In-System Sources and Probes Editor stores the modified source data values into a temporary

buffer. Modified values that have not been written out to the altsource_probe instances appear in red. To update the altsource_probe instance, highlight the instance in the Instance Manager and click **Write source data**. The **Write source data** function is also available via the shortcut menus in the Instance Manager.

You can choose to have the values stored in the In-System Sources and Probes Editor continuously update the altsource_probe instances. By doing so, any modifications you make to the source data buffer are written immediately to the altsource_probe instances. To continuously update the altsource_probe instances, change the **Write source data** field from **Manually** to **Continuously**.

Data Organization

The main editor window allows you to group signals into buses, and allows you to modify the display options of the data buffer.

To create a group of signals, select the node names you want to group, right-click and select **Group**. You can modify the display format in the Bus Display Format and the Bus Bit order submenus.

The Sources and Probes Editor Window allows you to rename any signal. To rename a signal, double-click the name of the desired signal and type in the new name.

The event log contains a record of the most recent samples. The buffer size is adjustable, up to 128k samples. The time stamp for each sample is logged and is displayed above the event log of the instance being examined as you move your mouse pointer over the data samples.

You can save the changes that you have made and the recorded data into a Sources and Probes File (**.spf**). To save changes, on the File menu, click **Save**. The file contains all of the modifications you made to the signal groups, as well as the current data event log.

TCL Support

To support automation, In-system Sources and Probes supports the procedures described in this chapter in the form of Tcl commands. The Tcl package for In-System Sources and Probes is included by default when you run **quartus_stp**.

The Tcl interface for In-System Sources and Probes provides a powerful platform to help you debug your design. It is especially helpful for debugging designs that require toggling multiple sets of control inputs. You can aggregate multiple commands using a Tcl script to define your own custom command set. • For more information about Tcl scripting, refer to the *Tcl Scripting* chapter in volume 2 of the *Quartus II Handbook*. For more information about all settings and constraints in the Quartus II software, refer to the *Quartus II Settings File Reference Manual*. For more information about command-line scripting, refer to the *Command-Line Scripting* chapter in volume 2 of the *Quartus II Handbook*.

Table 16–3 shows the Tcl command you can use with In-System Sources and Probes.

Table 16–3. In-System Sources and Probes Tcl Commands				
Command	Argument	Description		
start_insystem_source _probe	-device_name <device name=""> -hardware_name <hardware name=""></hardware></device>	Opens a handle to a device using the specified hardware. Call this command before starting any transactions.		
get_insystem_source_ probe_instance_info	-device_name < <i>device name></i> -hardware_name < <i>hardware name></i>	Returns a list of all altsource_probe instances in your design. Each record returned will be in the following format: { <instance index="">, <source width=""/>, <probe width="">, <instance name="">}</instance></probe></instance>		
read_probe_data	<pre>-instance_index <instance_index> -value_in_hex (optional)</instance_index></pre>	Retrieves the current value of the probe. A string is returned specifying the status of each probe, with the MSB as the left-most bit.		
read_source_data	<pre>-instance_index <instance_index> -value_in_hex (optional)</instance_index></pre>	Retrieves the current value of the sources. A string is returned specifying the status of each source, with the MSB as the left-most bit.		
write_source_data	-instance_index < <i>instance_index></i> -value < <i>value></i> -value_in_hex (optional)	Sets the value of the sources. A binary string is sent to the source ports, with the MSB as the left-most bit.		
end_interactive_probe	None	Releases the JTAG chain. Issue this command when all transactions are finished.		

Example 16–1 shows an excerpt from a Tcl script with procedures that control the altsource_probe instances of the design as shown in Figure 16–5. The example design contains a DCFIFO with altsource_probe instances to read from and to write to the DCFIFO. A set of control muxes are added into the design to control the flow of data to

the DCFIFO between the input pins and the altsource_probe instances. A pulse generator is added to the read request and write request control lines to guarantee a single sample read or write. The altsource_probe instances, when used with the script in Example 16–1, provides visibility into the contents of the FIFO by performing single sample write and read operations and reporting the state of the full and empty status flags.

The Tcl script can be useful in debugging situations where you may want to either empty or preload the FIFO in your design. As an example, you can use this feature to preload the FIFO to match a trigger condition you have set up within the Signal Tap II Logic Analyzer.

Figure 16–5. A DCFIFO Example Design Controlled by the Tcl Script in Example 16–1


```
Example 16–1. Tcl Script Procedures for Reading and Writing to the DCFIFO in Figure 16–5
## Setup USB hardware - assumes only USB Blaster is installed and
## an FPGA is the only device in the JTAG chain
set usb [lindex [get hardware names] 0]
set device name [lindex [get device names -hardware name $usb] 0]
## write procedure : argument value is integer
proc write {value} {
    global device name usb
    variable full
    start insystem source probe -device name $device name -hardware name \
    $usb
    #read full flag
    set full [read probe data -instance index 0]
    if {$full == 1} {end insystem source probe
    return "Write Buffer Full"
    }
    ##toggle select line, drive value onto port, toggle enable
    ##bits 7:0 of instance 0 is S data[7:0]; bit 8 = S write req;
    ##bit 9 = Source_write_sel
    ##int2bits is custom procedure that returns a bitstring from an integer
    ## argument
    write_source_data -instance_index 0 -value /[int2bits [expr 0x200 | \
    $value]]
    write source data -instance index 0 -value [int2bits [expr 0x300 | \setminus
    $value]]
    ##clear transaction
    write source data -instance index 0 -value 0
    end insystem source probe
}
proc read {} {
    global device name usb
    variable empty
    start insystem source probe -device name device name -hardware name \setminus
    $usb
```

```
##read empty flag : probe port[7:0] reads FIFO output; bit 8 reads
##empty_flag
set empty [read_probe_data -instance_index 1]
if {[regexp {1.....} $empty]} { end_insystem_source_probe
return "FIFO empty" }
## toggle select line for read transaction
## Source_read_sel = bit 0; s_read_reg = bit 1
## pulse read enable on DC FIFO
write_source_data -instance_index 1 -value 0x1 -value_in_hex
write_source_data -instance_index 1 -value 0x3 -value_in_hex
set x [read_probe_data -instance_index 1 ]
end_insystem_source_probe
return $x
```

Design Example: Dynamic PLL Reconfiguration

The ease of use of the In-System Sources and Probes feature can be extremely helpful in creating a virtual front panel during the prototyping phase of your design. Relatively simple designs of high functionality can be created in a short amount of time. The following PLL reconfiguration example demonstrates how the In-System Sources and Probes feature is used to provide a GUI to dynamically reconfigure a Stratix PLL.

Stratix PLLs allows you to dynamically update PLL coefficients during run-time. Each enhanced PLL within the Stratix device contains a register chain that allows you to modify the pre-scale counters (*m* and *n* values), output divide counters, and delay counters. In addition, the altpll_reconfig megafunction provides an easy interface to access the register chain counters. The altpll_reconfig megafunction provides a cache containing all modifiable PLL parameters. After you have updated all of the PLL parameters in the cache, the alt_pll_reconfig megafunction drives the PLL register chain to update the PLL with the updated parameters. Figure 16–6 shows a Stratix enhanced PLL with reconfigurable coefficients.

Stratix II and Stratix III devices also allow you to dynamically reconfigure PLL parameters. For more information about these families, refer to the appropriate data sheet. For more information about dynamic PLL reconfiguration, refer to *AN 282: Implementing PLL Reconfiguration in Stratix & Stratix GX Devices* or *AN 367: Implementing PLL Reconfiguration in Stratix II Devices*.

Figure 16–6. Stratix-Enhanced PLL with Reconfigurable Coefficients

The following design example uses an altsource_probe instance to update the PLL parameters in the altpll_reconfig megafuntion cache. The altpll_reconfig megafunction connects to an enhanced PLL in a Stratix FPGA to drive the register chain containing the PLL reconfigurable coefficients. This design example uses a Tcl/Tk script to generate a GUI where you can enter in new *m* and *n* values for the enhanced PLL. The Tcl script extracts the m and n values from the GUI, shifts the values out to the altsource_probe instances to update the values in the altpll_reconfig megafunction cache and asserts the reconfig signal on the altpll_reconfig megafunction. The reconfig signal on the altpll_reconfig megafunction starts the register chain transaction to update all PLL reconfigurable coefficients. A block diagram of design example is shown in Figure 16–7. The Tk GUI is shown in Figure 16–8.

Figure 16–7. Block Diagram of Dynamic PLL Reconfiguration Design Example

Figure 16–8. Interactive PLL Reconfiguration GUI Created with Tk and In-System Sources and Probes Tcl Package

This design example was created using a NIOS[®] Development Kit, Stratix Edition. The file **sourceprobe_DE_dynamic_pll.zip** contains all of the necessary files for running this design example:

- Readme.txt—A text file that describes the files contained in the Design Example and provides instructions on running the Tk GUI shown in Figure 16–8.
- Interactive_Reconfig.qar—The archived Quartus II project for this Design Example

You can download the **sourceprobe_DE_dynamic_pll.zip** file in the *Quartus II Handbook* volume 3 section of the Altera Literature web page.

Conclusion

Referenced

Documents

In-System Sources and Probes can provide stimuli and get responses from the target design during run-time. With its simple and intuitive interface, you can provide virtual inputs into your design during runtime without using external equipment. When used in conjunction with SignalTap II, you can use In-System Sources and Probes to provide greater control of the signals in your design, and thus help shorten the verification cycle. Also, with its ability to create virtual inputs into your design, you can create simple, yet powerful applications to interact with your design.

This chapter references the following documents:

Command-Line Scripting chapter in volume 2 of the Quartus II Handbook

- sld_virtual_jtag Megafunction User Guide
- Quartus II Incremental Compilation for Hierarchical & Team-Based Design chapter in volume 1 of the Quartus II Handbook
- Quartus II Settings File Reference Manual
- **T**cl Scripting chapter in volume 2 of the Quartus II Handbook

Document Revision History

Table 16–4 shows the revision history for this chapter.

Table 16–4. Document Revision History			
Date and Version Changes Made Summary of		Summary of Changes	
October 2007 v7.2.0	Reorganized "Referenced Documents" on page 16-21.	_	
May 2007 v7.1.0	Initial Release.	_	

Section VI. Formal Verification

The Quartus® II software easily interfaces with EDA formal design verification tools such as the Cadence Incisive Conformal and Synplicity Synplify software. In addition, the Quartus II software has built-in support for verifying the logical equivalence between the synthesized netlist from Synplicity Synplify and the post-fit Verilog Quartus Mapped (**.vqm**) files using Incisive Conformal software.

This section discusses formal verification, how to set-up the Quartus II software to generate the VQM file and Incisive Conformal script, and how to compare designs using Incisive Conformal software.

This section includes the following chapters:

- Chapter 17, Cadence Encounter Conformal Support
- Chapter 18, Synopsys Formality Support
- For information about the revision history for chapters in this section, refer to each individual chapter for that chapter's revision history.

17. Cadence Encounter Conformal Support

QII53011-7.2.0

Introduction

The Quartus[®] II software provides formal verification support for Altera[®] designs through interfaces with a formal verification EDA tool, the Cadence Encounter Conformal software.

Use the Encounter Conformal software to verify the functional equivalence of a post-synthesis Verilog Quartus Mapping netlist from the Synplicity Synplify Pro software and the post-fit Verilog Output File from the Quartus II software. You can also use the Encounter Conformal software to verify the functional equivalence of the register transfer level (RTL) source code and post-fit Verilog Output File from the Quartus II software when using Quartus II integrated synthesis. These formal verification flows support designs for the Cyclone[®], Cyclone II, Stratix[®], Stratix II, Stratix GX, Stratix II GX, Stratix III, Arria[™] GX, and HardCopy[®] II device families.

There are two types of formal verification—equivalence checking and model checking. This chapter discusses equivalence checking using the Cadence Encounter Conformal software.

This chapter contains the following sections:

- "Formal Verification Design Flow" on page 17–2
- "RTL Coding Guidelines for Quartus II Integrated Synthesis" on page 17–5
- "Generating the Post-Fit Netlist Output File and the Encounter Conformal Setup Files" on page 17–10
- "Understanding the Formal Verification Scripts for Encounter Conformal" on page 17–18
- Comparing Designs Using Encounter Conformal" on page 17–21
- "Known Issues and Limitations" on page 17–24
- "Black Box Models" on page 17–28
- "Conformal Dofile/Script Example" on page 17–30

Equivalence checking uses mathematical techniques to compare the logical equivalence of the two versions of the same design rather than using test vectors to perform simulation. The two compared versions could be post-map design and post-fit design, or RTL design and post-fit design. Equivalence checking greatly shortens the verification cycle of the design.

Formal Verification Versus Simulation

Formal verification cannot be considered as a replacement to the vector-based simulation. Formal verification only complements the existing vector-based simulation techniques to speed up the verification cycle. Vector-based simulation techniques of gate level designs can take a considerable amount of time.

Vector-based simulation techniques can be used to do the following:

- Verify design functionality
- Verify timing specifications
- Debug designs

Formal Verification: What You Need to Know

If you use formal verification techniques to verify logic equivalence of your design, you can save time by forgoing a comprehensive vector-based simulation of the gate level design. However, there may be impact on area and performance during recompilation of your design with the Quartus II software if you have chosen to use formal verification flow for Cadence Conformal LEC software. The area and performance of your design may be affected by the following factors:

- Hierarchy preservation
- ROM implementation by logic elements (LEs)
- Retiming is disabled

Refer to "Known Issues and Limitations" on page 17–24 before you consider using the formal verification flow in your design methodology.

Formal Verification Design Flow

Altera supports formal verification using the Encounter Conformal software for the following two synthesis tools:

- Quartus II Integrated Synthesis
- Synplify Pro

The following sections describe the supported design flows for these synthesis tools.

Quartus II Integrated Synthesis

The design flow for formal verification using the Quartus II integrated synthesis is shown in Figure 17–1. This flow performs equivalency checking for the RTL source code and the post-fit netlist generated by the Quartus II software. The RTL source code can be in Verilog or VHDL format. The post-fit netlist generated by the Quartus II software is always in Verilog format.

EDA Tool Support for Quartus II Integrated Synthesis

The formal verification flow using the Quartus II software and Cadence Encounter Conformal software supports the following software versions and operating systems:

- Quartus II software beginning with version 4.2
- Cadence Encounter Conformal software beginning with 4.3.5A
- Solaris and Linux operating systems

Synplify Pro

The design flow for formal verification using Synplify Pro Synthesis performs equivalency checking for the post-synthesis netlist from Synplify Pro and the post fit netlist generated by Quartus II software, as shown in Figure 17–2.

For additional information about performing equivalency checking between RTL and post-synthesis netlist generated from Synplify Pro software, refer to the Synplify Pro documentation.

EDA Tool Support for Synplify Pro

The formal verification flow using the Quartus II software, the Synplicity Synplify Pro, and the Cadence Encounter Conformal software supports the software versions and operating systems shown in Table 17–1.

Table 17–1. Compatible Software Versions				
Quartus II Software Version	Cadence Conformal LEC Version	Synplify Pro Version		
4.1	4.3.0.a	7.6.1		
4.2	4.3.5.a	8.0		
5.0	5.1	8.1		
5.1	5.1	8.4		
6.0	5.2	8.5		
6.1	6.1	8.6.2		
7.0	6.1	8.6.2		
7.1	6.2	8.8.1		
7.2	7.1	9.0		

RTL Coding Guidelines for Quartus II Integrated Synthesis

••••

The Cadence Encounter Conformal software can compare the RTL code against the post-fit netlist generated by the Quartus II software. The Encounter Conformal software and the Quartus II integrated synthesis parse and compile the RTL description in slightly different ways. The Quartus II software supports some RTL features that the Encounter Conformal software does not support, and vice versa. The style of the RTL code is of particular concern because neither tool supports some constructs, leading to potential formal verification mismatches; for example, state machine extraction, wherein different encoding mechanisms can result in different structures. Therefore, for successful verification, both tools must interpret the RTL code in the same manner.

The following section provides information on recognizing and preventing problems that can arise in the formal verification flow.

For more details about RTL coding styles for Quartus II Integrated Synthesis, refer to the *Recommended HDL Coding Styles* chapter in volume 1 of the *Quartus II Handbook*.

Some of the coding guidelines apply to both Quartus II Integrated Synthesis and Synplify Pro flow, as indicated in each of the guidelines in the following sections.

Synthesis Directives and Attributes

Synthesis directives, also known as pragmas, play an important role in successful verification of RTL against the post-fit Verilog Output netlist from the Quartus II software.

Pragmas and trigger keywords that are supported in Quartus II integrated synthesis and Encounter Conformal are also supported in the formal verification flow. The Quartus II integrated synthesis and Encounter Conformal both support the trigger keywords **synthesis** and **synopsys**. When the Quartus II software does not recognize a keyword such as **verplex**, the keyword is disabled in the formal verification scripts produced for use with the Cadence Conformal software. Therefore, it is important to use caution with unsupported pragmas because they can lead to verification mismatches. For example, you can use the Quartus II integrated synthesis to synthesize RTL code with the synthesis directive read_comments_as_HDL.

Example 17–1. Verilog HDL Example of Read Comments as HDL

```
// synthesis read_comments_as_HDL on
// my_rom lpm_rom (.address (address),
// .data (data));
// synthesis read_comments_as_HDL off
```

Example 17–2. VHDL Example of Read Comments as HDL

```
-- synthesis read_comments_as_HDL on
-- my_rom : entity lpm_rom
-- port map (
-- address => address,
-- data => data,);
-- synthesis read comments as HDL off
```

The Encounter Conformal software does not support the synthesis directive read_comments_as_HDL, and the directive has no affect on the Encounter Conformal software.

Table 17–2 lists supported pragmas and trigger keywords for formal verification.

Table 17–2. Supported Pragmas and Trigger Keywords for Formal Verification			
Pragmas (1)	Trigger Keywords		
full_case parallel_case pragma synthesis_off synthesis_on translate_off translate_on	synthesis synopsys		

Note to Table 17–2:

 Do not use Verilog 2001-style pragma declarations. The Quartus II software and the Encounter Conformal software support this style of pragma in different manners.

Stuck-at Registers

Quartus II integrated synthesis eliminates registers that have their output stuck at a constant value. Quartus II integrated synthesis gives a warning message and adds an entry to the corresponding report panel in the formal verification folder of the Analysis and Synthesis section of the Compilation Report. If Conformal LEC does not find the same optimizations, it can lead to unmapped points in the golden netlist. Example 17–3 illustrates the issue:

Example 17–3. Verilog HDL Example Showing Stuck at Registers

```
module stuck_at_example {clk, a, b, c, d, out};
input a, b, c, d, clk;
output out;
reg e, f, g;
    always @(posedge clk) begin
        e <= a and g;// e is stuck at 0
        g <= c and e;// g is stuck at 0
        f <= e | b;
        end
assign out = f and d;
endmodule
```

In this module description, registers e and g are tied to logic 0. In this example, the Quartus II software generates the following warning message:

```
Warning: Reduced register "g" with stuck data_in port to stuck value GND Warning: Reduced register "e" with stuck data in port to stuck value GND
```

Quartus II integrated synthesis then adds a command to the formal verification scripts telling Conformal LEC that a register is stuck at a constant value, as shown in Example 17–4:

Example 17–4. Conformal LEC Script Showing Commands for Instance Equivalence

```
// report floating signals
// Instance-constraints commands for constant-value registers removed
// during compilation
// add instance constraints 0 e -golden
// add instance constraints 0 g -golden
```

The command is commented in the formal verification script, forcing the Encounter Conformal software to treat the register as stuck at a constant value, and potentially hiding a compilation error. You must verify that input to the e and g registers is constant in the design and uncomment the command to obtain accurate results.

Altera recommends recoding your design to eliminate "stuck-at" registers.

The stuck-at register information in this section also applies to the Synplify Pro flow.

ROM, LPM_DIVIDE, and Shift Register Inference

For the purpose of formal verification, the Quartus II integrated synthesis implements both ROM and shift registers in the form of LEs instead of using dedicated on-chip memory resources. Using LEs can be less area-efficient than inferring a megafunction that can be implemented in a RAM block. However, the Quartus II software generates a warning message indicating that the megafunction was not inferred. Quartus II integrated synthesis also reports a suggested ROM or shift register instantiation that enables you to either use the MegaWizard[®] Plug-In Manager to create the appropriate megafunction explicitly, or to isolate the corresponding logic in a separate entity that you can set as a black box. By setting black box properties on a particular module or entity, you are telling the formal verification tool not to peek inside the module or entity for formal verification before synthesis, you can verify the megafunction with the Encounter Conformal software.

If the design contains division functionality, the Quartus II software infers an lpm_divide megafunction, which is treated as a black box for the purpose of formal verification.

RAM Inference

When the Quartus II software infers the LPM megafunction altsyncram from the RTL code, the Quartus II software generates the following warning message:

Created node "<mem_block_name>" as a RAM by generating altsyncram megafunction to implement register logic with M512 or M4K memory block or M-RAM. Expect to get an error or a mismatch for this block in the formal verification tool.

This warning is generated because the memory block (altsyncram) is a new instance in the post-fit netlist that is handled as a black box by the formal verification tool. However, no such instance exists in the original RTL design, resulting in mismatch or error reporting in the formal verification tool.

Latch Inference

A latch is implemented in the Quartus II integrated synthesis using a combinational feedback loop. The Encounter Conformal software infers a latch primitive in the Encounter Conformal library (DLAT) to implement a latch. This results in having a DLAT on the golden side and a combinational loop with a cut point on the revised side, leading to verification mismatches. The Quartus II software issues a warning message whenever a latch is inferred, and the Quartus II software adds an entry to the report panel in the Formal Verification folder of the Analysis and Synthesis report. Altera recommends that you avoid latches in your design; however, if latches are necessary, Altera recommends using the corresponding lpm_latch megafunction.

For more information about the problems related to latches, refer to the *Recommended HDL Coding Styles* chapter in volume 1 of the *Quartus II Handbook*.

Combinational Loops

If the design consists of an intended combinational loop, you must define an appropriate cut point for both the RTL and the post-fit Verilog Output netlist. A warning that a combinational loop exists in the design is found in the Formal Verification subfolder of the Quartus II software Analysis and Synthesis report.

For more information on issues with combinational loops, see "Known Issues and Limitations" on page 17–24.

Finite State Machine Coding Styles

When a state machine is inferred by the Encounter Conformal software, it uses sequential encoding as the default encoding when no user encoding is present. The Quartus II software selects the encoding most suited for the inferred state machine if the State Machine Processing Settings on the **Analysis and Synthesis Settings** page of the **Settings** dialog box is set to the default value Auto. Therefore, it is important to use the coding style described in the *Recommended HDL Coding Styles* chapter in volume 1 of the *Quartus II Handbook* on RTL when writing finite state Machines (FSMs). This allows the Quartus II integrated synthesis and the Encounter Conformal software to infer a similar state machine for the same RTL code.

Generating the Post-Fit Netlist Output File and the Encounter Conformal Setup Files

The following steps describe how to set up the Quartus II software environment to generate the post-fit Verilog Output netlist and the Encounter Conformal script for use in formal verification. With the exception of step 3, the steps are identical for both of the Synthesis tools:

- 1. Create a new Quartus II project or open an existing project.
- 2. On the Assignments menu, click **EDA Tool Settings**. The **Settings** dialog box appears.
- 3. In the Category list, click EDA Tool Settings.

If you are using the Quartus II integrated synthesis, perform the following steps:

- a. In the **Category** list, under **EDA Tool Settings**, select **Design Entry/Synthesis**. Select *<None>* from the Tool name list.
- b. In the Category list, under EDA Tool Settings, select Formal Verification. Select Conformal LEC from the Tool name list (Figure 17–3).

	romai venirication	
 Hes Uset Libraries (Current Project) Device Operating Conditions Compilation Process Settings Doba Tool Settings Board Verification Timing Analysis Formal Verification Physical Synthesis Settings Fitter Settings Timing Analysis Settings Analysis & Synthesis Settings Timing Analysis Settings Signal Ta pil Logic Analyzer Logic Analyzer Interface Simulation Prover Analyzer Settings PowerPlay Power Analyzer Settings 	Specify options for generating output files for use with other EDA tools. Tool name: Conformal LEC Output directory: v/conformal	

Figure 17–3. Compilation Process Settings

If you are using Synplify Pro, perform the following steps:

- a. In the **Category** list, under **EDA Tool Settings**, select **Design Entry/Synthesis**. Select **Synplify Pro** from the Tool name list.
- b. In the **Category** list, under **EDA Tool Settings**, select **Formal Verification**. Select **Conformal LEC** from the Tool name list.
- 4. In the **Category** list, select **Compilation Process Settings**. Under **Compilation Process Settings**, select **Incremental Compilation**.

In the **Incremental Compilation** page, click **Full Incremental Compilation** to turn on Incremental Compilation.

or

Turn on Incremental Compilation by typing the following Tcl command in the Quartus II software Tcl console:

Example 17–5. TcL Command to Turn On Full Incremental Compilation

set_global_assignment -name INCREMENTAL_COMPILATION \
FULL INCREMENTAL_COMPILATION

- Altera requires that Incremental Compilation be turned **On** for Formal Verification, and that your design does not contain any user created partitions. Starting with Quartus II version 6.1 and later, the incremental compilation feature is **On** by default.
- In the Category list, select Analysis and Synthesis Settings to expand the options list, and click Synthesis Netlist Optimizations. In the Synthesis Netlist Optimizations page, turn off Perform gate-level register retiming (Figure 17–4).
 - If **Perform gate-level register retiming** is not turned off, the Encounter Conformal script can display a different set of compare points, making the resulting netlist difficult to compare against the reference netlist file.

Figure 17–4. Synthesis Netlist Optimizations

- 6. In the **Category** list, select **Fitter Settings**, and select **Physical Synthesis Optimizations**.
 - a. Under Physical synthesis for registers, turn off Perform register retiming.
 - b. Under Physical Synthesis for Fitting, turn off both **Perform physical synthesis for combinational logic** and **Perform logic to memory mapping** to prevent logic from being mapped to RAMs (Figure 17–5).

Figure 17–5. Fitter Settings

Retiming a design, either during the synthesis step or during the fitting step, usually results in moving and merging registers along the critical path and is not well supported by the equivalence checking tools. Because equivalence checkers compare the cone of logic terminating at registers, do not use retiming to move the registers during optimization in the Quartus II software.

> If the options **Perform gate-level register retiming** (Figure 17–4) and **Perform register retiming** (Figure 17–5) are not turned off, the Encounter Conformal script can display a different set of compare points, making the resulting netlist difficult to compare against the reference netlist file. If you use retiming in your design during compilation, then you cannot generate a netlist for formal verification.

•••

F

To learn more about physical synthesis, refer to the *Netlist Optimizations and Physical Synthesis* chapter in volume 2 of the *Quartus II Handbook*.

7. Perform a full compilation of the design. On the Processing menu, click **Start Compilation**, or click the **Start Compilation** icon on the Toolbar.

If your golden netlist (VQM netlist from Synplify Pro or RTL) includes any design entity not having a corresponding formal verification model, that entity is handled as a black box whose boundary interface is preserved. There are three types of black boxes and required user actions, depending upon each circumstance. Table 17–3 describes these three types of black boxes and the required user actions in detail.

Table 17–3. Black Boxes and Required User Action

Type of Black Box	Required User Action
Altera library of parameterized modules (LPMs) and megafunctions (refer to Table 17–5 for a complete list).	No action required. The Quartus II software automatically black boxes the list of components and preserves the hierarchy.
Any parametrized entity other than those listed in Table 17–5.	User must black box the wrapper that instantiates the parameterized entity.
Non parameterized entities that the user wants to black box.	User can black box the entity itself.

You can also use Tcl commands or Quartus II GUI to set the black box property on the entities, which the formal verification tool does not compare.

Tcl Command

Use the following Tcl commands to preserve the boundary interface of a black box entity: dram.

Example 17–6. TcL Command to Create a Black Box

set_instance_assignment -name PRESERVE_HIERARCHICAL_BOUNDARY FIRM -to | -entity dram set_instance_assignment -name EDA_FV_HIERARCHY BLACKBOX -to | -entity dram

GUI

To preserve the boundary interface of an entity using the GUI, follow these steps:

1. Make an EDA Formal Verification Hierarchy assignment to the entity with the value BLACKBOX.

2. Make a Preserve Hierarchical Boundary assignment to the entity with the value Firm (Figure 17–6).

Figure 17–6. Setting the Black-Box Property on a Module

×	٠	Cate	gory:	All		💌 🔽 All 🔟	Pin 💍 Timing	Logic Options
×	Node Filter:		ihow ass	ignments for specific nodes: regs:regs[dram:dram				Check All Uncheck All Delete All
×	X This cell specifies the source name for point-to-point assignments. Altera recommends using the Node Finder to assign a source name. This field is available only for point-to-point assignments. Use the Destination Name (To) column for single-point assignments. X Image: This field is available only for point-to-point assignments. Use the Destination Name (To) column for single-point assignments.							
×								
	7	F	rom	То	Value	Assignment Name 🔺	Enabled	
1				regs:regs dram:dram	Firm	Preserve Hierarchical	Yes	
2	:			regs:regs dram:dram	BLACKBOX	EDA Formal Verificati	Yes	

The Quartus II Software Generated Files, Formal Verification Scripts, and Directories

After successful compilation, the Quartus II software generates a list of files, formal verification scripts, and directories in the *<project_directory*>**fv/conformal/** directory (Table 17–4).

Table 17–4. The Quartus II Software Compiler-Generated Files and Directories (Part 1 of 2)		
File or Directory	Name	Details
Verilog Output File	<proj rev="">.vo</proj>	The Quartus II software-generated netlist for formal verification.

10010 17-4.	Table 17 4. The quantum noonware compiler denerated rines and Directories (rait 2 or 2)		
File or Directory	Name	Details	
Script file	<proj rev="">.ctc</proj>	The <i><proj rev=""></proj></i> .ctc file references <i><proj rev=""></proj></i> .clg and <i><proj rev=""></proj></i> .clr that read the library files and black box descriptions. The <i><proj rev=""></proj></i> .ctc file also references the <i><proj rev=""></proj></i> .cmc file containing information about the mapped points. (1)	
	<proj rev="">.cec</proj>	The < proj rev >. cec file contains the information for instance equivalences.	
	<proj rev="">.cep</proj>	The < proj rev >. cep file contains the information for black box pin equivalences in the design.	
	<proj rev="">.cmp</proj>	The <i><proj rev="">.</proj></i> cmp file contains the information for the black box pin mapping between the golden and revised sides. <i>(2)</i>	
	<proj rev="">.cmc</proj>	The <i><proj rev="">.cmc</proj></i> file contains information about the additional points to be mapped in addition to the points selected by the tool.	
	<proj rev="">_trivial.cmc</proj>	This <proj rev="">_trivial.cmc file contains mapping information for all the key points in the design. (3)</proj>	
	<proj rev="">.clr</proj>	The <i><proj i="" rev<="">>.clr file contains information about the macros and libraries for the revised design.</proj></i>	
	<proj rev="">.clg</proj>	The <i><proj i="" rev<="">>.clg file contains information about the macros and libraries for the golden design.</proj></i>	
blackboxes directory	<project directory="">/tv/ conformal/<project rev="">_ blackboxes</project></project>	This directory contains top-level module descriptions for all the user-defined black box entities and contains modules with definitions other than Verilog or VHDL, for example, Block Design File (.bdf) in the design directory <project directory="">/fv/conformal/<project rev="">_blackboxes</project></project>	

Table 17–4. The Quartus II Software Compiler-Generated Files and Directories (Part 2 of 2)

Notes to Table 17–4:

- (1) This file is used with the Encounter Conformal software.
- (2) This file is called from the *<proj rev>.ctc* script file. By default, the line where this file is called is commented out. These files are only useful for HardCopy II device families.
- (3) In some cases, Encounter Conformal software performs incorrect key point mapping, resulting in formal verification mismatches. To overcome the verification mismatches, the Quartus II software writes out the <proj rev>_trivial.cmc file that contains mapping information for all the key points in the design. Reading this file during the formal verification setup can result in increased run time. Therefore, the Quartus II software writes out the top-level script file <proj rev>.ctc with the command to read the <proj rev>_trivial.cmc file commented. If the formal verification results are not acceptable, the user can uncomment the command and read the <proj rev>_trivial.cmc file. The command in the <proj rev>.ctc file is:

//Trivial mappings with same name registers
//read mapped points \$PROJECT/fv/conformal/<projrev>_trivial.cmc

The script file contains the setup and constraints information to be used with the formal verification tool. The file *<entity>*.v in the **blackboxes** directory contains the module description of entities that are not defined in the formal verification library. The file also contains entities that you

specify as black boxes. For example, if there is a reference to a black box for an instance of the altdpram megafunction in the design, the **blackboxes** directory does not contain a module description for the altdpram megafunction because it is defined in the **altdpram.v** file of the formal verification library. When a module does not have an RTL description, or the description exists only in the formal verification library and you do not want to compare the module using formal verification, a file containing only the top-level module description with port declaration is written out to the **blackboxes** directory and read into the Encounter Conformal software.

Understanding the Formal Verification Scripts for Encounter Conformal The Quartus II software generates scripts to use with the Encounter Conformal Logic Equivalence Check (LEC) software. This section elaborates on the details of the Encounter Conformal commands used within the scripts to help you compare the revised netlist with the golden netlist. In most cases, you do not need to add any more Encounter Conformal constraints to verify your netlists. Also, a sample script generated by the Quartus II software is provided at the end of the chapter.

The Encounter Conformal Commands within the Quartus II Software-Generated Scripts

The value for the variable QUARTUS is the path to the Quartus II software installation directory:

setenv QUARTUS < Quartus Installation Directory>

The Quartus II software assigns the current working directory of the project to the PROJECT variable. Use this variable to change the project directory to the directory where the design files are installed when moving from a UNIX to a Windows environment, or vice versa:

setenv PROJECT < Quartus Project Directory >

The following command reads both the golden and the revised netlists, along with the appropriate library models:

read design <design files>

P

You must update the project location when the files are moved from the Windows environment to the UNIX environment.

The post place-and-route netlist from the Quartus II software might contain net and instance names that are slightly different from those of the golden netlist. By using the following command, the Quartus II software defines temporary substitute string patterns enabling the Encounter Conformal software to automatically map key points when the names are not the same:

add renaming rule <rule>

The Encounter Conformal LEC software employs three name-based methods to map key points to compare the revised netlist with the golden netlist. Scripts set the correct method to get the best results.

set mapping method < mapping_rule >

The Quartus II software performs several optimizations, including optimizing the registers whose input is driven by a constant. Under these circumstances, for the formal verification software to compare the netlists properly, the command set flatten model is used with the option seq_constant.

set flatten model <flattening_rule>

When you use the command report black box, verify that the following modules are listed as black boxes, along with any of the modules black boxed by the user, in both the golden and revised netlists:

- LPMs and megafunctions without the formal verification models
- Encrypted IP functions
- Entities not implemented in Verilog HDL or VHDL

Use the following command to set the same implementation on multipliers for both the golden and revised netlists:

set multiplier implementation <implementation_name>

If there are any combinational loops or instances of LPM_LATCH, the Quartus II software cuts the loop at the same point using the following command on both the golden and revised netlists:

add cut point

The Encounter Conformal software does not always automatically map all the keypoints, or can incorrectly map some keypoints. To help the Encounter Conformal software successfully complete the mapping process, the Quartus II software records optimizations performed on the netlist as a series of add mapped points in the Encounter Conformal *<file_name>.cmc* script.

add mapped points <key_points>

There are situations where the inverter in front of the register gets moved after the register. In this situation, the following command is used:

add mapped points <key_points> -invert

The following command reads in the mapped point information from the specified file:

read mapped points <file_name>.cmc

During the process of optimization, the Quartus II software might merge two registers into one (Figure 17–7). The Quartus II software informs the formal verification tool that the U1 and U2 registers are equivalent to each other using the following command:

add instance equivalence < instance_pathname .. > [-Golden]

If the register duplication takes place, the following command is used:

add instance equivalence <instance_pathname ..>
[-revised]

The following command is used when the inverter is moved beyond the register along with either register duplication or merging:

```
add instance equivalences <instance_pathname>
[-invert <instance_pathname>]
```

At times, the register output is driven to a constant, either logic 0 or logic 1. The Quartus II software sets the value of the register to a constraint using the add instance constraint command. For more information about this command, refer to "Stuck-at Registers" on page 17–7.

add instance constraint < constraint_value>

Comparing Designs Using Encounter Conformal

This section addresses using the Encounter Conformal software to compare designs; that is, how to prove logical equivalence between two versions of the design.

Black Boxes in the Encounter Conformal Flow

The Quartus II software usually generates a flattened netlist. However, there are some modules in the design that must be treated differently. The following is a list of some of these modules:

- LPMs and megafunctions without formal verification models
- Encrypted IP functions
- Entities not implemented in Verilog HDL or VHDL

To perform equivalence checking of a design between its version consisting of the modules listed above and its implemented version, the modules have to be treated as black boxes by the Encounter Conformal software. To facilitate the formal verification flow, the Quartus II software reconstructs the hierarchy on the black boxes with a port interface that is identical to the module on the golden side of the design.

Verilog Output netlist files written by the Quartus II software also contain the black box hierarchy when you make the following assignments for a module:

- An EDA Formal Verification Hierarchy assignment with the value BLACKBOX
- A Preserve Hierarchical Boundary assignment with the value Firm (Figure 17–6)

If these two assignments are not made for a module, the Quartus II software implements that module with logic cells. When this happens, the Verilog Output netlist file no longer contains the black box hierarchy and does not preserve the port interface, resulting in a mismatch within the Encounter Conformal software.

Running the Encounter Conformal Software

To run the Encounter Conformal software, use its GUI or a system command prompt, and use the CTC script generated by the Quartus II software.

Running the Encounter Conformal Software from the GUI

To run the Encounter Conformal software from the GUI, follow these steps:

- 1. Open the Encounter Conformal software.
- 2. On the File menu, click Do Dofile.
- 3. Select the file *<path to project directory/fv/conformal/<proj rev.ctc*.

The Encounter Conformal software GUI displays the comparison results (Figure 17–8). The Golden window displays the original RTL description or the post synthesis VQM netlist from Synplify Pro, and the Revised window displays the information of the post-fit netlist generated by the Quartus II software. The message section at the bottom of the window reports the verification results and the number of unmapped and non-equivalent points found in the design.

CONFORMAL-LEC		
<u>File Setup Report Run Tools LTX Preferences</u>	<u>W</u> indow <u>H</u> elp	
🖻 🔿 🔊 🖹 💖 🗞 🗟 🕼 Ar H	🔢 😒 🥂 Setup LEC Cadence	
Golden (RADV6)	Revised (RADV6)	
⊕ 3 CLALBCTL(pl4_loopback_Fif0DataWidth64 ⊕ 3 CLALBKX(PL4MX_Fif0DataWidth64_Fif0Moc ⊕ 3 CLAPL47(PL4CF) ⊕ 3 CLAPL47(X)(alpl4rx) ⊕ 3 CLAPST(RSTAT_PortAddwidth8) ⊕ 3 CLAPST(RSTAT_PortAddwidth8) ⊕ 3 CLAPSTA(RSTAT_POrtAddwidth8) ⊕ 3 CLAPSTA(RSTAT_POrtAddwidth8) ⊕ 3 CLA_FIG(L_DR0P) ⊕ 3 CLA_FIG(L_DR0P) ⊕ 3 CLA_FIG(L_INGRESS) ⊕ 3 CLA_FIG(L_INGRESS) ⊕ 3 CLA_SPI_DRIVER(al_spi_driver) ⊕ 3 CLBLBCTL(pl4_loopback_Fif0DataWidth64 ⊕ 3 CLBLBCTL(pl4_L)oopback_Fif0DataWidth64 ⊕ 3 CLBPL4CF(PL4CF) ⊕ 3 CLBPL4CF(clp14rx)	⊕ D84_RDN"I(stratixii_io_operation_mo ⊕ D84_RDP"I(stratixii_io_operation_mo ⊕ D87_RDP"I(stratixii_io_operation_mo ⊕ D87_RUP"I(stratixii_io_operation_mo ⊕ DCLALBCTL/p14_loopback_read/Addr[0] ⊕ DCLALBCTL/p14_loopback_read/Addr[1] ⊕ DCLALBCTL/p14_loopback_read/Addr[1] ⊕ DCLALBCTL/p14_loopback_read/Addr[2] ⊕ DCLALBCTL/p14_loopback_read/Addr[2] ⊕ DCLALBCTL/p14_loopback_read/Addr[2] ⊕ DCLALBCTL/p14_loopback_read/Addr[3] ⊕ DCLALBCTL/p14_loopback_read/Addr[3] ⊕ DCLALBCTL/p14_loopback_read/Addr[4] ⊕ DCLALBCTL/p14_loopback_read/Addr[4] ⊕ DCLALBCTL/p14_loopback_read/Addr[4] ⊕ DCLALBCTL/p14_loopback_read/Addr[4]	
SYSTEM: (G) scfifo_lpm_width36_lpm_widthu5_lpm_numwords32_lpm_showahead5195334_lpm_hintx52414d5 f42644434b6F345950453342_overflow_checking20302_underflow_checking20302_use_ab20302_lpm typex7856669666f intended_device_familyx55747261746978204949_add_ram_output_register20302 SYSTEM: (R) scfifo_lpm_width72_lpm_widthu5_lpm_numwords32_lpm_showahead5195334_lpm_hintx52414d5 f42644434b6F345950453132_overflow_checking20302_underflow_checking20302_use_eab20302_lpm typex7856669666f intended_device_familyx53747261746978204949_add_ram_output_register20302 SYSTEM: (R) scfifo_lpm_width72_lpm_widthu6_lpm_numwords32_lpm_showahead5195334_lpm_hintx52414d5 f42646434b6F345950453132_overflow_checking20302_underflow_checking20302_use_eab20302 SYSTEM: (R) scfifo_lpm_width80_lpm_widthu6_lpm_numwords64_lpm_showahead5195334_lpm_hintx52414d5 SYSTEM: (G) scfifo_lpm_width80_lpm_widthu6_lpm_numwords64_lpm_showahead5195334_lpm_hintx52414d5 f424c46434b6F545950453d4d353132_overflow_checking20302_underflow_checking20302_lpm_typex73636669666f_intended_device_familyx53747261746978204949_add_ram_output_ wt_register20302		
SYSTEM: (G R) stratixii_dll SYSTEM: (G R) stratixii_lvds_transmitter_charnel SYSTEM: (G R) stratixii_lvds_transmitter_charnel ckx6661667365_use_falling_clock_edge1953658213_pr Paad VEDN OG design surgesefully	width4_bypass_serializerx66616c7365_invert_clo reemphasis_setting0_vod_setting0_differential_d	
indea + Eritz o a dongh odocobaldily		

To investigate the verification results, click the **Mapping Manager** icon in the toolbar, or on the Tools menu, click **Mapping Manager**. The Encounter Conformal software reports the mapped, unmapped, and compared points in the Mapped Points, Unmapped Points, and Compared Points windows, respectively.

For more information about how to diagnose non-equivalent points, refer to the Encounter Conformal software user documentation.

Running the Encounter Conformal Software From a System Command Prompt

To run the Encounter Conformal Software without using the GUI, type the command shown in Example 17–7 at a system command prompt.

Example 17–7. Conformal LEC Command to Run Formal Verification

lec -dofile /<path to project directory>/fv/conformal/<proj rev>.ctc -nogui +

To get a downloadable design example showing the formal verification flow with Quartus II software, go to www.altera.com/support/examples/quartus/exm-formalverification.html.

To learn more about the latest debugging tips and solutions for formal verification flow between Cadence Conformal LEC tool and Quartus II software, go to www.altera.com and perform an advanced search with keywords "formal verification."

Known Issues and Limitations

The following known issues and limitations can occur when using the formal verification flow described in this chapter:

When a port on a black box entity drives two or more signals within the black box, the Quartus II software pushes the connections outside of the black box, and creates that many ports on the black box. This problem is only associated with Stratix II and HardCopy II designs.

The additional ports on the black box are named _unassoc_inputs_[] and _unassoc_outputs_[] (Figure 17–9). This issue is generally associated with reset and enable signals. Figure 17–9 shows an example in which the reset pin is split into two ports outside of the black box and the _unassoc_inputs_[] is driven by the clkctrl block. In such situations, the Verilog Output netlist generated by the Quartus II software has signals driving these black box ports, but golden RTL does not contain any signals to drive the _unassoc_inputs_[], resulting in a formal verification mismatch of the black box. The black box module definition generated by the Quartus II software in the directory <*Quartus_project*>\fv\conformal*_blackboxes contains these additional_unassoc_inputs_[] and _unassoc_outputs [] ports. This black box module is read on both the golden and revised sides of the design, which results in unconnected ports on the golden side and formal verification mismatches.

Figure 17–9 shows the creation of _unassoc_inputs_[] and _unassoc_outputs_[] for the reset signal.

Another common occurrence of this issue is in HardCopy II designs. Whenever a port drives large fan-out within the black box, the Quartus II software inserts a buffer on the net and moves the logic outside of the black box (Figure 17–10).

To fix the problem of unassoc_input_[] ports causing blackbox mismatches, use Cadence Conformal commands to change the type of the blackbox unassoc_input_[] keypoint to a primary output keypoint, and then marking the appropriate pin equivalences. Similarly, to fix the problem of register mismatches due to unassoc_output_[] pins from blackboxes, use Conformal commands to change the type of the blackbox unassoc_output_[] keypoint to a primary input, and then marking equivalent pins as such. The commands to perform these actions are written in the *<proj rev>.cep* file. Figure 17–10 shows the creation of _unassoc_inputs_[] for a signal with large fan-out.

Figure 17–10. Creation of _unassoc_inputs_[] for a Signal with Large Fan-out

- In designs with combinational feedback loops, the Encounter Conformal software can insert extra cut points in the revised netlist, causing unmapped points and ultimately verification mismatches.
- For Cyclone II designs, Conformal LEC may report non-equivalent flipflops and extra cut points for the revised (post-fit) design when your HDL source code instantiates the lpm_ff primitive with an asynchronous load signal aload (with or without any other asynchronous control signals) and when the asynchronous clear signal aclr and asynchronous set signal aset are used together. To avoid this problem, ensure that there is a wrapper module or entity around the lpm_ff primitive, and black box the module or entity that instantiates the lpm_ff primitive.
- For Stratix III designs, the Cadence Conformal LEC software creates cut points for the combinational loops on the golden side and may fail equivalence checking due to improper mapping. The combinational loops are due to logic around the registers emulating multiple set, resets, or both. These cut points are also reported during the mapping step in Quartus II software with Warning messages. You can manually add Cadence Conformal commands to add cut points, which result in proper mapping and formal verification.
- To perform formal verification, certain synthesis optimization options, such as register retiming, optimization through black box hierarchy boundaries, and disabling the ROM and shift register inference, are turned off, which can have an impact on the area resource and performance.
- RAM and ROM instantiations, inferences, or both are not verified using formal verification.

- Incremental Compilation for the purpose of formal verification does not support user-created design partitions.
- Formal verification does not support clear box netlist due to unconnected ports on its WYSIWYG instances.
- Formal verification does not support VHDL megafunction variations due to undriven ports on the megafunctions.
- When a black box contains bidirectional ports, the Quartus II software fails to reconstruct the hierarchy. For this reason, the black box is represented by a flat netlist, resulting in formal verification mismatches.
- ROMs in the design have to be black boxed before compilation using Quartus Integrated Synthesis, because the Quartus II software may perform some optimizations on the ROM, resulting in Formal Verification mismatches.
- Conformal may report mismatches or abort comparison of some key points when a DSP megafunction is implemented in LEs by the Quartus II software due to implicit optimizations within the DSP and the complexity of the multiplier logic in terms of LEs.
- Unused logic optimized within and around a black box by the Quartus II software can result in a black-box interface different from the interface in the synthesized VQM netlist.

Conclusion

Formal verification software enables verification of the design during all stages from RTL to placement and routing. Verifying designs takes more time as designs increase in size. Formal verification is a technique that helps reduce the time needed for your design verification cycle.

Black Box Models

The black box models are interface definitions of entities, such as primitives, atoms, LPMs, and megafunctions. These models have a parameterized interface, and do not contain any definition of behavior. They are specifically designed and tested to work with the Encounter Conformal software, which uses these models along with your design to generate black boxes for instances of the entity with varying sets of parameters in the design. Table 17–5 describes the supported black box models. Besides these black box models, you can set a black box property on a specific module or entity as explained earlier in this chapter.

Table 17–5. Supported Black Box Models (Part 1 of 3)		
Entity Type Entity Names		
Megafunctions	alt3pram, altaccumulate, altfp_mult, altsqrt, altlvds_rx, altlvds_tx, altshift_taps, sld_virtual_jtag sld_virtual_jtag_basic dcfifo, scfifo, altsyncram, altsqrt	
LPMs	lpm_add_sub, lpm_divide	

Table 17–5. Supported Black Box Models (Part 2 of 3)				
Entity Type	Entity Names			
	Cyclone: cyclone_crcblock, cyclone_jtag, cyclone_pll, cyclone_ram_block, cyclone_asmiblock, cyclone_dll			
	Straux: stratix_crcblock, stratix_jtag, stratix_lvds_receiver, stratix_lvds_transmitter, stratix_pll, stratix_rublock, stratix_ram_block, stratix_dll			
	Stratix II: stratixii_crcblock, stratixii_jtag, stratixii_lvds_receiver, stratixii_lvds_transmitter, stratixii_pll, stratixii_rublock, stratixii_ram_block, stratixii_asm_block, stratixii_dll, stratixii_termination, stratixii_asmiblock			
	<pre>Stratix GX: stratixgx_crcblock, stratixgx_jtag, stratixgx_lvds_receiver, stratixgx_lvds_transmitter, stratixgx_pll, stratixgx_rublock, stratixgx_ram_block, stratixgx_dll</pre>			
Atoms (1)	<pre>Stratix II GX: stratixiigx_hssi_receiver, stratixiigx_hssi_transmitter, stratixiigx_hssi_central_management_unit, stratixiigx_hssi_cmu_pll, stratixiigx_hssi_cmu_clock_divider, stratixiigx_hssi_refclk_divider, stratixiigx_hssi_calibration_block, stratixiigx_crcblock, stratixiigx_ram_block, stratixiigx_lvds_transmitter, stratixiigx_lvds_receiver, stratixiigx_pll, stratixiigx_dll, stratixiigx_jtag, stratixiigx_asmiblock, stratixiigx_termination, stratixiigx_rublock</pre>			
	Cyclone II: cycloneii_asmiblock,cycloneii_clk_delay_ctrl,cycloneii_clkctrl, cycloneii_jtag,cycloneii_pll,cycloneii_ram_block			
	Arria GX: arriagx_asmiblock, arriagx_crcblock, arriagx_dll, arriagx_hssi_calibration_block, arriagx_hssi_central_management_unit, arriagx_hssi_cmu_clock_divider, arriagx_hssi_cmu_pll, arriagx_hssi_receiver, arriagx_hssi_refclk_divider, arriagx_hssi_transmitter, arriagx_jtag, arriagx_lvds_receiver, arriagx_lvds_transmitter, arriagx_pll, arriagx_ram_block, arriagx_rublock, arriagx_termination			
	HardCopy II: hardcopyii_crcblock, hardcopyii_dll, hardcopyii_jtag, hardcopyii_lvds_receiver, hardcopyii_lvds_transmitter, hardcopyii_pll, hardcopyii_ram_block, hardcopyii_termination			

Table 17–5. Supported Black Box Models (Part 3 of 3)			
Entity Type	Entity Names		
	Stratix III: stratixiii_asmiblock, stratixiii_crcblock, stratixiii_jtag, stratixiii_lvds_receiver, stratixiii_lvds_transmitter, stratixiii_mlab_cell, stratixiii_pll, stratixiii_ram_block, stratixiii_rublock, stratixiii_termination, stratixiii_tsdblock		

Note to Table 17–5:

(1) The entity names are given for the specific device family listed.

```
Conformal
Dofile/Script
Example
```

The following example script (17–8), generated by the Quartus II software, lists some of the setup commands used in Conformal LEC software:

Example 17–8. Conformal LEC Script

```
// Copyright (C) 1991-2007 Altera Corporation
// Your use of Altera Corporation's design tools, logic functions
// and other software and tools, and its AMPP partner logi
// functions, and any output files from any of the foregoing
// (including device programming or simulation files), and any
// associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License
// Subscription Agreement, Altera MegaCore Function License
// Agreement, or other applicable license agreement, including,
// without limitation, that your use is for the sole purpose of
// programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the
// applicable agreement for further details.
// Script generated by Quartus II
reset
set system mode setup
set log file mfs 3prm 1a.fv.log -replace
set naming rule "%s" -register -golden
set naming rule "%s" -register -revised
// Naming rules for Verilog
set naming rule "%L.%s" "%L[%d].%s" "%s" -instance
set naming rule "%L.%s" "%L[%d].%s" "%s" -variable
// Naming rules for VHDL
// set naming rule "%L:%s" "%L:%d:%s" "%s" -instance
// set naming rule "%L:%s" "%L:%d:%s" "%s" -variable
// set undefined cell black_box -both
// These are the directives that are not supported by the QIS RTL to gates FV flow
set directive off verplex ambit
set directive off assertion library black box clock hold compile off compile on
set directive off dc_script_begin dc_script_end divider enum infer_latch
set directive off mem rowselect multi port multiplier operand state vector template
add notranslate module alt3pram -golden
```

```
add notranslate module alt3pram -revised
setenv QUARTUS /data/quark/build/ajaishan/quartus
setenv PROJECT
/net/quark/build/ajaishan/quartus reqtest/eda/fv/conformal/synplify/stratix/mfs 3prm 1a v1
_/mfs_3prm_1a/qu allopt
read design \
    $QUARTUS/eda/fv_lib/vhdl/dummy.vhd \
    -map lpm $QUARTUS/eda/fv lib/vhdl/lpms \
    -map altera mf $QUARTUS/eda/fv lib/vhdl/mfs \
    -map stratix $QUARTUS/eda/fv lib/vhdl/stratix \
    -vhdl -noelaborate -golden
read design \
    -file $PROJECT/fv/conformal/mfs_3prm_1a.clg \
    $PROJECT/p3rm block.v \
    $PROJECT/mfs_3prm_1a.v \
    -verilog2k -merge none -golden
read design \
    $QUARTUS/eda/fv lib/vhdl/dummy.vhd \
    -map lpm $QUARTUS/eda/fv lib/vhdl/lpms \
    -map altera_mf $QUARTUS/eda/fv_lib/vhdl/mfs \
    -map stratix $QUARTUS/eda/fv lib/vhdl/stratix \
    -vhdl -noelaborate -revised
read design \
    -file $PROJECT/fv/conformal/mfs 3prm 1a.clr \
    $PROJECT/fv/conformal/mfs 3prm 1a.vo \
    -verilog2k -merge none -revised
// add ignored inputs _unassoc_inputs_* -all -revised add renaming rule r1 "~I\/" "\/" -revised
add renaming rule r2 " I / " " / " - revised
set multiplier implementation rca -golden
set multiplier implementation rca -revised
set mapping method -name first
set mapping method -nounreach
set mapping method -noreport unreach
set mapping method -nobbox_name_match
set flatten model -seq constant
set flatten model -nodff_to_dlat_zero
set flatten model -nodff_to_dlat_feedback
set flatten model -nooutput_z
set root module mfs_3prm_1a -golden
set root module mfs_3prm_1a -revised
report messages
report black box
report design data
// report floating signals
dofile $PROJECT/fv/conformal/mfs 3prm 1a.cec
// dofile $PROJECT/fv/conformal/mfs 3prm 1a.cep
// Instance-constraints commands for constant-value registers removed
// during compilation
set system mode lec -nomap
read mapped points $PROJECT/fv/conformal/mfs 3prm 1a.cmc
// Trivial mappings with same name registers
// read mapped points $PROJECT/fv/conformal/mfs_3prm_1a_trivial.cmc
// dofile $PROJECT/fv/conformal/mfs 3prm 1a.cmp
map key points
remodel -seq constant -repeat
add compare points -all
compare
usage
// exit -f
```

Referenced Documents

This chapter references the following documents:

- Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook
- Netlist Optimizations and Physical Synthesis chapter in volume 2 of the Quartus II Handbook

Document Revision History

Table 17–6 shows the revision history for this chapter.

Table 17–6. Document Revision History				
Date and Version	Changes Made	Summary of Changes		
October 2007 v7.2.0	 Updated Introduction section on page 17–1. Updated Known Issues and Limitations section on page 17–24. Updated Table 17–1. Updated Table 17–5. Updated Figure 17–10. 	Updated for Quartus II software version 7.2.		
May 2007 v7.1.0	 Updated Formal Verification Design Flow section on page 17–2. Updated Generating the Post-Fit Netlist Output File and Encounter Conformal Setup Files section on page 17–10. Updated Understanding the Formal Verification Scripts for Encounter Conformal section title on page 17–18. Updated Known Issues and Limitations on page 17–24. Renamed Tcl Sample Script to Conformal Dofile/Script Example and updated section on page 17–29. Added Referenced Documents on page 17–31. Removed Debugging Tips section. Updated Figure 17–3. Updated Table 17–1. Updated Table 17–4. Updated Table 17–5. 	Updated for Quartus II software version 7.1.		
March 2007 v7.0.0	Updated Quartus II software 7.0 revision and date only. No other changes made to chapter.	_		
November 2006 v6.1.0	Changed date only.	Updated for Quartus II software version 6.1		
May 2006 v6.0.0	Minor updates for the Quartus II software version 6.0.0.	_		
October 2005 v5.1.0	Updated for the Quartus II software version 5.1. Chapter 15 was previously Chapter 13 in version 5.0.			
May 2005 v5.0.0	New functionality for Quartus II software 5.0.	—		
January 2005 v1.0	Initial release.	_		

18. Synopsys Formality Support

QII53015-7.2.0

Introduction

Formal verification of FPGA designs is gaining momentum as multi-million System-on-a-Chip (SoC) designs are targeted at FPGAs. Use the Formality software to easily verify logic equivalency between the RTL and DC FPGA post-synthesis netlist, and between the DC FPGA post-synthesis netlist and Quartus II post-place-and-route netlist. Beginning with version 4.2, the Quartus[®] II software interfaces with EDA tools including the Formality and DC FPGA software from Synopsys.

This chapter discusses the following:

- "Formal Verification"
- "Formal Verification Support" on page 18–2
- "Generating Post-Synthesis Netlist for Formal Verification" on page 18–3
- "Generating the VO File and Formality Script" on page 18–4
- "Quartus II Scripts for Formality" on page 18–11
- Comparing Designs Using the Formality Software" on page 18–11
- "Known Issues and Limitations" on page 18–12

Formal Verification

Formal verification uses exhaustive mathematical techniques to verify design functionality. There are two types of formal verification: equivalence checking and model checking. This section discusses equivalence checking.

Equivalence Checking

Equivalence checking compares the logical equivalence between the original design and the modified or revised design using mathematical techniques. This method reduces the verification time several-fold compared to the traditional method of performing verification using test vectors. Using a formal verification methodology provides the following key advantages:

- Faster time-to-market
- No testbenches or test vectors
- Results in hours compared to days using traditional verification methods

Formal Verification Support

The Quartus II software supports formal verification using the Formality software for the DC FPGA Synthesis tool as shown in Figure 18–1.

Figure 18–1. Equivalence Checking in the FPGA Design Flow

EDA Tools and Device Support

The formal verification flow using the Quartus II software and Synopsys Formality software requires the following software versions:

- Quartus II software, beginning with version 4.2
- Synopsys DC FPGA software, beginning with version W2005.03_EA1
- Synopsys Formality software, beginning with version 2004.12

The formal verification flow, using the Quartus II and Synopsys Formality software, supports Solaris and Linux platforms, and supports Stratix series devices.

Formal Verification Between RTL and Post-Synthesis Netlist

The first step in the FPGA design flow is to synthesize the RTL code using the DC FPGA to generate the synthesized verilog netlist. Equivalence checking using formal verification is performed between the RTL and the synthesized netlist to make sure the synthesis tool has not altered the original functionality of the design. For more information on how to use the DC FPGA software for synthesizing Altera device designs, refer to the *Synopsys Design Compiler FPGA Support* chapter in volume 1 of the *Quartus II Handbook*.

During the synthesis process, the DC FPGA synthesis tool performs operations such as:

- Modifying the net/instance names
- Register duplication
- State machine extraction by different methods

Changes caused by these synthesis operations cause comparison point matching issues and false verification failures. In order to make sure that the Formality software is aware of the design transformations performed during the synthesis, the DC FPGA software writes out a Synopsys setup verification file (.svf) to be read into the Formality software. To ensure the SVF constraint file contains all the formal verification setup constraints, you need to set certain commands in the DC FPGA software before compiling the design as detailed in the following section.

DC FPGA Software Settings

The Formality software does not support the **register merging** or **register retiming** synthesis operations, which are off by default, but it is necessary to verify that these settings are turned off during synthesis. Some of the commands necessary to turn off these options and generate a valid Verilog netlist for the formal verification purpose are described in this section.

For more information on creating the Tcl script file to perform synthesis, refer to the *DC FPGA User Guide* or the *Synopsys Design Compiler FPGA Support* chapter in volume 1 of the *Quartus II Handbook*.

To set most of the required synthesis settings to generate a valid formal verification netlist, use the following command:

set_fpga_defaults -formality <architecture_name>

For example:

set_fpga_defaults -formality altera_stratix

Generating Post-Synthesis Netlist for Formal Verification

To view all of the settings performed by this command, add -verbose to this command. In addition, you will need to execute the additional commands shown in Table 18–1.

Table 18–1. Commands and Affect of Each Command Image: Command State Stat		
Command	Affect	
<pre>set verilogout_write_constant_nets true</pre>	Add this command at the beginning of the script to allow unconnected nets to be driven by either power or ground.	
change_names -rule verilog -hierarchy	This command must be added after the compile command to set the Verilog naming rule to the output netlist for all levels of hierarchy.	
<pre>set_verification_friendly_mode -filename \ <top_level>.svf -append -allow_override</top_level></pre>	This command helps DC_FPGA to write out a SVF constraint file to be read into the Formality software.	
write -hier -f verilog -o \$outputdir/< <i>top_level</i> >.v	This command writes out a Verilog netlist for Formal Verification.	

For a sample DC FPGA script that is ready for compilation, refer to "Tcl Sample Script" on page 18–13.

Post synthesis Verilog netlist for formal verification can be generated by executing the Tcl script either in fpga_vision (GUI) or fpga_shell-t (command line).

For comparing RTL against post-synthesis netlist using the Formality software, refer to the DC FPGA Software User Guide.

Generating the VO File and Formality Script

The following steps describe how to set up the Quartus II software environment to generate the place-and-route, post-place-and-route VO netlist file, and Formality script compatible for formal verification.

- 1. Create a new Quartus II project or open an existing project.
- 2. On the Assignments menu, click **Settings**. The **Settings** dialog box is shown.
- 3. In the Category list, select Files. The Files page is shown.
- 4. Highlight the input file by clicking on it, then click **Properties** and select **Verilog Quartus Mapping File**. Click **OK**.

- 5. In the Category list, select Design entry/synthesis under EDA Tool Settings.
- 6. In the **Tool name** list, select **Design Compiler FPGA** (Figure 18–2).

These settings can also be performed using the following Tcl commands:

set_global_assignment -name VQM_FILE
<verilog_file_from_dc_fpga>

set_global_assignment -name \
EDA_DESIGN_ENTRY_SYNTHESIS_TOOL "Design Compiler FPGA"

```
set_global_assignment -name EDA_LMF_FILE \
dc_fpga.lmf -section_id eda_design_synthesis
```

Figure 18–2. EDA Tools Selection

General	Design Entru/Sunthesis
Files	
- User Libraries (Current Project)	Specify options for processing input files created by other EDA tools.
Device	
— Timing Requirements & Options	
EDA Tool Settings	Tool name: Design Compiler FPGA
 Design Entry/Synthesis 	Format: VDM
- Simulation	
- Timing Analysis	Run this tool automatically to synthesize the current design
- Board-Level	
- Formal Verification	- Signal names
Physical Synthesis	
Compilation Process Settings	VU: JVD
Early I iming Estimate	GND: GND
Incremental Compliation	und. Jane
+ Analysis & Syncriesis Seturigs	
Assembler	Library Mapping File
Timing Analyzer	File name: do fpga.lmf
Design Assistant	
SignalTap II Logic Analyzer	Show information messages describing LMF mapping during compilation
- Logic Analyzer Interface	
- SignalProbe Settings	Generate back-annotation data for timing closure
 Simulator Settings 	
Simulation Power	
PowerPlay Power Analyzer Settings	
Operating Conditions	
HardCopy Settings	
	Reset

7. In the **Category** list, select **Formal verification**. In the **Tool name** list, select **Formality** (Figure 18–3).

Figure 18–3. EDA Tools Selection

Settings - topmult	
Category:	
Category: General Files User Libraries (Current Project) Device Timing Requirements & Options EDA Tool Settings Design Entry/Synthesis Simulation Timing Analysis Board-Level Formal Verification Physical Synthesis Compilation Process Settings Early Timing Estimate Incremental Compilation Analysis & Synthesis Settings Fitter Settings Assembler Timing Analyzer Design Analyzer Logic Analyzer Interface SignalTap II Logic Analyzer Logic Analyzer Interface SignalTobe Settings Simulation Power PowerPlay Power Analyzer Settings Operating Conditions Software Build Settings HardCopy Settings	Formal Verification Specify options for generating output files for use with other EDA tools. Tool name: Formality Image: Tool name: Formality

- 8. Click OK.
- 9. From the Assignments menu, click **Settings**. The **Settings** dialog box is shown.
- 10. In the **Category** list, click the + icon to expand **Analysis and Synthesis Settings** and select **Synthesis Netlist Optimizations**. The **Synthesis Netlist Optimizations** page is shown.

11. Turn off the **Perform gate-level register retiming** option (Figure 18–4).

Figure 18–4. Synthesis Netlist Optimizations

12. In the Category list, click the + icon to expand **Fitter Settings** and select **Physical Synthesis Optimizations**. The **Physical Synthesis Optimizations** page is shown.

13. Turn off the Perform register retiming option (Figure 18–5).

Figure 18–5. Setting Parameters for Netlist Optimizations

General	Physical Synthesis Optimizations
Grinda Grinda Grind	Specify options for performing physical synthesis optimizations during fitting. Perform physical synthesis for combinational logic Perform automatic asynchronous signal pipelining Physical synthesis for registers Perform register duplication Perform register retiming Physical synthesis effort Normal (default effort level; average of 2 to 3 times compile time) Extra (more compile time than Normal; should improve performance gains) Fast (less compile time than Normal; may reduce performance gains)
 Simulator Settings Simulator Settings PowerPlay Power Analyzer Settings Operating Conditions Software Build Settings HardCopy Settings 	Description: Specifies that Quartus II should perform physical synthesis optimizations on combinational logic during fitting to increase circuit performance.

Performing register retiming on a design usually results in moving and merging/duplicating registers along the critical path. Because equivalence checkers compare the cones of logic terminating at registers, you should not move or duplicate the registers during optimization by the Quartus II software. If the options in this section are not selected, the Formality software script could be presented with a different set of compare points, and the resulting netlist is difficult to compare against the reference netlist file.

The Quartus II software, beginning with version 4.2, supports register duplication to improve the timing by duplicating the logic.

- To learn more about register duplication, refer to the *Analyzing and Optimizing the Design Floorplan* chapter in volume 2 of the *Quartus II Handbook*.
 - 14. Perform a full compilation of the design either on the Processing menu by clicking **Start Compilation** or by clicking on the start compilation arrow icon located in the tool bar.

Handling Black Boxes

Every design entity in the golden netlist must have a corresponding formal verification model in order to successfully run formal verification. Design entities in the golden netlist without a corresponding formal verification model are handled as black boxes whose boundary interfaces must be preserved. These design entities appear in the netlist if one of the following situations apply:

- Altera megafunctions including library of parameterized modules (LPM's)
 - The black-box property is only applied to LPM modules that do not have a formal verification model.
- Encrypted intellectual property (IP) cores
- Entities that are defined in the design format other than Verilog HDL or VHDL

The Quartus II software has the capability of automatically identifying the black boxes and sets the property Preserve Hierarchical Boundary to Firm to preserve the boundary interfaces of the black boxes which helps the formal verification.

You can also specify the black box property on entities that should be compared by the Formality software. To do this make the following assignments either using Tcl commands or GUI for the entities in question:

Tcl Command

The following two commands preserves the boundary interface of the entity: dram.

```
set_instance_assignment -name\
PRESERVE_HIERARCHICAL_BOUNDARY FIRM -to | -entity dram
set_instance_assignment -name EDA_FV_HIERARCHY\
BLACKBOX -to | -entity dram
```

GUI

Preserving the boundary interface of an entity using GUI.

- Assign the EDA Formal Verification Hierarchy value as blackbox.
- Assign the Preserve Hierarchical Boundary assignment with a value of Firm to the entity (Figure 18–6).

Figure 18–6. Making a Black Box Assignment to an Entity

× +	Cate	egory: All			🛨 🔂 All 🖻 Pin 💍 Tim	ing Disc Options
□ Node Filter:		5how assignmer	its for specific nodes: ags dram:dram			Check All Uncheck All Delete All
Information:	Thi	s cell specifies to	o which entity the assignn	nent is relative.		
	Τ		То	Entity 🗸	Assignment Name	Value
1			1	dram	Preserve Hierarchical Boundary	Firm
2			 Image: A set of the set of the	dram	EDA Formal Verification Hierar	BLACKBOX
3	0	·>	< <new>></new>		< <new>></new>	
<			1	Ш		>

The Quartus II software compiler generates the following files and directories:

- VO file: *<design_name>.***vo**.
- Script file: <*design_name*>.**fms** used with Formality software.
- A black-box directory: black boxes that contains all the user defined black-box entities in the design which is located in the following directory: /<project directory>/fv/formality/blackboxes.

The script file contains the setup constraints used along with the Formality software. The *<entity>*.**v** file in the black-boxes directory contains the module description of only those entities that are not defined in the formal verification library.

For a sample script containing the setup commands generated by the Quartus II software, refer to "Tcl Sample Script" on page 18–13.

Quartus II Scripts for Formality

The Quartus II software generates scripts to use with the Formality software. This section describes the Formality software commands used within the scripts to help customers comparing the implementation and reference netlists. Table 18–2 describes the Formality software commands within Quartus II generated scripts.

Table 18–2. Formality Software Commands within Quartus II Generated Scripts		
Command	Affect	
read_verilog < <i>design files</i> >	This command reads both the reference and implementation netlists in addition to the appropriate library models.	
set_compare_rule < <i>rule</i> >	Adds a name matching rule that Formality software applies to a design before creating compare points.	
<pre>set signature_analysis_matching <value></value></pre>	Use this command to specify whether or not to use signature analysis to match previously compared points.	
set_constant < <i>value</i> >	This command allows you to set the logic state of a design object to either 0 or 1.	
<pre>set hdlin_altera_generate_naming <value></value></pre>	This command directs Formality software to apply alter naming conventions for registers.	
Set_user_match < <i>mapping_point_name</i> >	Use this command to create pairs of matched points to compare those that Formality software could not match during its matching process.	

Comparing Designs Using the Formality Software

To verify the functional equivalence between post-synthesis and post-place-and-route netlists, use the script file *<file_name>.fms* since it contains references to the macros defined in the Altera formal verification library. Some of the macros used are:

- ALTERA_FAMILY_IS_STRATIX_
- POST_FIT
- FORMALITY
- GATES_TO_GATES

An example on the use of these macros is shown in the **read_verilog** command in the previous section. This script file *<file_name>.fms* is executed from either the GUI or using the following command:

%formality -file <file_name>.fms

For more information about using the Formality software, refer to the *Formality User Guide*.

	Ĩ	The Formality software does not support inferred RAMs in RTL while performing RTL-to-Gates verification. Therefore, you should apply the black box property to RAM that is instantiated by the RTL code.			
Known Issues and Limitations	This section discusses known issues and limitations of the formal verification flow using the DC FPGA, Quartus II, and Formality software:				
	1.	Formal verification of post synthesis verses post-place-and-route netlist does not support latches because latches are implemented using combinational logic with a feedback loop which poses a problem to the Formality software.			
	2.	If an LPM or an Altera megafunction module is inferred and all the ports of the module are not used, then unused ports should be connected to default values in the post-synthesis Verilog HDL netlist.			
	3.	The Quartus II software may optimize away logic feeding a black box, resulting in mismatches on the blackbox inputs. For example, if certain bits of a RAM output are not being used, then the Quartus II software optimizes away the logic feeding the corresponding data inputs.			
Conclusion	Forn from veri Thu netl Adv the s netl	mal verification enables verification of the design during all stages n RTL to place-and-route. As designs become larger, design fication using traditional methods becomes too time consuming. s, formal verification easily verifies that any modifications to the ist in the physical domain have not altered from the Golden netlist. vanced debugging capabilities within Formality software pinpoints source of the differences between the Reference and Implementation ists, enabling the user to easily fix the differences.			
Related Links	Alte Soft	era website: About Using the DC FPGA Software with the Quartus II ware			

Tcl Sample Script

This section provides an example of the DC FPGA software script to perform synthesis and an example formal verification script generated by the Quartus II software.

DC FPGA Synthesis Script

The following example script presents the Altera recommended settings in the DC FPGA software for synthesizing the design for the Stratix architecture. The script also generates the Verilog netlist file for formal verification using the Formality software. These tasks are performed in the following five sections of the script:

- Setting up the library
- Default synthesis settings for Altera Stratix
- Analyzing the design files
- Compiling the design
- Generating the Verilog netlist for formal verification

Setup file for Altera Stratix Devices # Tcl style setup file but will work for # original DC shell as well # Need to define the root location of the # libraries by changing # the variable \$dcfpga lib path set dcfpga lib path "<dcfpga rootdir>\ /libraries/fpga/altera" set search path ". \$dcfpga lib path \$dcfpga lib path/STRATIX \$search path" set target_library "stratix.db" set synthetic library "tmg.sldb altera mf.sldb\ lpm.sldb" set link library "* stratix.db tmg.sldb\ altera mf.sldb\ lpm.sldb" set cache dir chmod octal "1777" set hdlin_enable_vpp "true" set post compile cost check "false" set fpga defaults -formality altera stratix set formality altera debug true set_verification_friendly_mode -filename <top level>.svf -append \ -allow override set verilogout no tri true set verilogout write constant nets true set compile fix multiple port nets true ## Setup design directory for database, temporary files # and netlist #</OUTPUTDIR># set outputdir <directory name> file mkdir \$outputdir/WORK define_design_lib WORK -path \$outputdir/WORK

Setup the Top-level design name set top <top level module> ##Setup synthesis optimization options set dcfsm force encoding neutral #<READFILES># ##Analyze source files ##Elaborate design elaborate \$top #</ELABORATE># ##Specify Target device current design \$top set fpga target device AUTOFASTEST ## Insert pad during synthesis set port is pad [get ports "*"] #<FPGACONST># ## Specify clock constraints #</FPGACONST># #<COMPILE># ##Setup compile options ungroup -small 500 ## Compile design compile change names -rule verilog -hierarchy #<REPORT># ##Generate netlist/reports/constraints for PAR write -hier -f verilog -o \$outputdir/\$top.v report fpga > \$outputdir/fpga.rpt

Quartus II Software-Generated Formal Verification Script

The following example script shows the sample setup commands generated by Quartus II software:

```
read verilog -i -vcs \
"+define+ ALTERA FAMILY IS STRATIX \
+define+POST FIT \
+define+FORMALITY -y $QUARTUS/eda/fv lib/verilog \
+libext+.v -y \
/home/formality/testcases/mult/quartus/fv/ \
formality/blackboxes" \
$PROJECT/fv/formality/mult ram.vo
set top mult ram
set black box i:/WORK/altsyncram
report black box
set compare rule i:/WORK/mult ram -from " aI$" -to ""
set compare rule r:/WORK/mult ram -from "\/" -to " a"
set compare rule i:/WORK/mult ram -from "\/" -to " a"
match
verify
```

Referenced Documents

This chapter references the following documents:

- Formality User Guide
- Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II Handbook

Document Revision History Table 18–3 shows the revision history for this chapter.

Table 18–3. Document Revision History						
Date and Document Version	Changes Made	Summary of Changes				
October 2007 v7.2.0	Reorganized "Referenced Documents" on page 18–15.	_				
May 2007 v7.1.0	Added Referenced Documents.	—				
March 2007 v7.0.0	Updated Quartus II software 7.0 revision and date only. No other changes made to chapter.	—				
November 2006 v6.1.0	Added new revision history table format to the document.	_				
May 2006 v6.0.0	Minor updates for the Quartus II software version 6.0.0.	—				
October 2005 v5.1.0	 Updated for the Quartus II software version 5.1. Chapter 15 was previously Chapter 13 in version 5.0. 	_				
May 2005 v5.0.0	New functionality for Quartus II software 5.0.	—				
January 2005 v1.0	Initial release.	_				

Section VII. Device Programming

The Quartus® II software offers a complete software solution for system designers who design with Altera® FPGA and CPLD devices. The Quartus II Programmer is part of the Quartus II software package that allows you to program Altera CPLD and configuration devices, and configure Altera FPGA devices. This section describes how you can use the Quartus II Programmer to program or configure your device after you successfully compile your design.

This section includes the following chapter:

- Chapter 19, Quartus II Programmer
- For information about the revision history for chapters in this section, refer to each individual chapter for that chapter's revision history.

19. Quartus II Programmer

QII53022-7.2.0

Introduction

The Quartus[®] II software offers a complete software solution for system designers who design with Altera[®] FPGA and CPLD devices. The Quartus II Programmer is part of the Quartus II software package that allows you to program Altera CPLD and configuration devices, and configure Altera FPGA devices. After your design successfully compiles, you can use the Quartus II Programmer to program or configure your device.

This chapter contains the following sections:

- "Programming Flow"
- "Programming and Configuration Modes" on page 19–4
 - "Programmer Overview" on page 19–6
- "Hardware Setup" on page 19–12
- "Device Programming and Configuration" on page 19–14
- "Optional Programming Files" on page 19–18
- "Flash Loaders" on page 19–21
- "Other Programming Tools" on page 19–22
- "Scripting Support" on page 19–22

Programming Flow

The programming flow begins with design compilation, in which the Quartus II Assembler generates the programming or configuration file, then proceeds with the programming or configuration file conversion for different configuration devices, or optional programming and configuration file creation. The flow ends with the configuration or programming of the FPGA, CPLD, or configuration devices with the programming or configuration file using the Quartus II Programmer.

Figure 19–1 shows the programming file generation flow. This flow covers the types of configuration and programming files that are used by the Quartus II Programmer. Refer to "Optional Programming Files" on page 19–18 for information on other optional programming files.

Table 19–1 shows the programming and configuration file formats supported by Altera FPGAs, CPLDs, configuration devices, enhanced configuration devices, and serial configuration devices.

Table 19–1. Programming and Configuration File Format						
File Format	FPGA	CPLD	Configuration Device and Enhanced Configuration Device	Serial Configuration Device		
SOF	~	_	—	_		
POF	—	\checkmark	\checkmark	\checkmark		
Jam	~	\checkmark	\checkmark	_		
JBC	~	\checkmark	\checkmark	_		

Figure 19-2 shows the programming flow using the Quartus II Programmer. Refer to "Generating Optional Programming Files" on page 19-20 for detailed information about converting or creating different programming files. Refer to "Device Programming and Configuration" on page 19-14 for information about programming or configuring the device.

Programming and Configuration Modes

The Quartus II Programmer supports the following four programming or configuration modes: JTAG, passive serial, active serial, and in-socket programming.

JTAG Mode

You can use the Joint Test Action Group (JTAG) mode to configure FPGA devices and program CPLDs, configuration devices, or enhanced configuration devices. The JTAG mode allows multiple FPGAs, CPLDs, and configuration devices connected in a JTAG chain to be configured or programmed at the same time. JTAG programming or configuration uses four JTAG pins: TCK, TDI, TMS, and TDO. The JTAG interface also allows you to perform boundary-scan test using third-party boundary scan tools.

POF files are used for programming CPLDs, and configuration or enhanced configuration devices, while SOF files are used for configuring FPGA devices. Jam and JBC files can be used for both programming and configuration. Serial configuration devices do not support JTAG programming.

For more information about JTAG configuration or programming mode and JTAG pin connection, refer to the *Configuration Handbook*, or the device handbook or data sheet for the respective FPGA, CPLD, or configuration devices.

Passive Serial Mode

You can use the passive serial (PS) mode to configure Altera FPGAs. PS configuration uses the DCLK, CONF_DONE, nCONFIG, nSTATUS, and DATA0 configuration pins. Unlike the JTAG scheme, the PS configuration scheme can be used to configure the FPGA with a configuration device or enhanced configuration device, not necessarily through a download cable. If you are using the configuration device or enhanced configuration device to configure the FPGA through PS mode, you can route the configuration signals out to a header so that you can also configure the FPGA through the download cable with the Quartus II Programmer. Configuration through PS mode with a download cable is useful in the design stage. This configuration method allows you to configure your FPGA device directly from the Quartus II Programmer as you make changes to your design for debugging and testing.

PS mode supports configuration of an FPGA chain. SOF files are used for configuration through PS. Every FPGA device in the chain requires a SOF, so the number of SOF files used depends on the number of FPGA devices in the chain.

For more information about PS configuration mode and PS pin connection, refer to the *Configuration Handbook* or the chapter on configuration in the appropriate FPGA device handbook.

Active Serial Mode

You can use the active serial (AS) mode to program serial configuration devices. After programming completes, the serial configuration device then configures the FPGA. AS programming uses the DATA, DCLK, nCS, and ASDI pins. If the download cable is connected to the nCONFIG and nCE pins of the FPGA, the download cable disables the FPGA's access to the AS interface by holding the nCE pin high and the nCONFIG pin low. Upon completion of the programming, the nCE and nCONFIG pins are released and the FPGA configuration begins.

For more information about programming the serial configuration device, configuring the FPGA with the serial configuration device through AS mode, or the AS pin connection, refer to the *Serial Configuration Data Sheet* in the *Configuration Handbook* or the chapter on configuration in the appropriate FPGA device handbook.

In-Socket Programming Mode

The in-socket programming mode is used for programming a single device. This programming mode supports programming the MAX[®] 7000 and MAX 3000 CPLD families, configuration devices, enhanced configuration devices, and serial configuration devices. Instead of using a download cable, in-socket programming mode uses the Altera Programming Unit (APU) hardware together with the programming adapter for the corresponding device to program the device. The programming unit with the programming adapter has a socket for the device and the hardware powers the device for programming. In-socket programming is normally used in the production environment to pre-program devices before they are mounted on the printed circuit boards on the assembly line.

Refer to **www.altera.com** or the Quartus II Help for a list of programming adapters available for Altera devices.

Table 19–2 shows the programming and configuration modes supported by Altera devices.

Table 19–2. Programming and Configuration Modes						
Mode	FPGA	CPLD	Configuration Device and Enhanced Configuration Device	Serial Configuration Device		
JTAG	\checkmark	\checkmark	\checkmark	_		
PS	\checkmark	_	—	_		
AS	_	_	—	\checkmark		
In-Socket Programming	—	√ (1)	~	~		

Note to Table 19–2:

(1) MAX II CPLDs do not support in-socket programming mode.

Programmer Overview

The Quartus II Programmer graphical user interface (GUI) is a window in which you can add your programming and configuration files, specify the programming options and hardware, and then proceed with the programming or configuration of the device.

To open the **Programmer** window, on the Tools menu, click **Programmer**. Figure 19–3 shows the programmer GUI. The status of each operation, whether programming is successful or not, is reported in the Quartus II message window. Figure 19–4 shows a typical programming message after the programmer has successfully programmed a device.
	Setup Programi Option			ning 's]			Progi	ress Indi	icator —]	
🖺 Design.cdf														
🔔 Hardware Se	etup USB-	Blaster [USB-0]				N	fode: JT.	AG		Prog	gress:	C	1%	\bigcirc
Enable real-tir	ne ISP to allow	/ background pr	ogramming (for MAX	II devices)		-								
Mu Start	File		Device	Checksum	Usercode	Program/ Configure	Verify	Blank- Check	Examine	Security Bit	Erase	ISP CLAMP	IPS File	\sum
Change File Change File Add Drive Add Drive Add Drive Down	Dest Cycli Cycli	gn.pof M M ne> one.sof	EPX1220F256 EP2560F484 EP1C3T100	006229DF 00000000 00049021	<pre></pre> <pre></pre> (none) 12345678	X								
Action Buttons	<		File/Chain			111								>

Figure 19–3. The Programmer Window

Figure 19–4. Status Report in the Message Window

 Type ▲
 Message

 1
 Info: Successfully performed operation(s)

 1
 Info: Ended Programmer operation at Mon Feb 26 09:39:27 2007

 1
 Info: Started Programmer operation at Mon Feb 26 09:39:51 2007

 1
 Info: Device 1 contains JTAG ID code 0x020A30DD

 1
 Info: Device 1 silicon ID is ALTERA04-1

 1
 Info: Examining devices

 1
 Info: Successfully performed operation(s)

 1
 Info: Ended Programmer operation at Mon Feb 26 09:39:53 2007

Г

Table 19–3 describes the items available in the programmer window.

Items	Description							
Hardware Setup	 Opens the Hardware Setup dialog box in the programmer and enables you to perform the following: add and remove hardware items from the Hardware list. add and remove JTAG servers from the JTAG Servers list. configure your local JTAG server. specify a programming hardware or download cable for device programming and configuration. 							
Mode	Specifies the programming or configuration mode (either JTAG, In-Socket Programming, Passive Serial, or Active Serial Programming).							
Progress	Shows the progress of a specific operation.							
	Action Buttons							
Start	Starts the operations of the specified programming options.							
Stop	Stops all operations in progress.							
Auto Detect	Scans the JTAG chain to check for devices in the chain and the chain connection.							
Delete Removes the selected programming or configuration files from the programmer.								
Add File	Adds programming or configuration files to the programmer.							
Change File	Replaces the selected programming or configuration file with another file.							
Save File	Allows you to save the data read out from CPLD or configuration devices using the "examine" process into a POF file.							
Add Device	Adds a device into the JTAG device chain in the programmer. If no programming or configuration file is specified, the programmer will bypass this device during programming or configuration. You can also add your user-defined device into the chain.							
Up	Moves the selection up to another programming or configuration file or device in the programmer window.							
Down	Moves the selection down to another programming or configuration file or device in the programmer window.							
	File or Device Chain Information							
File	Displays the programming or configuration file name.							
Device	 The Device column shows: the target device of the file, if you add a programming or configuration file into the programmer. the devices in the JTAG chain detected by the programmer, if you click Auto Detect in JTAG mode. the device added to the programmer, if you manually add a device into the programmer. 							

Table 19–3. Programmer Window Items (Part 2 of 3)							
Items	Description						
Checksum	 The Checksum column shows: the checksum of the file, if you add a programming or configuration file into the programmer. the checksum for the data read out, if you examine a device. The checksum is calculated by the Quartus II software. The programmer does not display the checksum for the Jam or JBC files generated for a multi-device JTAG chain. 						
Usercode	 The Usercode column shows: the usercode of the file, if you add a programming or configuration file into the programmer. the usercode read out from the device, if you examine a device. You can specify the usercode before design compilation, or use the Auto usercode feature that uses the checksum as the usercode. The programmer does not show the usercode information in PS configuration mode or for the Jam or JBC files generated for a multi-device JTAG chain. 						
	Programming Options						
Enable real-time ISP to allow background programming	Can only be turned on if you are targeting a MAX II device, and is turned off for all other device families. When this option is turned on, you can do the real-time in-system programming (ISP) for the MAX II device. The existing design in the MAX II device functions normally during and after the real-time ISP is completed. The new design starts to function after a power cycle to the device occurs.						
Program or Configure	Can be used for programming CPLDs, configuration devices, or configuring FPGA devices.						
Verify	Verifies the content of the CPLD and all configuration devices against the respective programming files. This option is not available for FPGAs. Verification fails if the data in the file is different from the data in the device. Stand-alone verification for the CPLD with the programming file used for the programming will fail if the security bit is set when the device is programmed initially.						
Blank-Check	Checks whether the CPLD or configuration device is blank or not.						
Examine	Reads back the contents of the CPLD or configuration device. You can then save the examined data as a POF file. Examining a CPLD with the security bit set does not produce a usable POF file. MAX 7000S devices require you to add a valid MAX 7000S POF file that targets the same device before you can examine the data back from the device.						
Security Bits	Protects the design in the CPLD from being examined. If the security bit is set when the CPLD is programmed, you cannot read the correct data out using the examine process. Security bits cannot be set for the configuration devices or FPGAs.						

Table 19–3. Programmer Window Items (Part 3 of 3)							
Items	Description						
Erase	Erases the contents of the CPLD and all configuration devices. You can also erase the user flash memory (UFM) of the MAX II CPLD. MAX 7000S devices require you to add a valid MAX 7000S POF file that targets the same device before you can erase the device.						
ISP CLAMP	Allows the MAX II or MAX 7000B CPLD's I/O pins to be clamped to certain states during normal programming. ISP CLAMP can only be turned on if certain pins of the device have the ISP Clamp State assignment enabled, or you have added an I/O Pin State (IPS) file in the programmer.						
IPS File	Shows the IPS file used for ISP Clamp of the MAX II or MAX 7000B CPLDs. The IPS File column only appears if your programmer window has a MAX II or MAX 7000B POF file. To add in the IPS file, click once on the row of the programming file and on the Edit menu, click Add IPS File .						

Table 19–4 shows the programming and configuration options supported by Altera devices.

Table 19–4. Programming and Configuration Options								
Option	FPGA	CPLD	Configuration Device and Enhanced Configuration Device	Serial Configuration Device				
Program or Configure	~	~	~	~				
Verify	—	\checkmark	~	\checkmark				
Blank-Check	—	\checkmark	\checkmark	\checkmark				
Examine	—	\checkmark	\checkmark	\checkmark				
Security Bit	—	\checkmark	—	—				
Erase	—	\checkmark	\checkmark	\checkmark				
ISP Clamp	_	√ (1)	—	_				
IPS File (2)	_	\checkmark	_	_				
Real-time ISP	—	√ (3)	—	—				

Notes to Table 19–4:

(1) Only MAX II and MAX 7000B CPLDs support the ISP Clamp feature.

(2) IPS file is used for ISP Clamp.

(3) Only MAX II CPLDs support the real-time ISP feature.

Tools Menu

More programmer options are available from the Tools menu. On the Tools menu, click **Options** and then click **Programmer**. For descriptions of these options, refer to Table 19–5.

Table 19–5. Programmer Options							
Option	Description						
Show checksum without usercode	Determines whether the checksum values displayed in the programmer are calculated with or without JTAG usercodes. This option allows you to have multiple versions of a programming or configuration file with different user codes, but share the same checksum.						
Initiate configuration after programming	Specifies that configuration devices configure attached FPGA devices automatically after the programmer completes programming the configuration devices.						
Display message when programming finishes	Displays a message when programming or other operation such as examining or blank-checking is complete.						
Enable real-time ISP to allow background programming (for MAX II devices)	Can only be turned on if you are targeting a MAX II device. This option is turned off for all other device families. When this option is turned on, you can do the real-time in-system programming (ISP) for the MAX II device. The existing design in the MAX II device functions normally during and after the real-time ISP is completed. The new design starts to function after a power cycle to the device occurs. This option is also available in the programmer window.						
Halt on-chip configuration controller	 Halts the on-chip auto-configuration controller of the FPGA device for AS configuration, or the configuration device for PS or Fast Passive Parallel (FPP) configuration to allow JTAG configuration through a download cable. If you want to configure your FPGA through JTAG while the FPGA MSEL pins are set to AS mode, you should halt the on-chip configuration controller if any of the following occurs: the active serial configuration device is not present an error occurs during AS configuration prior to JTAG configuration controller of the configuration device if an error occurs during PS or FPP configuration prior to JTAG configuration controller of the configuration device if an error occurs during PS or FPP configuration prior to JTAG configuration. The FPGA pulls the nSTATUS pin (which is connected to the OE pin of the configuration device) low to disable the configuration device. 						
Automatically check the Program/Configure checkbox when adding SOF	Automatically enables the program or configuration operation when adding an SRAM Object File (.sof) to the file list in the programmer window.						

Hardware Setup

The Quartus II Programmer provides the flexibility to choose the download cable or programming hardware. Before you can program or configure your device, you must have the correct hardware setup.

Hardware Settings

Click **Hardware Setup** to bring up the **Hardware Setup** dialog box. On the **Hardware Settings** tab (Figure 19–5), you can select a download cable or programming hardware available from the **Currently selected hardware** list. If the download cable or programming hardware you require is not displayed, click **Add Hardware** and specify the download cable or programming hardware. Make sure that you have installed the download cable driver before adding the hardware.

You do not need to manually add the USB-Blaster[™] download cable to the list. After installing the driver, simply connect the download cable to the PC before opening the **Hardware Setup** dialog box. The USB-Blaster appears automatically in the list when the dialog box is opened.

Figure 19–5. Hardware Settings

Hardware Setup						
Hardware Settings JTAG Settings						
Select a programming hardware setup to use when programming devices. This programming hardware setup applies only to the current programmer window.						
Currently selected hardware: USB-Blaster (USB-0)						
Available hardware items:	·					
Hardware	Server	Port	Add Hardware			
ByteBlasterII USB-Blaster	Local Local	LPT1 USB-0	Remove Hardware			
			Close			

More information about programming hardware driver installation is available in the Design Software section under **Support** on the Altera website (**www.altera.com/support**).

JTAG Settings

The JTAG server allows programs such as the Quartus II Programmer to access the JTAG hardware. This application software is installed together with the Quartus II software. You can also access the JTAG download cable or programming hardware connected to a remote computer through the JTAG server of that computer. With the JTAG server, you can control the programming or configuration of devices from a single computer through other computers at remote locations. The JTAG server uses the TCP/IP communications protocol.

Click **Hardware Setup** to bring up the **Hardware Setup** dialog box. On the **JTAG Settings** tab (Figure 19–6), you can add or remove JTAG servers from the list. By default, you have only the local JTAG server (which is on your computer) in the list. By adding a remote JTAG server, you can access the JTAG hardware in that remote computer from your computer. You need the password of the remote JTAG server to add the server to your list. Click **Add Server**, then enter the IP address of that computer in the **Server name** field and the password in the **Server password** field.

Figure 19–6. JTAG Settings

Hardware Setup		
Hardware Settings	ITAG Settings	
Specify JTAG serve remote clients to acc	rs to add and remove from the JTAG Servers cess the local JTAG server by configuring yo	s list. Specify the password used by our local JTAG server.
JTAG Servers:		Add Server
Server	Connection Status	
Local	UK	Hemove Server
		Configure Local JTAG Server
		Llose

You can also allow remote clients to access the JTAG server on your computer and program or configure devices connected to your computer through the JTAG interface of your computer. Click **Configure Local JTAG Server** to enable the server and then enter the password that the remote clients require to access your JTAG server.

Device Programming and Configuration

The Quartus II Programmer supports single- or multi-device programming and configuration. This section describes the steps required to program or configure Altera devices, as well as how to bypass Altera and non-Altera devices in a JTAG chain.

Single Device Programming and Configuration

To program or configure a single device with the Quartus II Programmer, perform the following steps:

- 1. On the Tools menu, click **Programmer** to open the **Programmer** window.
- 2. Click **Hardware Setup** and select the programming hardware or download cable. If you are using JTAG mode, you can specify the correct JTAG settings for programming or configuration involving remote JTAG servers. Click **Close**.
- 3. From the **Mode** list, select the programming or configuration mode.
- 4. Click **Add File** to add the POF or SOF file to the programmer (you can omit this step if the file is already displayed). To change the file, select it and click **Change File**. To remove the file from the programmer, select it and click **Delete**.
- If you are using JTAG, AS, or in-socket programming mode, after the file has been added to the programmer, select the programming or configuration option by turning on the corresponding check box in the programmer.
- 5. Click Start.

Multi-Device Programming and Configuration

JTAG and PS modes allow you to program or configure a device chain. A JTAG chain can consist of a combination of FPGA, CPLD, and configuration devices that support JTAG mode. A PS chain consists of FPGAs that support PS mode. The steps for programming or configuring a device chain is similar to the steps for programming or configuring a single device. One exception is that in a device chain you must specify all the programming or configuration files for the devices you want to program or configure. JTAG mode allows you to bypass some of the devices in the JTAG chain while programming or configuring the rest of the devices. PS mode does not allow you to bypass devices in the FPGA chain.

Bypassing an Altera Device

If you have the programming or configuration file for the Altera device you want to bypass, in the programmer, turn off all the options in the row for that device before you program or configure other devices. If you do not have the programming or configuration file for that device, click **Add Device** to specify the device.

Bypassing a Non-Altera Device

The JTAG chain of the device you want to program or configure may contain non-Altera devices. To program or configure your Altera device in the JTAG chain, you must bypass those non-Altera devices. The non-Altera devices are not in the list of devices that you can select when you click **Add Device** in the programmer.

To bypass the devices, you must manually define these devices. Click **Add Device** to open the **Select Device** dialog box. Click **New** to define a device. In the **New Device** dialog box (Figure 19–7), enter the name of the device and the JTAG instruction register length of the device. You can find the JTAG instruction register length in the device's data sheet. You can also specify the JTAG ID code for the device by clicking **Add JTAG ID**. This is optional and you can turn on **Allow none** to set the ID code to all 0s. If you do not specify the JTAG ID code, the default value is all 0s.

Figure 19–7. New Device Dialog Box

New Device	×
Device Name: 2_BIT	
Instruction register	•
JTAG ID	
ID Mask	
Add JTAG ID Remov	/e
Allow none	
ОК	Cancel

After defining the device, the device appears in the device list (Figure 19–8). Click **Export** to save the information in a Quartus User-Defined Device (QUD) file. This file saves the information for the user-defined devices that appear under **Device name** in the dialog box and can be used by other Quartus II projects as well. To obtain information on the user-defined devices from the QUD file, click **Import** and the devices are listed under **Device name**.

Figure 19–8. Select Devices

Select Devices		
Device family	Device name	
Cyclone III	2_BIT	New
		Import
FLEX10K FLEX10KA		Export
FLEX10KE FLEX6000		Edit
FLEX8000 HardCopy II		Remove
		Check
		Uncheck
Stratix GX		
□ Stratix II G× ✓ User Defined		
Virtual JTAG TAP		
	OK	Cancel

Figure 19–9 shows the programmer window for a JTAG chain.

Figure 19–9. Multi-Device JTAG Chain

💾 Design.cdf												
🔔 Hardware Setup	p USB-Blaster [USB-0]				м	ode: JTA	G			ess:	0	%
🔲 Enable real-time I	ISP to allow background program	mming (for MAX II dev	rices)									
🏓 Start	File	Device	Checksum	Usercode	Program/ Configure	Verify	Blank- Check	Examine	Security Bit	Erase	ISP CLAMP	IPS File
Stop Auto Detect Control Detect Con	Design pof LCFM UFM <none> Cyclone.sof MAX(7KAE.pof <none> (none></none></none>	EPM1270F256 EP2S60F494 EP1C3T100 EPM7128AET100 2_BIT	0062EEEE 00000000 00049021 001DE038 0000000	<pre><roome> 12345578 FFFFFFF </roome></pre> <pre>(none></pre>								
	 Bypass User-defined Device Bypass MAX 7000AE CPLD Configure Cyclone FPGA Bypass Stratix II FPGA Program MAX II CPLD											

Chain Description File

All the information in the Quartus II Programmer, including the programming or configuration mode, programming or configuration files used, device chain information, and the programming options specified can be saved in a chain description file (CDF). You do not have to specify the information each time you program the device chain. Simply open the CDF in the Quartus II software and information appears in the Quartus II Programmer GUI.

Design Security Key Programming

The Quartus II Programmer supports the generation of encryption key programming files and encrypted configuration files for Altera FPGAs that support the design security feature. You can also use the Quartus II Programmer to program the encryption key into the FPGA.

Refer to *AN 341: Using the Design Security Feature in Stratix II Devices* for more information about using the design security feature with the Quartus II software.

Optional Programming Files

The Quartus II software is able to generate optional programming or configuration files in various formats to be used with programming tools other than the Quartus II Programmer. In addition, you can convert the FPGA configuration files to programming files for configuration devices.

Types of Programming and Configuration Files

The Quartus II software generates programming files of various formats for use with different programming tools. Table 19–6 shows the programming and configuration files generated by the Quartus II software.

Table 19–6. Types of Programming and Configuration Files (Part 1 of 2)							
File Format	Generated by the Quartus II Software	Supported by the Quartus II Programmer	Description				
SOF	~	~	This configuration data file is used for configuring FPGA devices. The Quartus II Assembler generates this file when you compile your FPGA design.				
POF	~	~	This programming data file is used for programming CPLDs and configuration devices. The Quartus II Assembler generates the CPLD POF file when you compile your CPLD design. The configuration device POF file is converted from the FPGA SOF file.				
Jam	~	~	This ASCII-format file is used for configuring or programming one or more FPGAs, CPLDs, and configuration devices in a JTAG chain. The Jam file includes both programming algorithm and data. Apart from the Quartus II Programmer, you can use Altera's Jam Standard Test and Programming Language (STAPL) player, the quartus_jli executable, or other third-party programming tools together with the Jam file. The Jam file is also suitable for embedded processor-type programming environments.				
JBC	~	~	Similar to the Jam file, this binary-format file is used for configuring or programming one or more FPGAs, CPLDs, and configuration devices in a JTAG chain. The JBC file includes both the programming algorithm and data, and the size is smaller than the Jam file. In addition to the Quartus II Programmer, you can use Altera's Jam Byte-Code player, the quartus_jli executable, or other third-party programming tools together with the JBC file. The JBC file is also suitable for embedded processor-type programming environments.				

Table 19–6. Types of Programming and Configuration Files (Part 2 of 2)				
File Format	Generated by the Quartus II Software	Supported by the Quartus II Programmer	Description	
SVF	~	_	This ASCII-format file is used for configuring, programming, blank-checking, and verifying one or more FPGAs, CPLDs, and configuration devices in a JTAG chain. The SVF file, which includes programming algorithm and data, is suitable for an automated test equipment (ATE) environment that requires a fixed programming algorithm.	
ISC	~	_	This data file is used with the IEEE 1532 BSDL file for programming a single device that supports IEEE 1532 programming. The Quartus II software supports generating the ISC file for MAX 7000AE, MAX 7000B, and MAX 3000A CPLDs.	
Hexout	~	_	The Hexout file is used for programming FPGA configuration data into enhanced configuration devices or other storage devices. For enhanced configuration devices, use the enhanced configuration device POF to generate the Hexout file. Use the FPGA SOF file to generate the Hexout file for other storage devices (for example, the flash or EEPROM devices). You can use a microcontroller to read back the data from the storage device and configure the FPGA. To program the enhanced configuration device or other storage devices with the Hexout file, you can use other third-party programming tools.	
RBF	~	_	This binary file contains configuration data for one or more FPGAs. You can use Altera's JRunner software to configure your FPGA device with the RBF file. The RBF file is also suitable for embedded processor configuration environments.	
TTF	~	_	This ASCII file contains configuration data for one or more FPGAs. The TTF file is used for embedded processor-type configuration.	
RPD	~	_	This binary file is used for programming serial configuration devices. Use the serial configuration device POF file to generate this file. You can use Altera's SRunner software to program your serial configuration device with the RPD file.	
JIC	~	\checkmark	The JIC file is used for programming serial configuration devices through JTAG with the Quartus II Programmer and Altera FPGAs that support AS configuration mode.	

Refer to the Quartus II Help or the *Configuration File Formats* chapter of the *Configuration Handbook* for more information about the programming and configuration file formats.

Refer to AN 425: Using Command-Line Jam STAPL Solution for Device Programming for more information about using the Jam and JBC programming files with the Jam STAPL Player, Jam STAPL Byte-Code Player, and the **quartus_jli** command-line executable.

Generating Optional Programming Files

When you compile your design, the Quartus II Assembler generates the SOF file for an FPGA or a POF file for a CPLD. With the SOF or POF for your design, you can then create other optional programming or configuration files, or convert the SOF to target a particular configuration device.

Create Programming Files

The Quartus II software allows you to create optional Jam, JBC, SVF, or ISC programming or configuration files. In addition, you can create Jam, JBC, and SVF files for a JTAG chain that consists of more than one device.

To create the files, open the Quartus II Programmer, set the programming or configuration mode to JTAG, and then add the programming or configuration files or devices to the programmer. On the File menu, click **Create/Update** and then click **Create JAM**, **SVF**, or **ISC File**. Select the file format and name the file accordingly.

For SVF files, you can create an SVF file for programming or verification only. In addition, you can specify whether or not to do the optional blank-check operation with the SVF file.

Convert Programming Files

To store the FPGA data into configuration devices, you can convert the SOF data to another format and program the configuration device. The Quartus II software supports converting the data into POF, Hexout, RBF, TTF, RPD, or JIC format.

For more information about converting programming files with the Quartus II software, refer to the *Configuration File Formats* chapter of the *Configuration Handbook*.

Generating Optional Programming or Configuration Files During Compilation

The Quartus II software can generate optional programming or configuration files automatically when you compile your design. To select the format of the optional programming or configuration files to be generated during compilation, on the Assignments menu, click **Settings**. Under **Device**, click **Device and Pin Options**.

You can select the configuration device from the **Configuration** tab for the configuration device POF generation. For other optional programming and configuration file generation, you can select the file format under the **Programming Files** tab.

Flash Loaders

Serial configuration devices and the common flash interface (CFI) flash devices do not support JTAG interface and cannot be programmed directly through the normal JTAG programming. Flash loaders allow the programming of the serial configuration device and the CFI flash from the Quartus II Programmer through JTAG.

Parallel Flash Loader

The parallel flash loader (PFL) performs two functions:

- Allows the programming of the CFI flash through the JTAG interface
- Acts as the configuration controller that reads the configuration data from the CFI flash and configures the FPGA

To program the CFI flash, the PFL uses the MAX II device as a bridge between the JTAG interface of the Quartus II Programmer and the CFI of the CFI flash device. You can program FPGA configuration data and user data into the flash with a flash POF generated by the Quartus II software. After the flash is programmed with the FPGA configuration data, the PFL is then used to read the configuration data back from the CFI flash to configure the FPGA.

Refer to *AN 386: Using the MAX II Parallel Flash Loader with the Quartus II Software* for more information about PFL.

Serial Flash Loader

The serial flash loader (SFL) allows programming of the serial configuration devices through JTAG. The SFL uses the FPGA device that supports AS configuration mode as a bridge between the active serial memory interface (ASMI) of the serial configuration device and the JTAG

Other

Tools

Programming

interface of the programmer. The Quartus II Programmer uses the JIC file converted from the FPGA SOF file to program the serial configuration device though JTAG.

Refer to *AN* 370: *Using the Serial Flash Loader with the Quartus II Software* for more information about SFL.

This section covers other programming tools that are related to the Quartus II Programmer and can be used for programming or debugging programming problems.

Quartus II Stand-Alone Programmer

If you do not have the full version of the Quartus II software, Altera offers the free Quartus II Stand-Alone Programmer. This stand-alone programmer has the full function of the normal Quartus II Programmer, and enables you to create or convert programming files from the SOF or POF of your design. You can download the Quartus II Stand-Alone Programmer from the **Download Center** page found through the **Support** page on the Altera website at **www.altera.com**.

jtagconfig Debugging Tool

The **jtagconfig** command-line utility is included with the Quartus II software. You can use this utility (which is similar to the auto detect operation in the Quartus II Programmer) to check the devices in a JTAG chain and the user-defined devices.

For more information about the **jtagconfig** utility, type one of the following commands at the command prompt:

jtagconfig -h ↔ jtagconfig --help ↔

Scripting Support

Apart from the Quartus II Programmer GUI, you can perform programming with the Quartus II command-line programmer (quartus_pgm). This quartus_pgm command-line programmer comes with the Quartus II Programmer. You can run this programmer separately from the Quartus II software. You can also run the procedures for the programmer in a Tcl script. The programmer accepts the POF, SOF, and JIC programming or configuration files. You can also use the CDF. For more information about the command-line syntax, type one of the following commands at the command prompt:

```
quartus_pgm -h ←
quartus_pgm --help ←
```

For more information about a specific programmer option or topic, type the following command at the command prompt:

```
quartus_pgm --help=<option | topic> +
```

The following is an example of a command that programs a device:

```
quartus pgm -c byteblasterII -m jtag -o bpv;design.pof 🛩
```

where:

- -c byteblasterII specifies the ByteBlaster II download cable
- -m jtag specifies the JTAG programming mode
- -o bpv represents the blank-check, program, and verify operations
- design.pof represents the POF file used for the programming

The programmer automatically executes the erase operation before programming the device.

For detailed information about scripting command options, you can also refer to the Quartus II Command-Line and Tcl API Help browser. To run the Help browser, type the following command at the command prompt:

quartus_sh --qhelp 🕶

The *Scripting Reference Manual* includes the same information in PDF format.

For more information about Tcl scripting, refer to the *Tcl Scripting* chapter in volume 2 of the *Quartus II Handbook*. Refer to the *Quartus II Settings File Reference Manual* for information on all settings and constraints in the Quartus II software. Refer to the *Command-Line Scripting* chapter in volume 2 of the *Quartus II Handbook* for more information about command-line scripting.

Conclusion

The Quartus II Programmer offers you a wide variety of options to program and configure your Altera devices. With the Quartus II Programmer, the Quartus II software provides you with a complete solution for your FPGA or CPLD design prototyping, which can even be performed in the production environment.

Referenced Documents

This chapter references the following documents:

- AN 341: Using the Design Security Feature in Stratix II and Stratix II GX Devices
- AN 370: Using the Serial FlashLoader with the Quartus II Software
- AN 386: Using the MAX II Parallel Flash Loader with the Quartus II Software
- AN 425: Using Command-Line Jam STAPL Solution for Device Programming
- Command-Line Scripting chapter in volume 2 of the Quartus II Handbook
- *Configuration File Formats* chapter of the *Configuration Handbook*
- Configuration Handbook
- Quartus II Scripting Reference Manual
- Quartus II Settings File Reference Manual
- Serial Configuration Devices (EPCS1, EPCS4, EPCS16, and EPCS64) and EPCS128) Data Sheet of the Configuration Handbook
- **T**cl Scripting chapter in volume 2 of the Quartus II Handbook

Document Revision History

Table 19–7 shows the revision history for this chapter.

Table 19–7. Document Revision History				
Date and Document Version	Changes Made	Summary of Changes		
October 2007, v7.2.0	Reorganized "Referenced Documents".	_		
May 2007 v7.1.0	Initial release	_		